2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
36 static DEFINE_SPINLOCK(hugetlb_lock);
38 static void clear_huge_page(struct page *page, unsigned long addr)
43 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
45 clear_user_highpage(page + i, addr);
49 static void copy_huge_page(struct page *dst, struct page *src,
50 unsigned long addr, struct vm_area_struct *vma)
55 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
57 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
61 static void enqueue_huge_page(struct page *page)
63 int nid = page_to_nid(page);
64 list_add(&page->lru, &hugepage_freelists[nid]);
66 free_huge_pages_node[nid]++;
69 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
70 unsigned long address)
73 struct page *page = NULL;
74 struct zonelist *zonelist = huge_zonelist(vma, address,
78 for (z = zonelist->zones; *z; z++) {
79 nid = zone_to_nid(*z);
80 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
81 !list_empty(&hugepage_freelists[nid])) {
82 page = list_entry(hugepage_freelists[nid].next,
86 free_huge_pages_node[nid]--;
92 static void free_huge_page(struct page *page)
94 BUG_ON(page_count(page));
96 INIT_LIST_HEAD(&page->lru);
98 spin_lock(&hugetlb_lock);
99 enqueue_huge_page(page);
100 spin_unlock(&hugetlb_lock);
103 static int alloc_fresh_huge_page(void)
107 static DEFINE_SPINLOCK(nid_lock);
110 spin_lock(&nid_lock);
111 nid = next_node(prev_nid, node_online_map);
112 if (nid == MAX_NUMNODES)
113 nid = first_node(node_online_map);
115 spin_unlock(&nid_lock);
117 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
120 set_compound_page_dtor(page, free_huge_page);
121 spin_lock(&hugetlb_lock);
123 nr_huge_pages_node[page_to_nid(page)]++;
124 spin_unlock(&hugetlb_lock);
125 put_page(page); /* free it into the hugepage allocator */
131 static struct page *alloc_huge_page(struct vm_area_struct *vma,
136 spin_lock(&hugetlb_lock);
137 if (vma->vm_flags & VM_MAYSHARE)
139 else if (free_huge_pages <= resv_huge_pages)
142 page = dequeue_huge_page(vma, addr);
146 spin_unlock(&hugetlb_lock);
147 set_page_refcounted(page);
151 if (vma->vm_flags & VM_MAYSHARE)
153 spin_unlock(&hugetlb_lock);
157 static int __init hugetlb_init(void)
161 if (HPAGE_SHIFT == 0)
164 for (i = 0; i < MAX_NUMNODES; ++i)
165 INIT_LIST_HEAD(&hugepage_freelists[i]);
167 for (i = 0; i < max_huge_pages; ++i) {
168 if (!alloc_fresh_huge_page())
171 max_huge_pages = free_huge_pages = nr_huge_pages = i;
172 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
175 module_init(hugetlb_init);
177 static int __init hugetlb_setup(char *s)
179 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
183 __setup("hugepages=", hugetlb_setup);
185 static unsigned int cpuset_mems_nr(unsigned int *array)
190 for_each_node_mask(node, cpuset_current_mems_allowed)
197 static void update_and_free_page(struct page *page)
201 nr_huge_pages_node[page_to_nid(page)]--;
202 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
203 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
204 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
205 1 << PG_private | 1<< PG_writeback);
207 page[1].lru.next = NULL;
208 set_page_refcounted(page);
209 __free_pages(page, HUGETLB_PAGE_ORDER);
212 #ifdef CONFIG_HIGHMEM
213 static void try_to_free_low(unsigned long count)
217 for (i = 0; i < MAX_NUMNODES; ++i) {
218 struct page *page, *next;
219 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
220 if (PageHighMem(page))
222 list_del(&page->lru);
223 update_and_free_page(page);
225 free_huge_pages_node[page_to_nid(page)]--;
226 if (count >= nr_huge_pages)
232 static inline void try_to_free_low(unsigned long count)
237 static unsigned long set_max_huge_pages(unsigned long count)
239 while (count > nr_huge_pages) {
240 if (!alloc_fresh_huge_page())
241 return nr_huge_pages;
243 if (count >= nr_huge_pages)
244 return nr_huge_pages;
246 spin_lock(&hugetlb_lock);
247 count = max(count, resv_huge_pages);
248 try_to_free_low(count);
249 while (count < nr_huge_pages) {
250 struct page *page = dequeue_huge_page(NULL, 0);
253 update_and_free_page(page);
255 spin_unlock(&hugetlb_lock);
256 return nr_huge_pages;
259 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
260 struct file *file, void __user *buffer,
261 size_t *length, loff_t *ppos)
263 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
264 max_huge_pages = set_max_huge_pages(max_huge_pages);
268 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
269 struct file *file, void __user *buffer,
270 size_t *length, loff_t *ppos)
272 proc_dointvec(table, write, file, buffer, length, ppos);
273 if (hugepages_treat_as_movable)
274 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
276 htlb_alloc_mask = GFP_HIGHUSER;
280 #endif /* CONFIG_SYSCTL */
282 int hugetlb_report_meminfo(char *buf)
285 "HugePages_Total: %5lu\n"
286 "HugePages_Free: %5lu\n"
287 "HugePages_Rsvd: %5lu\n"
288 "Hugepagesize: %5lu kB\n",
295 int hugetlb_report_node_meminfo(int nid, char *buf)
298 "Node %d HugePages_Total: %5u\n"
299 "Node %d HugePages_Free: %5u\n",
300 nid, nr_huge_pages_node[nid],
301 nid, free_huge_pages_node[nid]);
304 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
305 unsigned long hugetlb_total_pages(void)
307 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
311 * We cannot handle pagefaults against hugetlb pages at all. They cause
312 * handle_mm_fault() to try to instantiate regular-sized pages in the
313 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
316 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
322 struct vm_operations_struct hugetlb_vm_ops = {
323 .fault = hugetlb_vm_op_fault,
326 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
333 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
335 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
337 entry = pte_mkyoung(entry);
338 entry = pte_mkhuge(entry);
343 static void set_huge_ptep_writable(struct vm_area_struct *vma,
344 unsigned long address, pte_t *ptep)
348 entry = pte_mkwrite(pte_mkdirty(*ptep));
349 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
350 update_mmu_cache(vma, address, entry);
351 lazy_mmu_prot_update(entry);
356 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
357 struct vm_area_struct *vma)
359 pte_t *src_pte, *dst_pte, entry;
360 struct page *ptepage;
364 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
367 src_pte = huge_pte_offset(src, addr);
370 dst_pte = huge_pte_alloc(dst, addr);
373 spin_lock(&dst->page_table_lock);
374 spin_lock(&src->page_table_lock);
375 if (!pte_none(*src_pte)) {
377 ptep_set_wrprotect(src, addr, src_pte);
379 ptepage = pte_page(entry);
381 set_huge_pte_at(dst, addr, dst_pte, entry);
383 spin_unlock(&src->page_table_lock);
384 spin_unlock(&dst->page_table_lock);
392 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
395 struct mm_struct *mm = vma->vm_mm;
396 unsigned long address;
402 * A page gathering list, protected by per file i_mmap_lock. The
403 * lock is used to avoid list corruption from multiple unmapping
404 * of the same page since we are using page->lru.
406 LIST_HEAD(page_list);
408 WARN_ON(!is_vm_hugetlb_page(vma));
409 BUG_ON(start & ~HPAGE_MASK);
410 BUG_ON(end & ~HPAGE_MASK);
412 spin_lock(&mm->page_table_lock);
413 for (address = start; address < end; address += HPAGE_SIZE) {
414 ptep = huge_pte_offset(mm, address);
418 if (huge_pmd_unshare(mm, &address, ptep))
421 pte = huge_ptep_get_and_clear(mm, address, ptep);
425 page = pte_page(pte);
427 set_page_dirty(page);
428 list_add(&page->lru, &page_list);
430 spin_unlock(&mm->page_table_lock);
431 flush_tlb_range(vma, start, end);
432 list_for_each_entry_safe(page, tmp, &page_list, lru) {
433 list_del(&page->lru);
438 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
442 * It is undesirable to test vma->vm_file as it should be non-null
443 * for valid hugetlb area. However, vm_file will be NULL in the error
444 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
445 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
446 * to clean up. Since no pte has actually been setup, it is safe to
447 * do nothing in this case.
450 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
451 __unmap_hugepage_range(vma, start, end);
452 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
456 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
457 unsigned long address, pte_t *ptep, pte_t pte)
459 struct page *old_page, *new_page;
462 old_page = pte_page(pte);
464 /* If no-one else is actually using this page, avoid the copy
465 * and just make the page writable */
466 avoidcopy = (page_count(old_page) == 1);
468 set_huge_ptep_writable(vma, address, ptep);
472 page_cache_get(old_page);
473 new_page = alloc_huge_page(vma, address);
476 page_cache_release(old_page);
480 spin_unlock(&mm->page_table_lock);
481 copy_huge_page(new_page, old_page, address, vma);
482 spin_lock(&mm->page_table_lock);
484 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
485 if (likely(pte_same(*ptep, pte))) {
487 set_huge_pte_at(mm, address, ptep,
488 make_huge_pte(vma, new_page, 1));
489 /* Make the old page be freed below */
492 page_cache_release(new_page);
493 page_cache_release(old_page);
497 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
498 unsigned long address, pte_t *ptep, int write_access)
500 int ret = VM_FAULT_SIGBUS;
504 struct address_space *mapping;
507 mapping = vma->vm_file->f_mapping;
508 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
509 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
512 * Use page lock to guard against racing truncation
513 * before we get page_table_lock.
516 page = find_lock_page(mapping, idx);
518 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
521 if (hugetlb_get_quota(mapping))
523 page = alloc_huge_page(vma, address);
525 hugetlb_put_quota(mapping);
529 clear_huge_page(page, address);
531 if (vma->vm_flags & VM_SHARED) {
534 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
537 hugetlb_put_quota(mapping);
546 spin_lock(&mm->page_table_lock);
547 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
552 if (!pte_none(*ptep))
555 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
556 && (vma->vm_flags & VM_SHARED)));
557 set_huge_pte_at(mm, address, ptep, new_pte);
559 if (write_access && !(vma->vm_flags & VM_SHARED)) {
560 /* Optimization, do the COW without a second fault */
561 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
564 spin_unlock(&mm->page_table_lock);
570 spin_unlock(&mm->page_table_lock);
571 hugetlb_put_quota(mapping);
577 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
578 unsigned long address, int write_access)
583 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
585 ptep = huge_pte_alloc(mm, address);
590 * Serialize hugepage allocation and instantiation, so that we don't
591 * get spurious allocation failures if two CPUs race to instantiate
592 * the same page in the page cache.
594 mutex_lock(&hugetlb_instantiation_mutex);
596 if (pte_none(entry)) {
597 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
598 mutex_unlock(&hugetlb_instantiation_mutex);
604 spin_lock(&mm->page_table_lock);
605 /* Check for a racing update before calling hugetlb_cow */
606 if (likely(pte_same(entry, *ptep)))
607 if (write_access && !pte_write(entry))
608 ret = hugetlb_cow(mm, vma, address, ptep, entry);
609 spin_unlock(&mm->page_table_lock);
610 mutex_unlock(&hugetlb_instantiation_mutex);
615 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
616 struct page **pages, struct vm_area_struct **vmas,
617 unsigned long *position, int *length, int i)
619 unsigned long pfn_offset;
620 unsigned long vaddr = *position;
621 int remainder = *length;
623 spin_lock(&mm->page_table_lock);
624 while (vaddr < vma->vm_end && remainder) {
629 * Some archs (sparc64, sh*) have multiple pte_ts to
630 * each hugepage. We have to make * sure we get the
631 * first, for the page indexing below to work.
633 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
635 if (!pte || pte_none(*pte)) {
638 spin_unlock(&mm->page_table_lock);
639 ret = hugetlb_fault(mm, vma, vaddr, 0);
640 spin_lock(&mm->page_table_lock);
641 if (!(ret & VM_FAULT_MAJOR))
650 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
651 page = pte_page(*pte);
655 pages[i] = page + pfn_offset;
665 if (vaddr < vma->vm_end && remainder &&
666 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
668 * We use pfn_offset to avoid touching the pageframes
669 * of this compound page.
674 spin_unlock(&mm->page_table_lock);
681 void hugetlb_change_protection(struct vm_area_struct *vma,
682 unsigned long address, unsigned long end, pgprot_t newprot)
684 struct mm_struct *mm = vma->vm_mm;
685 unsigned long start = address;
689 BUG_ON(address >= end);
690 flush_cache_range(vma, address, end);
692 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
693 spin_lock(&mm->page_table_lock);
694 for (; address < end; address += HPAGE_SIZE) {
695 ptep = huge_pte_offset(mm, address);
698 if (huge_pmd_unshare(mm, &address, ptep))
700 if (!pte_none(*ptep)) {
701 pte = huge_ptep_get_and_clear(mm, address, ptep);
702 pte = pte_mkhuge(pte_modify(pte, newprot));
703 set_huge_pte_at(mm, address, ptep, pte);
704 lazy_mmu_prot_update(pte);
707 spin_unlock(&mm->page_table_lock);
708 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
710 flush_tlb_range(vma, start, end);
714 struct list_head link;
719 static long region_add(struct list_head *head, long f, long t)
721 struct file_region *rg, *nrg, *trg;
723 /* Locate the region we are either in or before. */
724 list_for_each_entry(rg, head, link)
728 /* Round our left edge to the current segment if it encloses us. */
732 /* Check for and consume any regions we now overlap with. */
734 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
735 if (&rg->link == head)
740 /* If this area reaches higher then extend our area to
741 * include it completely. If this is not the first area
742 * which we intend to reuse, free it. */
755 static long region_chg(struct list_head *head, long f, long t)
757 struct file_region *rg, *nrg;
760 /* Locate the region we are before or in. */
761 list_for_each_entry(rg, head, link)
765 /* If we are below the current region then a new region is required.
766 * Subtle, allocate a new region at the position but make it zero
767 * size such that we can guarentee to record the reservation. */
768 if (&rg->link == head || t < rg->from) {
769 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
774 INIT_LIST_HEAD(&nrg->link);
775 list_add(&nrg->link, rg->link.prev);
780 /* Round our left edge to the current segment if it encloses us. */
785 /* Check for and consume any regions we now overlap with. */
786 list_for_each_entry(rg, rg->link.prev, link) {
787 if (&rg->link == head)
792 /* We overlap with this area, if it extends futher than
793 * us then we must extend ourselves. Account for its
794 * existing reservation. */
799 chg -= rg->to - rg->from;
804 static long region_truncate(struct list_head *head, long end)
806 struct file_region *rg, *trg;
809 /* Locate the region we are either in or before. */
810 list_for_each_entry(rg, head, link)
813 if (&rg->link == head)
816 /* If we are in the middle of a region then adjust it. */
817 if (end > rg->from) {
820 rg = list_entry(rg->link.next, typeof(*rg), link);
823 /* Drop any remaining regions. */
824 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
825 if (&rg->link == head)
827 chg += rg->to - rg->from;
834 static int hugetlb_acct_memory(long delta)
838 spin_lock(&hugetlb_lock);
839 if ((delta + resv_huge_pages) <= free_huge_pages) {
840 resv_huge_pages += delta;
843 spin_unlock(&hugetlb_lock);
847 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
851 chg = region_chg(&inode->i_mapping->private_list, from, to);
855 * When cpuset is configured, it breaks the strict hugetlb page
856 * reservation as the accounting is done on a global variable. Such
857 * reservation is completely rubbish in the presence of cpuset because
858 * the reservation is not checked against page availability for the
859 * current cpuset. Application can still potentially OOM'ed by kernel
860 * with lack of free htlb page in cpuset that the task is in.
861 * Attempt to enforce strict accounting with cpuset is almost
862 * impossible (or too ugly) because cpuset is too fluid that
863 * task or memory node can be dynamically moved between cpusets.
865 * The change of semantics for shared hugetlb mapping with cpuset is
866 * undesirable. However, in order to preserve some of the semantics,
867 * we fall back to check against current free page availability as
868 * a best attempt and hopefully to minimize the impact of changing
869 * semantics that cpuset has.
871 if (chg > cpuset_mems_nr(free_huge_pages_node))
874 ret = hugetlb_acct_memory(chg);
877 region_add(&inode->i_mapping->private_list, from, to);
881 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
883 long chg = region_truncate(&inode->i_mapping->private_list, offset);
884 hugetlb_acct_memory(freed - chg);