2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
103 * Inherited from caller.
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
125 fis[13] = tf->hob_nsect;
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
143 * Inherited from caller.
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
161 tf->hob_nsect = fis[13];
164 static const u8 ata_rw_cmds[] = {
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
191 ATA_CMD_WRITE_FUA_EXT
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
210 int index, fua, lba48, write;
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
224 tf->protocol = ATA_PROT_DMA;
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
283 static const struct ata_xfer_ent {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
304 * Matching XFER_* value, 0 if no match found.
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
321 * Return matching xfer_mask for @xfer_mode.
327 * Matching xfer_mask, 0 if no match found.
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
331 const struct ata_xfer_ent *ent;
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
343 * Return matching xfer_shift for @xfer_mode.
349 * Matching xfer_shift, -1 if no match found.
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
353 const struct ata_xfer_ent *ent;
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
375 static const char *ata_mode_string(unsigned int xfer_mask)
377 static const char * const xfer_mode_str[] = {
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
403 static const char *sata_spd_string(unsigned int spd)
405 static const char * const spd_str[] = {
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
412 return spd_str[spd - 1];
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
445 struct ata_ioports *ioaddr = &ap->ioaddr;
448 ap->ops->dev_select(ap, device);
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
465 return 0; /* nothing found */
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
489 struct ata_ioports *ioaddr = &ap->ioaddr;
492 ap->ops->dev_select(ap, device);
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
509 return 0; /* nothing found */
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
525 static unsigned int ata_devchk(struct ata_port *ap,
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
597 struct ata_taskfile tf;
601 ap->ops->dev_select(ap, device);
603 memset(&tf, 0, sizeof(tf));
605 ap->ops->tf_read(ap, &tf);
610 /* see if device passed diags */
613 else if ((device == 0) && (err == 0x81))
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
621 if (class == ATA_DEV_UNKNOWN)
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
683 ata_id_string(id, s, ofs, len - 1);
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
691 static u64 ata_id_n_sectors(const u16 *id)
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
697 return ata_id_u32(id, 60);
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
702 return id[1] * id[3] * id[6];
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * This function performs no actual function.
713 * May be used as the dev_select() entry in ata_port_operations.
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
732 * May be used as the dev_select() entry in ata_port_operations.
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
743 tmp = ATA_DEVICE_OBS;
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
750 outb(tmp, ap->ioaddr.device_addr);
752 ata_pause(ap); /* needed; also flushes, for mmio */
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
783 ap->ops->dev_select(ap, device);
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 static inline void ata_dump_id(const u16 *id)
805 DPRINTK("49==0x%04x "
815 DPRINTK("80==0x%04x "
825 DPRINTK("88==0x%04x "
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
838 * FIXME: pre IDE drive timing (do we care ?).
846 static unsigned int ata_id_xfermask(const u16 *id)
848 unsigned int pio_mask, mwdma_mask, udma_mask;
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
893 * Inherited from caller.
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
903 PREPARE_WORK(&ap->port_task, fn, data);
906 rc = queue_work(ata_wq, &ap->port_task);
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
910 /* rc == 0 means that another user is using port task */
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
922 * Kernel thread context (may sleep)
924 void ata_port_flush_task(struct ata_port *ap)
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
956 struct completion *waiting = qc->private_data;
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
979 * None. Should be called with kernel context, might sleep.
982 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
990 unsigned int err_mask;
992 spin_lock_irqsave(&ap->host_set->lock, flags);
994 qc = ata_qc_new_init(ap, dev);
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1035 spin_lock_irqsave(&ap->host_set->lock, flags);
1038 err_mask = qc->err_mask;
1042 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1043 * Until those drivers are fixed, we detect the condition
1044 * here, fail the command with AC_ERR_SYSTEM and reenable the
1047 * Note that this doesn't change any behavior as internal
1048 * command failure results in disabling the device in the
1049 * higher layer for LLDDs without new reset/EH callbacks.
1051 * Kill the following code as soon as those drivers are fixed.
1053 if (ap->flags & ATA_FLAG_DISABLED) {
1054 err_mask |= AC_ERR_SYSTEM;
1058 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1064 * ata_pio_need_iordy - check if iordy needed
1067 * Check if the current speed of the device requires IORDY. Used
1068 * by various controllers for chip configuration.
1071 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1074 int speed = adev->pio_mode - XFER_PIO_0;
1081 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1083 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1084 pio = adev->id[ATA_ID_EIDE_PIO];
1085 /* Is the speed faster than the drive allows non IORDY ? */
1087 /* This is cycle times not frequency - watch the logic! */
1088 if (pio > 240) /* PIO2 is 240nS per cycle */
1097 * ata_dev_read_id - Read ID data from the specified device
1098 * @ap: port on which target device resides
1099 * @dev: target device
1100 * @p_class: pointer to class of the target device (may be changed)
1101 * @post_reset: is this read ID post-reset?
1102 * @id: buffer to read IDENTIFY data into
1104 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1105 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1106 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1107 * for pre-ATA4 drives.
1110 * Kernel thread context (may sleep)
1113 * 0 on success, -errno otherwise.
1115 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1116 unsigned int *p_class, int post_reset, u16 *id)
1118 unsigned int class = *p_class;
1119 struct ata_taskfile tf;
1120 unsigned int err_mask = 0;
1124 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1126 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1129 ata_tf_init(ap, &tf, dev->devno);
1133 tf.command = ATA_CMD_ID_ATA;
1136 tf.command = ATA_CMD_ID_ATAPI;
1140 reason = "unsupported class";
1144 tf.protocol = ATA_PROT_PIO;
1146 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1147 id, sizeof(id[0]) * ATA_ID_WORDS);
1150 reason = "I/O error";
1154 swap_buf_le16(id, ATA_ID_WORDS);
1157 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1159 reason = "device reports illegal type";
1163 if (post_reset && class == ATA_DEV_ATA) {
1165 * The exact sequence expected by certain pre-ATA4 drives is:
1168 * INITIALIZE DEVICE PARAMETERS
1170 * Some drives were very specific about that exact sequence.
1172 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1173 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1176 reason = "INIT_DEV_PARAMS failed";
1180 /* current CHS translation info (id[53-58]) might be
1181 * changed. reread the identify device info.
1193 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1194 ap->id, dev->devno, reason);
1198 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
1208 * @print_info: Enable device info printout
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
1214 * Kernel thread context (may sleep)
1217 * 0 on success, -errno otherwise
1219 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1222 const u16 *id = dev->id;
1223 unsigned int xfer_mask;
1226 if (!ata_dev_enabled(dev)) {
1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1228 ap->id, dev->devno);
1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1234 /* print device capabilities */
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1241 /* initialize to-be-configured parameters */
1242 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1243 dev->max_sectors = 0;
1251 * common ATA, ATAPI feature tests
1254 /* find max transfer mode; for printk only */
1255 xfer_mask = ata_id_xfermask(id);
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1261 dev->n_sectors = ata_id_n_sectors(id);
1263 if (ata_id_has_lba(id)) {
1264 const char *lba_desc;
1267 dev->flags |= ATA_DFLAG_LBA;
1268 if (ata_id_has_lba48(id)) {
1269 dev->flags |= ATA_DFLAG_LBA48;
1273 /* print device info to dmesg */
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1278 ata_id_major_version(id),
1279 ata_mode_string(xfer_mask),
1280 (unsigned long long)dev->n_sectors,
1285 /* Default translation */
1286 dev->cylinders = id[1];
1288 dev->sectors = id[6];
1290 if (ata_id_current_chs_valid(id)) {
1291 /* Current CHS translation is valid. */
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
1297 /* print device info to dmesg */
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1302 ata_id_major_version(id),
1303 ata_mode_string(xfer_mask),
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1311 /* ATAPI-specific feature tests */
1312 else if (dev->class == ATA_DEV_ATAPI) {
1313 rc = atapi_cdb_len(id);
1314 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1315 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1319 dev->cdb_len = (unsigned int) rc;
1321 /* print device info to dmesg */
1323 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1324 ap->id, dev->devno, ata_mode_string(xfer_mask));
1327 ap->host->max_cmd_len = 0;
1328 for (i = 0; i < ATA_MAX_DEVICES; i++)
1329 ap->host->max_cmd_len = max_t(unsigned int,
1330 ap->host->max_cmd_len,
1331 ap->device[i].cdb_len);
1333 /* limit bridge transfers to udma5, 200 sectors */
1334 if (ata_dev_knobble(ap, dev)) {
1336 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1337 ap->id, dev->devno);
1338 dev->udma_mask &= ATA_UDMA5;
1339 dev->max_sectors = ATA_MAX_SECTORS;
1342 if (ap->ops->dev_config)
1343 ap->ops->dev_config(ap, dev);
1345 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1349 DPRINTK("EXIT, err\n");
1354 * ata_bus_probe - Reset and probe ATA bus
1357 * Master ATA bus probing function. Initiates a hardware-dependent
1358 * bus reset, then attempts to identify any devices found on
1362 * PCI/etc. bus probe sem.
1365 * Zero on success, negative errno otherwise.
1368 static int ata_bus_probe(struct ata_port *ap)
1370 unsigned int classes[ATA_MAX_DEVICES];
1371 int tries[ATA_MAX_DEVICES];
1372 int i, rc, down_xfermask;
1373 struct ata_device *dev;
1377 for (i = 0; i < ATA_MAX_DEVICES; i++)
1378 tries[i] = ATA_PROBE_MAX_TRIES;
1383 /* reset and determine device classes */
1384 for (i = 0; i < ATA_MAX_DEVICES; i++)
1385 classes[i] = ATA_DEV_UNKNOWN;
1387 if (ap->ops->probe_reset) {
1388 rc = ap->ops->probe_reset(ap, classes);
1390 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1394 ap->ops->phy_reset(ap);
1396 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1397 if (!(ap->flags & ATA_FLAG_DISABLED))
1398 classes[i] = ap->device[i].class;
1399 ap->device[i].class = ATA_DEV_UNKNOWN;
1405 for (i = 0; i < ATA_MAX_DEVICES; i++)
1406 if (classes[i] == ATA_DEV_UNKNOWN)
1407 classes[i] = ATA_DEV_NONE;
1409 /* read IDENTIFY page and configure devices */
1410 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1411 dev = &ap->device[i];
1414 dev->class = classes[i];
1416 if (!ata_dev_enabled(dev))
1419 rc = ata_dev_read_id(ap, dev, &dev->class, 1, dev->id);
1423 rc = ata_dev_configure(ap, dev, 1);
1428 /* configure transfer mode */
1429 rc = ata_set_mode(ap, &dev);
1435 for (i = 0; i < ATA_MAX_DEVICES; i++)
1436 if (ata_dev_enabled(&ap->device[i]))
1439 /* no device present, disable port */
1440 ata_port_disable(ap);
1441 ap->ops->port_disable(ap);
1448 tries[dev->devno] = 0;
1451 sata_down_spd_limit(ap);
1454 tries[dev->devno]--;
1455 if (down_xfermask &&
1456 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1457 tries[dev->devno] = 0;
1460 if (!tries[dev->devno]) {
1461 ata_down_xfermask_limit(ap, dev, 1);
1462 ata_dev_disable(ap, dev);
1469 * ata_port_probe - Mark port as enabled
1470 * @ap: Port for which we indicate enablement
1472 * Modify @ap data structure such that the system
1473 * thinks that the entire port is enabled.
1475 * LOCKING: host_set lock, or some other form of
1479 void ata_port_probe(struct ata_port *ap)
1481 ap->flags &= ~ATA_FLAG_DISABLED;
1485 * sata_print_link_status - Print SATA link status
1486 * @ap: SATA port to printk link status about
1488 * This function prints link speed and status of a SATA link.
1493 static void sata_print_link_status(struct ata_port *ap)
1495 u32 sstatus, scontrol, tmp;
1497 if (!ap->ops->scr_read)
1500 sstatus = scr_read(ap, SCR_STATUS);
1501 scontrol = scr_read(ap, SCR_CONTROL);
1503 if (sata_dev_present(ap)) {
1504 tmp = (sstatus >> 4) & 0xf;
1506 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1507 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1510 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1511 ap->id, sstatus, scontrol);
1516 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1517 * @ap: SATA port associated with target SATA PHY.
1519 * This function issues commands to standard SATA Sxxx
1520 * PHY registers, to wake up the phy (and device), and
1521 * clear any reset condition.
1524 * PCI/etc. bus probe sem.
1527 void __sata_phy_reset(struct ata_port *ap)
1530 unsigned long timeout = jiffies + (HZ * 5);
1532 if (ap->flags & ATA_FLAG_SATA_RESET) {
1533 /* issue phy wake/reset */
1534 scr_write_flush(ap, SCR_CONTROL, 0x301);
1535 /* Couldn't find anything in SATA I/II specs, but
1536 * AHCI-1.1 10.4.2 says at least 1 ms. */
1539 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1541 /* wait for phy to become ready, if necessary */
1544 sstatus = scr_read(ap, SCR_STATUS);
1545 if ((sstatus & 0xf) != 1)
1547 } while (time_before(jiffies, timeout));
1549 /* print link status */
1550 sata_print_link_status(ap);
1552 /* TODO: phy layer with polling, timeouts, etc. */
1553 if (sata_dev_present(ap))
1556 ata_port_disable(ap);
1558 if (ap->flags & ATA_FLAG_DISABLED)
1561 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1562 ata_port_disable(ap);
1566 ap->cbl = ATA_CBL_SATA;
1570 * sata_phy_reset - Reset SATA bus.
1571 * @ap: SATA port associated with target SATA PHY.
1573 * This function resets the SATA bus, and then probes
1574 * the bus for devices.
1577 * PCI/etc. bus probe sem.
1580 void sata_phy_reset(struct ata_port *ap)
1582 __sata_phy_reset(ap);
1583 if (ap->flags & ATA_FLAG_DISABLED)
1589 * ata_dev_pair - return other device on cable
1593 * Obtain the other device on the same cable, or if none is
1594 * present NULL is returned
1597 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1599 struct ata_device *pair = &ap->device[1 - adev->devno];
1600 if (!ata_dev_enabled(pair))
1606 * ata_port_disable - Disable port.
1607 * @ap: Port to be disabled.
1609 * Modify @ap data structure such that the system
1610 * thinks that the entire port is disabled, and should
1611 * never attempt to probe or communicate with devices
1614 * LOCKING: host_set lock, or some other form of
1618 void ata_port_disable(struct ata_port *ap)
1620 ap->device[0].class = ATA_DEV_NONE;
1621 ap->device[1].class = ATA_DEV_NONE;
1622 ap->flags |= ATA_FLAG_DISABLED;
1626 * sata_down_spd_limit - adjust SATA spd limit downward
1627 * @ap: Port to adjust SATA spd limit for
1629 * Adjust SATA spd limit of @ap downward. Note that this
1630 * function only adjusts the limit. The change must be applied
1631 * using sata_set_spd().
1634 * Inherited from caller.
1637 * 0 on success, negative errno on failure
1639 int sata_down_spd_limit(struct ata_port *ap)
1644 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1647 mask = ap->sata_spd_limit;
1650 highbit = fls(mask) - 1;
1651 mask &= ~(1 << highbit);
1653 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1657 mask &= (1 << spd) - 1;
1661 ap->sata_spd_limit = mask;
1663 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1664 ap->id, sata_spd_string(fls(mask)));
1669 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1673 if (ap->sata_spd_limit == UINT_MAX)
1676 limit = fls(ap->sata_spd_limit);
1678 spd = (*scontrol >> 4) & 0xf;
1679 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1681 return spd != limit;
1685 * sata_set_spd_needed - is SATA spd configuration needed
1686 * @ap: Port in question
1688 * Test whether the spd limit in SControl matches
1689 * @ap->sata_spd_limit. This function is used to determine
1690 * whether hardreset is necessary to apply SATA spd
1694 * Inherited from caller.
1697 * 1 if SATA spd configuration is needed, 0 otherwise.
1699 int sata_set_spd_needed(struct ata_port *ap)
1703 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1706 scontrol = scr_read(ap, SCR_CONTROL);
1708 return __sata_set_spd_needed(ap, &scontrol);
1712 * sata_set_spd - set SATA spd according to spd limit
1713 * @ap: Port to set SATA spd for
1715 * Set SATA spd of @ap according to sata_spd_limit.
1718 * Inherited from caller.
1721 * 0 if spd doesn't need to be changed, 1 if spd has been
1722 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1724 int sata_set_spd(struct ata_port *ap)
1728 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1731 scontrol = scr_read(ap, SCR_CONTROL);
1732 if (!__sata_set_spd_needed(ap, &scontrol))
1735 scr_write(ap, SCR_CONTROL, scontrol);
1740 * This mode timing computation functionality is ported over from
1741 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1744 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1745 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1746 * for PIO 5, which is a nonstandard extension and UDMA6, which
1747 * is currently supported only by Maxtor drives.
1750 static const struct ata_timing ata_timing[] = {
1752 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1753 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1754 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1755 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1757 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1758 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1759 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1761 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1763 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1764 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1765 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1767 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1768 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1769 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1771 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1772 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1773 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1775 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1776 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1777 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1779 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1784 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1785 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1787 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1789 q->setup = EZ(t->setup * 1000, T);
1790 q->act8b = EZ(t->act8b * 1000, T);
1791 q->rec8b = EZ(t->rec8b * 1000, T);
1792 q->cyc8b = EZ(t->cyc8b * 1000, T);
1793 q->active = EZ(t->active * 1000, T);
1794 q->recover = EZ(t->recover * 1000, T);
1795 q->cycle = EZ(t->cycle * 1000, T);
1796 q->udma = EZ(t->udma * 1000, UT);
1799 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1800 struct ata_timing *m, unsigned int what)
1802 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1803 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1804 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1805 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1806 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1807 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1808 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1809 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1812 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1814 const struct ata_timing *t;
1816 for (t = ata_timing; t->mode != speed; t++)
1817 if (t->mode == 0xFF)
1822 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1823 struct ata_timing *t, int T, int UT)
1825 const struct ata_timing *s;
1826 struct ata_timing p;
1832 if (!(s = ata_timing_find_mode(speed)))
1835 memcpy(t, s, sizeof(*s));
1838 * If the drive is an EIDE drive, it can tell us it needs extended
1839 * PIO/MW_DMA cycle timing.
1842 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1843 memset(&p, 0, sizeof(p));
1844 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1845 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1846 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1847 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1848 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1850 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1854 * Convert the timing to bus clock counts.
1857 ata_timing_quantize(t, t, T, UT);
1860 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1861 * S.M.A.R.T * and some other commands. We have to ensure that the
1862 * DMA cycle timing is slower/equal than the fastest PIO timing.
1865 if (speed > XFER_PIO_4) {
1866 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1867 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1871 * Lengthen active & recovery time so that cycle time is correct.
1874 if (t->act8b + t->rec8b < t->cyc8b) {
1875 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1876 t->rec8b = t->cyc8b - t->act8b;
1879 if (t->active + t->recover < t->cycle) {
1880 t->active += (t->cycle - (t->active + t->recover)) / 2;
1881 t->recover = t->cycle - t->active;
1888 * ata_down_xfermask_limit - adjust dev xfer masks downward
1889 * @ap: Port associated with device @dev
1890 * @dev: Device to adjust xfer masks
1891 * @force_pio0: Force PIO0
1893 * Adjust xfer masks of @dev downward. Note that this function
1894 * does not apply the change. Invoking ata_set_mode() afterwards
1895 * will apply the limit.
1898 * Inherited from caller.
1901 * 0 on success, negative errno on failure
1903 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1906 unsigned long xfer_mask;
1909 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1914 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1915 if (xfer_mask & ATA_MASK_UDMA)
1916 xfer_mask &= ~ATA_MASK_MWDMA;
1918 highbit = fls(xfer_mask) - 1;
1919 xfer_mask &= ~(1 << highbit);
1921 xfer_mask &= 1 << ATA_SHIFT_PIO;
1925 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1928 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1929 ap->id, dev->devno, ata_mode_string(xfer_mask));
1937 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1939 unsigned int err_mask;
1942 dev->flags &= ~ATA_DFLAG_PIO;
1943 if (dev->xfer_shift == ATA_SHIFT_PIO)
1944 dev->flags |= ATA_DFLAG_PIO;
1946 err_mask = ata_dev_set_xfermode(ap, dev);
1949 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1954 rc = ata_dev_revalidate(ap, dev, 0);
1958 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1959 dev->xfer_shift, (int)dev->xfer_mode);
1961 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1963 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1968 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1969 * @ap: port on which timings will be programmed
1970 * @r_failed_dev: out paramter for failed device
1972 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1973 * ata_set_mode() fails, pointer to the failing device is
1974 * returned in @r_failed_dev.
1977 * PCI/etc. bus probe sem.
1980 * 0 on success, negative errno otherwise
1982 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1984 struct ata_device *dev;
1985 int i, rc = 0, used_dma = 0, found = 0;
1987 /* has private set_mode? */
1988 if (ap->ops->set_mode) {
1989 /* FIXME: make ->set_mode handle no device case and
1990 * return error code and failing device on failure.
1992 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1993 if (ata_dev_enabled(&ap->device[i])) {
1994 ap->ops->set_mode(ap);
2001 /* step 1: calculate xfer_mask */
2002 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2003 unsigned int pio_mask, dma_mask;
2005 dev = &ap->device[i];
2007 if (!ata_dev_enabled(dev))
2010 ata_dev_xfermask(ap, dev);
2012 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2013 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2014 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2015 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2024 /* step 2: always set host PIO timings */
2025 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2026 dev = &ap->device[i];
2027 if (!ata_dev_enabled(dev))
2030 if (!dev->pio_mode) {
2031 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2032 ap->id, dev->devno);
2037 dev->xfer_mode = dev->pio_mode;
2038 dev->xfer_shift = ATA_SHIFT_PIO;
2039 if (ap->ops->set_piomode)
2040 ap->ops->set_piomode(ap, dev);
2043 /* step 3: set host DMA timings */
2044 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2045 dev = &ap->device[i];
2047 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2050 dev->xfer_mode = dev->dma_mode;
2051 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2052 if (ap->ops->set_dmamode)
2053 ap->ops->set_dmamode(ap, dev);
2056 /* step 4: update devices' xfer mode */
2057 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2058 dev = &ap->device[i];
2060 if (!ata_dev_enabled(dev))
2063 rc = ata_dev_set_mode(ap, dev);
2068 /* Record simplex status. If we selected DMA then the other
2069 * host channels are not permitted to do so.
2071 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2072 ap->host_set->simplex_claimed = 1;
2074 /* step5: chip specific finalisation */
2075 if (ap->ops->post_set_mode)
2076 ap->ops->post_set_mode(ap);
2080 *r_failed_dev = dev;
2085 * ata_tf_to_host - issue ATA taskfile to host controller
2086 * @ap: port to which command is being issued
2087 * @tf: ATA taskfile register set
2089 * Issues ATA taskfile register set to ATA host controller,
2090 * with proper synchronization with interrupt handler and
2094 * spin_lock_irqsave(host_set lock)
2097 static inline void ata_tf_to_host(struct ata_port *ap,
2098 const struct ata_taskfile *tf)
2100 ap->ops->tf_load(ap, tf);
2101 ap->ops->exec_command(ap, tf);
2105 * ata_busy_sleep - sleep until BSY clears, or timeout
2106 * @ap: port containing status register to be polled
2107 * @tmout_pat: impatience timeout
2108 * @tmout: overall timeout
2110 * Sleep until ATA Status register bit BSY clears,
2111 * or a timeout occurs.
2116 unsigned int ata_busy_sleep (struct ata_port *ap,
2117 unsigned long tmout_pat, unsigned long tmout)
2119 unsigned long timer_start, timeout;
2122 status = ata_busy_wait(ap, ATA_BUSY, 300);
2123 timer_start = jiffies;
2124 timeout = timer_start + tmout_pat;
2125 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2127 status = ata_busy_wait(ap, ATA_BUSY, 3);
2130 if (status & ATA_BUSY)
2131 printk(KERN_WARNING "ata%u is slow to respond, "
2132 "please be patient\n", ap->id);
2134 timeout = timer_start + tmout;
2135 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2137 status = ata_chk_status(ap);
2140 if (status & ATA_BUSY) {
2141 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2142 ap->id, tmout / HZ);
2149 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2151 struct ata_ioports *ioaddr = &ap->ioaddr;
2152 unsigned int dev0 = devmask & (1 << 0);
2153 unsigned int dev1 = devmask & (1 << 1);
2154 unsigned long timeout;
2156 /* if device 0 was found in ata_devchk, wait for its
2160 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2162 /* if device 1 was found in ata_devchk, wait for
2163 * register access, then wait for BSY to clear
2165 timeout = jiffies + ATA_TMOUT_BOOT;
2169 ap->ops->dev_select(ap, 1);
2170 if (ap->flags & ATA_FLAG_MMIO) {
2171 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2172 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2174 nsect = inb(ioaddr->nsect_addr);
2175 lbal = inb(ioaddr->lbal_addr);
2177 if ((nsect == 1) && (lbal == 1))
2179 if (time_after(jiffies, timeout)) {
2183 msleep(50); /* give drive a breather */
2186 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2188 /* is all this really necessary? */
2189 ap->ops->dev_select(ap, 0);
2191 ap->ops->dev_select(ap, 1);
2193 ap->ops->dev_select(ap, 0);
2196 static unsigned int ata_bus_softreset(struct ata_port *ap,
2197 unsigned int devmask)
2199 struct ata_ioports *ioaddr = &ap->ioaddr;
2201 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2203 /* software reset. causes dev0 to be selected */
2204 if (ap->flags & ATA_FLAG_MMIO) {
2205 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2206 udelay(20); /* FIXME: flush */
2207 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2208 udelay(20); /* FIXME: flush */
2209 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2211 outb(ap->ctl, ioaddr->ctl_addr);
2213 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2215 outb(ap->ctl, ioaddr->ctl_addr);
2218 /* spec mandates ">= 2ms" before checking status.
2219 * We wait 150ms, because that was the magic delay used for
2220 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2221 * between when the ATA command register is written, and then
2222 * status is checked. Because waiting for "a while" before
2223 * checking status is fine, post SRST, we perform this magic
2224 * delay here as well.
2226 * Old drivers/ide uses the 2mS rule and then waits for ready
2230 /* Before we perform post reset processing we want to see if
2231 * the bus shows 0xFF because the odd clown forgets the D7
2232 * pulldown resistor.
2234 if (ata_check_status(ap) == 0xFF) {
2235 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2236 return AC_ERR_OTHER;
2239 ata_bus_post_reset(ap, devmask);
2245 * ata_bus_reset - reset host port and associated ATA channel
2246 * @ap: port to reset
2248 * This is typically the first time we actually start issuing
2249 * commands to the ATA channel. We wait for BSY to clear, then
2250 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2251 * result. Determine what devices, if any, are on the channel
2252 * by looking at the device 0/1 error register. Look at the signature
2253 * stored in each device's taskfile registers, to determine if
2254 * the device is ATA or ATAPI.
2257 * PCI/etc. bus probe sem.
2258 * Obtains host_set lock.
2261 * Sets ATA_FLAG_DISABLED if bus reset fails.
2264 void ata_bus_reset(struct ata_port *ap)
2266 struct ata_ioports *ioaddr = &ap->ioaddr;
2267 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2269 unsigned int dev0, dev1 = 0, devmask = 0;
2271 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2273 /* determine if device 0/1 are present */
2274 if (ap->flags & ATA_FLAG_SATA_RESET)
2277 dev0 = ata_devchk(ap, 0);
2279 dev1 = ata_devchk(ap, 1);
2283 devmask |= (1 << 0);
2285 devmask |= (1 << 1);
2287 /* select device 0 again */
2288 ap->ops->dev_select(ap, 0);
2290 /* issue bus reset */
2291 if (ap->flags & ATA_FLAG_SRST)
2292 if (ata_bus_softreset(ap, devmask))
2296 * determine by signature whether we have ATA or ATAPI devices
2298 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2299 if ((slave_possible) && (err != 0x81))
2300 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2302 /* re-enable interrupts */
2303 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2306 /* is double-select really necessary? */
2307 if (ap->device[1].class != ATA_DEV_NONE)
2308 ap->ops->dev_select(ap, 1);
2309 if (ap->device[0].class != ATA_DEV_NONE)
2310 ap->ops->dev_select(ap, 0);
2312 /* if no devices were detected, disable this port */
2313 if ((ap->device[0].class == ATA_DEV_NONE) &&
2314 (ap->device[1].class == ATA_DEV_NONE))
2317 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2318 /* set up device control for ATA_FLAG_SATA_RESET */
2319 if (ap->flags & ATA_FLAG_MMIO)
2320 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2322 outb(ap->ctl, ioaddr->ctl_addr);
2329 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2330 ap->ops->port_disable(ap);
2335 static int sata_phy_resume(struct ata_port *ap)
2337 unsigned long timeout = jiffies + (HZ * 5);
2338 u32 scontrol, sstatus;
2340 scontrol = scr_read(ap, SCR_CONTROL);
2341 scontrol = (scontrol & 0x0f0) | 0x300;
2342 scr_write_flush(ap, SCR_CONTROL, scontrol);
2344 /* Wait for phy to become ready, if necessary. */
2347 sstatus = scr_read(ap, SCR_STATUS);
2348 if ((sstatus & 0xf) != 1)
2350 } while (time_before(jiffies, timeout));
2356 * ata_std_probeinit - initialize probing
2357 * @ap: port to be probed
2359 * @ap is about to be probed. Initialize it. This function is
2360 * to be used as standard callback for ata_drive_probe_reset().
2362 * NOTE!!! Do not use this function as probeinit if a low level
2363 * driver implements only hardreset. Just pass NULL as probeinit
2364 * in that case. Using this function is probably okay but doing
2365 * so makes reset sequence different from the original
2366 * ->phy_reset implementation and Jeff nervous. :-P
2368 void ata_std_probeinit(struct ata_port *ap)
2370 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2373 /* set cable type and resume link */
2374 ap->cbl = ATA_CBL_SATA;
2375 sata_phy_resume(ap);
2377 /* init sata_spd_limit to the current value */
2378 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2380 ap->sata_spd_limit &= (1 << spd) - 1;
2382 /* wait for device */
2383 if (sata_dev_present(ap))
2384 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2389 * ata_std_softreset - reset host port via ATA SRST
2390 * @ap: port to reset
2391 * @classes: resulting classes of attached devices
2393 * Reset host port using ATA SRST. This function is to be used
2394 * as standard callback for ata_drive_*_reset() functions.
2397 * Kernel thread context (may sleep)
2400 * 0 on success, -errno otherwise.
2402 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2404 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2405 unsigned int devmask = 0, err_mask;
2410 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2411 classes[0] = ATA_DEV_NONE;
2415 /* determine if device 0/1 are present */
2416 if (ata_devchk(ap, 0))
2417 devmask |= (1 << 0);
2418 if (slave_possible && ata_devchk(ap, 1))
2419 devmask |= (1 << 1);
2421 /* select device 0 again */
2422 ap->ops->dev_select(ap, 0);
2424 /* issue bus reset */
2425 DPRINTK("about to softreset, devmask=%x\n", devmask);
2426 err_mask = ata_bus_softreset(ap, devmask);
2428 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2433 /* determine by signature whether we have ATA or ATAPI devices */
2434 classes[0] = ata_dev_try_classify(ap, 0, &err);
2435 if (slave_possible && err != 0x81)
2436 classes[1] = ata_dev_try_classify(ap, 1, &err);
2439 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2444 * sata_std_hardreset - reset host port via SATA phy reset
2445 * @ap: port to reset
2446 * @class: resulting class of attached device
2448 * SATA phy-reset host port using DET bits of SControl register.
2449 * This function is to be used as standard callback for
2450 * ata_drive_*_reset().
2453 * Kernel thread context (may sleep)
2456 * 0 on success, -errno otherwise.
2458 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2464 if (sata_set_spd_needed(ap)) {
2465 /* SATA spec says nothing about how to reconfigure
2466 * spd. To be on the safe side, turn off phy during
2467 * reconfiguration. This works for at least ICH7 AHCI
2470 scontrol = scr_read(ap, SCR_CONTROL);
2471 scontrol = (scontrol & 0x0f0) | 0x302;
2472 scr_write_flush(ap, SCR_CONTROL, scontrol);
2477 /* issue phy wake/reset */
2478 scontrol = scr_read(ap, SCR_CONTROL);
2479 scontrol = (scontrol & 0x0f0) | 0x301;
2480 scr_write_flush(ap, SCR_CONTROL, scontrol);
2482 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2483 * 10.4.2 says at least 1 ms.
2487 /* bring phy back */
2488 sata_phy_resume(ap);
2490 /* TODO: phy layer with polling, timeouts, etc. */
2491 if (!sata_dev_present(ap)) {
2492 *class = ATA_DEV_NONE;
2493 DPRINTK("EXIT, link offline\n");
2497 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2499 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2503 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2505 *class = ata_dev_try_classify(ap, 0, NULL);
2507 DPRINTK("EXIT, class=%u\n", *class);
2512 * ata_std_postreset - standard postreset callback
2513 * @ap: the target ata_port
2514 * @classes: classes of attached devices
2516 * This function is invoked after a successful reset. Note that
2517 * the device might have been reset more than once using
2518 * different reset methods before postreset is invoked.
2520 * This function is to be used as standard callback for
2521 * ata_drive_*_reset().
2524 * Kernel thread context (may sleep)
2526 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2530 /* print link status */
2531 if (ap->cbl == ATA_CBL_SATA)
2532 sata_print_link_status(ap);
2534 /* re-enable interrupts */
2535 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2538 /* is double-select really necessary? */
2539 if (classes[0] != ATA_DEV_NONE)
2540 ap->ops->dev_select(ap, 1);
2541 if (classes[1] != ATA_DEV_NONE)
2542 ap->ops->dev_select(ap, 0);
2544 /* bail out if no device is present */
2545 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2546 DPRINTK("EXIT, no device\n");
2550 /* set up device control */
2551 if (ap->ioaddr.ctl_addr) {
2552 if (ap->flags & ATA_FLAG_MMIO)
2553 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2555 outb(ap->ctl, ap->ioaddr.ctl_addr);
2562 * ata_std_probe_reset - standard probe reset method
2563 * @ap: prot to perform probe-reset
2564 * @classes: resulting classes of attached devices
2566 * The stock off-the-shelf ->probe_reset method.
2569 * Kernel thread context (may sleep)
2572 * 0 on success, -errno otherwise.
2574 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2576 ata_reset_fn_t hardreset;
2579 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
2580 hardreset = sata_std_hardreset;
2582 return ata_drive_probe_reset(ap, ata_std_probeinit,
2583 ata_std_softreset, hardreset,
2584 ata_std_postreset, classes);
2587 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2588 ata_postreset_fn_t postreset, unsigned int *classes)
2592 for (i = 0; i < ATA_MAX_DEVICES; i++)
2593 classes[i] = ATA_DEV_UNKNOWN;
2595 rc = reset(ap, classes);
2599 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2600 * is complete and convert all ATA_DEV_UNKNOWN to
2603 for (i = 0; i < ATA_MAX_DEVICES; i++)
2604 if (classes[i] != ATA_DEV_UNKNOWN)
2607 if (i < ATA_MAX_DEVICES)
2608 for (i = 0; i < ATA_MAX_DEVICES; i++)
2609 if (classes[i] == ATA_DEV_UNKNOWN)
2610 classes[i] = ATA_DEV_NONE;
2613 postreset(ap, classes);
2619 * ata_drive_probe_reset - Perform probe reset with given methods
2620 * @ap: port to reset
2621 * @probeinit: probeinit method (can be NULL)
2622 * @softreset: softreset method (can be NULL)
2623 * @hardreset: hardreset method (can be NULL)
2624 * @postreset: postreset method (can be NULL)
2625 * @classes: resulting classes of attached devices
2627 * Reset the specified port and classify attached devices using
2628 * given methods. This function prefers softreset but tries all
2629 * possible reset sequences to reset and classify devices. This
2630 * function is intended to be used for constructing ->probe_reset
2631 * callback by low level drivers.
2633 * Reset methods should follow the following rules.
2635 * - Return 0 on sucess, -errno on failure.
2636 * - If classification is supported, fill classes[] with
2637 * recognized class codes.
2638 * - If classification is not supported, leave classes[] alone.
2641 * Kernel thread context (may sleep)
2644 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2645 * if classification fails, and any error code from reset
2648 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2649 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2650 ata_postreset_fn_t postreset, unsigned int *classes)
2657 if (softreset && !sata_set_spd_needed(ap)) {
2658 rc = ata_do_reset(ap, softreset, postreset, classes);
2659 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2661 printk(KERN_INFO "ata%u: softreset failed, will try "
2662 "hardreset in 5 secs\n", ap->id);
2670 rc = ata_do_reset(ap, hardreset, postreset, classes);
2672 if (classes[0] != ATA_DEV_UNKNOWN)
2677 if (sata_down_spd_limit(ap))
2680 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2681 "in 5 secs\n", ap->id);
2686 printk(KERN_INFO "ata%u: hardreset succeeded without "
2687 "classification, will retry softreset in 5 secs\n",
2691 rc = ata_do_reset(ap, softreset, postreset, classes);
2695 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2701 * ata_dev_same_device - Determine whether new ID matches configured device
2702 * @ap: port on which the device to compare against resides
2703 * @dev: device to compare against
2704 * @new_class: class of the new device
2705 * @new_id: IDENTIFY page of the new device
2707 * Compare @new_class and @new_id against @dev and determine
2708 * whether @dev is the device indicated by @new_class and
2715 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2717 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2718 unsigned int new_class, const u16 *new_id)
2720 const u16 *old_id = dev->id;
2721 unsigned char model[2][41], serial[2][21];
2724 if (dev->class != new_class) {
2726 "ata%u: dev %u class mismatch %d != %d\n",
2727 ap->id, dev->devno, dev->class, new_class);
2731 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2732 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2733 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2734 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2735 new_n_sectors = ata_id_n_sectors(new_id);
2737 if (strcmp(model[0], model[1])) {
2739 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2740 ap->id, dev->devno, model[0], model[1]);
2744 if (strcmp(serial[0], serial[1])) {
2746 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2747 ap->id, dev->devno, serial[0], serial[1]);
2751 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2753 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2754 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2755 (unsigned long long)new_n_sectors);
2763 * ata_dev_revalidate - Revalidate ATA device
2764 * @ap: port on which the device to revalidate resides
2765 * @dev: device to revalidate
2766 * @post_reset: is this revalidation after reset?
2768 * Re-read IDENTIFY page and make sure @dev is still attached to
2772 * Kernel thread context (may sleep)
2775 * 0 on success, negative errno otherwise
2777 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2780 unsigned int class = dev->class;
2781 u16 *id = (void *)ap->sector_buf;
2784 if (!ata_dev_enabled(dev)) {
2790 rc = ata_dev_read_id(ap, dev, &class, post_reset, id);
2794 /* is the device still there? */
2795 if (!ata_dev_same_device(ap, dev, class, id)) {
2800 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2802 /* configure device according to the new ID */
2803 rc = ata_dev_configure(ap, dev, 0);
2808 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2809 ap->id, dev->devno, rc);
2813 static const char * const ata_dma_blacklist [] = {
2814 "WDC AC11000H", NULL,
2815 "WDC AC22100H", NULL,
2816 "WDC AC32500H", NULL,
2817 "WDC AC33100H", NULL,
2818 "WDC AC31600H", NULL,
2819 "WDC AC32100H", "24.09P07",
2820 "WDC AC23200L", "21.10N21",
2821 "Compaq CRD-8241B", NULL,
2826 "SanDisk SDP3B", NULL,
2827 "SanDisk SDP3B-64", NULL,
2828 "SANYO CD-ROM CRD", NULL,
2829 "HITACHI CDR-8", NULL,
2830 "HITACHI CDR-8335", NULL,
2831 "HITACHI CDR-8435", NULL,
2832 "Toshiba CD-ROM XM-6202B", NULL,
2833 "TOSHIBA CD-ROM XM-1702BC", NULL,
2835 "E-IDE CD-ROM CR-840", NULL,
2836 "CD-ROM Drive/F5A", NULL,
2837 "WPI CDD-820", NULL,
2838 "SAMSUNG CD-ROM SC-148C", NULL,
2839 "SAMSUNG CD-ROM SC", NULL,
2840 "SanDisk SDP3B-64", NULL,
2841 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2842 "_NEC DV5800A", NULL,
2843 "SAMSUNG CD-ROM SN-124", "N001"
2846 static int ata_strim(char *s, size_t len)
2848 len = strnlen(s, len);
2850 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2851 while ((len > 0) && (s[len - 1] == ' ')) {
2858 static int ata_dma_blacklisted(const struct ata_device *dev)
2860 unsigned char model_num[40];
2861 unsigned char model_rev[16];
2862 unsigned int nlen, rlen;
2865 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2867 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2869 nlen = ata_strim(model_num, sizeof(model_num));
2870 rlen = ata_strim(model_rev, sizeof(model_rev));
2872 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2873 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2874 if (ata_dma_blacklist[i+1] == NULL)
2876 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2884 * ata_dev_xfermask - Compute supported xfermask of the given device
2885 * @ap: Port on which the device to compute xfermask for resides
2886 * @dev: Device to compute xfermask for
2888 * Compute supported xfermask of @dev and store it in
2889 * dev->*_mask. This function is responsible for applying all
2890 * known limits including host controller limits, device
2893 * FIXME: The current implementation limits all transfer modes to
2894 * the fastest of the lowested device on the port. This is not
2895 * required on most controllers.
2900 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2902 struct ata_host_set *hs = ap->host_set;
2903 unsigned long xfer_mask;
2906 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2907 ap->mwdma_mask, ap->udma_mask);
2909 /* Apply cable rule here. Don't apply it early because when
2910 * we handle hot plug the cable type can itself change.
2912 if (ap->cbl == ATA_CBL_PATA40)
2913 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2915 /* FIXME: Use port-wide xfermask for now */
2916 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2917 struct ata_device *d = &ap->device[i];
2919 if (ata_dev_absent(d))
2922 if (ata_dev_disabled(d)) {
2923 /* to avoid violating device selection timing */
2924 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2925 UINT_MAX, UINT_MAX);
2929 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2930 d->mwdma_mask, d->udma_mask);
2931 xfer_mask &= ata_id_xfermask(d->id);
2932 if (ata_dma_blacklisted(d))
2933 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2936 if (ata_dma_blacklisted(dev))
2937 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2938 "disabling DMA\n", ap->id, dev->devno);
2940 if (hs->flags & ATA_HOST_SIMPLEX) {
2941 if (hs->simplex_claimed)
2942 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2945 if (ap->ops->mode_filter)
2946 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2948 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2949 &dev->mwdma_mask, &dev->udma_mask);
2953 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2954 * @ap: Port associated with device @dev
2955 * @dev: Device to which command will be sent
2957 * Issue SET FEATURES - XFER MODE command to device @dev
2961 * PCI/etc. bus probe sem.
2964 * 0 on success, AC_ERR_* mask otherwise.
2967 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2968 struct ata_device *dev)
2970 struct ata_taskfile tf;
2971 unsigned int err_mask;
2973 /* set up set-features taskfile */
2974 DPRINTK("set features - xfer mode\n");
2976 ata_tf_init(ap, &tf, dev->devno);
2977 tf.command = ATA_CMD_SET_FEATURES;
2978 tf.feature = SETFEATURES_XFER;
2979 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2980 tf.protocol = ATA_PROT_NODATA;
2981 tf.nsect = dev->xfer_mode;
2983 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2985 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2990 * ata_dev_init_params - Issue INIT DEV PARAMS command
2991 * @ap: Port associated with device @dev
2992 * @dev: Device to which command will be sent
2995 * Kernel thread context (may sleep)
2998 * 0 on success, AC_ERR_* mask otherwise.
3001 static unsigned int ata_dev_init_params(struct ata_port *ap,
3002 struct ata_device *dev,
3006 struct ata_taskfile tf;
3007 unsigned int err_mask;
3009 /* Number of sectors per track 1-255. Number of heads 1-16 */
3010 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3011 return AC_ERR_INVALID;
3013 /* set up init dev params taskfile */
3014 DPRINTK("init dev params \n");
3016 ata_tf_init(ap, &tf, dev->devno);
3017 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3018 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3019 tf.protocol = ATA_PROT_NODATA;
3021 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3023 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3025 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3030 * ata_sg_clean - Unmap DMA memory associated with command
3031 * @qc: Command containing DMA memory to be released
3033 * Unmap all mapped DMA memory associated with this command.
3036 * spin_lock_irqsave(host_set lock)
3039 static void ata_sg_clean(struct ata_queued_cmd *qc)
3041 struct ata_port *ap = qc->ap;
3042 struct scatterlist *sg = qc->__sg;
3043 int dir = qc->dma_dir;
3044 void *pad_buf = NULL;
3046 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3047 WARN_ON(sg == NULL);
3049 if (qc->flags & ATA_QCFLAG_SINGLE)
3050 WARN_ON(qc->n_elem > 1);
3052 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3054 /* if we padded the buffer out to 32-bit bound, and data
3055 * xfer direction is from-device, we must copy from the
3056 * pad buffer back into the supplied buffer
3058 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3059 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3061 if (qc->flags & ATA_QCFLAG_SG) {
3063 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3064 /* restore last sg */
3065 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3067 struct scatterlist *psg = &qc->pad_sgent;
3068 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3069 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3070 kunmap_atomic(addr, KM_IRQ0);
3074 dma_unmap_single(ap->dev,
3075 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3078 sg->length += qc->pad_len;
3080 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3081 pad_buf, qc->pad_len);
3084 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3089 * ata_fill_sg - Fill PCI IDE PRD table
3090 * @qc: Metadata associated with taskfile to be transferred
3092 * Fill PCI IDE PRD (scatter-gather) table with segments
3093 * associated with the current disk command.
3096 * spin_lock_irqsave(host_set lock)
3099 static void ata_fill_sg(struct ata_queued_cmd *qc)
3101 struct ata_port *ap = qc->ap;
3102 struct scatterlist *sg;
3105 WARN_ON(qc->__sg == NULL);
3106 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3109 ata_for_each_sg(sg, qc) {
3113 /* determine if physical DMA addr spans 64K boundary.
3114 * Note h/w doesn't support 64-bit, so we unconditionally
3115 * truncate dma_addr_t to u32.
3117 addr = (u32) sg_dma_address(sg);
3118 sg_len = sg_dma_len(sg);
3121 offset = addr & 0xffff;
3123 if ((offset + sg_len) > 0x10000)
3124 len = 0x10000 - offset;
3126 ap->prd[idx].addr = cpu_to_le32(addr);
3127 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3128 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3137 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3140 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3141 * @qc: Metadata associated with taskfile to check
3143 * Allow low-level driver to filter ATA PACKET commands, returning
3144 * a status indicating whether or not it is OK to use DMA for the
3145 * supplied PACKET command.
3148 * spin_lock_irqsave(host_set lock)
3150 * RETURNS: 0 when ATAPI DMA can be used
3153 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3155 struct ata_port *ap = qc->ap;
3156 int rc = 0; /* Assume ATAPI DMA is OK by default */
3158 if (ap->ops->check_atapi_dma)
3159 rc = ap->ops->check_atapi_dma(qc);
3164 * ata_qc_prep - Prepare taskfile for submission
3165 * @qc: Metadata associated with taskfile to be prepared
3167 * Prepare ATA taskfile for submission.
3170 * spin_lock_irqsave(host_set lock)
3172 void ata_qc_prep(struct ata_queued_cmd *qc)
3174 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3180 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3183 * ata_sg_init_one - Associate command with memory buffer
3184 * @qc: Command to be associated
3185 * @buf: Memory buffer
3186 * @buflen: Length of memory buffer, in bytes.
3188 * Initialize the data-related elements of queued_cmd @qc
3189 * to point to a single memory buffer, @buf of byte length @buflen.
3192 * spin_lock_irqsave(host_set lock)
3195 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3197 struct scatterlist *sg;
3199 qc->flags |= ATA_QCFLAG_SINGLE;
3201 memset(&qc->sgent, 0, sizeof(qc->sgent));
3202 qc->__sg = &qc->sgent;
3204 qc->orig_n_elem = 1;
3208 sg_init_one(sg, buf, buflen);
3212 * ata_sg_init - Associate command with scatter-gather table.
3213 * @qc: Command to be associated
3214 * @sg: Scatter-gather table.
3215 * @n_elem: Number of elements in s/g table.
3217 * Initialize the data-related elements of queued_cmd @qc
3218 * to point to a scatter-gather table @sg, containing @n_elem
3222 * spin_lock_irqsave(host_set lock)
3225 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3226 unsigned int n_elem)
3228 qc->flags |= ATA_QCFLAG_SG;
3230 qc->n_elem = n_elem;
3231 qc->orig_n_elem = n_elem;
3235 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3236 * @qc: Command with memory buffer to be mapped.
3238 * DMA-map the memory buffer associated with queued_cmd @qc.
3241 * spin_lock_irqsave(host_set lock)
3244 * Zero on success, negative on error.
3247 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3249 struct ata_port *ap = qc->ap;
3250 int dir = qc->dma_dir;
3251 struct scatterlist *sg = qc->__sg;
3252 dma_addr_t dma_address;
3255 /* we must lengthen transfers to end on a 32-bit boundary */
3256 qc->pad_len = sg->length & 3;
3258 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3259 struct scatterlist *psg = &qc->pad_sgent;
3261 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3263 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3265 if (qc->tf.flags & ATA_TFLAG_WRITE)
3266 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3269 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3270 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3272 sg->length -= qc->pad_len;
3273 if (sg->length == 0)
3276 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3277 sg->length, qc->pad_len);
3285 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3287 if (dma_mapping_error(dma_address)) {
3289 sg->length += qc->pad_len;
3293 sg_dma_address(sg) = dma_address;
3294 sg_dma_len(sg) = sg->length;
3297 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3298 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3304 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3305 * @qc: Command with scatter-gather table to be mapped.
3307 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3310 * spin_lock_irqsave(host_set lock)
3313 * Zero on success, negative on error.
3317 static int ata_sg_setup(struct ata_queued_cmd *qc)
3319 struct ata_port *ap = qc->ap;
3320 struct scatterlist *sg = qc->__sg;
3321 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3322 int n_elem, pre_n_elem, dir, trim_sg = 0;
3324 VPRINTK("ENTER, ata%u\n", ap->id);
3325 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3327 /* we must lengthen transfers to end on a 32-bit boundary */
3328 qc->pad_len = lsg->length & 3;
3330 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3331 struct scatterlist *psg = &qc->pad_sgent;
3332 unsigned int offset;
3334 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3336 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3339 * psg->page/offset are used to copy to-be-written
3340 * data in this function or read data in ata_sg_clean.
3342 offset = lsg->offset + lsg->length - qc->pad_len;
3343 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3344 psg->offset = offset_in_page(offset);
3346 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3347 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3348 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3349 kunmap_atomic(addr, KM_IRQ0);
3352 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3353 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3355 lsg->length -= qc->pad_len;
3356 if (lsg->length == 0)
3359 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3360 qc->n_elem - 1, lsg->length, qc->pad_len);
3363 pre_n_elem = qc->n_elem;
3364 if (trim_sg && pre_n_elem)
3373 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3375 /* restore last sg */
3376 lsg->length += qc->pad_len;
3380 DPRINTK("%d sg elements mapped\n", n_elem);
3383 qc->n_elem = n_elem;
3389 * ata_poll_qc_complete - turn irq back on and finish qc
3390 * @qc: Command to complete
3391 * @err_mask: ATA status register content
3394 * None. (grabs host lock)
3397 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3399 struct ata_port *ap = qc->ap;
3400 unsigned long flags;
3402 spin_lock_irqsave(&ap->host_set->lock, flags);
3403 ap->flags &= ~ATA_FLAG_NOINTR;
3405 ata_qc_complete(qc);
3406 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3410 * ata_pio_poll - poll using PIO, depending on current state
3411 * @qc: qc in progress
3414 * None. (executing in kernel thread context)
3417 * timeout value to use
3419 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3421 struct ata_port *ap = qc->ap;
3423 unsigned int poll_state = HSM_ST_UNKNOWN;
3424 unsigned int reg_state = HSM_ST_UNKNOWN;
3426 switch (ap->hsm_task_state) {
3429 poll_state = HSM_ST_POLL;
3433 case HSM_ST_LAST_POLL:
3434 poll_state = HSM_ST_LAST_POLL;
3435 reg_state = HSM_ST_LAST;
3442 status = ata_chk_status(ap);
3443 if (status & ATA_BUSY) {
3444 if (time_after(jiffies, ap->pio_task_timeout)) {
3445 qc->err_mask |= AC_ERR_TIMEOUT;
3446 ap->hsm_task_state = HSM_ST_TMOUT;
3449 ap->hsm_task_state = poll_state;
3450 return ATA_SHORT_PAUSE;
3453 ap->hsm_task_state = reg_state;
3458 * ata_pio_complete - check if drive is busy or idle
3459 * @qc: qc to complete
3462 * None. (executing in kernel thread context)
3465 * Non-zero if qc completed, zero otherwise.
3467 static int ata_pio_complete(struct ata_queued_cmd *qc)
3469 struct ata_port *ap = qc->ap;
3473 * This is purely heuristic. This is a fast path. Sometimes when
3474 * we enter, BSY will be cleared in a chk-status or two. If not,
3475 * the drive is probably seeking or something. Snooze for a couple
3476 * msecs, then chk-status again. If still busy, fall back to
3477 * HSM_ST_POLL state.
3479 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3480 if (drv_stat & ATA_BUSY) {
3482 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3483 if (drv_stat & ATA_BUSY) {
3484 ap->hsm_task_state = HSM_ST_LAST_POLL;
3485 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3490 drv_stat = ata_wait_idle(ap);
3491 if (!ata_ok(drv_stat)) {
3492 qc->err_mask |= __ac_err_mask(drv_stat);
3493 ap->hsm_task_state = HSM_ST_ERR;
3497 ap->hsm_task_state = HSM_ST_IDLE;
3499 WARN_ON(qc->err_mask);
3500 ata_poll_qc_complete(qc);
3502 /* another command may start at this point */
3509 * swap_buf_le16 - swap halves of 16-bit words in place
3510 * @buf: Buffer to swap
3511 * @buf_words: Number of 16-bit words in buffer.
3513 * Swap halves of 16-bit words if needed to convert from
3514 * little-endian byte order to native cpu byte order, or
3518 * Inherited from caller.
3520 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3525 for (i = 0; i < buf_words; i++)
3526 buf[i] = le16_to_cpu(buf[i]);
3527 #endif /* __BIG_ENDIAN */
3531 * ata_mmio_data_xfer - Transfer data by MMIO
3532 * @ap: port to read/write
3534 * @buflen: buffer length
3535 * @write_data: read/write
3537 * Transfer data from/to the device data register by MMIO.
3540 * Inherited from caller.
3543 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3544 unsigned int buflen, int write_data)
3547 unsigned int words = buflen >> 1;
3548 u16 *buf16 = (u16 *) buf;
3549 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3551 /* Transfer multiple of 2 bytes */
3553 for (i = 0; i < words; i++)
3554 writew(le16_to_cpu(buf16[i]), mmio);
3556 for (i = 0; i < words; i++)
3557 buf16[i] = cpu_to_le16(readw(mmio));
3560 /* Transfer trailing 1 byte, if any. */
3561 if (unlikely(buflen & 0x01)) {
3562 u16 align_buf[1] = { 0 };
3563 unsigned char *trailing_buf = buf + buflen - 1;
3566 memcpy(align_buf, trailing_buf, 1);
3567 writew(le16_to_cpu(align_buf[0]), mmio);
3569 align_buf[0] = cpu_to_le16(readw(mmio));
3570 memcpy(trailing_buf, align_buf, 1);
3576 * ata_pio_data_xfer - Transfer data by PIO
3577 * @ap: port to read/write
3579 * @buflen: buffer length
3580 * @write_data: read/write
3582 * Transfer data from/to the device data register by PIO.
3585 * Inherited from caller.
3588 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3589 unsigned int buflen, int write_data)
3591 unsigned int words = buflen >> 1;
3593 /* Transfer multiple of 2 bytes */
3595 outsw(ap->ioaddr.data_addr, buf, words);
3597 insw(ap->ioaddr.data_addr, buf, words);
3599 /* Transfer trailing 1 byte, if any. */
3600 if (unlikely(buflen & 0x01)) {
3601 u16 align_buf[1] = { 0 };
3602 unsigned char *trailing_buf = buf + buflen - 1;
3605 memcpy(align_buf, trailing_buf, 1);
3606 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3608 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3609 memcpy(trailing_buf, align_buf, 1);
3615 * ata_data_xfer - Transfer data from/to the data register.
3616 * @ap: port to read/write
3618 * @buflen: buffer length
3619 * @do_write: read/write
3621 * Transfer data from/to the device data register.
3624 * Inherited from caller.
3627 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3628 unsigned int buflen, int do_write)
3630 /* Make the crap hardware pay the costs not the good stuff */
3631 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3632 unsigned long flags;
3633 local_irq_save(flags);
3634 if (ap->flags & ATA_FLAG_MMIO)
3635 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3637 ata_pio_data_xfer(ap, buf, buflen, do_write);
3638 local_irq_restore(flags);
3640 if (ap->flags & ATA_FLAG_MMIO)
3641 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3643 ata_pio_data_xfer(ap, buf, buflen, do_write);
3648 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3649 * @qc: Command on going
3651 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3654 * Inherited from caller.
3657 static void ata_pio_sector(struct ata_queued_cmd *qc)
3659 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3660 struct scatterlist *sg = qc->__sg;
3661 struct ata_port *ap = qc->ap;
3663 unsigned int offset;
3666 if (qc->cursect == (qc->nsect - 1))
3667 ap->hsm_task_state = HSM_ST_LAST;
3669 page = sg[qc->cursg].page;
3670 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3672 /* get the current page and offset */
3673 page = nth_page(page, (offset >> PAGE_SHIFT));
3674 offset %= PAGE_SIZE;
3676 buf = kmap(page) + offset;
3681 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3686 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3688 /* do the actual data transfer */
3689 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3690 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3696 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3697 * @qc: Command on going
3698 * @bytes: number of bytes
3700 * Transfer Transfer data from/to the ATAPI device.
3703 * Inherited from caller.
3707 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3709 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3710 struct scatterlist *sg = qc->__sg;
3711 struct ata_port *ap = qc->ap;
3714 unsigned int offset, count;
3716 if (qc->curbytes + bytes >= qc->nbytes)
3717 ap->hsm_task_state = HSM_ST_LAST;
3720 if (unlikely(qc->cursg >= qc->n_elem)) {
3722 * The end of qc->sg is reached and the device expects
3723 * more data to transfer. In order not to overrun qc->sg
3724 * and fulfill length specified in the byte count register,
3725 * - for read case, discard trailing data from the device
3726 * - for write case, padding zero data to the device
3728 u16 pad_buf[1] = { 0 };
3729 unsigned int words = bytes >> 1;
3732 if (words) /* warning if bytes > 1 */
3733 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3736 for (i = 0; i < words; i++)
3737 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3739 ap->hsm_task_state = HSM_ST_LAST;
3743 sg = &qc->__sg[qc->cursg];
3746 offset = sg->offset + qc->cursg_ofs;
3748 /* get the current page and offset */
3749 page = nth_page(page, (offset >> PAGE_SHIFT));
3750 offset %= PAGE_SIZE;
3752 /* don't overrun current sg */
3753 count = min(sg->length - qc->cursg_ofs, bytes);
3755 /* don't cross page boundaries */
3756 count = min(count, (unsigned int)PAGE_SIZE - offset);
3758 buf = kmap(page) + offset;
3761 qc->curbytes += count;
3762 qc->cursg_ofs += count;
3764 if (qc->cursg_ofs == sg->length) {
3769 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3771 /* do the actual data transfer */
3772 ata_data_xfer(ap, buf, count, do_write);
3781 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3782 * @qc: Command on going
3784 * Transfer Transfer data from/to the ATAPI device.
3787 * Inherited from caller.
3790 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3792 struct ata_port *ap = qc->ap;
3793 struct ata_device *dev = qc->dev;
3794 unsigned int ireason, bc_lo, bc_hi, bytes;
3795 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3797 ap->ops->tf_read(ap, &qc->tf);
3798 ireason = qc->tf.nsect;
3799 bc_lo = qc->tf.lbam;
3800 bc_hi = qc->tf.lbah;
3801 bytes = (bc_hi << 8) | bc_lo;
3803 /* shall be cleared to zero, indicating xfer of data */
3804 if (ireason & (1 << 0))
3807 /* make sure transfer direction matches expected */
3808 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3809 if (do_write != i_write)
3812 __atapi_pio_bytes(qc, bytes);
3817 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3818 ap->id, dev->devno);
3819 qc->err_mask |= AC_ERR_HSM;
3820 ap->hsm_task_state = HSM_ST_ERR;
3824 * ata_pio_block - start PIO on a block
3825 * @qc: qc to transfer block for
3828 * None. (executing in kernel thread context)
3830 static void ata_pio_block(struct ata_queued_cmd *qc)
3832 struct ata_port *ap = qc->ap;
3836 * This is purely heuristic. This is a fast path.
3837 * Sometimes when we enter, BSY will be cleared in
3838 * a chk-status or two. If not, the drive is probably seeking
3839 * or something. Snooze for a couple msecs, then
3840 * chk-status again. If still busy, fall back to
3841 * HSM_ST_POLL state.
3843 status = ata_busy_wait(ap, ATA_BUSY, 5);
3844 if (status & ATA_BUSY) {
3846 status = ata_busy_wait(ap, ATA_BUSY, 10);
3847 if (status & ATA_BUSY) {
3848 ap->hsm_task_state = HSM_ST_POLL;
3849 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3855 if (status & (ATA_ERR | ATA_DF)) {
3856 qc->err_mask |= AC_ERR_DEV;
3857 ap->hsm_task_state = HSM_ST_ERR;
3861 /* transfer data if any */
3862 if (is_atapi_taskfile(&qc->tf)) {
3863 /* DRQ=0 means no more data to transfer */
3864 if ((status & ATA_DRQ) == 0) {
3865 ap->hsm_task_state = HSM_ST_LAST;
3869 atapi_pio_bytes(qc);
3871 /* handle BSY=0, DRQ=0 as error */
3872 if ((status & ATA_DRQ) == 0) {
3873 qc->err_mask |= AC_ERR_HSM;
3874 ap->hsm_task_state = HSM_ST_ERR;
3882 static void ata_pio_error(struct ata_queued_cmd *qc)
3884 struct ata_port *ap = qc->ap;
3886 if (qc->tf.command != ATA_CMD_PACKET)
3887 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3888 ap->id, qc->dev->devno);
3890 /* make sure qc->err_mask is available to
3891 * know what's wrong and recover
3893 WARN_ON(qc->err_mask == 0);
3895 ap->hsm_task_state = HSM_ST_IDLE;
3897 ata_poll_qc_complete(qc);
3900 static void ata_pio_task(void *_data)
3902 struct ata_queued_cmd *qc = _data;
3903 struct ata_port *ap = qc->ap;
3904 unsigned long timeout;
3911 switch (ap->hsm_task_state) {
3920 qc_completed = ata_pio_complete(qc);
3924 case HSM_ST_LAST_POLL:
3925 timeout = ata_pio_poll(qc);
3935 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3936 else if (!qc_completed)
3941 * atapi_packet_task - Write CDB bytes to hardware
3942 * @_data: qc in progress
3944 * When device has indicated its readiness to accept
3945 * a CDB, this function is called. Send the CDB.
3946 * If DMA is to be performed, exit immediately.
3947 * Otherwise, we are in polling mode, so poll
3948 * status under operation succeeds or fails.
3951 * Kernel thread context (may sleep)
3953 static void atapi_packet_task(void *_data)
3955 struct ata_queued_cmd *qc = _data;
3956 struct ata_port *ap = qc->ap;
3959 /* sleep-wait for BSY to clear */
3960 DPRINTK("busy wait\n");
3961 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3962 qc->err_mask |= AC_ERR_TIMEOUT;
3966 /* make sure DRQ is set */
3967 status = ata_chk_status(ap);
3968 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3969 qc->err_mask |= AC_ERR_HSM;
3974 DPRINTK("send cdb\n");
3975 WARN_ON(qc->dev->cdb_len < 12);
3977 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3978 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3979 unsigned long flags;
3981 /* Once we're done issuing command and kicking bmdma,
3982 * irq handler takes over. To not lose irq, we need
3983 * to clear NOINTR flag before sending cdb, but
3984 * interrupt handler shouldn't be invoked before we're
3985 * finished. Hence, the following locking.
3987 spin_lock_irqsave(&ap->host_set->lock, flags);
3988 ap->flags &= ~ATA_FLAG_NOINTR;
3989 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3990 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3991 ap->ops->bmdma_start(qc); /* initiate bmdma */
3992 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3994 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3996 /* PIO commands are handled by polling */
3997 ap->hsm_task_state = HSM_ST;
3998 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4004 ata_poll_qc_complete(qc);
4008 * ata_qc_new - Request an available ATA command, for queueing
4009 * @ap: Port associated with device @dev
4010 * @dev: Device from whom we request an available command structure
4016 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4018 struct ata_queued_cmd *qc = NULL;
4021 for (i = 0; i < ATA_MAX_QUEUE; i++)
4022 if (!test_and_set_bit(i, &ap->qactive)) {
4023 qc = ata_qc_from_tag(ap, i);
4034 * ata_qc_new_init - Request an available ATA command, and initialize it
4035 * @ap: Port associated with device @dev
4036 * @dev: Device from whom we request an available command structure
4042 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4043 struct ata_device *dev)
4045 struct ata_queued_cmd *qc;
4047 qc = ata_qc_new(ap);
4060 * ata_qc_free - free unused ata_queued_cmd
4061 * @qc: Command to complete
4063 * Designed to free unused ata_queued_cmd object
4064 * in case something prevents using it.
4067 * spin_lock_irqsave(host_set lock)
4069 void ata_qc_free(struct ata_queued_cmd *qc)
4071 struct ata_port *ap = qc->ap;
4074 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4078 if (likely(ata_tag_valid(tag))) {
4079 qc->tag = ATA_TAG_POISON;
4080 clear_bit(tag, &ap->qactive);
4084 void __ata_qc_complete(struct ata_queued_cmd *qc)
4086 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4087 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4089 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4092 /* command should be marked inactive atomically with qc completion */
4093 qc->ap->active_tag = ATA_TAG_POISON;
4095 /* atapi: mark qc as inactive to prevent the interrupt handler
4096 * from completing the command twice later, before the error handler
4097 * is called. (when rc != 0 and atapi request sense is needed)
4099 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4101 /* call completion callback */
4102 qc->complete_fn(qc);
4105 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4107 struct ata_port *ap = qc->ap;
4109 switch (qc->tf.protocol) {
4111 case ATA_PROT_ATAPI_DMA:
4114 case ATA_PROT_ATAPI:
4116 if (ap->flags & ATA_FLAG_PIO_DMA)
4129 * ata_qc_issue - issue taskfile to device
4130 * @qc: command to issue to device
4132 * Prepare an ATA command to submission to device.
4133 * This includes mapping the data into a DMA-able
4134 * area, filling in the S/G table, and finally
4135 * writing the taskfile to hardware, starting the command.
4138 * spin_lock_irqsave(host_set lock)
4140 void ata_qc_issue(struct ata_queued_cmd *qc)
4142 struct ata_port *ap = qc->ap;
4144 qc->ap->active_tag = qc->tag;
4145 qc->flags |= ATA_QCFLAG_ACTIVE;
4147 if (ata_should_dma_map(qc)) {
4148 if (qc->flags & ATA_QCFLAG_SG) {
4149 if (ata_sg_setup(qc))
4151 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4152 if (ata_sg_setup_one(qc))
4156 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4159 ap->ops->qc_prep(qc);
4161 qc->err_mask |= ap->ops->qc_issue(qc);
4162 if (unlikely(qc->err_mask))
4167 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4168 qc->err_mask |= AC_ERR_SYSTEM;
4170 ata_qc_complete(qc);
4174 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4175 * @qc: command to issue to device
4177 * Using various libata functions and hooks, this function
4178 * starts an ATA command. ATA commands are grouped into
4179 * classes called "protocols", and issuing each type of protocol
4180 * is slightly different.
4182 * May be used as the qc_issue() entry in ata_port_operations.
4185 * spin_lock_irqsave(host_set lock)
4188 * Zero on success, AC_ERR_* mask on failure
4191 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4193 struct ata_port *ap = qc->ap;
4195 ata_dev_select(ap, qc->dev->devno, 1, 0);
4197 switch (qc->tf.protocol) {
4198 case ATA_PROT_NODATA:
4199 ata_tf_to_host(ap, &qc->tf);
4203 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4204 ap->ops->bmdma_setup(qc); /* set up bmdma */
4205 ap->ops->bmdma_start(qc); /* initiate bmdma */
4208 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4209 ata_qc_set_polling(qc);
4210 ata_tf_to_host(ap, &qc->tf);
4211 ap->hsm_task_state = HSM_ST;
4212 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4215 case ATA_PROT_ATAPI:
4216 ata_qc_set_polling(qc);
4217 ata_tf_to_host(ap, &qc->tf);
4218 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4221 case ATA_PROT_ATAPI_NODATA:
4222 ap->flags |= ATA_FLAG_NOINTR;
4223 ata_tf_to_host(ap, &qc->tf);
4224 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4227 case ATA_PROT_ATAPI_DMA:
4228 ap->flags |= ATA_FLAG_NOINTR;
4229 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4230 ap->ops->bmdma_setup(qc); /* set up bmdma */
4231 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4236 return AC_ERR_SYSTEM;
4243 * ata_host_intr - Handle host interrupt for given (port, task)
4244 * @ap: Port on which interrupt arrived (possibly...)
4245 * @qc: Taskfile currently active in engine
4247 * Handle host interrupt for given queued command. Currently,
4248 * only DMA interrupts are handled. All other commands are
4249 * handled via polling with interrupts disabled (nIEN bit).
4252 * spin_lock_irqsave(host_set lock)
4255 * One if interrupt was handled, zero if not (shared irq).
4258 inline unsigned int ata_host_intr (struct ata_port *ap,
4259 struct ata_queued_cmd *qc)
4261 u8 status, host_stat;
4263 switch (qc->tf.protocol) {
4266 case ATA_PROT_ATAPI_DMA:
4267 case ATA_PROT_ATAPI:
4268 /* check status of DMA engine */
4269 host_stat = ap->ops->bmdma_status(ap);
4270 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4272 /* if it's not our irq... */
4273 if (!(host_stat & ATA_DMA_INTR))
4276 /* before we do anything else, clear DMA-Start bit */
4277 ap->ops->bmdma_stop(qc);
4281 case ATA_PROT_ATAPI_NODATA:
4282 case ATA_PROT_NODATA:
4283 /* check altstatus */
4284 status = ata_altstatus(ap);
4285 if (status & ATA_BUSY)
4288 /* check main status, clearing INTRQ */
4289 status = ata_chk_status(ap);
4290 if (unlikely(status & ATA_BUSY))
4292 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4293 ap->id, qc->tf.protocol, status);
4295 /* ack bmdma irq events */
4296 ap->ops->irq_clear(ap);
4298 /* complete taskfile transaction */
4299 qc->err_mask |= ac_err_mask(status);
4300 ata_qc_complete(qc);
4307 return 1; /* irq handled */
4310 ap->stats.idle_irq++;
4313 if ((ap->stats.idle_irq % 1000) == 0) {
4314 ata_irq_ack(ap, 0); /* debug trap */
4315 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4319 return 0; /* irq not handled */
4323 * ata_interrupt - Default ATA host interrupt handler
4324 * @irq: irq line (unused)
4325 * @dev_instance: pointer to our ata_host_set information structure
4328 * Default interrupt handler for PCI IDE devices. Calls
4329 * ata_host_intr() for each port that is not disabled.
4332 * Obtains host_set lock during operation.
4335 * IRQ_NONE or IRQ_HANDLED.
4338 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4340 struct ata_host_set *host_set = dev_instance;
4342 unsigned int handled = 0;
4343 unsigned long flags;
4345 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4346 spin_lock_irqsave(&host_set->lock, flags);
4348 for (i = 0; i < host_set->n_ports; i++) {
4349 struct ata_port *ap;
4351 ap = host_set->ports[i];
4353 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4354 struct ata_queued_cmd *qc;
4356 qc = ata_qc_from_tag(ap, ap->active_tag);
4357 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4358 (qc->flags & ATA_QCFLAG_ACTIVE))
4359 handled |= ata_host_intr(ap, qc);
4363 spin_unlock_irqrestore(&host_set->lock, flags);
4365 return IRQ_RETVAL(handled);
4370 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4371 * without filling any other registers
4373 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4376 struct ata_taskfile tf;
4379 ata_tf_init(ap, &tf, dev->devno);
4382 tf.flags |= ATA_TFLAG_DEVICE;
4383 tf.protocol = ATA_PROT_NODATA;
4385 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4387 printk(KERN_ERR "%s: ata command failed: %d\n",
4393 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4397 if (!ata_try_flush_cache(dev))
4400 if (ata_id_has_flush_ext(dev->id))
4401 cmd = ATA_CMD_FLUSH_EXT;
4403 cmd = ATA_CMD_FLUSH;
4405 return ata_do_simple_cmd(ap, dev, cmd);
4408 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4410 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4413 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4415 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4419 * ata_device_resume - wakeup a previously suspended devices
4420 * @ap: port the device is connected to
4421 * @dev: the device to resume
4423 * Kick the drive back into action, by sending it an idle immediate
4424 * command and making sure its transfer mode matches between drive
4428 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4430 if (ap->flags & ATA_FLAG_SUSPENDED) {
4431 struct ata_device *failed_dev;
4432 ap->flags &= ~ATA_FLAG_SUSPENDED;
4433 while (ata_set_mode(ap, &failed_dev))
4434 ata_dev_disable(ap, failed_dev);
4436 if (!ata_dev_enabled(dev))
4438 if (dev->class == ATA_DEV_ATA)
4439 ata_start_drive(ap, dev);
4445 * ata_device_suspend - prepare a device for suspend
4446 * @ap: port the device is connected to
4447 * @dev: the device to suspend
4449 * Flush the cache on the drive, if appropriate, then issue a
4450 * standbynow command.
4452 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4454 if (!ata_dev_enabled(dev))
4456 if (dev->class == ATA_DEV_ATA)
4457 ata_flush_cache(ap, dev);
4459 if (state.event != PM_EVENT_FREEZE)
4460 ata_standby_drive(ap, dev);
4461 ap->flags |= ATA_FLAG_SUSPENDED;
4466 * ata_port_start - Set port up for dma.
4467 * @ap: Port to initialize
4469 * Called just after data structures for each port are
4470 * initialized. Allocates space for PRD table.
4472 * May be used as the port_start() entry in ata_port_operations.
4475 * Inherited from caller.
4478 int ata_port_start (struct ata_port *ap)
4480 struct device *dev = ap->dev;
4483 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4487 rc = ata_pad_alloc(ap, dev);
4489 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4493 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4500 * ata_port_stop - Undo ata_port_start()
4501 * @ap: Port to shut down
4503 * Frees the PRD table.
4505 * May be used as the port_stop() entry in ata_port_operations.
4508 * Inherited from caller.
4511 void ata_port_stop (struct ata_port *ap)
4513 struct device *dev = ap->dev;
4515 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4516 ata_pad_free(ap, dev);
4519 void ata_host_stop (struct ata_host_set *host_set)
4521 if (host_set->mmio_base)
4522 iounmap(host_set->mmio_base);
4527 * ata_host_remove - Unregister SCSI host structure with upper layers
4528 * @ap: Port to unregister
4529 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4532 * Inherited from caller.
4535 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4537 struct Scsi_Host *sh = ap->host;
4542 scsi_remove_host(sh);
4544 ap->ops->port_stop(ap);
4548 * ata_host_init - Initialize an ata_port structure
4549 * @ap: Structure to initialize
4550 * @host: associated SCSI mid-layer structure
4551 * @host_set: Collection of hosts to which @ap belongs
4552 * @ent: Probe information provided by low-level driver
4553 * @port_no: Port number associated with this ata_port
4555 * Initialize a new ata_port structure, and its associated
4559 * Inherited from caller.
4562 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4563 struct ata_host_set *host_set,
4564 const struct ata_probe_ent *ent, unsigned int port_no)
4570 host->max_channel = 1;
4571 host->unique_id = ata_unique_id++;
4572 host->max_cmd_len = 12;
4574 ap->flags = ATA_FLAG_DISABLED;
4575 ap->id = host->unique_id;
4577 ap->ctl = ATA_DEVCTL_OBS;
4578 ap->host_set = host_set;
4580 ap->port_no = port_no;
4582 ent->legacy_mode ? ent->hard_port_no : port_no;
4583 ap->pio_mask = ent->pio_mask;
4584 ap->mwdma_mask = ent->mwdma_mask;
4585 ap->udma_mask = ent->udma_mask;
4586 ap->flags |= ent->host_flags;
4587 ap->ops = ent->port_ops;
4588 ap->cbl = ATA_CBL_NONE;
4589 ap->sata_spd_limit = UINT_MAX;
4590 ap->active_tag = ATA_TAG_POISON;
4591 ap->last_ctl = 0xFF;
4593 INIT_WORK(&ap->port_task, NULL, NULL);
4594 INIT_LIST_HEAD(&ap->eh_done_q);
4596 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4597 struct ata_device *dev = &ap->device[i];
4599 dev->pio_mask = UINT_MAX;
4600 dev->mwdma_mask = UINT_MAX;
4601 dev->udma_mask = UINT_MAX;
4605 ap->stats.unhandled_irq = 1;
4606 ap->stats.idle_irq = 1;
4609 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4613 * ata_host_add - Attach low-level ATA driver to system
4614 * @ent: Information provided by low-level driver
4615 * @host_set: Collections of ports to which we add
4616 * @port_no: Port number associated with this host
4618 * Attach low-level ATA driver to system.
4621 * PCI/etc. bus probe sem.
4624 * New ata_port on success, for NULL on error.
4627 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4628 struct ata_host_set *host_set,
4629 unsigned int port_no)
4631 struct Scsi_Host *host;
4632 struct ata_port *ap;
4637 if (!ent->port_ops->probe_reset &&
4638 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4639 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4644 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4648 host->transportt = &ata_scsi_transport_template;
4650 ap = ata_shost_to_port(host);
4652 ata_host_init(ap, host, host_set, ent, port_no);
4654 rc = ap->ops->port_start(ap);
4661 scsi_host_put(host);
4666 * ata_device_add - Register hardware device with ATA and SCSI layers
4667 * @ent: Probe information describing hardware device to be registered
4669 * This function processes the information provided in the probe
4670 * information struct @ent, allocates the necessary ATA and SCSI
4671 * host information structures, initializes them, and registers
4672 * everything with requisite kernel subsystems.
4674 * This function requests irqs, probes the ATA bus, and probes
4678 * PCI/etc. bus probe sem.
4681 * Number of ports registered. Zero on error (no ports registered).
4684 int ata_device_add(const struct ata_probe_ent *ent)
4686 unsigned int count = 0, i;
4687 struct device *dev = ent->dev;
4688 struct ata_host_set *host_set;
4691 /* alloc a container for our list of ATA ports (buses) */
4692 host_set = kzalloc(sizeof(struct ata_host_set) +
4693 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4696 spin_lock_init(&host_set->lock);
4698 host_set->dev = dev;
4699 host_set->n_ports = ent->n_ports;
4700 host_set->irq = ent->irq;
4701 host_set->mmio_base = ent->mmio_base;
4702 host_set->private_data = ent->private_data;
4703 host_set->ops = ent->port_ops;
4704 host_set->flags = ent->host_set_flags;
4706 /* register each port bound to this device */
4707 for (i = 0; i < ent->n_ports; i++) {
4708 struct ata_port *ap;
4709 unsigned long xfer_mode_mask;
4711 ap = ata_host_add(ent, host_set, i);
4715 host_set->ports[i] = ap;
4716 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4717 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4718 (ap->pio_mask << ATA_SHIFT_PIO);
4720 /* print per-port info to dmesg */
4721 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4722 "bmdma 0x%lX irq %lu\n",
4724 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4725 ata_mode_string(xfer_mode_mask),
4726 ap->ioaddr.cmd_addr,
4727 ap->ioaddr.ctl_addr,
4728 ap->ioaddr.bmdma_addr,
4732 host_set->ops->irq_clear(ap);
4739 /* obtain irq, that is shared between channels */
4740 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4741 DRV_NAME, host_set))
4744 /* perform each probe synchronously */
4745 DPRINTK("probe begin\n");
4746 for (i = 0; i < count; i++) {
4747 struct ata_port *ap;
4750 ap = host_set->ports[i];
4752 DPRINTK("ata%u: bus probe begin\n", ap->id);
4753 rc = ata_bus_probe(ap);
4754 DPRINTK("ata%u: bus probe end\n", ap->id);
4757 /* FIXME: do something useful here?
4758 * Current libata behavior will
4759 * tear down everything when
4760 * the module is removed
4761 * or the h/w is unplugged.
4765 rc = scsi_add_host(ap->host, dev);
4767 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4769 /* FIXME: do something useful here */
4770 /* FIXME: handle unconditional calls to
4771 * scsi_scan_host and ata_host_remove, below,
4777 /* probes are done, now scan each port's disk(s) */
4778 DPRINTK("host probe begin\n");
4779 for (i = 0; i < count; i++) {
4780 struct ata_port *ap = host_set->ports[i];
4782 ata_scsi_scan_host(ap);
4785 dev_set_drvdata(dev, host_set);
4787 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4788 return ent->n_ports; /* success */
4791 for (i = 0; i < count; i++) {
4792 ata_host_remove(host_set->ports[i], 1);
4793 scsi_host_put(host_set->ports[i]->host);
4797 VPRINTK("EXIT, returning 0\n");
4802 * ata_host_set_remove - PCI layer callback for device removal
4803 * @host_set: ATA host set that was removed
4805 * Unregister all objects associated with this host set. Free those
4809 * Inherited from calling layer (may sleep).
4812 void ata_host_set_remove(struct ata_host_set *host_set)
4814 struct ata_port *ap;
4817 for (i = 0; i < host_set->n_ports; i++) {
4818 ap = host_set->ports[i];
4819 scsi_remove_host(ap->host);
4822 free_irq(host_set->irq, host_set);
4824 for (i = 0; i < host_set->n_ports; i++) {
4825 ap = host_set->ports[i];
4827 ata_scsi_release(ap->host);
4829 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4830 struct ata_ioports *ioaddr = &ap->ioaddr;
4832 if (ioaddr->cmd_addr == 0x1f0)
4833 release_region(0x1f0, 8);
4834 else if (ioaddr->cmd_addr == 0x170)
4835 release_region(0x170, 8);
4838 scsi_host_put(ap->host);
4841 if (host_set->ops->host_stop)
4842 host_set->ops->host_stop(host_set);
4848 * ata_scsi_release - SCSI layer callback hook for host unload
4849 * @host: libata host to be unloaded
4851 * Performs all duties necessary to shut down a libata port...
4852 * Kill port kthread, disable port, and release resources.
4855 * Inherited from SCSI layer.
4861 int ata_scsi_release(struct Scsi_Host *host)
4863 struct ata_port *ap = ata_shost_to_port(host);
4867 ap->ops->port_disable(ap);
4868 ata_host_remove(ap, 0);
4875 * ata_std_ports - initialize ioaddr with standard port offsets.
4876 * @ioaddr: IO address structure to be initialized
4878 * Utility function which initializes data_addr, error_addr,
4879 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4880 * device_addr, status_addr, and command_addr to standard offsets
4881 * relative to cmd_addr.
4883 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4886 void ata_std_ports(struct ata_ioports *ioaddr)
4888 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4889 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4890 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4891 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4892 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4893 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4894 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4895 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4896 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4897 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4903 void ata_pci_host_stop (struct ata_host_set *host_set)
4905 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4907 pci_iounmap(pdev, host_set->mmio_base);
4911 * ata_pci_remove_one - PCI layer callback for device removal
4912 * @pdev: PCI device that was removed
4914 * PCI layer indicates to libata via this hook that
4915 * hot-unplug or module unload event has occurred.
4916 * Handle this by unregistering all objects associated
4917 * with this PCI device. Free those objects. Then finally
4918 * release PCI resources and disable device.
4921 * Inherited from PCI layer (may sleep).
4924 void ata_pci_remove_one (struct pci_dev *pdev)
4926 struct device *dev = pci_dev_to_dev(pdev);
4927 struct ata_host_set *host_set = dev_get_drvdata(dev);
4929 ata_host_set_remove(host_set);
4930 pci_release_regions(pdev);
4931 pci_disable_device(pdev);
4932 dev_set_drvdata(dev, NULL);
4935 /* move to PCI subsystem */
4936 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4938 unsigned long tmp = 0;
4940 switch (bits->width) {
4943 pci_read_config_byte(pdev, bits->reg, &tmp8);
4949 pci_read_config_word(pdev, bits->reg, &tmp16);
4955 pci_read_config_dword(pdev, bits->reg, &tmp32);
4966 return (tmp == bits->val) ? 1 : 0;
4969 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4971 pci_save_state(pdev);
4972 pci_disable_device(pdev);
4973 pci_set_power_state(pdev, PCI_D3hot);
4977 int ata_pci_device_resume(struct pci_dev *pdev)
4979 pci_set_power_state(pdev, PCI_D0);
4980 pci_restore_state(pdev);
4981 pci_enable_device(pdev);
4982 pci_set_master(pdev);
4985 #endif /* CONFIG_PCI */
4988 static int __init ata_init(void)
4990 ata_wq = create_workqueue("ata");
4994 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4998 static void __exit ata_exit(void)
5000 destroy_workqueue(ata_wq);
5003 module_init(ata_init);
5004 module_exit(ata_exit);
5006 static unsigned long ratelimit_time;
5007 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5009 int ata_ratelimit(void)
5012 unsigned long flags;
5014 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5016 if (time_after(jiffies, ratelimit_time)) {
5018 ratelimit_time = jiffies + (HZ/5);
5022 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5028 * ata_wait_register - wait until register value changes
5029 * @reg: IO-mapped register
5030 * @mask: Mask to apply to read register value
5031 * @val: Wait condition
5032 * @interval_msec: polling interval in milliseconds
5033 * @timeout_msec: timeout in milliseconds
5035 * Waiting for some bits of register to change is a common
5036 * operation for ATA controllers. This function reads 32bit LE
5037 * IO-mapped register @reg and tests for the following condition.
5039 * (*@reg & mask) != val
5041 * If the condition is met, it returns; otherwise, the process is
5042 * repeated after @interval_msec until timeout.
5045 * Kernel thread context (may sleep)
5048 * The final register value.
5050 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5051 unsigned long interval_msec,
5052 unsigned long timeout_msec)
5054 unsigned long timeout;
5057 tmp = ioread32(reg);
5059 /* Calculate timeout _after_ the first read to make sure
5060 * preceding writes reach the controller before starting to
5061 * eat away the timeout.
5063 timeout = jiffies + (timeout_msec * HZ) / 1000;
5065 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5066 msleep(interval_msec);
5067 tmp = ioread32(reg);
5074 * libata is essentially a library of internal helper functions for
5075 * low-level ATA host controller drivers. As such, the API/ABI is
5076 * likely to change as new drivers are added and updated.
5077 * Do not depend on ABI/API stability.
5080 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5081 EXPORT_SYMBOL_GPL(ata_std_ports);
5082 EXPORT_SYMBOL_GPL(ata_device_add);
5083 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5084 EXPORT_SYMBOL_GPL(ata_sg_init);
5085 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5086 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5087 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5088 EXPORT_SYMBOL_GPL(ata_tf_load);
5089 EXPORT_SYMBOL_GPL(ata_tf_read);
5090 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5091 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5092 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5093 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5094 EXPORT_SYMBOL_GPL(ata_check_status);
5095 EXPORT_SYMBOL_GPL(ata_altstatus);
5096 EXPORT_SYMBOL_GPL(ata_exec_command);
5097 EXPORT_SYMBOL_GPL(ata_port_start);
5098 EXPORT_SYMBOL_GPL(ata_port_stop);
5099 EXPORT_SYMBOL_GPL(ata_host_stop);
5100 EXPORT_SYMBOL_GPL(ata_interrupt);
5101 EXPORT_SYMBOL_GPL(ata_qc_prep);
5102 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5103 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5104 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5105 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5106 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5107 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5108 EXPORT_SYMBOL_GPL(ata_port_probe);
5109 EXPORT_SYMBOL_GPL(sata_set_spd);
5110 EXPORT_SYMBOL_GPL(sata_phy_reset);
5111 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5112 EXPORT_SYMBOL_GPL(ata_bus_reset);
5113 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5114 EXPORT_SYMBOL_GPL(ata_std_softreset);
5115 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5116 EXPORT_SYMBOL_GPL(ata_std_postreset);
5117 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5118 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5119 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5120 EXPORT_SYMBOL_GPL(ata_dev_classify);
5121 EXPORT_SYMBOL_GPL(ata_dev_pair);
5122 EXPORT_SYMBOL_GPL(ata_port_disable);
5123 EXPORT_SYMBOL_GPL(ata_ratelimit);
5124 EXPORT_SYMBOL_GPL(ata_wait_register);
5125 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5126 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5127 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5128 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5129 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5130 EXPORT_SYMBOL_GPL(ata_scsi_release);
5131 EXPORT_SYMBOL_GPL(ata_host_intr);
5132 EXPORT_SYMBOL_GPL(ata_id_string);
5133 EXPORT_SYMBOL_GPL(ata_id_c_string);
5134 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5136 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5137 EXPORT_SYMBOL_GPL(ata_timing_compute);
5138 EXPORT_SYMBOL_GPL(ata_timing_merge);
5141 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5142 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5143 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5144 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5145 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5146 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5147 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5148 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5149 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5150 #endif /* CONFIG_PCI */
5152 EXPORT_SYMBOL_GPL(ata_device_suspend);
5153 EXPORT_SYMBOL_GPL(ata_device_resume);
5154 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5155 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5157 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5158 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5159 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);