2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h> /* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/dccp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
91 static int __init enforcing_setup(char *str)
93 selinux_enforcing = simple_strtol(str,NULL,0);
96 __setup("enforcing=", enforcing_setup);
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102 static int __init selinux_enabled_setup(char *str)
104 selinux_enabled = simple_strtol(str, NULL, 0);
107 __setup("selinux=", selinux_enabled_setup);
109 int selinux_enabled = 1;
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
126 static struct kmem_cache *sel_inode_cache;
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
136 rc = security_sid_to_context(sid, &context, &len);
140 if (!buffer || !size)
141 goto getsecurity_exit;
145 goto getsecurity_exit;
147 memcpy(buffer, context, len);
154 /* Allocate and free functions for each kind of security blob. */
156 static int task_alloc_security(struct task_struct *task)
158 struct task_security_struct *tsec;
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
171 static void task_free_security(struct task_struct *task)
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
178 static int inode_alloc_security(struct inode *inode)
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
187 mutex_init(&isec->lock);
188 INIT_LIST_HEAD(&isec->list);
190 isec->sid = SECINITSID_UNLABELED;
191 isec->sclass = SECCLASS_FILE;
192 isec->task_sid = tsec->sid;
193 inode->i_security = isec;
198 static void inode_free_security(struct inode *inode)
200 struct inode_security_struct *isec = inode->i_security;
201 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203 spin_lock(&sbsec->isec_lock);
204 if (!list_empty(&isec->list))
205 list_del_init(&isec->list);
206 spin_unlock(&sbsec->isec_lock);
208 inode->i_security = NULL;
209 kmem_cache_free(sel_inode_cache, isec);
212 static int file_alloc_security(struct file *file)
214 struct task_security_struct *tsec = current->security;
215 struct file_security_struct *fsec;
217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
222 fsec->sid = tsec->sid;
223 fsec->fown_sid = tsec->sid;
224 file->f_security = fsec;
229 static void file_free_security(struct file *file)
231 struct file_security_struct *fsec = file->f_security;
232 file->f_security = NULL;
236 static int superblock_alloc_security(struct super_block *sb)
238 struct superblock_security_struct *sbsec;
240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
244 mutex_init(&sbsec->lock);
245 INIT_LIST_HEAD(&sbsec->list);
246 INIT_LIST_HEAD(&sbsec->isec_head);
247 spin_lock_init(&sbsec->isec_lock);
249 sbsec->sid = SECINITSID_UNLABELED;
250 sbsec->def_sid = SECINITSID_FILE;
251 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 sb->s_security = sbsec;
257 static void superblock_free_security(struct super_block *sb)
259 struct superblock_security_struct *sbsec = sb->s_security;
261 spin_lock(&sb_security_lock);
262 if (!list_empty(&sbsec->list))
263 list_del_init(&sbsec->list);
264 spin_unlock(&sb_security_lock);
266 sb->s_security = NULL;
270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 struct sk_security_struct *ssec;
274 ssec = kzalloc(sizeof(*ssec), priority);
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 ssec->sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
283 selinux_netlbl_sk_security_init(ssec, family);
288 static void sk_free_security(struct sock *sk)
290 struct sk_security_struct *ssec = sk->sk_security;
292 sk->sk_security = NULL;
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
300 /* The file system's label must be initialized prior to use. */
302 static char *labeling_behaviors[6] = {
304 "uses transition SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313 static inline int inode_doinit(struct inode *inode)
315 return inode_doinit_with_dentry(inode, NULL);
325 static match_table_t tokens = {
326 {Opt_context, "context=%s"},
327 {Opt_fscontext, "fscontext=%s"},
328 {Opt_defcontext, "defcontext=%s"},
329 {Opt_rootcontext, "rootcontext=%s"},
332 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
334 static int may_context_mount_sb_relabel(u32 sid,
335 struct superblock_security_struct *sbsec,
336 struct task_security_struct *tsec)
340 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
341 FILESYSTEM__RELABELFROM, NULL);
345 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELTO, NULL);
350 static int may_context_mount_inode_relabel(u32 sid,
351 struct superblock_security_struct *sbsec,
352 struct task_security_struct *tsec)
355 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
356 FILESYSTEM__RELABELFROM, NULL);
360 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
361 FILESYSTEM__ASSOCIATE, NULL);
365 static int try_context_mount(struct super_block *sb, void *data)
367 char *context = NULL, *defcontext = NULL;
368 char *fscontext = NULL, *rootcontext = NULL;
371 int alloc = 0, rc = 0, seen = 0;
372 struct task_security_struct *tsec = current->security;
373 struct superblock_security_struct *sbsec = sb->s_security;
378 name = sb->s_type->name;
380 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382 /* NFS we understand. */
383 if (!strcmp(name, "nfs")) {
384 struct nfs_mount_data *d = data;
386 if (d->version < NFS_MOUNT_VERSION)
390 context = d->context;
397 /* Standard string-based options. */
398 char *p, *options = data;
400 while ((p = strsep(&options, "|")) != NULL) {
402 substring_t args[MAX_OPT_ARGS];
407 token = match_token(p, tokens, args);
411 if (seen & (Opt_context|Opt_defcontext)) {
413 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416 context = match_strdup(&args[0]);
427 if (seen & Opt_fscontext) {
429 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432 fscontext = match_strdup(&args[0]);
439 seen |= Opt_fscontext;
442 case Opt_rootcontext:
443 if (seen & Opt_rootcontext) {
445 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448 rootcontext = match_strdup(&args[0]);
455 seen |= Opt_rootcontext;
459 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 printk(KERN_WARNING "SELinux: "
462 "defcontext option is invalid "
463 "for this filesystem type\n");
466 if (seen & (Opt_context|Opt_defcontext)) {
468 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471 defcontext = match_strdup(&args[0]);
478 seen |= Opt_defcontext;
483 printk(KERN_WARNING "SELinux: unknown mount "
494 /* sets the context of the superblock for the fs being mounted. */
496 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 printk(KERN_WARNING "SELinux: security_context_to_sid"
499 "(%s) failed for (dev %s, type %s) errno=%d\n",
500 fscontext, sb->s_id, name, rc);
504 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
512 * Switch to using mount point labeling behavior.
513 * sets the label used on all file below the mountpoint, and will set
514 * the superblock context if not already set.
517 rc = security_context_to_sid(context, strlen(context), &sid);
519 printk(KERN_WARNING "SELinux: security_context_to_sid"
520 "(%s) failed for (dev %s, type %s) errno=%d\n",
521 context, sb->s_id, name, rc);
526 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
531 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
535 sbsec->mntpoint_sid = sid;
537 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
541 struct inode *inode = sb->s_root->d_inode;
542 struct inode_security_struct *isec = inode->i_security;
543 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 printk(KERN_WARNING "SELinux: security_context_to_sid"
546 "(%s) failed for (dev %s, type %s) errno=%d\n",
547 rootcontext, sb->s_id, name, rc);
551 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
556 isec->initialized = 1;
560 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 printk(KERN_WARNING "SELinux: security_context_to_sid"
563 "(%s) failed for (dev %s, type %s) errno=%d\n",
564 defcontext, sb->s_id, name, rc);
568 if (sid == sbsec->def_sid)
571 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
575 sbsec->def_sid = sid;
589 static int superblock_doinit(struct super_block *sb, void *data)
591 struct superblock_security_struct *sbsec = sb->s_security;
592 struct dentry *root = sb->s_root;
593 struct inode *inode = root->d_inode;
596 mutex_lock(&sbsec->lock);
597 if (sbsec->initialized)
600 if (!ss_initialized) {
601 /* Defer initialization until selinux_complete_init,
602 after the initial policy is loaded and the security
603 server is ready to handle calls. */
604 spin_lock(&sb_security_lock);
605 if (list_empty(&sbsec->list))
606 list_add(&sbsec->list, &superblock_security_head);
607 spin_unlock(&sb_security_lock);
611 /* Determine the labeling behavior to use for this filesystem type. */
612 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
615 __FUNCTION__, sb->s_type->name, rc);
619 rc = try_context_mount(sb, data);
623 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
624 /* Make sure that the xattr handler exists and that no
625 error other than -ENODATA is returned by getxattr on
626 the root directory. -ENODATA is ok, as this may be
627 the first boot of the SELinux kernel before we have
628 assigned xattr values to the filesystem. */
629 if (!inode->i_op->getxattr) {
630 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
631 "xattr support\n", sb->s_id, sb->s_type->name);
635 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
636 if (rc < 0 && rc != -ENODATA) {
637 if (rc == -EOPNOTSUPP)
638 printk(KERN_WARNING "SELinux: (dev %s, type "
639 "%s) has no security xattr handler\n",
640 sb->s_id, sb->s_type->name);
642 printk(KERN_WARNING "SELinux: (dev %s, type "
643 "%s) getxattr errno %d\n", sb->s_id,
644 sb->s_type->name, -rc);
649 if (strcmp(sb->s_type->name, "proc") == 0)
652 sbsec->initialized = 1;
654 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
655 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
656 sb->s_id, sb->s_type->name);
659 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
660 sb->s_id, sb->s_type->name,
661 labeling_behaviors[sbsec->behavior-1]);
664 /* Initialize the root inode. */
665 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667 /* Initialize any other inodes associated with the superblock, e.g.
668 inodes created prior to initial policy load or inodes created
669 during get_sb by a pseudo filesystem that directly
671 spin_lock(&sbsec->isec_lock);
673 if (!list_empty(&sbsec->isec_head)) {
674 struct inode_security_struct *isec =
675 list_entry(sbsec->isec_head.next,
676 struct inode_security_struct, list);
677 struct inode *inode = isec->inode;
678 spin_unlock(&sbsec->isec_lock);
679 inode = igrab(inode);
681 if (!IS_PRIVATE (inode))
685 spin_lock(&sbsec->isec_lock);
686 list_del_init(&isec->list);
689 spin_unlock(&sbsec->isec_lock);
691 mutex_unlock(&sbsec->lock);
695 static inline u16 inode_mode_to_security_class(umode_t mode)
697 switch (mode & S_IFMT) {
699 return SECCLASS_SOCK_FILE;
701 return SECCLASS_LNK_FILE;
703 return SECCLASS_FILE;
705 return SECCLASS_BLK_FILE;
709 return SECCLASS_CHR_FILE;
711 return SECCLASS_FIFO_FILE;
715 return SECCLASS_FILE;
718 static inline int default_protocol_stream(int protocol)
720 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 static inline int default_protocol_dgram(int protocol)
725 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
735 return SECCLASS_UNIX_STREAM_SOCKET;
737 return SECCLASS_UNIX_DGRAM_SOCKET;
744 if (default_protocol_stream(protocol))
745 return SECCLASS_TCP_SOCKET;
747 return SECCLASS_RAWIP_SOCKET;
749 if (default_protocol_dgram(protocol))
750 return SECCLASS_UDP_SOCKET;
752 return SECCLASS_RAWIP_SOCKET;
754 return SECCLASS_DCCP_SOCKET;
756 return SECCLASS_RAWIP_SOCKET;
762 return SECCLASS_NETLINK_ROUTE_SOCKET;
763 case NETLINK_FIREWALL:
764 return SECCLASS_NETLINK_FIREWALL_SOCKET;
765 case NETLINK_INET_DIAG:
766 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
768 return SECCLASS_NETLINK_NFLOG_SOCKET;
770 return SECCLASS_NETLINK_XFRM_SOCKET;
771 case NETLINK_SELINUX:
772 return SECCLASS_NETLINK_SELINUX_SOCKET;
774 return SECCLASS_NETLINK_AUDIT_SOCKET;
776 return SECCLASS_NETLINK_IP6FW_SOCKET;
777 case NETLINK_DNRTMSG:
778 return SECCLASS_NETLINK_DNRT_SOCKET;
779 case NETLINK_KOBJECT_UEVENT:
780 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
782 return SECCLASS_NETLINK_SOCKET;
785 return SECCLASS_PACKET_SOCKET;
787 return SECCLASS_KEY_SOCKET;
789 return SECCLASS_APPLETALK_SOCKET;
792 return SECCLASS_SOCKET;
795 #ifdef CONFIG_PROC_FS
796 static int selinux_proc_get_sid(struct proc_dir_entry *de,
801 char *buffer, *path, *end;
803 buffer = (char*)__get_free_page(GFP_KERNEL);
813 while (de && de != de->parent) {
814 buflen -= de->namelen + 1;
818 memcpy(end, de->name, de->namelen);
823 rc = security_genfs_sid("proc", path, tclass, sid);
824 free_page((unsigned long)buffer);
828 static int selinux_proc_get_sid(struct proc_dir_entry *de,
836 /* The inode's security attributes must be initialized before first use. */
837 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
839 struct superblock_security_struct *sbsec = NULL;
840 struct inode_security_struct *isec = inode->i_security;
842 struct dentry *dentry;
843 #define INITCONTEXTLEN 255
844 char *context = NULL;
848 if (isec->initialized)
851 mutex_lock(&isec->lock);
852 if (isec->initialized)
855 sbsec = inode->i_sb->s_security;
856 if (!sbsec->initialized) {
857 /* Defer initialization until selinux_complete_init,
858 after the initial policy is loaded and the security
859 server is ready to handle calls. */
860 spin_lock(&sbsec->isec_lock);
861 if (list_empty(&isec->list))
862 list_add(&isec->list, &sbsec->isec_head);
863 spin_unlock(&sbsec->isec_lock);
867 switch (sbsec->behavior) {
868 case SECURITY_FS_USE_XATTR:
869 if (!inode->i_op->getxattr) {
870 isec->sid = sbsec->def_sid;
874 /* Need a dentry, since the xattr API requires one.
875 Life would be simpler if we could just pass the inode. */
877 /* Called from d_instantiate or d_splice_alias. */
878 dentry = dget(opt_dentry);
880 /* Called from selinux_complete_init, try to find a dentry. */
881 dentry = d_find_alias(inode);
884 printk(KERN_WARNING "%s: no dentry for dev=%s "
885 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
890 len = INITCONTEXTLEN;
891 context = kmalloc(len, GFP_KERNEL);
897 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900 /* Need a larger buffer. Query for the right size. */
901 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
909 context = kmalloc(len, GFP_KERNEL);
915 rc = inode->i_op->getxattr(dentry,
921 if (rc != -ENODATA) {
922 printk(KERN_WARNING "%s: getxattr returned "
923 "%d for dev=%s ino=%ld\n", __FUNCTION__,
924 -rc, inode->i_sb->s_id, inode->i_ino);
928 /* Map ENODATA to the default file SID */
929 sid = sbsec->def_sid;
932 rc = security_context_to_sid_default(context, rc, &sid,
935 printk(KERN_WARNING "%s: context_to_sid(%s) "
936 "returned %d for dev=%s ino=%ld\n",
937 __FUNCTION__, context, -rc,
938 inode->i_sb->s_id, inode->i_ino);
940 /* Leave with the unlabeled SID */
948 case SECURITY_FS_USE_TASK:
949 isec->sid = isec->task_sid;
951 case SECURITY_FS_USE_TRANS:
952 /* Default to the fs SID. */
953 isec->sid = sbsec->sid;
955 /* Try to obtain a transition SID. */
956 isec->sclass = inode_mode_to_security_class(inode->i_mode);
957 rc = security_transition_sid(isec->task_sid,
965 case SECURITY_FS_USE_MNTPOINT:
966 isec->sid = sbsec->mntpoint_sid;
969 /* Default to the fs superblock SID. */
970 isec->sid = sbsec->sid;
973 struct proc_inode *proci = PROC_I(inode);
975 isec->sclass = inode_mode_to_security_class(inode->i_mode);
976 rc = selinux_proc_get_sid(proci->pde,
987 isec->initialized = 1;
990 mutex_unlock(&isec->lock);
992 if (isec->sclass == SECCLASS_FILE)
993 isec->sclass = inode_mode_to_security_class(inode->i_mode);
997 /* Convert a Linux signal to an access vector. */
998 static inline u32 signal_to_av(int sig)
1004 /* Commonly granted from child to parent. */
1005 perm = PROCESS__SIGCHLD;
1008 /* Cannot be caught or ignored */
1009 perm = PROCESS__SIGKILL;
1012 /* Cannot be caught or ignored */
1013 perm = PROCESS__SIGSTOP;
1016 /* All other signals. */
1017 perm = PROCESS__SIGNAL;
1024 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1025 fork check, ptrace check, etc. */
1026 static int task_has_perm(struct task_struct *tsk1,
1027 struct task_struct *tsk2,
1030 struct task_security_struct *tsec1, *tsec2;
1032 tsec1 = tsk1->security;
1033 tsec2 = tsk2->security;
1034 return avc_has_perm(tsec1->sid, tsec2->sid,
1035 SECCLASS_PROCESS, perms, NULL);
1038 /* Check whether a task is allowed to use a capability. */
1039 static int task_has_capability(struct task_struct *tsk,
1042 struct task_security_struct *tsec;
1043 struct avc_audit_data ad;
1045 tsec = tsk->security;
1047 AVC_AUDIT_DATA_INIT(&ad,CAP);
1051 return avc_has_perm(tsec->sid, tsec->sid,
1052 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 /* Check whether a task is allowed to use a system operation. */
1056 static int task_has_system(struct task_struct *tsk,
1059 struct task_security_struct *tsec;
1061 tsec = tsk->security;
1063 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1064 SECCLASS_SYSTEM, perms, NULL);
1067 /* Check whether a task has a particular permission to an inode.
1068 The 'adp' parameter is optional and allows other audit
1069 data to be passed (e.g. the dentry). */
1070 static int inode_has_perm(struct task_struct *tsk,
1071 struct inode *inode,
1073 struct avc_audit_data *adp)
1075 struct task_security_struct *tsec;
1076 struct inode_security_struct *isec;
1077 struct avc_audit_data ad;
1079 if (unlikely (IS_PRIVATE (inode)))
1082 tsec = tsk->security;
1083 isec = inode->i_security;
1087 AVC_AUDIT_DATA_INIT(&ad, FS);
1088 ad.u.fs.inode = inode;
1091 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1094 /* Same as inode_has_perm, but pass explicit audit data containing
1095 the dentry to help the auditing code to more easily generate the
1096 pathname if needed. */
1097 static inline int dentry_has_perm(struct task_struct *tsk,
1098 struct vfsmount *mnt,
1099 struct dentry *dentry,
1102 struct inode *inode = dentry->d_inode;
1103 struct avc_audit_data ad;
1104 AVC_AUDIT_DATA_INIT(&ad,FS);
1106 ad.u.fs.dentry = dentry;
1107 return inode_has_perm(tsk, inode, av, &ad);
1110 /* Check whether a task can use an open file descriptor to
1111 access an inode in a given way. Check access to the
1112 descriptor itself, and then use dentry_has_perm to
1113 check a particular permission to the file.
1114 Access to the descriptor is implicitly granted if it
1115 has the same SID as the process. If av is zero, then
1116 access to the file is not checked, e.g. for cases
1117 where only the descriptor is affected like seek. */
1118 static int file_has_perm(struct task_struct *tsk,
1122 struct task_security_struct *tsec = tsk->security;
1123 struct file_security_struct *fsec = file->f_security;
1124 struct vfsmount *mnt = file->f_path.mnt;
1125 struct dentry *dentry = file->f_path.dentry;
1126 struct inode *inode = dentry->d_inode;
1127 struct avc_audit_data ad;
1130 AVC_AUDIT_DATA_INIT(&ad, FS);
1132 ad.u.fs.dentry = dentry;
1134 if (tsec->sid != fsec->sid) {
1135 rc = avc_has_perm(tsec->sid, fsec->sid,
1143 /* av is zero if only checking access to the descriptor. */
1145 return inode_has_perm(tsk, inode, av, &ad);
1150 /* Check whether a task can create a file. */
1151 static int may_create(struct inode *dir,
1152 struct dentry *dentry,
1155 struct task_security_struct *tsec;
1156 struct inode_security_struct *dsec;
1157 struct superblock_security_struct *sbsec;
1159 struct avc_audit_data ad;
1162 tsec = current->security;
1163 dsec = dir->i_security;
1164 sbsec = dir->i_sb->s_security;
1166 AVC_AUDIT_DATA_INIT(&ad, FS);
1167 ad.u.fs.dentry = dentry;
1169 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1170 DIR__ADD_NAME | DIR__SEARCH,
1175 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1176 newsid = tsec->create_sid;
1178 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1184 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1188 return avc_has_perm(newsid, sbsec->sid,
1189 SECCLASS_FILESYSTEM,
1190 FILESYSTEM__ASSOCIATE, &ad);
1193 /* Check whether a task can create a key. */
1194 static int may_create_key(u32 ksid,
1195 struct task_struct *ctx)
1197 struct task_security_struct *tsec;
1199 tsec = ctx->security;
1201 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1205 #define MAY_UNLINK 1
1208 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1209 static int may_link(struct inode *dir,
1210 struct dentry *dentry,
1214 struct task_security_struct *tsec;
1215 struct inode_security_struct *dsec, *isec;
1216 struct avc_audit_data ad;
1220 tsec = current->security;
1221 dsec = dir->i_security;
1222 isec = dentry->d_inode->i_security;
1224 AVC_AUDIT_DATA_INIT(&ad, FS);
1225 ad.u.fs.dentry = dentry;
1228 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1229 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1244 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1248 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1252 static inline int may_rename(struct inode *old_dir,
1253 struct dentry *old_dentry,
1254 struct inode *new_dir,
1255 struct dentry *new_dentry)
1257 struct task_security_struct *tsec;
1258 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1259 struct avc_audit_data ad;
1261 int old_is_dir, new_is_dir;
1264 tsec = current->security;
1265 old_dsec = old_dir->i_security;
1266 old_isec = old_dentry->d_inode->i_security;
1267 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1268 new_dsec = new_dir->i_security;
1270 AVC_AUDIT_DATA_INIT(&ad, FS);
1272 ad.u.fs.dentry = old_dentry;
1273 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1274 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1277 rc = avc_has_perm(tsec->sid, old_isec->sid,
1278 old_isec->sclass, FILE__RENAME, &ad);
1281 if (old_is_dir && new_dir != old_dir) {
1282 rc = avc_has_perm(tsec->sid, old_isec->sid,
1283 old_isec->sclass, DIR__REPARENT, &ad);
1288 ad.u.fs.dentry = new_dentry;
1289 av = DIR__ADD_NAME | DIR__SEARCH;
1290 if (new_dentry->d_inode)
1291 av |= DIR__REMOVE_NAME;
1292 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1295 if (new_dentry->d_inode) {
1296 new_isec = new_dentry->d_inode->i_security;
1297 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1298 rc = avc_has_perm(tsec->sid, new_isec->sid,
1300 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1308 /* Check whether a task can perform a filesystem operation. */
1309 static int superblock_has_perm(struct task_struct *tsk,
1310 struct super_block *sb,
1312 struct avc_audit_data *ad)
1314 struct task_security_struct *tsec;
1315 struct superblock_security_struct *sbsec;
1317 tsec = tsk->security;
1318 sbsec = sb->s_security;
1319 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1323 /* Convert a Linux mode and permission mask to an access vector. */
1324 static inline u32 file_mask_to_av(int mode, int mask)
1328 if ((mode & S_IFMT) != S_IFDIR) {
1329 if (mask & MAY_EXEC)
1330 av |= FILE__EXECUTE;
1331 if (mask & MAY_READ)
1334 if (mask & MAY_APPEND)
1336 else if (mask & MAY_WRITE)
1340 if (mask & MAY_EXEC)
1342 if (mask & MAY_WRITE)
1344 if (mask & MAY_READ)
1351 /* Convert a Linux file to an access vector. */
1352 static inline u32 file_to_av(struct file *file)
1356 if (file->f_mode & FMODE_READ)
1358 if (file->f_mode & FMODE_WRITE) {
1359 if (file->f_flags & O_APPEND)
1368 /* Hook functions begin here. */
1370 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1372 struct task_security_struct *psec = parent->security;
1373 struct task_security_struct *csec = child->security;
1376 rc = secondary_ops->ptrace(parent,child);
1380 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1381 /* Save the SID of the tracing process for later use in apply_creds. */
1382 if (!(child->ptrace & PT_PTRACED) && !rc)
1383 csec->ptrace_sid = psec->sid;
1387 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1388 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1392 error = task_has_perm(current, target, PROCESS__GETCAP);
1396 return secondary_ops->capget(target, effective, inheritable, permitted);
1399 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1400 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1404 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1408 return task_has_perm(current, target, PROCESS__SETCAP);
1411 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1412 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1414 secondary_ops->capset_set(target, effective, inheritable, permitted);
1417 static int selinux_capable(struct task_struct *tsk, int cap)
1421 rc = secondary_ops->capable(tsk, cap);
1425 return task_has_capability(tsk,cap);
1428 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1431 char *buffer, *path, *end;
1434 buffer = (char*)__get_free_page(GFP_KERNEL);
1439 end = buffer+buflen;
1445 const char *name = table->procname;
1446 size_t namelen = strlen(name);
1447 buflen -= namelen + 1;
1451 memcpy(end, name, namelen);
1454 table = table->parent;
1460 memcpy(end, "/sys", 4);
1462 rc = security_genfs_sid("proc", path, tclass, sid);
1464 free_page((unsigned long)buffer);
1469 static int selinux_sysctl(ctl_table *table, int op)
1473 struct task_security_struct *tsec;
1477 rc = secondary_ops->sysctl(table, op);
1481 tsec = current->security;
1483 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1484 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1486 /* Default to the well-defined sysctl SID. */
1487 tsid = SECINITSID_SYSCTL;
1490 /* The op values are "defined" in sysctl.c, thereby creating
1491 * a bad coupling between this module and sysctl.c */
1493 error = avc_has_perm(tsec->sid, tsid,
1494 SECCLASS_DIR, DIR__SEARCH, NULL);
1502 error = avc_has_perm(tsec->sid, tsid,
1503 SECCLASS_FILE, av, NULL);
1509 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1522 rc = superblock_has_perm(current,
1524 FILESYSTEM__QUOTAMOD, NULL);
1529 rc = superblock_has_perm(current,
1531 FILESYSTEM__QUOTAGET, NULL);
1534 rc = 0; /* let the kernel handle invalid cmds */
1540 static int selinux_quota_on(struct dentry *dentry)
1542 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1545 static int selinux_syslog(int type)
1549 rc = secondary_ops->syslog(type);
1554 case 3: /* Read last kernel messages */
1555 case 10: /* Return size of the log buffer */
1556 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1558 case 6: /* Disable logging to console */
1559 case 7: /* Enable logging to console */
1560 case 8: /* Set level of messages printed to console */
1561 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1563 case 0: /* Close log */
1564 case 1: /* Open log */
1565 case 2: /* Read from log */
1566 case 4: /* Read/clear last kernel messages */
1567 case 5: /* Clear ring buffer */
1569 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1576 * Check that a process has enough memory to allocate a new virtual
1577 * mapping. 0 means there is enough memory for the allocation to
1578 * succeed and -ENOMEM implies there is not.
1580 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1581 * if the capability is granted, but __vm_enough_memory requires 1 if
1582 * the capability is granted.
1584 * Do not audit the selinux permission check, as this is applied to all
1585 * processes that allocate mappings.
1587 static int selinux_vm_enough_memory(long pages)
1589 int rc, cap_sys_admin = 0;
1590 struct task_security_struct *tsec = current->security;
1592 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1594 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1595 SECCLASS_CAPABILITY,
1596 CAP_TO_MASK(CAP_SYS_ADMIN),
1603 return __vm_enough_memory(pages, cap_sys_admin);
1606 /* binprm security operations */
1608 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1610 struct bprm_security_struct *bsec;
1612 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1617 bsec->sid = SECINITSID_UNLABELED;
1620 bprm->security = bsec;
1624 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1626 struct task_security_struct *tsec;
1627 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1628 struct inode_security_struct *isec;
1629 struct bprm_security_struct *bsec;
1631 struct avc_audit_data ad;
1634 rc = secondary_ops->bprm_set_security(bprm);
1638 bsec = bprm->security;
1643 tsec = current->security;
1644 isec = inode->i_security;
1646 /* Default to the current task SID. */
1647 bsec->sid = tsec->sid;
1649 /* Reset fs, key, and sock SIDs on execve. */
1650 tsec->create_sid = 0;
1651 tsec->keycreate_sid = 0;
1652 tsec->sockcreate_sid = 0;
1654 if (tsec->exec_sid) {
1655 newsid = tsec->exec_sid;
1656 /* Reset exec SID on execve. */
1659 /* Check for a default transition on this program. */
1660 rc = security_transition_sid(tsec->sid, isec->sid,
1661 SECCLASS_PROCESS, &newsid);
1666 AVC_AUDIT_DATA_INIT(&ad, FS);
1667 ad.u.fs.mnt = bprm->file->f_path.mnt;
1668 ad.u.fs.dentry = bprm->file->f_path.dentry;
1670 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1673 if (tsec->sid == newsid) {
1674 rc = avc_has_perm(tsec->sid, isec->sid,
1675 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1679 /* Check permissions for the transition. */
1680 rc = avc_has_perm(tsec->sid, newsid,
1681 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1685 rc = avc_has_perm(newsid, isec->sid,
1686 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1690 /* Clear any possibly unsafe personality bits on exec: */
1691 current->personality &= ~PER_CLEAR_ON_SETID;
1693 /* Set the security field to the new SID. */
1701 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1703 return secondary_ops->bprm_check_security(bprm);
1707 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1709 struct task_security_struct *tsec = current->security;
1712 if (tsec->osid != tsec->sid) {
1713 /* Enable secure mode for SIDs transitions unless
1714 the noatsecure permission is granted between
1715 the two SIDs, i.e. ahp returns 0. */
1716 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1718 PROCESS__NOATSECURE, NULL);
1721 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1724 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1726 kfree(bprm->security);
1727 bprm->security = NULL;
1730 extern struct vfsmount *selinuxfs_mount;
1731 extern struct dentry *selinux_null;
1733 /* Derived from fs/exec.c:flush_old_files. */
1734 static inline void flush_unauthorized_files(struct files_struct * files)
1736 struct avc_audit_data ad;
1737 struct file *file, *devnull = NULL;
1738 struct tty_struct *tty;
1739 struct fdtable *fdt;
1743 mutex_lock(&tty_mutex);
1744 tty = get_current_tty();
1747 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1749 /* Revalidate access to controlling tty.
1750 Use inode_has_perm on the tty inode directly rather
1751 than using file_has_perm, as this particular open
1752 file may belong to another process and we are only
1753 interested in the inode-based check here. */
1754 struct inode *inode = file->f_path.dentry->d_inode;
1755 if (inode_has_perm(current, inode,
1756 FILE__READ | FILE__WRITE, NULL)) {
1762 mutex_unlock(&tty_mutex);
1763 /* Reset controlling tty. */
1767 /* Revalidate access to inherited open files. */
1769 AVC_AUDIT_DATA_INIT(&ad,FS);
1771 spin_lock(&files->file_lock);
1773 unsigned long set, i;
1778 fdt = files_fdtable(files);
1779 if (i >= fdt->max_fds)
1781 set = fdt->open_fds->fds_bits[j];
1784 spin_unlock(&files->file_lock);
1785 for ( ; set ; i++,set >>= 1) {
1790 if (file_has_perm(current,
1792 file_to_av(file))) {
1794 fd = get_unused_fd();
1804 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1805 if (IS_ERR(devnull)) {
1812 fd_install(fd, devnull);
1817 spin_lock(&files->file_lock);
1820 spin_unlock(&files->file_lock);
1823 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1825 struct task_security_struct *tsec;
1826 struct bprm_security_struct *bsec;
1830 secondary_ops->bprm_apply_creds(bprm, unsafe);
1832 tsec = current->security;
1834 bsec = bprm->security;
1837 tsec->osid = tsec->sid;
1839 if (tsec->sid != sid) {
1840 /* Check for shared state. If not ok, leave SID
1841 unchanged and kill. */
1842 if (unsafe & LSM_UNSAFE_SHARE) {
1843 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1844 PROCESS__SHARE, NULL);
1851 /* Check for ptracing, and update the task SID if ok.
1852 Otherwise, leave SID unchanged and kill. */
1853 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1854 rc = avc_has_perm(tsec->ptrace_sid, sid,
1855 SECCLASS_PROCESS, PROCESS__PTRACE,
1867 * called after apply_creds without the task lock held
1869 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1871 struct task_security_struct *tsec;
1872 struct rlimit *rlim, *initrlim;
1873 struct itimerval itimer;
1874 struct bprm_security_struct *bsec;
1877 tsec = current->security;
1878 bsec = bprm->security;
1881 force_sig_specific(SIGKILL, current);
1884 if (tsec->osid == tsec->sid)
1887 /* Close files for which the new task SID is not authorized. */
1888 flush_unauthorized_files(current->files);
1890 /* Check whether the new SID can inherit signal state
1891 from the old SID. If not, clear itimers to avoid
1892 subsequent signal generation and flush and unblock
1893 signals. This must occur _after_ the task SID has
1894 been updated so that any kill done after the flush
1895 will be checked against the new SID. */
1896 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1897 PROCESS__SIGINH, NULL);
1899 memset(&itimer, 0, sizeof itimer);
1900 for (i = 0; i < 3; i++)
1901 do_setitimer(i, &itimer, NULL);
1902 flush_signals(current);
1903 spin_lock_irq(¤t->sighand->siglock);
1904 flush_signal_handlers(current, 1);
1905 sigemptyset(¤t->blocked);
1906 recalc_sigpending();
1907 spin_unlock_irq(¤t->sighand->siglock);
1910 /* Check whether the new SID can inherit resource limits
1911 from the old SID. If not, reset all soft limits to
1912 the lower of the current task's hard limit and the init
1913 task's soft limit. Note that the setting of hard limits
1914 (even to lower them) can be controlled by the setrlimit
1915 check. The inclusion of the init task's soft limit into
1916 the computation is to avoid resetting soft limits higher
1917 than the default soft limit for cases where the default
1918 is lower than the hard limit, e.g. RLIMIT_CORE or
1920 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1921 PROCESS__RLIMITINH, NULL);
1923 for (i = 0; i < RLIM_NLIMITS; i++) {
1924 rlim = current->signal->rlim + i;
1925 initrlim = init_task.signal->rlim+i;
1926 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1928 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1930 * This will cause RLIMIT_CPU calculations
1933 current->it_prof_expires = jiffies_to_cputime(1);
1937 /* Wake up the parent if it is waiting so that it can
1938 recheck wait permission to the new task SID. */
1939 wake_up_interruptible(¤t->parent->signal->wait_chldexit);
1942 /* superblock security operations */
1944 static int selinux_sb_alloc_security(struct super_block *sb)
1946 return superblock_alloc_security(sb);
1949 static void selinux_sb_free_security(struct super_block *sb)
1951 superblock_free_security(sb);
1954 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1959 return !memcmp(prefix, option, plen);
1962 static inline int selinux_option(char *option, int len)
1964 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1965 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1966 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1967 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1970 static inline void take_option(char **to, char *from, int *first, int len)
1977 memcpy(*to, from, len);
1981 static inline void take_selinux_option(char **to, char *from, int *first,
1984 int current_size = 0;
1993 while (current_size < len) {
2003 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2005 int fnosec, fsec, rc = 0;
2006 char *in_save, *in_curr, *in_end;
2007 char *sec_curr, *nosec_save, *nosec;
2013 /* Binary mount data: just copy */
2014 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2015 copy_page(sec_curr, in_curr);
2019 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2027 in_save = in_end = orig;
2031 open_quote = !open_quote;
2032 if ((*in_end == ',' && open_quote == 0) ||
2034 int len = in_end - in_curr;
2036 if (selinux_option(in_curr, len))
2037 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2039 take_option(&nosec, in_curr, &fnosec, len);
2041 in_curr = in_end + 1;
2043 } while (*in_end++);
2045 strcpy(in_save, nosec_save);
2046 free_page((unsigned long)nosec_save);
2051 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2053 struct avc_audit_data ad;
2056 rc = superblock_doinit(sb, data);
2060 AVC_AUDIT_DATA_INIT(&ad,FS);
2061 ad.u.fs.dentry = sb->s_root;
2062 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2065 static int selinux_sb_statfs(struct dentry *dentry)
2067 struct avc_audit_data ad;
2069 AVC_AUDIT_DATA_INIT(&ad,FS);
2070 ad.u.fs.dentry = dentry->d_sb->s_root;
2071 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2074 static int selinux_mount(char * dev_name,
2075 struct nameidata *nd,
2077 unsigned long flags,
2082 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2086 if (flags & MS_REMOUNT)
2087 return superblock_has_perm(current, nd->mnt->mnt_sb,
2088 FILESYSTEM__REMOUNT, NULL);
2090 return dentry_has_perm(current, nd->mnt, nd->dentry,
2094 static int selinux_umount(struct vfsmount *mnt, int flags)
2098 rc = secondary_ops->sb_umount(mnt, flags);
2102 return superblock_has_perm(current,mnt->mnt_sb,
2103 FILESYSTEM__UNMOUNT,NULL);
2106 /* inode security operations */
2108 static int selinux_inode_alloc_security(struct inode *inode)
2110 return inode_alloc_security(inode);
2113 static void selinux_inode_free_security(struct inode *inode)
2115 inode_free_security(inode);
2118 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2119 char **name, void **value,
2122 struct task_security_struct *tsec;
2123 struct inode_security_struct *dsec;
2124 struct superblock_security_struct *sbsec;
2127 char *namep = NULL, *context;
2129 tsec = current->security;
2130 dsec = dir->i_security;
2131 sbsec = dir->i_sb->s_security;
2133 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2134 newsid = tsec->create_sid;
2136 rc = security_transition_sid(tsec->sid, dsec->sid,
2137 inode_mode_to_security_class(inode->i_mode),
2140 printk(KERN_WARNING "%s: "
2141 "security_transition_sid failed, rc=%d (dev=%s "
2144 -rc, inode->i_sb->s_id, inode->i_ino);
2149 /* Possibly defer initialization to selinux_complete_init. */
2150 if (sbsec->initialized) {
2151 struct inode_security_struct *isec = inode->i_security;
2152 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2154 isec->initialized = 1;
2157 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2161 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2168 rc = security_sid_to_context(newsid, &context, &clen);
2180 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2182 return may_create(dir, dentry, SECCLASS_FILE);
2185 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2189 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2192 return may_link(dir, old_dentry, MAY_LINK);
2195 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2199 rc = secondary_ops->inode_unlink(dir, dentry);
2202 return may_link(dir, dentry, MAY_UNLINK);
2205 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2207 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2210 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2212 return may_create(dir, dentry, SECCLASS_DIR);
2215 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2217 return may_link(dir, dentry, MAY_RMDIR);
2220 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2224 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2228 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2231 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2232 struct inode *new_inode, struct dentry *new_dentry)
2234 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2237 static int selinux_inode_readlink(struct dentry *dentry)
2239 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2242 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2246 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2249 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2252 static int selinux_inode_permission(struct inode *inode, int mask,
2253 struct nameidata *nd)
2257 rc = secondary_ops->inode_permission(inode, mask, nd);
2262 /* No permission to check. Existence test. */
2266 return inode_has_perm(current, inode,
2267 file_mask_to_av(inode->i_mode, mask), NULL);
2270 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2274 rc = secondary_ops->inode_setattr(dentry, iattr);
2278 if (iattr->ia_valid & ATTR_FORCE)
2281 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2282 ATTR_ATIME_SET | ATTR_MTIME_SET))
2283 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2285 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2288 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2290 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2293 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2295 struct task_security_struct *tsec = current->security;
2296 struct inode *inode = dentry->d_inode;
2297 struct inode_security_struct *isec = inode->i_security;
2298 struct superblock_security_struct *sbsec;
2299 struct avc_audit_data ad;
2303 if (strcmp(name, XATTR_NAME_SELINUX)) {
2304 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2305 sizeof XATTR_SECURITY_PREFIX - 1) &&
2306 !capable(CAP_SYS_ADMIN)) {
2307 /* A different attribute in the security namespace.
2308 Restrict to administrator. */
2312 /* Not an attribute we recognize, so just check the
2313 ordinary setattr permission. */
2314 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2317 sbsec = inode->i_sb->s_security;
2318 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2321 if (!is_owner_or_cap(inode))
2324 AVC_AUDIT_DATA_INIT(&ad,FS);
2325 ad.u.fs.dentry = dentry;
2327 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2328 FILE__RELABELFROM, &ad);
2332 rc = security_context_to_sid(value, size, &newsid);
2336 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2337 FILE__RELABELTO, &ad);
2341 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2346 return avc_has_perm(newsid,
2348 SECCLASS_FILESYSTEM,
2349 FILESYSTEM__ASSOCIATE,
2353 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2354 void *value, size_t size, int flags)
2356 struct inode *inode = dentry->d_inode;
2357 struct inode_security_struct *isec = inode->i_security;
2361 if (strcmp(name, XATTR_NAME_SELINUX)) {
2362 /* Not an attribute we recognize, so nothing to do. */
2366 rc = security_context_to_sid(value, size, &newsid);
2368 printk(KERN_WARNING "%s: unable to obtain SID for context "
2369 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2377 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2379 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2382 static int selinux_inode_listxattr (struct dentry *dentry)
2384 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2387 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2389 if (strcmp(name, XATTR_NAME_SELINUX)) {
2390 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2391 sizeof XATTR_SECURITY_PREFIX - 1) &&
2392 !capable(CAP_SYS_ADMIN)) {
2393 /* A different attribute in the security namespace.
2394 Restrict to administrator. */
2398 /* Not an attribute we recognize, so just check the
2399 ordinary setattr permission. Might want a separate
2400 permission for removexattr. */
2401 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2404 /* No one is allowed to remove a SELinux security label.
2405 You can change the label, but all data must be labeled. */
2409 static const char *selinux_inode_xattr_getsuffix(void)
2411 return XATTR_SELINUX_SUFFIX;
2415 * Copy the in-core inode security context value to the user. If the
2416 * getxattr() prior to this succeeded, check to see if we need to
2417 * canonicalize the value to be finally returned to the user.
2419 * Permission check is handled by selinux_inode_getxattr hook.
2421 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2423 struct inode_security_struct *isec = inode->i_security;
2425 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2428 return selinux_getsecurity(isec->sid, buffer, size);
2431 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2432 const void *value, size_t size, int flags)
2434 struct inode_security_struct *isec = inode->i_security;
2438 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2441 if (!value || !size)
2444 rc = security_context_to_sid((void*)value, size, &newsid);
2452 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2454 const int len = sizeof(XATTR_NAME_SELINUX);
2455 if (buffer && len <= buffer_size)
2456 memcpy(buffer, XATTR_NAME_SELINUX, len);
2460 /* file security operations */
2462 static int selinux_file_permission(struct file *file, int mask)
2465 struct inode *inode = file->f_path.dentry->d_inode;
2468 /* No permission to check. Existence test. */
2472 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2473 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2476 rc = file_has_perm(current, file,
2477 file_mask_to_av(inode->i_mode, mask));
2481 return selinux_netlbl_inode_permission(inode, mask);
2484 static int selinux_file_alloc_security(struct file *file)
2486 return file_alloc_security(file);
2489 static void selinux_file_free_security(struct file *file)
2491 file_free_security(file);
2494 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2506 case EXT2_IOC_GETFLAGS:
2508 case EXT2_IOC_GETVERSION:
2509 error = file_has_perm(current, file, FILE__GETATTR);
2512 case EXT2_IOC_SETFLAGS:
2514 case EXT2_IOC_SETVERSION:
2515 error = file_has_perm(current, file, FILE__SETATTR);
2518 /* sys_ioctl() checks */
2522 error = file_has_perm(current, file, 0);
2527 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2530 /* default case assumes that the command will go
2531 * to the file's ioctl() function.
2534 error = file_has_perm(current, file, FILE__IOCTL);
2540 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2542 #ifndef CONFIG_PPC32
2543 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2545 * We are making executable an anonymous mapping or a
2546 * private file mapping that will also be writable.
2547 * This has an additional check.
2549 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2556 /* read access is always possible with a mapping */
2557 u32 av = FILE__READ;
2559 /* write access only matters if the mapping is shared */
2560 if (shared && (prot & PROT_WRITE))
2563 if (prot & PROT_EXEC)
2564 av |= FILE__EXECUTE;
2566 return file_has_perm(current, file, av);
2571 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2572 unsigned long prot, unsigned long flags,
2573 unsigned long addr, unsigned long addr_only)
2576 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2578 if (addr < mmap_min_addr)
2579 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2580 MEMPROTECT__MMAP_ZERO, NULL);
2581 if (rc || addr_only)
2584 if (selinux_checkreqprot)
2587 return file_map_prot_check(file, prot,
2588 (flags & MAP_TYPE) == MAP_SHARED);
2591 static int selinux_file_mprotect(struct vm_area_struct *vma,
2592 unsigned long reqprot,
2597 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2601 if (selinux_checkreqprot)
2604 #ifndef CONFIG_PPC32
2605 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2607 if (vma->vm_start >= vma->vm_mm->start_brk &&
2608 vma->vm_end <= vma->vm_mm->brk) {
2609 rc = task_has_perm(current, current,
2611 } else if (!vma->vm_file &&
2612 vma->vm_start <= vma->vm_mm->start_stack &&
2613 vma->vm_end >= vma->vm_mm->start_stack) {
2614 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2615 } else if (vma->vm_file && vma->anon_vma) {
2617 * We are making executable a file mapping that has
2618 * had some COW done. Since pages might have been
2619 * written, check ability to execute the possibly
2620 * modified content. This typically should only
2621 * occur for text relocations.
2623 rc = file_has_perm(current, vma->vm_file,
2631 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2634 static int selinux_file_lock(struct file *file, unsigned int cmd)
2636 return file_has_perm(current, file, FILE__LOCK);
2639 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2646 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2651 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2652 err = file_has_perm(current, file,FILE__WRITE);
2661 /* Just check FD__USE permission */
2662 err = file_has_perm(current, file, 0);
2667 #if BITS_PER_LONG == 32
2672 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2676 err = file_has_perm(current, file, FILE__LOCK);
2683 static int selinux_file_set_fowner(struct file *file)
2685 struct task_security_struct *tsec;
2686 struct file_security_struct *fsec;
2688 tsec = current->security;
2689 fsec = file->f_security;
2690 fsec->fown_sid = tsec->sid;
2695 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2696 struct fown_struct *fown, int signum)
2700 struct task_security_struct *tsec;
2701 struct file_security_struct *fsec;
2703 /* struct fown_struct is never outside the context of a struct file */
2704 file = container_of(fown, struct file, f_owner);
2706 tsec = tsk->security;
2707 fsec = file->f_security;
2710 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2712 perm = signal_to_av(signum);
2714 return avc_has_perm(fsec->fown_sid, tsec->sid,
2715 SECCLASS_PROCESS, perm, NULL);
2718 static int selinux_file_receive(struct file *file)
2720 return file_has_perm(current, file, file_to_av(file));
2723 /* task security operations */
2725 static int selinux_task_create(unsigned long clone_flags)
2729 rc = secondary_ops->task_create(clone_flags);
2733 return task_has_perm(current, current, PROCESS__FORK);
2736 static int selinux_task_alloc_security(struct task_struct *tsk)
2738 struct task_security_struct *tsec1, *tsec2;
2741 tsec1 = current->security;
2743 rc = task_alloc_security(tsk);
2746 tsec2 = tsk->security;
2748 tsec2->osid = tsec1->osid;
2749 tsec2->sid = tsec1->sid;
2751 /* Retain the exec, fs, key, and sock SIDs across fork */
2752 tsec2->exec_sid = tsec1->exec_sid;
2753 tsec2->create_sid = tsec1->create_sid;
2754 tsec2->keycreate_sid = tsec1->keycreate_sid;
2755 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2757 /* Retain ptracer SID across fork, if any.
2758 This will be reset by the ptrace hook upon any
2759 subsequent ptrace_attach operations. */
2760 tsec2->ptrace_sid = tsec1->ptrace_sid;
2765 static void selinux_task_free_security(struct task_struct *tsk)
2767 task_free_security(tsk);
2770 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2772 /* Since setuid only affects the current process, and
2773 since the SELinux controls are not based on the Linux
2774 identity attributes, SELinux does not need to control
2775 this operation. However, SELinux does control the use
2776 of the CAP_SETUID and CAP_SETGID capabilities using the
2781 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2783 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2786 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2788 /* See the comment for setuid above. */
2792 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2794 return task_has_perm(current, p, PROCESS__SETPGID);
2797 static int selinux_task_getpgid(struct task_struct *p)
2799 return task_has_perm(current, p, PROCESS__GETPGID);
2802 static int selinux_task_getsid(struct task_struct *p)
2804 return task_has_perm(current, p, PROCESS__GETSESSION);
2807 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2809 selinux_get_task_sid(p, secid);
2812 static int selinux_task_setgroups(struct group_info *group_info)
2814 /* See the comment for setuid above. */
2818 static int selinux_task_setnice(struct task_struct *p, int nice)
2822 rc = secondary_ops->task_setnice(p, nice);
2826 return task_has_perm(current,p, PROCESS__SETSCHED);
2829 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2831 return task_has_perm(current, p, PROCESS__SETSCHED);
2834 static int selinux_task_getioprio(struct task_struct *p)
2836 return task_has_perm(current, p, PROCESS__GETSCHED);
2839 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2841 struct rlimit *old_rlim = current->signal->rlim + resource;
2844 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2848 /* Control the ability to change the hard limit (whether
2849 lowering or raising it), so that the hard limit can
2850 later be used as a safe reset point for the soft limit
2851 upon context transitions. See selinux_bprm_apply_creds. */
2852 if (old_rlim->rlim_max != new_rlim->rlim_max)
2853 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2858 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2860 return task_has_perm(current, p, PROCESS__SETSCHED);
2863 static int selinux_task_getscheduler(struct task_struct *p)
2865 return task_has_perm(current, p, PROCESS__GETSCHED);
2868 static int selinux_task_movememory(struct task_struct *p)
2870 return task_has_perm(current, p, PROCESS__SETSCHED);
2873 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2878 struct task_security_struct *tsec;
2880 rc = secondary_ops->task_kill(p, info, sig, secid);
2884 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2888 perm = PROCESS__SIGNULL; /* null signal; existence test */
2890 perm = signal_to_av(sig);
2893 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2895 rc = task_has_perm(current, p, perm);
2899 static int selinux_task_prctl(int option,
2905 /* The current prctl operations do not appear to require
2906 any SELinux controls since they merely observe or modify
2907 the state of the current process. */
2911 static int selinux_task_wait(struct task_struct *p)
2915 perm = signal_to_av(p->exit_signal);
2917 return task_has_perm(p, current, perm);
2920 static void selinux_task_reparent_to_init(struct task_struct *p)
2922 struct task_security_struct *tsec;
2924 secondary_ops->task_reparent_to_init(p);
2927 tsec->osid = tsec->sid;
2928 tsec->sid = SECINITSID_KERNEL;
2932 static void selinux_task_to_inode(struct task_struct *p,
2933 struct inode *inode)
2935 struct task_security_struct *tsec = p->security;
2936 struct inode_security_struct *isec = inode->i_security;
2938 isec->sid = tsec->sid;
2939 isec->initialized = 1;
2943 /* Returns error only if unable to parse addresses */
2944 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2945 struct avc_audit_data *ad, u8 *proto)
2947 int offset, ihlen, ret = -EINVAL;
2948 struct iphdr _iph, *ih;
2950 offset = skb_network_offset(skb);
2951 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2955 ihlen = ih->ihl * 4;
2956 if (ihlen < sizeof(_iph))
2959 ad->u.net.v4info.saddr = ih->saddr;
2960 ad->u.net.v4info.daddr = ih->daddr;
2964 *proto = ih->protocol;
2966 switch (ih->protocol) {
2968 struct tcphdr _tcph, *th;
2970 if (ntohs(ih->frag_off) & IP_OFFSET)
2974 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2978 ad->u.net.sport = th->source;
2979 ad->u.net.dport = th->dest;
2984 struct udphdr _udph, *uh;
2986 if (ntohs(ih->frag_off) & IP_OFFSET)
2990 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2994 ad->u.net.sport = uh->source;
2995 ad->u.net.dport = uh->dest;
2999 case IPPROTO_DCCP: {
3000 struct dccp_hdr _dccph, *dh;
3002 if (ntohs(ih->frag_off) & IP_OFFSET)
3006 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3010 ad->u.net.sport = dh->dccph_sport;
3011 ad->u.net.dport = dh->dccph_dport;
3022 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3024 /* Returns error only if unable to parse addresses */
3025 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3026 struct avc_audit_data *ad, u8 *proto)
3029 int ret = -EINVAL, offset;
3030 struct ipv6hdr _ipv6h, *ip6;
3032 offset = skb_network_offset(skb);
3033 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3037 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3038 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3041 nexthdr = ip6->nexthdr;
3042 offset += sizeof(_ipv6h);
3043 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3052 struct tcphdr _tcph, *th;
3054 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3058 ad->u.net.sport = th->source;
3059 ad->u.net.dport = th->dest;
3064 struct udphdr _udph, *uh;
3066 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3070 ad->u.net.sport = uh->source;
3071 ad->u.net.dport = uh->dest;
3075 case IPPROTO_DCCP: {
3076 struct dccp_hdr _dccph, *dh;
3078 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3082 ad->u.net.sport = dh->dccph_sport;
3083 ad->u.net.dport = dh->dccph_dport;
3087 /* includes fragments */
3097 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3098 char **addrp, int *len, int src, u8 *proto)
3102 switch (ad->u.net.family) {
3104 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3108 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3109 &ad->u.net.v4info.daddr);
3112 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3114 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3118 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3119 &ad->u.net.v6info.daddr);
3130 * selinux_skb_extlbl_sid - Determine the external label of a packet
3132 * @sid: the packet's SID
3135 * Check the various different forms of external packet labeling and determine
3136 * the external SID for the packet. If only one form of external labeling is
3137 * present then it is used, if both labeled IPsec and NetLabel labels are
3138 * present then the SELinux type information is taken from the labeled IPsec
3139 * SA and the MLS sensitivity label information is taken from the NetLabel
3140 * security attributes. This bit of "magic" is done in the call to
3141 * selinux_netlbl_skbuff_getsid().
3144 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3149 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3150 if (selinux_netlbl_skbuff_getsid(skb,
3151 (xfrm_sid == SECSID_NULL ?
3152 SECINITSID_NETMSG : xfrm_sid),
3154 nlbl_sid = SECSID_NULL;
3155 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3158 /* socket security operations */
3159 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3162 struct inode_security_struct *isec;
3163 struct task_security_struct *tsec;
3164 struct avc_audit_data ad;
3167 tsec = task->security;
3168 isec = SOCK_INODE(sock)->i_security;
3170 if (isec->sid == SECINITSID_KERNEL)
3173 AVC_AUDIT_DATA_INIT(&ad,NET);
3174 ad.u.net.sk = sock->sk;
3175 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3181 static int selinux_socket_create(int family, int type,
3182 int protocol, int kern)
3185 struct task_security_struct *tsec;
3191 tsec = current->security;
3192 newsid = tsec->sockcreate_sid ? : tsec->sid;
3193 err = avc_has_perm(tsec->sid, newsid,
3194 socket_type_to_security_class(family, type,
3195 protocol), SOCKET__CREATE, NULL);
3201 static int selinux_socket_post_create(struct socket *sock, int family,
3202 int type, int protocol, int kern)
3205 struct inode_security_struct *isec;
3206 struct task_security_struct *tsec;
3207 struct sk_security_struct *sksec;
3210 isec = SOCK_INODE(sock)->i_security;
3212 tsec = current->security;
3213 newsid = tsec->sockcreate_sid ? : tsec->sid;
3214 isec->sclass = socket_type_to_security_class(family, type, protocol);
3215 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3216 isec->initialized = 1;
3219 sksec = sock->sk->sk_security;
3220 sksec->sid = isec->sid;
3221 err = selinux_netlbl_socket_post_create(sock);
3227 /* Range of port numbers used to automatically bind.
3228 Need to determine whether we should perform a name_bind
3229 permission check between the socket and the port number. */
3230 #define ip_local_port_range_0 sysctl_local_port_range[0]
3231 #define ip_local_port_range_1 sysctl_local_port_range[1]
3233 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3238 err = socket_has_perm(current, sock, SOCKET__BIND);
3243 * If PF_INET or PF_INET6, check name_bind permission for the port.
3244 * Multiple address binding for SCTP is not supported yet: we just
3245 * check the first address now.
3247 family = sock->sk->sk_family;
3248 if (family == PF_INET || family == PF_INET6) {
3250 struct inode_security_struct *isec;
3251 struct task_security_struct *tsec;
3252 struct avc_audit_data ad;
3253 struct sockaddr_in *addr4 = NULL;
3254 struct sockaddr_in6 *addr6 = NULL;
3255 unsigned short snum;
3256 struct sock *sk = sock->sk;
3257 u32 sid, node_perm, addrlen;
3259 tsec = current->security;
3260 isec = SOCK_INODE(sock)->i_security;
3262 if (family == PF_INET) {
3263 addr4 = (struct sockaddr_in *)address;
3264 snum = ntohs(addr4->sin_port);
3265 addrlen = sizeof(addr4->sin_addr.s_addr);
3266 addrp = (char *)&addr4->sin_addr.s_addr;
3268 addr6 = (struct sockaddr_in6 *)address;
3269 snum = ntohs(addr6->sin6_port);
3270 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3271 addrp = (char *)&addr6->sin6_addr.s6_addr;
3274 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3275 snum > ip_local_port_range_1)) {
3276 err = security_port_sid(sk->sk_family, sk->sk_type,
3277 sk->sk_protocol, snum, &sid);
3280 AVC_AUDIT_DATA_INIT(&ad,NET);
3281 ad.u.net.sport = htons(snum);
3282 ad.u.net.family = family;
3283 err = avc_has_perm(isec->sid, sid,
3285 SOCKET__NAME_BIND, &ad);
3290 switch(isec->sclass) {
3291 case SECCLASS_TCP_SOCKET:
3292 node_perm = TCP_SOCKET__NODE_BIND;
3295 case SECCLASS_UDP_SOCKET:
3296 node_perm = UDP_SOCKET__NODE_BIND;
3299 case SECCLASS_DCCP_SOCKET:
3300 node_perm = DCCP_SOCKET__NODE_BIND;
3304 node_perm = RAWIP_SOCKET__NODE_BIND;
3308 err = security_node_sid(family, addrp, addrlen, &sid);
3312 AVC_AUDIT_DATA_INIT(&ad,NET);
3313 ad.u.net.sport = htons(snum);
3314 ad.u.net.family = family;
3316 if (family == PF_INET)
3317 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3319 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3321 err = avc_has_perm(isec->sid, sid,
3322 isec->sclass, node_perm, &ad);
3330 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3332 struct inode_security_struct *isec;
3335 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3340 * If a TCP or DCCP socket, check name_connect permission for the port.
3342 isec = SOCK_INODE(sock)->i_security;
3343 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3344 isec->sclass == SECCLASS_DCCP_SOCKET) {
3345 struct sock *sk = sock->sk;
3346 struct avc_audit_data ad;
3347 struct sockaddr_in *addr4 = NULL;
3348 struct sockaddr_in6 *addr6 = NULL;
3349 unsigned short snum;
3352 if (sk->sk_family == PF_INET) {
3353 addr4 = (struct sockaddr_in *)address;
3354 if (addrlen < sizeof(struct sockaddr_in))
3356 snum = ntohs(addr4->sin_port);
3358 addr6 = (struct sockaddr_in6 *)address;
3359 if (addrlen < SIN6_LEN_RFC2133)
3361 snum = ntohs(addr6->sin6_port);
3364 err = security_port_sid(sk->sk_family, sk->sk_type,
3365 sk->sk_protocol, snum, &sid);
3369 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3370 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3372 AVC_AUDIT_DATA_INIT(&ad,NET);
3373 ad.u.net.dport = htons(snum);
3374 ad.u.net.family = sk->sk_family;
3375 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3384 static int selinux_socket_listen(struct socket *sock, int backlog)
3386 return socket_has_perm(current, sock, SOCKET__LISTEN);
3389 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3392 struct inode_security_struct *isec;
3393 struct inode_security_struct *newisec;
3395 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3399 newisec = SOCK_INODE(newsock)->i_security;
3401 isec = SOCK_INODE(sock)->i_security;
3402 newisec->sclass = isec->sclass;
3403 newisec->sid = isec->sid;
3404 newisec->initialized = 1;
3409 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3414 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3418 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3421 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3422 int size, int flags)
3424 return socket_has_perm(current, sock, SOCKET__READ);
3427 static int selinux_socket_getsockname(struct socket *sock)
3429 return socket_has_perm(current, sock, SOCKET__GETATTR);
3432 static int selinux_socket_getpeername(struct socket *sock)
3434 return socket_has_perm(current, sock, SOCKET__GETATTR);
3437 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3441 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3445 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3448 static int selinux_socket_getsockopt(struct socket *sock, int level,
3451 return socket_has_perm(current, sock, SOCKET__GETOPT);
3454 static int selinux_socket_shutdown(struct socket *sock, int how)
3456 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3459 static int selinux_socket_unix_stream_connect(struct socket *sock,
3460 struct socket *other,
3463 struct sk_security_struct *ssec;
3464 struct inode_security_struct *isec;
3465 struct inode_security_struct *other_isec;
3466 struct avc_audit_data ad;
3469 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3473 isec = SOCK_INODE(sock)->i_security;
3474 other_isec = SOCK_INODE(other)->i_security;
3476 AVC_AUDIT_DATA_INIT(&ad,NET);
3477 ad.u.net.sk = other->sk;
3479 err = avc_has_perm(isec->sid, other_isec->sid,
3481 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3485 /* connecting socket */
3486 ssec = sock->sk->sk_security;
3487 ssec->peer_sid = other_isec->sid;
3489 /* server child socket */
3490 ssec = newsk->sk_security;
3491 ssec->peer_sid = isec->sid;
3492 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3497 static int selinux_socket_unix_may_send(struct socket *sock,
3498 struct socket *other)
3500 struct inode_security_struct *isec;
3501 struct inode_security_struct *other_isec;
3502 struct avc_audit_data ad;
3505 isec = SOCK_INODE(sock)->i_security;
3506 other_isec = SOCK_INODE(other)->i_security;
3508 AVC_AUDIT_DATA_INIT(&ad,NET);
3509 ad.u.net.sk = other->sk;
3511 err = avc_has_perm(isec->sid, other_isec->sid,
3512 isec->sclass, SOCKET__SENDTO, &ad);
3519 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3520 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3523 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3524 struct socket *sock;
3528 read_lock_bh(&sk->sk_callback_lock);
3529 sock = sk->sk_socket;
3531 struct inode *inode;
3532 inode = SOCK_INODE(sock);
3534 struct inode_security_struct *isec;
3535 isec = inode->i_security;
3536 sock_sid = isec->sid;
3537 sock_class = isec->sclass;
3540 read_unlock_bh(&sk->sk_callback_lock);
3547 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3551 switch (sock_class) {
3552 case SECCLASS_UDP_SOCKET:
3553 netif_perm = NETIF__UDP_RECV;
3554 node_perm = NODE__UDP_RECV;
3555 recv_perm = UDP_SOCKET__RECV_MSG;
3558 case SECCLASS_TCP_SOCKET:
3559 netif_perm = NETIF__TCP_RECV;
3560 node_perm = NODE__TCP_RECV;
3561 recv_perm = TCP_SOCKET__RECV_MSG;
3564 case SECCLASS_DCCP_SOCKET:
3565 netif_perm = NETIF__DCCP_RECV;
3566 node_perm = NODE__DCCP_RECV;
3567 recv_perm = DCCP_SOCKET__RECV_MSG;
3571 netif_perm = NETIF__RAWIP_RECV;
3572 node_perm = NODE__RAWIP_RECV;
3576 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3580 err = security_node_sid(family, addrp, len, &node_sid);
3584 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3591 err = security_port_sid(sk->sk_family, sk->sk_type,
3592 sk->sk_protocol, ntohs(ad->u.net.sport),
3597 err = avc_has_perm(sock_sid, port_sid,
3598 sock_class, recv_perm, ad);
3605 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3610 struct avc_audit_data ad;
3611 struct sk_security_struct *sksec = sk->sk_security;
3613 family = sk->sk_family;
3614 if (family != PF_INET && family != PF_INET6)
3617 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3618 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3621 AVC_AUDIT_DATA_INIT(&ad, NET);
3622 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3623 ad.u.net.family = family;
3625 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3629 if (selinux_compat_net)
3630 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3633 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3638 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3642 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3647 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3648 int __user *optlen, unsigned len)
3653 struct sk_security_struct *ssec;
3654 struct inode_security_struct *isec;
3655 u32 peer_sid = SECSID_NULL;
3657 isec = SOCK_INODE(sock)->i_security;
3659 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3660 isec->sclass == SECCLASS_TCP_SOCKET) {
3661 ssec = sock->sk->sk_security;
3662 peer_sid = ssec->peer_sid;
3664 if (peer_sid == SECSID_NULL) {
3669 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3674 if (scontext_len > len) {
3679 if (copy_to_user(optval, scontext, scontext_len))
3683 if (put_user(scontext_len, optlen))
3691 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3693 u32 peer_secid = SECSID_NULL;
3696 if (sock && sock->sk->sk_family == PF_UNIX)
3697 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3699 selinux_skb_extlbl_sid(skb, &peer_secid);
3701 if (peer_secid == SECSID_NULL)
3703 *secid = peer_secid;
3708 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3710 return sk_alloc_security(sk, family, priority);
3713 static void selinux_sk_free_security(struct sock *sk)
3715 sk_free_security(sk);
3718 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3720 struct sk_security_struct *ssec = sk->sk_security;
3721 struct sk_security_struct *newssec = newsk->sk_security;
3723 newssec->sid = ssec->sid;
3724 newssec->peer_sid = ssec->peer_sid;
3726 selinux_netlbl_sk_security_clone(ssec, newssec);
3729 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3732 *secid = SECINITSID_ANY_SOCKET;
3734 struct sk_security_struct *sksec = sk->sk_security;
3736 *secid = sksec->sid;
3740 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3742 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3743 struct sk_security_struct *sksec = sk->sk_security;
3745 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3746 sk->sk_family == PF_UNIX)
3747 isec->sid = sksec->sid;
3749 selinux_netlbl_sock_graft(sk, parent);
3752 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3753 struct request_sock *req)
3755 struct sk_security_struct *sksec = sk->sk_security;
3760 selinux_skb_extlbl_sid(skb, &peersid);
3761 if (peersid == SECSID_NULL) {
3762 req->secid = sksec->sid;
3763 req->peer_secid = SECSID_NULL;
3767 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3771 req->secid = newsid;
3772 req->peer_secid = peersid;
3776 static void selinux_inet_csk_clone(struct sock *newsk,
3777 const struct request_sock *req)
3779 struct sk_security_struct *newsksec = newsk->sk_security;
3781 newsksec->sid = req->secid;
3782 newsksec->peer_sid = req->peer_secid;
3783 /* NOTE: Ideally, we should also get the isec->sid for the
3784 new socket in sync, but we don't have the isec available yet.
3785 So we will wait until sock_graft to do it, by which
3786 time it will have been created and available. */
3788 /* We don't need to take any sort of lock here as we are the only
3789 * thread with access to newsksec */
3790 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3793 static void selinux_inet_conn_established(struct sock *sk,
3794 struct sk_buff *skb)
3796 struct sk_security_struct *sksec = sk->sk_security;
3798 selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3801 static void selinux_req_classify_flow(const struct request_sock *req,
3804 fl->secid = req->secid;
3807 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3811 struct nlmsghdr *nlh;
3812 struct socket *sock = sk->sk_socket;
3813 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3815 if (skb->len < NLMSG_SPACE(0)) {
3819 nlh = nlmsg_hdr(skb);
3821 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3823 if (err == -EINVAL) {
3824 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3825 "SELinux: unrecognized netlink message"
3826 " type=%hu for sclass=%hu\n",
3827 nlh->nlmsg_type, isec->sclass);
3828 if (!selinux_enforcing)
3838 err = socket_has_perm(current, sock, perm);
3843 #ifdef CONFIG_NETFILTER
3845 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3846 struct avc_audit_data *ad,
3847 u16 family, char *addrp, int len)
3850 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3851 struct socket *sock;
3852 struct inode *inode;
3853 struct inode_security_struct *isec;
3855 sock = sk->sk_socket;
3859 inode = SOCK_INODE(sock);
3863 isec = inode->i_security;
3865 err = sel_netif_sids(dev, &if_sid, NULL);
3869 switch (isec->sclass) {
3870 case SECCLASS_UDP_SOCKET:
3871 netif_perm = NETIF__UDP_SEND;
3872 node_perm = NODE__UDP_SEND;
3873 send_perm = UDP_SOCKET__SEND_MSG;
3876 case SECCLASS_TCP_SOCKET:
3877 netif_perm = NETIF__TCP_SEND;
3878 node_perm = NODE__TCP_SEND;
3879 send_perm = TCP_SOCKET__SEND_MSG;
3882 case SECCLASS_DCCP_SOCKET:
3883 netif_perm = NETIF__DCCP_SEND;
3884 node_perm = NODE__DCCP_SEND;
3885 send_perm = DCCP_SOCKET__SEND_MSG;
3889 netif_perm = NETIF__RAWIP_SEND;
3890 node_perm = NODE__RAWIP_SEND;
3894 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3898 err = security_node_sid(family, addrp, len, &node_sid);
3902 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3909 err = security_port_sid(sk->sk_family,
3912 ntohs(ad->u.net.dport),
3917 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3924 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3925 struct sk_buff **pskb,
3926 const struct net_device *in,
3927 const struct net_device *out,
3928 int (*okfn)(struct sk_buff *),
3934 struct sk_buff *skb = *pskb;
3935 struct avc_audit_data ad;
3936 struct net_device *dev = (struct net_device *)out;
3937 struct sk_security_struct *sksec;
3944 sksec = sk->sk_security;
3946 AVC_AUDIT_DATA_INIT(&ad, NET);
3947 ad.u.net.netif = dev->name;
3948 ad.u.net.family = family;
3950 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3954 if (selinux_compat_net)
3955 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3956 family, addrp, len);
3958 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3964 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3966 return err ? NF_DROP : NF_ACCEPT;
3969 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3970 struct sk_buff **pskb,
3971 const struct net_device *in,
3972 const struct net_device *out,
3973 int (*okfn)(struct sk_buff *))
3975 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3978 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3980 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3981 struct sk_buff **pskb,
3982 const struct net_device *in,
3983 const struct net_device *out,
3984 int (*okfn)(struct sk_buff *))
3986 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3991 #endif /* CONFIG_NETFILTER */
3993 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3997 err = secondary_ops->netlink_send(sk, skb);
4001 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4002 err = selinux_nlmsg_perm(sk, skb);
4007 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4010 struct avc_audit_data ad;
4012 err = secondary_ops->netlink_recv(skb, capability);
4016 AVC_AUDIT_DATA_INIT(&ad, CAP);
4017 ad.u.cap = capability;
4019 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4020 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4023 static int ipc_alloc_security(struct task_struct *task,
4024 struct kern_ipc_perm *perm,
4027 struct task_security_struct *tsec = task->security;
4028 struct ipc_security_struct *isec;
4030 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4034 isec->sclass = sclass;
4035 isec->ipc_perm = perm;
4036 isec->sid = tsec->sid;
4037 perm->security = isec;
4042 static void ipc_free_security(struct kern_ipc_perm *perm)
4044 struct ipc_security_struct *isec = perm->security;
4045 perm->security = NULL;
4049 static int msg_msg_alloc_security(struct msg_msg *msg)
4051 struct msg_security_struct *msec;
4053 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4058 msec->sid = SECINITSID_UNLABELED;
4059 msg->security = msec;
4064 static void msg_msg_free_security(struct msg_msg *msg)
4066 struct msg_security_struct *msec = msg->security;
4068 msg->security = NULL;
4072 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4075 struct task_security_struct *tsec;
4076 struct ipc_security_struct *isec;
4077 struct avc_audit_data ad;
4079 tsec = current->security;
4080 isec = ipc_perms->security;
4082 AVC_AUDIT_DATA_INIT(&ad, IPC);
4083 ad.u.ipc_id = ipc_perms->key;
4085 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4088 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4090 return msg_msg_alloc_security(msg);
4093 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4095 msg_msg_free_security(msg);
4098 /* message queue security operations */
4099 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4101 struct task_security_struct *tsec;
4102 struct ipc_security_struct *isec;
4103 struct avc_audit_data ad;
4106 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4110 tsec = current->security;
4111 isec = msq->q_perm.security;
4113 AVC_AUDIT_DATA_INIT(&ad, IPC);
4114 ad.u.ipc_id = msq->q_perm.key;
4116 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4119 ipc_free_security(&msq->q_perm);
4125 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4127 ipc_free_security(&msq->q_perm);
4130 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4132 struct task_security_struct *tsec;
4133 struct ipc_security_struct *isec;
4134 struct avc_audit_data ad;
4136 tsec = current->security;
4137 isec = msq->q_perm.security;
4139 AVC_AUDIT_DATA_INIT(&ad, IPC);
4140 ad.u.ipc_id = msq->q_perm.key;
4142 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4143 MSGQ__ASSOCIATE, &ad);
4146 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4154 /* No specific object, just general system-wide information. */
4155 return task_has_system(current, SYSTEM__IPC_INFO);
4158 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4161 perms = MSGQ__SETATTR;
4164 perms = MSGQ__DESTROY;
4170 err = ipc_has_perm(&msq->q_perm, perms);
4174 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4176 struct task_security_struct *tsec;
4177 struct ipc_security_struct *isec;
4178 struct msg_security_struct *msec;
4179 struct avc_audit_data ad;
4182 tsec = current->security;
4183 isec = msq->q_perm.security;
4184 msec = msg->security;
4187 * First time through, need to assign label to the message
4189 if (msec->sid == SECINITSID_UNLABELED) {
4191 * Compute new sid based on current process and
4192 * message queue this message will be stored in
4194 rc = security_transition_sid(tsec->sid,
4202 AVC_AUDIT_DATA_INIT(&ad, IPC);
4203 ad.u.ipc_id = msq->q_perm.key;
4205 /* Can this process write to the queue? */
4206 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4209 /* Can this process send the message */
4210 rc = avc_has_perm(tsec->sid, msec->sid,
4211 SECCLASS_MSG, MSG__SEND, &ad);
4213 /* Can the message be put in the queue? */
4214 rc = avc_has_perm(msec->sid, isec->sid,
4215 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4220 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4221 struct task_struct *target,
4222 long type, int mode)
4224 struct task_security_struct *tsec;
4225 struct ipc_security_struct *isec;
4226 struct msg_security_struct *msec;
4227 struct avc_audit_data ad;
4230 tsec = target->security;
4231 isec = msq->q_perm.security;
4232 msec = msg->security;
4234 AVC_AUDIT_DATA_INIT(&ad, IPC);
4235 ad.u.ipc_id = msq->q_perm.key;
4237 rc = avc_has_perm(tsec->sid, isec->sid,
4238 SECCLASS_MSGQ, MSGQ__READ, &ad);
4240 rc = avc_has_perm(tsec->sid, msec->sid,
4241 SECCLASS_MSG, MSG__RECEIVE, &ad);
4245 /* Shared Memory security operations */
4246 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4248 struct task_security_struct *tsec;
4249 struct ipc_security_struct *isec;
4250 struct avc_audit_data ad;
4253 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4257 tsec = current->security;
4258 isec = shp->shm_perm.security;
4260 AVC_AUDIT_DATA_INIT(&ad, IPC);
4261 ad.u.ipc_id = shp->shm_perm.key;
4263 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4266 ipc_free_security(&shp->shm_perm);
4272 static void selinux_shm_free_security(struct shmid_kernel *shp)
4274 ipc_free_security(&shp->shm_perm);
4277 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4279 struct task_security_struct *tsec;
4280 struct ipc_security_struct *isec;
4281 struct avc_audit_data ad;
4283 tsec = current->security;
4284 isec = shp->shm_perm.security;
4286 AVC_AUDIT_DATA_INIT(&ad, IPC);
4287 ad.u.ipc_id = shp->shm_perm.key;
4289 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4290 SHM__ASSOCIATE, &ad);
4293 /* Note, at this point, shp is locked down */
4294 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4302 /* No specific object, just general system-wide information. */
4303 return task_has_system(current, SYSTEM__IPC_INFO);
4306 perms = SHM__GETATTR | SHM__ASSOCIATE;
4309 perms = SHM__SETATTR;
4316 perms = SHM__DESTROY;
4322 err = ipc_has_perm(&shp->shm_perm, perms);
4326 static int selinux_shm_shmat(struct shmid_kernel *shp,
4327 char __user *shmaddr, int shmflg)
4332 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4336 if (shmflg & SHM_RDONLY)
4339 perms = SHM__READ | SHM__WRITE;
4341 return ipc_has_perm(&shp->shm_perm, perms);
4344 /* Semaphore security operations */
4345 static int selinux_sem_alloc_security(struct sem_array *sma)
4347 struct task_security_struct *tsec;
4348 struct ipc_security_struct *isec;
4349 struct avc_audit_data ad;
4352 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4356 tsec = current->security;
4357 isec = sma->sem_perm.security;
4359 AVC_AUDIT_DATA_INIT(&ad, IPC);
4360 ad.u.ipc_id = sma->sem_perm.key;
4362 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4365 ipc_free_security(&sma->sem_perm);
4371 static void selinux_sem_free_security(struct sem_array *sma)
4373 ipc_free_security(&sma->sem_perm);
4376 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4378 struct task_security_struct *tsec;
4379 struct ipc_security_struct *isec;
4380 struct avc_audit_data ad;
4382 tsec = current->security;
4383 isec = sma->sem_perm.security;
4385 AVC_AUDIT_DATA_INIT(&ad, IPC);
4386 ad.u.ipc_id = sma->sem_perm.key;
4388 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4389 SEM__ASSOCIATE, &ad);
4392 /* Note, at this point, sma is locked down */
4393 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4401 /* No specific object, just general system-wide information. */
4402 return task_has_system(current, SYSTEM__IPC_INFO);
4406 perms = SEM__GETATTR;
4417 perms = SEM__DESTROY;
4420 perms = SEM__SETATTR;
4424 perms = SEM__GETATTR | SEM__ASSOCIATE;
4430 err = ipc_has_perm(&sma->sem_perm, perms);
4434 static int selinux_sem_semop(struct sem_array *sma,
4435 struct sembuf *sops, unsigned nsops, int alter)
4440 perms = SEM__READ | SEM__WRITE;
4444 return ipc_has_perm(&sma->sem_perm, perms);
4447 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4453 av |= IPC__UNIX_READ;
4455 av |= IPC__UNIX_WRITE;
4460 return ipc_has_perm(ipcp, av);
4463 /* module stacking operations */
4464 static int selinux_register_security (const char *name, struct security_operations *ops)
4466 if (secondary_ops != original_ops) {
4467 printk(KERN_ERR "%s: There is already a secondary security "
4468 "module registered.\n", __FUNCTION__);
4472 secondary_ops = ops;
4474 printk(KERN_INFO "%s: Registering secondary module %s\n",
4481 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4483 if (ops != secondary_ops) {
4484 printk(KERN_ERR "%s: trying to unregister a security module "
4485 "that is not registered.\n", __FUNCTION__);
4489 secondary_ops = original_ops;
4494 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4497 inode_doinit_with_dentry(inode, dentry);
4500 static int selinux_getprocattr(struct task_struct *p,
4501 char *name, char **value)
4503 struct task_security_struct *tsec;
4509 error = task_has_perm(current, p, PROCESS__GETATTR);
4516 if (!strcmp(name, "current"))
4518 else if (!strcmp(name, "prev"))
4520 else if (!strcmp(name, "exec"))
4521 sid = tsec->exec_sid;
4522 else if (!strcmp(name, "fscreate"))
4523 sid = tsec->create_sid;
4524 else if (!strcmp(name, "keycreate"))
4525 sid = tsec->keycreate_sid;
4526 else if (!strcmp(name, "sockcreate"))
4527 sid = tsec->sockcreate_sid;
4534 error = security_sid_to_context(sid, value, &len);
4540 static int selinux_setprocattr(struct task_struct *p,
4541 char *name, void *value, size_t size)
4543 struct task_security_struct *tsec;
4549 /* SELinux only allows a process to change its own
4550 security attributes. */
4555 * Basic control over ability to set these attributes at all.
4556 * current == p, but we'll pass them separately in case the
4557 * above restriction is ever removed.
4559 if (!strcmp(name, "exec"))
4560 error = task_has_perm(current, p, PROCESS__SETEXEC);
4561 else if (!strcmp(name, "fscreate"))
4562 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4563 else if (!strcmp(name, "keycreate"))
4564 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4565 else if (!strcmp(name, "sockcreate"))
4566 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4567 else if (!strcmp(name, "current"))
4568 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4574 /* Obtain a SID for the context, if one was specified. */
4575 if (size && str[1] && str[1] != '\n') {
4576 if (str[size-1] == '\n') {
4580 error = security_context_to_sid(value, size, &sid);
4585 /* Permission checking based on the specified context is
4586 performed during the actual operation (execve,
4587 open/mkdir/...), when we know the full context of the
4588 operation. See selinux_bprm_set_security for the execve
4589 checks and may_create for the file creation checks. The
4590 operation will then fail if the context is not permitted. */
4592 if (!strcmp(name, "exec"))
4593 tsec->exec_sid = sid;
4594 else if (!strcmp(name, "fscreate"))
4595 tsec->create_sid = sid;
4596 else if (!strcmp(name, "keycreate")) {
4597 error = may_create_key(sid, p);
4600 tsec->keycreate_sid = sid;
4601 } else if (!strcmp(name, "sockcreate"))
4602 tsec->sockcreate_sid = sid;
4603 else if (!strcmp(name, "current")) {
4604 struct av_decision avd;
4609 /* Only allow single threaded processes to change context */
4610 if (atomic_read(&p->mm->mm_users) != 1) {
4611 struct task_struct *g, *t;
4612 struct mm_struct *mm = p->mm;
4613 read_lock(&tasklist_lock);
4614 do_each_thread(g, t)
4615 if (t->mm == mm && t != p) {
4616 read_unlock(&tasklist_lock);
4619 while_each_thread(g, t);
4620 read_unlock(&tasklist_lock);
4623 /* Check permissions for the transition. */
4624 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4625 PROCESS__DYNTRANSITION, NULL);
4629 /* Check for ptracing, and update the task SID if ok.
4630 Otherwise, leave SID unchanged and fail. */
4632 if (p->ptrace & PT_PTRACED) {
4633 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4635 PROCESS__PTRACE, 0, &avd);
4639 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4640 PROCESS__PTRACE, &avd, error, NULL);
4654 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4656 return security_sid_to_context(secid, secdata, seclen);
4659 static void selinux_release_secctx(char *secdata, u32 seclen)
4666 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4667 unsigned long flags)
4669 struct task_security_struct *tsec = tsk->security;
4670 struct key_security_struct *ksec;
4672 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4677 if (tsec->keycreate_sid)
4678 ksec->sid = tsec->keycreate_sid;
4680 ksec->sid = tsec->sid;
4686 static void selinux_key_free(struct key *k)
4688 struct key_security_struct *ksec = k->security;
4694 static int selinux_key_permission(key_ref_t key_ref,
4695 struct task_struct *ctx,
4699 struct task_security_struct *tsec;
4700 struct key_security_struct *ksec;
4702 key = key_ref_to_ptr(key_ref);
4704 tsec = ctx->security;
4705 ksec = key->security;
4707 /* if no specific permissions are requested, we skip the
4708 permission check. No serious, additional covert channels
4709 appear to be created. */
4713 return avc_has_perm(tsec->sid, ksec->sid,
4714 SECCLASS_KEY, perm, NULL);
4719 static struct security_operations selinux_ops = {
4720 .ptrace = selinux_ptrace,
4721 .capget = selinux_capget,
4722 .capset_check = selinux_capset_check,
4723 .capset_set = selinux_capset_set,
4724 .sysctl = selinux_sysctl,
4725 .capable = selinux_capable,
4726 .quotactl = selinux_quotactl,
4727 .quota_on = selinux_quota_on,
4728 .syslog = selinux_syslog,
4729 .vm_enough_memory = selinux_vm_enough_memory,
4731 .netlink_send = selinux_netlink_send,
4732 .netlink_recv = selinux_netlink_recv,
4734 .bprm_alloc_security = selinux_bprm_alloc_security,
4735 .bprm_free_security = selinux_bprm_free_security,
4736 .bprm_apply_creds = selinux_bprm_apply_creds,
4737 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4738 .bprm_set_security = selinux_bprm_set_security,
4739 .bprm_check_security = selinux_bprm_check_security,
4740 .bprm_secureexec = selinux_bprm_secureexec,
4742 .sb_alloc_security = selinux_sb_alloc_security,
4743 .sb_free_security = selinux_sb_free_security,
4744 .sb_copy_data = selinux_sb_copy_data,
4745 .sb_kern_mount = selinux_sb_kern_mount,
4746 .sb_statfs = selinux_sb_statfs,
4747 .sb_mount = selinux_mount,
4748 .sb_umount = selinux_umount,
4750 .inode_alloc_security = selinux_inode_alloc_security,
4751 .inode_free_security = selinux_inode_free_security,
4752 .inode_init_security = selinux_inode_init_security,
4753 .inode_create = selinux_inode_create,
4754 .inode_link = selinux_inode_link,
4755 .inode_unlink = selinux_inode_unlink,
4756 .inode_symlink = selinux_inode_symlink,
4757 .inode_mkdir = selinux_inode_mkdir,
4758 .inode_rmdir = selinux_inode_rmdir,
4759 .inode_mknod = selinux_inode_mknod,
4760 .inode_rename = selinux_inode_rename,
4761 .inode_readlink = selinux_inode_readlink,
4762 .inode_follow_link = selinux_inode_follow_link,
4763 .inode_permission = selinux_inode_permission,
4764 .inode_setattr = selinux_inode_setattr,
4765 .inode_getattr = selinux_inode_getattr,
4766 .inode_setxattr = selinux_inode_setxattr,
4767 .inode_post_setxattr = selinux_inode_post_setxattr,
4768 .inode_getxattr = selinux_inode_getxattr,
4769 .inode_listxattr = selinux_inode_listxattr,
4770 .inode_removexattr = selinux_inode_removexattr,
4771 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4772 .inode_getsecurity = selinux_inode_getsecurity,
4773 .inode_setsecurity = selinux_inode_setsecurity,
4774 .inode_listsecurity = selinux_inode_listsecurity,
4776 .file_permission = selinux_file_permission,
4777 .file_alloc_security = selinux_file_alloc_security,
4778 .file_free_security = selinux_file_free_security,
4779 .file_ioctl = selinux_file_ioctl,
4780 .file_mmap = selinux_file_mmap,
4781 .file_mprotect = selinux_file_mprotect,
4782 .file_lock = selinux_file_lock,
4783 .file_fcntl = selinux_file_fcntl,
4784 .file_set_fowner = selinux_file_set_fowner,
4785 .file_send_sigiotask = selinux_file_send_sigiotask,
4786 .file_receive = selinux_file_receive,
4788 .task_create = selinux_task_create,
4789 .task_alloc_security = selinux_task_alloc_security,
4790 .task_free_security = selinux_task_free_security,
4791 .task_setuid = selinux_task_setuid,
4792 .task_post_setuid = selinux_task_post_setuid,
4793 .task_setgid = selinux_task_setgid,
4794 .task_setpgid = selinux_task_setpgid,
4795 .task_getpgid = selinux_task_getpgid,
4796 .task_getsid = selinux_task_getsid,
4797 .task_getsecid = selinux_task_getsecid,
4798 .task_setgroups = selinux_task_setgroups,
4799 .task_setnice = selinux_task_setnice,
4800 .task_setioprio = selinux_task_setioprio,
4801 .task_getioprio = selinux_task_getioprio,
4802 .task_setrlimit = selinux_task_setrlimit,
4803 .task_setscheduler = selinux_task_setscheduler,
4804 .task_getscheduler = selinux_task_getscheduler,
4805 .task_movememory = selinux_task_movememory,
4806 .task_kill = selinux_task_kill,
4807 .task_wait = selinux_task_wait,
4808 .task_prctl = selinux_task_prctl,
4809 .task_reparent_to_init = selinux_task_reparent_to_init,
4810 .task_to_inode = selinux_task_to_inode,
4812 .ipc_permission = selinux_ipc_permission,
4814 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4815 .msg_msg_free_security = selinux_msg_msg_free_security,
4817 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4818 .msg_queue_free_security = selinux_msg_queue_free_security,
4819 .msg_queue_associate = selinux_msg_queue_associate,
4820 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4821 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4822 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4824 .shm_alloc_security = selinux_shm_alloc_security,
4825 .shm_free_security = selinux_shm_free_security,
4826 .shm_associate = selinux_shm_associate,
4827 .shm_shmctl = selinux_shm_shmctl,
4828 .shm_shmat = selinux_shm_shmat,
4830 .sem_alloc_security = selinux_sem_alloc_security,
4831 .sem_free_security = selinux_sem_free_security,
4832 .sem_associate = selinux_sem_associate,
4833 .sem_semctl = selinux_sem_semctl,
4834 .sem_semop = selinux_sem_semop,
4836 .register_security = selinux_register_security,
4837 .unregister_security = selinux_unregister_security,
4839 .d_instantiate = selinux_d_instantiate,
4841 .getprocattr = selinux_getprocattr,
4842 .setprocattr = selinux_setprocattr,
4844 .secid_to_secctx = selinux_secid_to_secctx,
4845 .release_secctx = selinux_release_secctx,
4847 .unix_stream_connect = selinux_socket_unix_stream_connect,
4848 .unix_may_send = selinux_socket_unix_may_send,
4850 .socket_create = selinux_socket_create,
4851 .socket_post_create = selinux_socket_post_create,
4852 .socket_bind = selinux_socket_bind,
4853 .socket_connect = selinux_socket_connect,
4854 .socket_listen = selinux_socket_listen,
4855 .socket_accept = selinux_socket_accept,
4856 .socket_sendmsg = selinux_socket_sendmsg,
4857 .socket_recvmsg = selinux_socket_recvmsg,
4858 .socket_getsockname = selinux_socket_getsockname,
4859 .socket_getpeername = selinux_socket_getpeername,
4860 .socket_getsockopt = selinux_socket_getsockopt,
4861 .socket_setsockopt = selinux_socket_setsockopt,
4862 .socket_shutdown = selinux_socket_shutdown,
4863 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4864 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4865 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4866 .sk_alloc_security = selinux_sk_alloc_security,
4867 .sk_free_security = selinux_sk_free_security,
4868 .sk_clone_security = selinux_sk_clone_security,
4869 .sk_getsecid = selinux_sk_getsecid,
4870 .sock_graft = selinux_sock_graft,
4871 .inet_conn_request = selinux_inet_conn_request,
4872 .inet_csk_clone = selinux_inet_csk_clone,
4873 .inet_conn_established = selinux_inet_conn_established,
4874 .req_classify_flow = selinux_req_classify_flow,
4876 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4877 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4878 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4879 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4880 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4881 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4882 .xfrm_state_free_security = selinux_xfrm_state_free,
4883 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4884 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4885 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4886 .xfrm_decode_session = selinux_xfrm_decode_session,
4890 .key_alloc = selinux_key_alloc,
4891 .key_free = selinux_key_free,
4892 .key_permission = selinux_key_permission,
4896 static __init int selinux_init(void)
4898 struct task_security_struct *tsec;
4900 if (!selinux_enabled) {
4901 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4905 printk(KERN_INFO "SELinux: Initializing.\n");
4907 /* Set the security state for the initial task. */
4908 if (task_alloc_security(current))
4909 panic("SELinux: Failed to initialize initial task.\n");
4910 tsec = current->security;
4911 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4913 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4914 sizeof(struct inode_security_struct),
4915 0, SLAB_PANIC, NULL);
4918 original_ops = secondary_ops = security_ops;
4920 panic ("SELinux: No initial security operations\n");
4921 if (register_security (&selinux_ops))
4922 panic("SELinux: Unable to register with kernel.\n");
4924 if (selinux_enforcing) {
4925 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
4927 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
4931 /* Add security information to initial keyrings */
4932 selinux_key_alloc(&root_user_keyring, current,
4933 KEY_ALLOC_NOT_IN_QUOTA);
4934 selinux_key_alloc(&root_session_keyring, current,
4935 KEY_ALLOC_NOT_IN_QUOTA);
4941 void selinux_complete_init(void)
4943 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
4945 /* Set up any superblocks initialized prior to the policy load. */
4946 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
4947 spin_lock(&sb_lock);
4948 spin_lock(&sb_security_lock);
4950 if (!list_empty(&superblock_security_head)) {
4951 struct superblock_security_struct *sbsec =
4952 list_entry(superblock_security_head.next,
4953 struct superblock_security_struct,
4955 struct super_block *sb = sbsec->sb;
4957 spin_unlock(&sb_security_lock);
4958 spin_unlock(&sb_lock);
4959 down_read(&sb->s_umount);
4961 superblock_doinit(sb, NULL);
4963 spin_lock(&sb_lock);
4964 spin_lock(&sb_security_lock);
4965 list_del_init(&sbsec->list);
4968 spin_unlock(&sb_security_lock);
4969 spin_unlock(&sb_lock);
4972 /* SELinux requires early initialization in order to label
4973 all processes and objects when they are created. */
4974 security_initcall(selinux_init);
4976 #if defined(CONFIG_NETFILTER)
4978 static struct nf_hook_ops selinux_ipv4_op = {
4979 .hook = selinux_ipv4_postroute_last,
4980 .owner = THIS_MODULE,
4982 .hooknum = NF_IP_POST_ROUTING,
4983 .priority = NF_IP_PRI_SELINUX_LAST,
4986 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4988 static struct nf_hook_ops selinux_ipv6_op = {
4989 .hook = selinux_ipv6_postroute_last,
4990 .owner = THIS_MODULE,
4992 .hooknum = NF_IP6_POST_ROUTING,
4993 .priority = NF_IP6_PRI_SELINUX_LAST,
4998 static int __init selinux_nf_ip_init(void)
5002 if (!selinux_enabled)
5005 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5007 err = nf_register_hook(&selinux_ipv4_op);
5009 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5011 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5013 err = nf_register_hook(&selinux_ipv6_op);
5015 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5023 __initcall(selinux_nf_ip_init);
5025 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5026 static void selinux_nf_ip_exit(void)
5028 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5030 nf_unregister_hook(&selinux_ipv4_op);
5031 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5032 nf_unregister_hook(&selinux_ipv6_op);
5037 #else /* CONFIG_NETFILTER */
5039 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5040 #define selinux_nf_ip_exit()
5043 #endif /* CONFIG_NETFILTER */
5045 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5046 int selinux_disable(void)
5048 extern void exit_sel_fs(void);
5049 static int selinux_disabled = 0;
5051 if (ss_initialized) {
5052 /* Not permitted after initial policy load. */
5056 if (selinux_disabled) {
5057 /* Only do this once. */
5061 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5063 selinux_disabled = 1;
5064 selinux_enabled = 0;
5066 /* Reset security_ops to the secondary module, dummy or capability. */
5067 security_ops = secondary_ops;
5069 /* Unregister netfilter hooks. */
5070 selinux_nf_ip_exit();
5072 /* Unregister selinuxfs. */