4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * End-of-IO handler helper function which does not touch the bh after
115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116 * a race there is benign: unlock_buffer() only use the bh's address for
117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 set_buffer_uptodate(bh);
125 /* This happens, due to failed READA attempts. */
126 clear_buffer_uptodate(bh);
132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
133 * unlock the buffer. This is what ll_rw_block uses too.
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
137 __end_buffer_read_notouch(bh, uptodate);
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
143 char b[BDEVNAME_SIZE];
146 set_buffer_uptodate(bh);
148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
150 printk(KERN_WARNING "lost page write due to "
152 bdevname(bh->b_bdev, b));
154 set_buffer_write_io_error(bh);
155 clear_buffer_uptodate(bh);
162 * Write out and wait upon all the dirty data associated with a block
163 * device via its mapping. Does not take the superblock lock.
165 int sync_blockdev(struct block_device *bdev)
170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
173 EXPORT_SYMBOL(sync_blockdev);
176 * Write out and wait upon all dirty data associated with this
177 * device. Filesystem data as well as the underlying block
178 * device. Takes the superblock lock.
180 int fsync_bdev(struct block_device *bdev)
182 struct super_block *sb = get_super(bdev);
184 int res = fsync_super(sb);
188 return sync_blockdev(bdev);
192 * freeze_bdev -- lock a filesystem and force it into a consistent state
193 * @bdev: blockdevice to lock
195 * This takes the block device bd_mount_sem to make sure no new mounts
196 * happen on bdev until thaw_bdev() is called.
197 * If a superblock is found on this device, we take the s_umount semaphore
198 * on it to make sure nobody unmounts until the snapshot creation is done.
200 struct super_block *freeze_bdev(struct block_device *bdev)
202 struct super_block *sb;
204 down(&bdev->bd_mount_sem);
205 sb = get_super(bdev);
206 if (sb && !(sb->s_flags & MS_RDONLY)) {
207 sb->s_frozen = SB_FREEZE_WRITE;
212 sb->s_frozen = SB_FREEZE_TRANS;
215 sync_blockdev(sb->s_bdev);
217 if (sb->s_op->write_super_lockfs)
218 sb->s_op->write_super_lockfs(sb);
222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
224 EXPORT_SYMBOL(freeze_bdev);
227 * thaw_bdev -- unlock filesystem
228 * @bdev: blockdevice to unlock
229 * @sb: associated superblock
231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
236 BUG_ON(sb->s_bdev != bdev);
238 if (sb->s_op->unlockfs)
239 sb->s_op->unlockfs(sb);
240 sb->s_frozen = SB_UNFROZEN;
242 wake_up(&sb->s_wait_unfrozen);
246 up(&bdev->bd_mount_sem);
248 EXPORT_SYMBOL(thaw_bdev);
251 * Various filesystems appear to want __find_get_block to be non-blocking.
252 * But it's the page lock which protects the buffers. To get around this,
253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257 * may be quite high. This code could TryLock the page, and if that
258 * succeeds, there is no need to take private_lock. (But if
259 * private_lock is contended then so is mapping->tree_lock).
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
264 struct inode *bd_inode = bdev->bd_inode;
265 struct address_space *bd_mapping = bd_inode->i_mapping;
266 struct buffer_head *ret = NULL;
268 struct buffer_head *bh;
269 struct buffer_head *head;
273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 page = find_get_page(bd_mapping, index);
278 spin_lock(&bd_mapping->private_lock);
279 if (!page_has_buffers(page))
281 head = page_buffers(page);
284 if (bh->b_blocknr == block) {
289 if (!buffer_mapped(bh))
291 bh = bh->b_this_page;
292 } while (bh != head);
294 /* we might be here because some of the buffers on this page are
295 * not mapped. This is due to various races between
296 * file io on the block device and getblk. It gets dealt with
297 * elsewhere, don't buffer_error if we had some unmapped buffers
300 printk("__find_get_block_slow() failed. "
301 "block=%llu, b_blocknr=%llu\n",
302 (unsigned long long)block,
303 (unsigned long long)bh->b_blocknr);
304 printk("b_state=0x%08lx, b_size=%zu\n",
305 bh->b_state, bh->b_size);
306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
309 spin_unlock(&bd_mapping->private_lock);
310 page_cache_release(page);
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316 of fs corruption is going on. Trashing dirty data always imply losing
317 information that was supposed to be just stored on the physical layer
320 Thus invalidate_buffers in general usage is not allwowed to trash
321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322 be preserved. These buffers are simply skipped.
324 We also skip buffers which are still in use. For example this can
325 happen if a userspace program is reading the block device.
327 NOTE: In the case where the user removed a removable-media-disk even if
328 there's still dirty data not synced on disk (due a bug in the device driver
329 or due an error of the user), by not destroying the dirty buffers we could
330 generate corruption also on the next media inserted, thus a parameter is
331 necessary to handle this case in the most safe way possible (trying
332 to not corrupt also the new disk inserted with the data belonging to
333 the old now corrupted disk). Also for the ramdisk the natural thing
334 to do in order to release the ramdisk memory is to destroy dirty buffers.
336 These are two special cases. Normal usage imply the device driver
337 to issue a sync on the device (without waiting I/O completion) and
338 then an invalidate_buffers call that doesn't trash dirty buffers.
340 For handling cache coherency with the blkdev pagecache the 'update' case
341 is been introduced. It is needed to re-read from disk any pinned
342 buffer. NOTE: re-reading from disk is destructive so we can do it only
343 when we assume nobody is changing the buffercache under our I/O and when
344 we think the disk contains more recent information than the buffercache.
345 The update == 1 pass marks the buffers we need to update, the update == 2
346 pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
349 struct address_space *mapping = bdev->bd_inode->i_mapping;
351 if (mapping->nrpages == 0)
354 invalidate_bh_lrus();
355 invalidate_mapping_pages(mapping, 0, -1);
359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
361 static void free_more_memory(void)
366 wakeup_pdflush(1024);
369 for_each_online_node(nid) {
370 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
371 gfp_zone(GFP_NOFS), NULL,
374 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
380 * I/O completion handler for block_read_full_page() - pages
381 * which come unlocked at the end of I/O.
383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
386 struct buffer_head *first;
387 struct buffer_head *tmp;
389 int page_uptodate = 1;
391 BUG_ON(!buffer_async_read(bh));
395 set_buffer_uptodate(bh);
397 clear_buffer_uptodate(bh);
398 if (printk_ratelimit())
404 * Be _very_ careful from here on. Bad things can happen if
405 * two buffer heads end IO at almost the same time and both
406 * decide that the page is now completely done.
408 first = page_buffers(page);
409 local_irq_save(flags);
410 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
411 clear_buffer_async_read(bh);
415 if (!buffer_uptodate(tmp))
417 if (buffer_async_read(tmp)) {
418 BUG_ON(!buffer_locked(tmp));
421 tmp = tmp->b_this_page;
423 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
424 local_irq_restore(flags);
427 * If none of the buffers had errors and they are all
428 * uptodate then we can set the page uptodate.
430 if (page_uptodate && !PageError(page))
431 SetPageUptodate(page);
436 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
437 local_irq_restore(flags);
442 * Completion handler for block_write_full_page() - pages which are unlocked
443 * during I/O, and which have PageWriteback cleared upon I/O completion.
445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
447 char b[BDEVNAME_SIZE];
449 struct buffer_head *first;
450 struct buffer_head *tmp;
453 BUG_ON(!buffer_async_write(bh));
457 set_buffer_uptodate(bh);
459 if (printk_ratelimit()) {
461 printk(KERN_WARNING "lost page write due to "
463 bdevname(bh->b_bdev, b));
465 set_bit(AS_EIO, &page->mapping->flags);
466 set_buffer_write_io_error(bh);
467 clear_buffer_uptodate(bh);
471 first = page_buffers(page);
472 local_irq_save(flags);
473 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
475 clear_buffer_async_write(bh);
477 tmp = bh->b_this_page;
479 if (buffer_async_write(tmp)) {
480 BUG_ON(!buffer_locked(tmp));
483 tmp = tmp->b_this_page;
485 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
486 local_irq_restore(flags);
487 end_page_writeback(page);
491 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
492 local_irq_restore(flags);
497 * If a page's buffers are under async readin (end_buffer_async_read
498 * completion) then there is a possibility that another thread of
499 * control could lock one of the buffers after it has completed
500 * but while some of the other buffers have not completed. This
501 * locked buffer would confuse end_buffer_async_read() into not unlocking
502 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
503 * that this buffer is not under async I/O.
505 * The page comes unlocked when it has no locked buffer_async buffers
508 * PageLocked prevents anyone starting new async I/O reads any of
511 * PageWriteback is used to prevent simultaneous writeout of the same
514 * PageLocked prevents anyone from starting writeback of a page which is
515 * under read I/O (PageWriteback is only ever set against a locked page).
517 static void mark_buffer_async_read(struct buffer_head *bh)
519 bh->b_end_io = end_buffer_async_read;
520 set_buffer_async_read(bh);
523 void mark_buffer_async_write(struct buffer_head *bh)
525 bh->b_end_io = end_buffer_async_write;
526 set_buffer_async_write(bh);
528 EXPORT_SYMBOL(mark_buffer_async_write);
532 * fs/buffer.c contains helper functions for buffer-backed address space's
533 * fsync functions. A common requirement for buffer-based filesystems is
534 * that certain data from the backing blockdev needs to be written out for
535 * a successful fsync(). For example, ext2 indirect blocks need to be
536 * written back and waited upon before fsync() returns.
538 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
539 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
540 * management of a list of dependent buffers at ->i_mapping->private_list.
542 * Locking is a little subtle: try_to_free_buffers() will remove buffers
543 * from their controlling inode's queue when they are being freed. But
544 * try_to_free_buffers() will be operating against the *blockdev* mapping
545 * at the time, not against the S_ISREG file which depends on those buffers.
546 * So the locking for private_list is via the private_lock in the address_space
547 * which backs the buffers. Which is different from the address_space
548 * against which the buffers are listed. So for a particular address_space,
549 * mapping->private_lock does *not* protect mapping->private_list! In fact,
550 * mapping->private_list will always be protected by the backing blockdev's
553 * Which introduces a requirement: all buffers on an address_space's
554 * ->private_list must be from the same address_space: the blockdev's.
556 * address_spaces which do not place buffers at ->private_list via these
557 * utility functions are free to use private_lock and private_list for
558 * whatever they want. The only requirement is that list_empty(private_list)
559 * be true at clear_inode() time.
561 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
562 * filesystems should do that. invalidate_inode_buffers() should just go
563 * BUG_ON(!list_empty).
565 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
566 * take an address_space, not an inode. And it should be called
567 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
570 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
571 * list if it is already on a list. Because if the buffer is on a list,
572 * it *must* already be on the right one. If not, the filesystem is being
573 * silly. This will save a ton of locking. But first we have to ensure
574 * that buffers are taken *off* the old inode's list when they are freed
575 * (presumably in truncate). That requires careful auditing of all
576 * filesystems (do it inside bforget()). It could also be done by bringing
581 * The buffer's backing address_space's private_lock must be held
583 static inline void __remove_assoc_queue(struct buffer_head *bh)
585 list_del_init(&bh->b_assoc_buffers);
586 WARN_ON(!bh->b_assoc_map);
587 if (buffer_write_io_error(bh))
588 set_bit(AS_EIO, &bh->b_assoc_map->flags);
589 bh->b_assoc_map = NULL;
592 int inode_has_buffers(struct inode *inode)
594 return !list_empty(&inode->i_data.private_list);
598 * osync is designed to support O_SYNC io. It waits synchronously for
599 * all already-submitted IO to complete, but does not queue any new
600 * writes to the disk.
602 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
603 * you dirty the buffers, and then use osync_inode_buffers to wait for
604 * completion. Any other dirty buffers which are not yet queued for
605 * write will not be flushed to disk by the osync.
607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
609 struct buffer_head *bh;
615 list_for_each_prev(p, list) {
617 if (buffer_locked(bh)) {
621 if (!buffer_uptodate(bh))
633 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
634 * @mapping: the mapping which wants those buffers written
636 * Starts I/O against the buffers at mapping->private_list, and waits upon
639 * Basically, this is a convenience function for fsync().
640 * @mapping is a file or directory which needs those buffers to be written for
641 * a successful fsync().
643 int sync_mapping_buffers(struct address_space *mapping)
645 struct address_space *buffer_mapping = mapping->assoc_mapping;
647 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
650 return fsync_buffers_list(&buffer_mapping->private_lock,
651 &mapping->private_list);
653 EXPORT_SYMBOL(sync_mapping_buffers);
656 * Called when we've recently written block `bblock', and it is known that
657 * `bblock' was for a buffer_boundary() buffer. This means that the block at
658 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
659 * dirty, schedule it for IO. So that indirects merge nicely with their data.
661 void write_boundary_block(struct block_device *bdev,
662 sector_t bblock, unsigned blocksize)
664 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
666 if (buffer_dirty(bh))
667 ll_rw_block(WRITE, 1, &bh);
672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
674 struct address_space *mapping = inode->i_mapping;
675 struct address_space *buffer_mapping = bh->b_page->mapping;
677 mark_buffer_dirty(bh);
678 if (!mapping->assoc_mapping) {
679 mapping->assoc_mapping = buffer_mapping;
681 BUG_ON(mapping->assoc_mapping != buffer_mapping);
683 if (!bh->b_assoc_map) {
684 spin_lock(&buffer_mapping->private_lock);
685 list_move_tail(&bh->b_assoc_buffers,
686 &mapping->private_list);
687 bh->b_assoc_map = mapping;
688 spin_unlock(&buffer_mapping->private_lock);
691 EXPORT_SYMBOL(mark_buffer_dirty_inode);
694 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
697 * If warn is true, then emit a warning if the page is not uptodate and has
698 * not been truncated.
700 static int __set_page_dirty(struct page *page,
701 struct address_space *mapping, int warn)
703 if (unlikely(!mapping))
704 return !TestSetPageDirty(page);
706 if (TestSetPageDirty(page))
709 write_lock_irq(&mapping->tree_lock);
710 if (page->mapping) { /* Race with truncate? */
711 WARN_ON_ONCE(warn && !PageUptodate(page));
713 if (mapping_cap_account_dirty(mapping)) {
714 __inc_zone_page_state(page, NR_FILE_DIRTY);
715 __inc_bdi_stat(mapping->backing_dev_info,
717 task_io_account_write(PAGE_CACHE_SIZE);
719 radix_tree_tag_set(&mapping->page_tree,
720 page_index(page), PAGECACHE_TAG_DIRTY);
722 write_unlock_irq(&mapping->tree_lock);
723 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
729 * Add a page to the dirty page list.
731 * It is a sad fact of life that this function is called from several places
732 * deeply under spinlocking. It may not sleep.
734 * If the page has buffers, the uptodate buffers are set dirty, to preserve
735 * dirty-state coherency between the page and the buffers. It the page does
736 * not have buffers then when they are later attached they will all be set
739 * The buffers are dirtied before the page is dirtied. There's a small race
740 * window in which a writepage caller may see the page cleanness but not the
741 * buffer dirtiness. That's fine. If this code were to set the page dirty
742 * before the buffers, a concurrent writepage caller could clear the page dirty
743 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
744 * page on the dirty page list.
746 * We use private_lock to lock against try_to_free_buffers while using the
747 * page's buffer list. Also use this to protect against clean buffers being
748 * added to the page after it was set dirty.
750 * FIXME: may need to call ->reservepage here as well. That's rather up to the
751 * address_space though.
753 int __set_page_dirty_buffers(struct page *page)
755 struct address_space *mapping = page_mapping(page);
757 if (unlikely(!mapping))
758 return !TestSetPageDirty(page);
760 spin_lock(&mapping->private_lock);
761 if (page_has_buffers(page)) {
762 struct buffer_head *head = page_buffers(page);
763 struct buffer_head *bh = head;
766 set_buffer_dirty(bh);
767 bh = bh->b_this_page;
768 } while (bh != head);
770 spin_unlock(&mapping->private_lock);
772 return __set_page_dirty(page, mapping, 1);
774 EXPORT_SYMBOL(__set_page_dirty_buffers);
777 * Write out and wait upon a list of buffers.
779 * We have conflicting pressures: we want to make sure that all
780 * initially dirty buffers get waited on, but that any subsequently
781 * dirtied buffers don't. After all, we don't want fsync to last
782 * forever if somebody is actively writing to the file.
784 * Do this in two main stages: first we copy dirty buffers to a
785 * temporary inode list, queueing the writes as we go. Then we clean
786 * up, waiting for those writes to complete.
788 * During this second stage, any subsequent updates to the file may end
789 * up refiling the buffer on the original inode's dirty list again, so
790 * there is a chance we will end up with a buffer queued for write but
791 * not yet completed on that list. So, as a final cleanup we go through
792 * the osync code to catch these locked, dirty buffers without requeuing
793 * any newly dirty buffers for write.
795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
797 struct buffer_head *bh;
798 struct list_head tmp;
799 struct address_space *mapping;
802 INIT_LIST_HEAD(&tmp);
805 while (!list_empty(list)) {
806 bh = BH_ENTRY(list->next);
807 mapping = bh->b_assoc_map;
808 __remove_assoc_queue(bh);
809 /* Avoid race with mark_buffer_dirty_inode() which does
810 * a lockless check and we rely on seeing the dirty bit */
812 if (buffer_dirty(bh) || buffer_locked(bh)) {
813 list_add(&bh->b_assoc_buffers, &tmp);
814 bh->b_assoc_map = mapping;
815 if (buffer_dirty(bh)) {
819 * Ensure any pending I/O completes so that
820 * ll_rw_block() actually writes the current
821 * contents - it is a noop if I/O is still in
822 * flight on potentially older contents.
824 ll_rw_block(SWRITE, 1, &bh);
831 while (!list_empty(&tmp)) {
832 bh = BH_ENTRY(tmp.prev);
834 mapping = bh->b_assoc_map;
835 __remove_assoc_queue(bh);
836 /* Avoid race with mark_buffer_dirty_inode() which does
837 * a lockless check and we rely on seeing the dirty bit */
839 if (buffer_dirty(bh)) {
840 list_add(&bh->b_assoc_buffers,
841 &mapping->private_list);
842 bh->b_assoc_map = mapping;
846 if (!buffer_uptodate(bh))
853 err2 = osync_buffers_list(lock, list);
861 * Invalidate any and all dirty buffers on a given inode. We are
862 * probably unmounting the fs, but that doesn't mean we have already
863 * done a sync(). Just drop the buffers from the inode list.
865 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
866 * assumes that all the buffers are against the blockdev. Not true
869 void invalidate_inode_buffers(struct inode *inode)
871 if (inode_has_buffers(inode)) {
872 struct address_space *mapping = &inode->i_data;
873 struct list_head *list = &mapping->private_list;
874 struct address_space *buffer_mapping = mapping->assoc_mapping;
876 spin_lock(&buffer_mapping->private_lock);
877 while (!list_empty(list))
878 __remove_assoc_queue(BH_ENTRY(list->next));
879 spin_unlock(&buffer_mapping->private_lock);
884 * Remove any clean buffers from the inode's buffer list. This is called
885 * when we're trying to free the inode itself. Those buffers can pin it.
887 * Returns true if all buffers were removed.
889 int remove_inode_buffers(struct inode *inode)
893 if (inode_has_buffers(inode)) {
894 struct address_space *mapping = &inode->i_data;
895 struct list_head *list = &mapping->private_list;
896 struct address_space *buffer_mapping = mapping->assoc_mapping;
898 spin_lock(&buffer_mapping->private_lock);
899 while (!list_empty(list)) {
900 struct buffer_head *bh = BH_ENTRY(list->next);
901 if (buffer_dirty(bh)) {
905 __remove_assoc_queue(bh);
907 spin_unlock(&buffer_mapping->private_lock);
913 * Create the appropriate buffers when given a page for data area and
914 * the size of each buffer.. Use the bh->b_this_page linked list to
915 * follow the buffers created. Return NULL if unable to create more
918 * The retry flag is used to differentiate async IO (paging, swapping)
919 * which may not fail from ordinary buffer allocations.
921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
924 struct buffer_head *bh, *head;
930 while ((offset -= size) >= 0) {
931 bh = alloc_buffer_head(GFP_NOFS);
936 bh->b_this_page = head;
941 atomic_set(&bh->b_count, 0);
942 bh->b_private = NULL;
945 /* Link the buffer to its page */
946 set_bh_page(bh, page, offset);
948 init_buffer(bh, NULL, NULL);
952 * In case anything failed, we just free everything we got.
958 head = head->b_this_page;
959 free_buffer_head(bh);
964 * Return failure for non-async IO requests. Async IO requests
965 * are not allowed to fail, so we have to wait until buffer heads
966 * become available. But we don't want tasks sleeping with
967 * partially complete buffers, so all were released above.
972 /* We're _really_ low on memory. Now we just
973 * wait for old buffer heads to become free due to
974 * finishing IO. Since this is an async request and
975 * the reserve list is empty, we're sure there are
976 * async buffer heads in use.
981 EXPORT_SYMBOL_GPL(alloc_page_buffers);
984 link_dev_buffers(struct page *page, struct buffer_head *head)
986 struct buffer_head *bh, *tail;
991 bh = bh->b_this_page;
993 tail->b_this_page = head;
994 attach_page_buffers(page, head);
998 * Initialise the state of a blockdev page's buffers.
1001 init_page_buffers(struct page *page, struct block_device *bdev,
1002 sector_t block, int size)
1004 struct buffer_head *head = page_buffers(page);
1005 struct buffer_head *bh = head;
1006 int uptodate = PageUptodate(page);
1009 if (!buffer_mapped(bh)) {
1010 init_buffer(bh, NULL, NULL);
1012 bh->b_blocknr = block;
1014 set_buffer_uptodate(bh);
1015 set_buffer_mapped(bh);
1018 bh = bh->b_this_page;
1019 } while (bh != head);
1023 * Create the page-cache page that contains the requested block.
1025 * This is user purely for blockdev mappings.
1027 static struct page *
1028 grow_dev_page(struct block_device *bdev, sector_t block,
1029 pgoff_t index, int size)
1031 struct inode *inode = bdev->bd_inode;
1033 struct buffer_head *bh;
1035 page = find_or_create_page(inode->i_mapping, index,
1036 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1040 BUG_ON(!PageLocked(page));
1042 if (page_has_buffers(page)) {
1043 bh = page_buffers(page);
1044 if (bh->b_size == size) {
1045 init_page_buffers(page, bdev, block, size);
1048 if (!try_to_free_buffers(page))
1053 * Allocate some buffers for this page
1055 bh = alloc_page_buffers(page, size, 0);
1060 * Link the page to the buffers and initialise them. Take the
1061 * lock to be atomic wrt __find_get_block(), which does not
1062 * run under the page lock.
1064 spin_lock(&inode->i_mapping->private_lock);
1065 link_dev_buffers(page, bh);
1066 init_page_buffers(page, bdev, block, size);
1067 spin_unlock(&inode->i_mapping->private_lock);
1073 page_cache_release(page);
1078 * Create buffers for the specified block device block's page. If
1079 * that page was dirty, the buffers are set dirty also.
1082 grow_buffers(struct block_device *bdev, sector_t block, int size)
1091 } while ((size << sizebits) < PAGE_SIZE);
1093 index = block >> sizebits;
1096 * Check for a block which wants to lie outside our maximum possible
1097 * pagecache index. (this comparison is done using sector_t types).
1099 if (unlikely(index != block >> sizebits)) {
1100 char b[BDEVNAME_SIZE];
1102 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1104 __FUNCTION__, (unsigned long long)block,
1108 block = index << sizebits;
1109 /* Create a page with the proper size buffers.. */
1110 page = grow_dev_page(bdev, block, index, size);
1114 page_cache_release(page);
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1121 /* Size must be multiple of hard sectorsize */
1122 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1123 (size < 512 || size > PAGE_SIZE))) {
1124 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1126 printk(KERN_ERR "hardsect size: %d\n",
1127 bdev_hardsect_size(bdev));
1134 struct buffer_head * bh;
1137 bh = __find_get_block(bdev, block, size);
1141 ret = grow_buffers(bdev, block, size);
1150 * The relationship between dirty buffers and dirty pages:
1152 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1153 * the page is tagged dirty in its radix tree.
1155 * At all times, the dirtiness of the buffers represents the dirtiness of
1156 * subsections of the page. If the page has buffers, the page dirty bit is
1157 * merely a hint about the true dirty state.
1159 * When a page is set dirty in its entirety, all its buffers are marked dirty
1160 * (if the page has buffers).
1162 * When a buffer is marked dirty, its page is dirtied, but the page's other
1165 * Also. When blockdev buffers are explicitly read with bread(), they
1166 * individually become uptodate. But their backing page remains not
1167 * uptodate - even if all of its buffers are uptodate. A subsequent
1168 * block_read_full_page() against that page will discover all the uptodate
1169 * buffers, will set the page uptodate and will perform no I/O.
1173 * mark_buffer_dirty - mark a buffer_head as needing writeout
1174 * @bh: the buffer_head to mark dirty
1176 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1177 * backing page dirty, then tag the page as dirty in its address_space's radix
1178 * tree and then attach the address_space's inode to its superblock's dirty
1181 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1182 * mapping->tree_lock and the global inode_lock.
1184 void mark_buffer_dirty(struct buffer_head *bh)
1186 WARN_ON_ONCE(!buffer_uptodate(bh));
1189 * Very *carefully* optimize the it-is-already-dirty case.
1191 * Don't let the final "is it dirty" escape to before we
1192 * perhaps modified the buffer.
1194 if (buffer_dirty(bh)) {
1196 if (buffer_dirty(bh))
1200 if (!test_set_buffer_dirty(bh))
1201 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1205 * Decrement a buffer_head's reference count. If all buffers against a page
1206 * have zero reference count, are clean and unlocked, and if the page is clean
1207 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1208 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1209 * a page but it ends up not being freed, and buffers may later be reattached).
1211 void __brelse(struct buffer_head * buf)
1213 if (atomic_read(&buf->b_count)) {
1217 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1222 * bforget() is like brelse(), except it discards any
1223 * potentially dirty data.
1225 void __bforget(struct buffer_head *bh)
1227 clear_buffer_dirty(bh);
1228 if (bh->b_assoc_map) {
1229 struct address_space *buffer_mapping = bh->b_page->mapping;
1231 spin_lock(&buffer_mapping->private_lock);
1232 list_del_init(&bh->b_assoc_buffers);
1233 bh->b_assoc_map = NULL;
1234 spin_unlock(&buffer_mapping->private_lock);
1239 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1242 if (buffer_uptodate(bh)) {
1247 bh->b_end_io = end_buffer_read_sync;
1248 submit_bh(READ, bh);
1250 if (buffer_uptodate(bh))
1258 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1259 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1260 * refcount elevated by one when they're in an LRU. A buffer can only appear
1261 * once in a particular CPU's LRU. A single buffer can be present in multiple
1262 * CPU's LRUs at the same time.
1264 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1265 * sb_find_get_block().
1267 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1268 * a local interrupt disable for that.
1271 #define BH_LRU_SIZE 8
1274 struct buffer_head *bhs[BH_LRU_SIZE];
1277 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1280 #define bh_lru_lock() local_irq_disable()
1281 #define bh_lru_unlock() local_irq_enable()
1283 #define bh_lru_lock() preempt_disable()
1284 #define bh_lru_unlock() preempt_enable()
1287 static inline void check_irqs_on(void)
1289 #ifdef irqs_disabled
1290 BUG_ON(irqs_disabled());
1295 * The LRU management algorithm is dopey-but-simple. Sorry.
1297 static void bh_lru_install(struct buffer_head *bh)
1299 struct buffer_head *evictee = NULL;
1304 lru = &__get_cpu_var(bh_lrus);
1305 if (lru->bhs[0] != bh) {
1306 struct buffer_head *bhs[BH_LRU_SIZE];
1312 for (in = 0; in < BH_LRU_SIZE; in++) {
1313 struct buffer_head *bh2 = lru->bhs[in];
1318 if (out >= BH_LRU_SIZE) {
1319 BUG_ON(evictee != NULL);
1326 while (out < BH_LRU_SIZE)
1328 memcpy(lru->bhs, bhs, sizeof(bhs));
1337 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1339 static struct buffer_head *
1340 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1342 struct buffer_head *ret = NULL;
1348 lru = &__get_cpu_var(bh_lrus);
1349 for (i = 0; i < BH_LRU_SIZE; i++) {
1350 struct buffer_head *bh = lru->bhs[i];
1352 if (bh && bh->b_bdev == bdev &&
1353 bh->b_blocknr == block && bh->b_size == size) {
1356 lru->bhs[i] = lru->bhs[i - 1];
1371 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1372 * it in the LRU and mark it as accessed. If it is not present then return
1375 struct buffer_head *
1376 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1378 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1381 bh = __find_get_block_slow(bdev, block);
1389 EXPORT_SYMBOL(__find_get_block);
1392 * __getblk will locate (and, if necessary, create) the buffer_head
1393 * which corresponds to the passed block_device, block and size. The
1394 * returned buffer has its reference count incremented.
1396 * __getblk() cannot fail - it just keeps trying. If you pass it an
1397 * illegal block number, __getblk() will happily return a buffer_head
1398 * which represents the non-existent block. Very weird.
1400 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1401 * attempt is failing. FIXME, perhaps?
1403 struct buffer_head *
1404 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1406 struct buffer_head *bh = __find_get_block(bdev, block, size);
1410 bh = __getblk_slow(bdev, block, size);
1413 EXPORT_SYMBOL(__getblk);
1416 * Do async read-ahead on a buffer..
1418 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1420 struct buffer_head *bh = __getblk(bdev, block, size);
1422 ll_rw_block(READA, 1, &bh);
1426 EXPORT_SYMBOL(__breadahead);
1429 * __bread() - reads a specified block and returns the bh
1430 * @bdev: the block_device to read from
1431 * @block: number of block
1432 * @size: size (in bytes) to read
1434 * Reads a specified block, and returns buffer head that contains it.
1435 * It returns NULL if the block was unreadable.
1437 struct buffer_head *
1438 __bread(struct block_device *bdev, sector_t block, unsigned size)
1440 struct buffer_head *bh = __getblk(bdev, block, size);
1442 if (likely(bh) && !buffer_uptodate(bh))
1443 bh = __bread_slow(bh);
1446 EXPORT_SYMBOL(__bread);
1449 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1450 * This doesn't race because it runs in each cpu either in irq
1451 * or with preempt disabled.
1453 static void invalidate_bh_lru(void *arg)
1455 struct bh_lru *b = &get_cpu_var(bh_lrus);
1458 for (i = 0; i < BH_LRU_SIZE; i++) {
1462 put_cpu_var(bh_lrus);
1465 void invalidate_bh_lrus(void)
1467 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1471 void set_bh_page(struct buffer_head *bh,
1472 struct page *page, unsigned long offset)
1475 BUG_ON(offset >= PAGE_SIZE);
1476 if (PageHighMem(page))
1478 * This catches illegal uses and preserves the offset:
1480 bh->b_data = (char *)(0 + offset);
1482 bh->b_data = page_address(page) + offset;
1484 EXPORT_SYMBOL(set_bh_page);
1487 * Called when truncating a buffer on a page completely.
1489 static void discard_buffer(struct buffer_head * bh)
1492 clear_buffer_dirty(bh);
1494 clear_buffer_mapped(bh);
1495 clear_buffer_req(bh);
1496 clear_buffer_new(bh);
1497 clear_buffer_delay(bh);
1498 clear_buffer_unwritten(bh);
1503 * block_invalidatepage - invalidate part of all of a buffer-backed page
1505 * @page: the page which is affected
1506 * @offset: the index of the truncation point
1508 * block_invalidatepage() is called when all or part of the page has become
1509 * invalidatedby a truncate operation.
1511 * block_invalidatepage() does not have to release all buffers, but it must
1512 * ensure that no dirty buffer is left outside @offset and that no I/O
1513 * is underway against any of the blocks which are outside the truncation
1514 * point. Because the caller is about to free (and possibly reuse) those
1517 void block_invalidatepage(struct page *page, unsigned long offset)
1519 struct buffer_head *head, *bh, *next;
1520 unsigned int curr_off = 0;
1522 BUG_ON(!PageLocked(page));
1523 if (!page_has_buffers(page))
1526 head = page_buffers(page);
1529 unsigned int next_off = curr_off + bh->b_size;
1530 next = bh->b_this_page;
1533 * is this block fully invalidated?
1535 if (offset <= curr_off)
1537 curr_off = next_off;
1539 } while (bh != head);
1542 * We release buffers only if the entire page is being invalidated.
1543 * The get_block cached value has been unconditionally invalidated,
1544 * so real IO is not possible anymore.
1547 try_to_release_page(page, 0);
1551 EXPORT_SYMBOL(block_invalidatepage);
1554 * We attach and possibly dirty the buffers atomically wrt
1555 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1556 * is already excluded via the page lock.
1558 void create_empty_buffers(struct page *page,
1559 unsigned long blocksize, unsigned long b_state)
1561 struct buffer_head *bh, *head, *tail;
1563 head = alloc_page_buffers(page, blocksize, 1);
1566 bh->b_state |= b_state;
1568 bh = bh->b_this_page;
1570 tail->b_this_page = head;
1572 spin_lock(&page->mapping->private_lock);
1573 if (PageUptodate(page) || PageDirty(page)) {
1576 if (PageDirty(page))
1577 set_buffer_dirty(bh);
1578 if (PageUptodate(page))
1579 set_buffer_uptodate(bh);
1580 bh = bh->b_this_page;
1581 } while (bh != head);
1583 attach_page_buffers(page, head);
1584 spin_unlock(&page->mapping->private_lock);
1586 EXPORT_SYMBOL(create_empty_buffers);
1589 * We are taking a block for data and we don't want any output from any
1590 * buffer-cache aliases starting from return from that function and
1591 * until the moment when something will explicitly mark the buffer
1592 * dirty (hopefully that will not happen until we will free that block ;-)
1593 * We don't even need to mark it not-uptodate - nobody can expect
1594 * anything from a newly allocated buffer anyway. We used to used
1595 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1596 * don't want to mark the alias unmapped, for example - it would confuse
1597 * anyone who might pick it with bread() afterwards...
1599 * Also.. Note that bforget() doesn't lock the buffer. So there can
1600 * be writeout I/O going on against recently-freed buffers. We don't
1601 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1602 * only if we really need to. That happens here.
1604 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1606 struct buffer_head *old_bh;
1610 old_bh = __find_get_block_slow(bdev, block);
1612 clear_buffer_dirty(old_bh);
1613 wait_on_buffer(old_bh);
1614 clear_buffer_req(old_bh);
1618 EXPORT_SYMBOL(unmap_underlying_metadata);
1621 * NOTE! All mapped/uptodate combinations are valid:
1623 * Mapped Uptodate Meaning
1625 * No No "unknown" - must do get_block()
1626 * No Yes "hole" - zero-filled
1627 * Yes No "allocated" - allocated on disk, not read in
1628 * Yes Yes "valid" - allocated and up-to-date in memory.
1630 * "Dirty" is valid only with the last case (mapped+uptodate).
1634 * While block_write_full_page is writing back the dirty buffers under
1635 * the page lock, whoever dirtied the buffers may decide to clean them
1636 * again at any time. We handle that by only looking at the buffer
1637 * state inside lock_buffer().
1639 * If block_write_full_page() is called for regular writeback
1640 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1641 * locked buffer. This only can happen if someone has written the buffer
1642 * directly, with submit_bh(). At the address_space level PageWriteback
1643 * prevents this contention from occurring.
1645 static int __block_write_full_page(struct inode *inode, struct page *page,
1646 get_block_t *get_block, struct writeback_control *wbc)
1650 sector_t last_block;
1651 struct buffer_head *bh, *head;
1652 const unsigned blocksize = 1 << inode->i_blkbits;
1653 int nr_underway = 0;
1655 BUG_ON(!PageLocked(page));
1657 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1659 if (!page_has_buffers(page)) {
1660 create_empty_buffers(page, blocksize,
1661 (1 << BH_Dirty)|(1 << BH_Uptodate));
1665 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1666 * here, and the (potentially unmapped) buffers may become dirty at
1667 * any time. If a buffer becomes dirty here after we've inspected it
1668 * then we just miss that fact, and the page stays dirty.
1670 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1671 * handle that here by just cleaning them.
1674 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1675 head = page_buffers(page);
1679 * Get all the dirty buffers mapped to disk addresses and
1680 * handle any aliases from the underlying blockdev's mapping.
1683 if (block > last_block) {
1685 * mapped buffers outside i_size will occur, because
1686 * this page can be outside i_size when there is a
1687 * truncate in progress.
1690 * The buffer was zeroed by block_write_full_page()
1692 clear_buffer_dirty(bh);
1693 set_buffer_uptodate(bh);
1694 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1695 WARN_ON(bh->b_size != blocksize);
1696 err = get_block(inode, block, bh, 1);
1699 if (buffer_new(bh)) {
1700 /* blockdev mappings never come here */
1701 clear_buffer_new(bh);
1702 unmap_underlying_metadata(bh->b_bdev,
1706 bh = bh->b_this_page;
1708 } while (bh != head);
1711 if (!buffer_mapped(bh))
1714 * If it's a fully non-blocking write attempt and we cannot
1715 * lock the buffer then redirty the page. Note that this can
1716 * potentially cause a busy-wait loop from pdflush and kswapd
1717 * activity, but those code paths have their own higher-level
1720 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1722 } else if (test_set_buffer_locked(bh)) {
1723 redirty_page_for_writepage(wbc, page);
1726 if (test_clear_buffer_dirty(bh)) {
1727 mark_buffer_async_write(bh);
1731 } while ((bh = bh->b_this_page) != head);
1734 * The page and its buffers are protected by PageWriteback(), so we can
1735 * drop the bh refcounts early.
1737 BUG_ON(PageWriteback(page));
1738 set_page_writeback(page);
1741 struct buffer_head *next = bh->b_this_page;
1742 if (buffer_async_write(bh)) {
1743 submit_bh(WRITE, bh);
1747 } while (bh != head);
1752 if (nr_underway == 0) {
1754 * The page was marked dirty, but the buffers were
1755 * clean. Someone wrote them back by hand with
1756 * ll_rw_block/submit_bh. A rare case.
1758 end_page_writeback(page);
1761 * The page and buffer_heads can be released at any time from
1769 * ENOSPC, or some other error. We may already have added some
1770 * blocks to the file, so we need to write these out to avoid
1771 * exposing stale data.
1772 * The page is currently locked and not marked for writeback
1775 /* Recovery: lock and submit the mapped buffers */
1777 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1779 mark_buffer_async_write(bh);
1782 * The buffer may have been set dirty during
1783 * attachment to a dirty page.
1785 clear_buffer_dirty(bh);
1787 } while ((bh = bh->b_this_page) != head);
1789 BUG_ON(PageWriteback(page));
1790 mapping_set_error(page->mapping, err);
1791 set_page_writeback(page);
1793 struct buffer_head *next = bh->b_this_page;
1794 if (buffer_async_write(bh)) {
1795 clear_buffer_dirty(bh);
1796 submit_bh(WRITE, bh);
1800 } while (bh != head);
1806 * If a page has any new buffers, zero them out here, and mark them uptodate
1807 * and dirty so they'll be written out (in order to prevent uninitialised
1808 * block data from leaking). And clear the new bit.
1810 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1812 unsigned int block_start, block_end;
1813 struct buffer_head *head, *bh;
1815 BUG_ON(!PageLocked(page));
1816 if (!page_has_buffers(page))
1819 bh = head = page_buffers(page);
1822 block_end = block_start + bh->b_size;
1824 if (buffer_new(bh)) {
1825 if (block_end > from && block_start < to) {
1826 if (!PageUptodate(page)) {
1827 unsigned start, size;
1829 start = max(from, block_start);
1830 size = min(to, block_end) - start;
1832 zero_user(page, start, size);
1833 set_buffer_uptodate(bh);
1836 clear_buffer_new(bh);
1837 mark_buffer_dirty(bh);
1841 block_start = block_end;
1842 bh = bh->b_this_page;
1843 } while (bh != head);
1845 EXPORT_SYMBOL(page_zero_new_buffers);
1847 static int __block_prepare_write(struct inode *inode, struct page *page,
1848 unsigned from, unsigned to, get_block_t *get_block)
1850 unsigned block_start, block_end;
1853 unsigned blocksize, bbits;
1854 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1856 BUG_ON(!PageLocked(page));
1857 BUG_ON(from > PAGE_CACHE_SIZE);
1858 BUG_ON(to > PAGE_CACHE_SIZE);
1861 blocksize = 1 << inode->i_blkbits;
1862 if (!page_has_buffers(page))
1863 create_empty_buffers(page, blocksize, 0);
1864 head = page_buffers(page);
1866 bbits = inode->i_blkbits;
1867 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1869 for(bh = head, block_start = 0; bh != head || !block_start;
1870 block++, block_start=block_end, bh = bh->b_this_page) {
1871 block_end = block_start + blocksize;
1872 if (block_end <= from || block_start >= to) {
1873 if (PageUptodate(page)) {
1874 if (!buffer_uptodate(bh))
1875 set_buffer_uptodate(bh);
1880 clear_buffer_new(bh);
1881 if (!buffer_mapped(bh)) {
1882 WARN_ON(bh->b_size != blocksize);
1883 err = get_block(inode, block, bh, 1);
1886 if (buffer_new(bh)) {
1887 unmap_underlying_metadata(bh->b_bdev,
1889 if (PageUptodate(page)) {
1890 clear_buffer_new(bh);
1891 set_buffer_uptodate(bh);
1892 mark_buffer_dirty(bh);
1895 if (block_end > to || block_start < from)
1896 zero_user_segments(page,
1902 if (PageUptodate(page)) {
1903 if (!buffer_uptodate(bh))
1904 set_buffer_uptodate(bh);
1907 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1908 !buffer_unwritten(bh) &&
1909 (block_start < from || block_end > to)) {
1910 ll_rw_block(READ, 1, &bh);
1915 * If we issued read requests - let them complete.
1917 while(wait_bh > wait) {
1918 wait_on_buffer(*--wait_bh);
1919 if (!buffer_uptodate(*wait_bh))
1923 page_zero_new_buffers(page, from, to);
1927 static int __block_commit_write(struct inode *inode, struct page *page,
1928 unsigned from, unsigned to)
1930 unsigned block_start, block_end;
1933 struct buffer_head *bh, *head;
1935 blocksize = 1 << inode->i_blkbits;
1937 for(bh = head = page_buffers(page), block_start = 0;
1938 bh != head || !block_start;
1939 block_start=block_end, bh = bh->b_this_page) {
1940 block_end = block_start + blocksize;
1941 if (block_end <= from || block_start >= to) {
1942 if (!buffer_uptodate(bh))
1945 set_buffer_uptodate(bh);
1946 mark_buffer_dirty(bh);
1948 clear_buffer_new(bh);
1952 * If this is a partial write which happened to make all buffers
1953 * uptodate then we can optimize away a bogus readpage() for
1954 * the next read(). Here we 'discover' whether the page went
1955 * uptodate as a result of this (potentially partial) write.
1958 SetPageUptodate(page);
1963 * block_write_begin takes care of the basic task of block allocation and
1964 * bringing partial write blocks uptodate first.
1966 * If *pagep is not NULL, then block_write_begin uses the locked page
1967 * at *pagep rather than allocating its own. In this case, the page will
1968 * not be unlocked or deallocated on failure.
1970 int block_write_begin(struct file *file, struct address_space *mapping,
1971 loff_t pos, unsigned len, unsigned flags,
1972 struct page **pagep, void **fsdata,
1973 get_block_t *get_block)
1975 struct inode *inode = mapping->host;
1979 unsigned start, end;
1982 index = pos >> PAGE_CACHE_SHIFT;
1983 start = pos & (PAGE_CACHE_SIZE - 1);
1989 page = __grab_cache_page(mapping, index);
1996 BUG_ON(!PageLocked(page));
1998 status = __block_prepare_write(inode, page, start, end, get_block);
1999 if (unlikely(status)) {
2000 ClearPageUptodate(page);
2004 page_cache_release(page);
2008 * prepare_write() may have instantiated a few blocks
2009 * outside i_size. Trim these off again. Don't need
2010 * i_size_read because we hold i_mutex.
2012 if (pos + len > inode->i_size)
2013 vmtruncate(inode, inode->i_size);
2021 EXPORT_SYMBOL(block_write_begin);
2023 int block_write_end(struct file *file, struct address_space *mapping,
2024 loff_t pos, unsigned len, unsigned copied,
2025 struct page *page, void *fsdata)
2027 struct inode *inode = mapping->host;
2030 start = pos & (PAGE_CACHE_SIZE - 1);
2032 if (unlikely(copied < len)) {
2034 * The buffers that were written will now be uptodate, so we
2035 * don't have to worry about a readpage reading them and
2036 * overwriting a partial write. However if we have encountered
2037 * a short write and only partially written into a buffer, it
2038 * will not be marked uptodate, so a readpage might come in and
2039 * destroy our partial write.
2041 * Do the simplest thing, and just treat any short write to a
2042 * non uptodate page as a zero-length write, and force the
2043 * caller to redo the whole thing.
2045 if (!PageUptodate(page))
2048 page_zero_new_buffers(page, start+copied, start+len);
2050 flush_dcache_page(page);
2052 /* This could be a short (even 0-length) commit */
2053 __block_commit_write(inode, page, start, start+copied);
2057 EXPORT_SYMBOL(block_write_end);
2059 int generic_write_end(struct file *file, struct address_space *mapping,
2060 loff_t pos, unsigned len, unsigned copied,
2061 struct page *page, void *fsdata)
2063 struct inode *inode = mapping->host;
2065 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2068 * No need to use i_size_read() here, the i_size
2069 * cannot change under us because we hold i_mutex.
2071 * But it's important to update i_size while still holding page lock:
2072 * page writeout could otherwise come in and zero beyond i_size.
2074 if (pos+copied > inode->i_size) {
2075 i_size_write(inode, pos+copied);
2076 mark_inode_dirty(inode);
2080 page_cache_release(page);
2084 EXPORT_SYMBOL(generic_write_end);
2087 * Generic "read page" function for block devices that have the normal
2088 * get_block functionality. This is most of the block device filesystems.
2089 * Reads the page asynchronously --- the unlock_buffer() and
2090 * set/clear_buffer_uptodate() functions propagate buffer state into the
2091 * page struct once IO has completed.
2093 int block_read_full_page(struct page *page, get_block_t *get_block)
2095 struct inode *inode = page->mapping->host;
2096 sector_t iblock, lblock;
2097 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2098 unsigned int blocksize;
2100 int fully_mapped = 1;
2102 BUG_ON(!PageLocked(page));
2103 blocksize = 1 << inode->i_blkbits;
2104 if (!page_has_buffers(page))
2105 create_empty_buffers(page, blocksize, 0);
2106 head = page_buffers(page);
2108 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2109 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2115 if (buffer_uptodate(bh))
2118 if (!buffer_mapped(bh)) {
2122 if (iblock < lblock) {
2123 WARN_ON(bh->b_size != blocksize);
2124 err = get_block(inode, iblock, bh, 0);
2128 if (!buffer_mapped(bh)) {
2129 zero_user(page, i * blocksize, blocksize);
2131 set_buffer_uptodate(bh);
2135 * get_block() might have updated the buffer
2138 if (buffer_uptodate(bh))
2142 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2145 SetPageMappedToDisk(page);
2149 * All buffers are uptodate - we can set the page uptodate
2150 * as well. But not if get_block() returned an error.
2152 if (!PageError(page))
2153 SetPageUptodate(page);
2158 /* Stage two: lock the buffers */
2159 for (i = 0; i < nr; i++) {
2162 mark_buffer_async_read(bh);
2166 * Stage 3: start the IO. Check for uptodateness
2167 * inside the buffer lock in case another process reading
2168 * the underlying blockdev brought it uptodate (the sct fix).
2170 for (i = 0; i < nr; i++) {
2172 if (buffer_uptodate(bh))
2173 end_buffer_async_read(bh, 1);
2175 submit_bh(READ, bh);
2180 /* utility function for filesystems that need to do work on expanding
2181 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2182 * deal with the hole.
2184 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2186 struct address_space *mapping = inode->i_mapping;
2189 unsigned long limit;
2193 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2194 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2195 send_sig(SIGXFSZ, current, 0);
2198 if (size > inode->i_sb->s_maxbytes)
2201 err = pagecache_write_begin(NULL, mapping, size, 0,
2202 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2207 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2214 int cont_expand_zero(struct file *file, struct address_space *mapping,
2215 loff_t pos, loff_t *bytes)
2217 struct inode *inode = mapping->host;
2218 unsigned blocksize = 1 << inode->i_blkbits;
2221 pgoff_t index, curidx;
2223 unsigned zerofrom, offset, len;
2226 index = pos >> PAGE_CACHE_SHIFT;
2227 offset = pos & ~PAGE_CACHE_MASK;
2229 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2230 zerofrom = curpos & ~PAGE_CACHE_MASK;
2231 if (zerofrom & (blocksize-1)) {
2232 *bytes |= (blocksize-1);
2235 len = PAGE_CACHE_SIZE - zerofrom;
2237 err = pagecache_write_begin(file, mapping, curpos, len,
2238 AOP_FLAG_UNINTERRUPTIBLE,
2242 zero_user(page, zerofrom, len);
2243 err = pagecache_write_end(file, mapping, curpos, len, len,
2251 /* page covers the boundary, find the boundary offset */
2252 if (index == curidx) {
2253 zerofrom = curpos & ~PAGE_CACHE_MASK;
2254 /* if we will expand the thing last block will be filled */
2255 if (offset <= zerofrom) {
2258 if (zerofrom & (blocksize-1)) {
2259 *bytes |= (blocksize-1);
2262 len = offset - zerofrom;
2264 err = pagecache_write_begin(file, mapping, curpos, len,
2265 AOP_FLAG_UNINTERRUPTIBLE,
2269 zero_user(page, zerofrom, len);
2270 err = pagecache_write_end(file, mapping, curpos, len, len,
2282 * For moronic filesystems that do not allow holes in file.
2283 * We may have to extend the file.
2285 int cont_write_begin(struct file *file, struct address_space *mapping,
2286 loff_t pos, unsigned len, unsigned flags,
2287 struct page **pagep, void **fsdata,
2288 get_block_t *get_block, loff_t *bytes)
2290 struct inode *inode = mapping->host;
2291 unsigned blocksize = 1 << inode->i_blkbits;
2295 err = cont_expand_zero(file, mapping, pos, bytes);
2299 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2300 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2301 *bytes |= (blocksize-1);
2306 err = block_write_begin(file, mapping, pos, len,
2307 flags, pagep, fsdata, get_block);
2312 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2313 get_block_t *get_block)
2315 struct inode *inode = page->mapping->host;
2316 int err = __block_prepare_write(inode, page, from, to, get_block);
2318 ClearPageUptodate(page);
2322 int block_commit_write(struct page *page, unsigned from, unsigned to)
2324 struct inode *inode = page->mapping->host;
2325 __block_commit_write(inode,page,from,to);
2329 int generic_commit_write(struct file *file, struct page *page,
2330 unsigned from, unsigned to)
2332 struct inode *inode = page->mapping->host;
2333 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2334 __block_commit_write(inode,page,from,to);
2336 * No need to use i_size_read() here, the i_size
2337 * cannot change under us because we hold i_mutex.
2339 if (pos > inode->i_size) {
2340 i_size_write(inode, pos);
2341 mark_inode_dirty(inode);
2347 * block_page_mkwrite() is not allowed to change the file size as it gets
2348 * called from a page fault handler when a page is first dirtied. Hence we must
2349 * be careful to check for EOF conditions here. We set the page up correctly
2350 * for a written page which means we get ENOSPC checking when writing into
2351 * holes and correct delalloc and unwritten extent mapping on filesystems that
2352 * support these features.
2354 * We are not allowed to take the i_mutex here so we have to play games to
2355 * protect against truncate races as the page could now be beyond EOF. Because
2356 * vmtruncate() writes the inode size before removing pages, once we have the
2357 * page lock we can determine safely if the page is beyond EOF. If it is not
2358 * beyond EOF, then the page is guaranteed safe against truncation until we
2362 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2363 get_block_t get_block)
2365 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2371 size = i_size_read(inode);
2372 if ((page->mapping != inode->i_mapping) ||
2373 (page_offset(page) > size)) {
2374 /* page got truncated out from underneath us */
2378 /* page is wholly or partially inside EOF */
2379 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2380 end = size & ~PAGE_CACHE_MASK;
2382 end = PAGE_CACHE_SIZE;
2384 ret = block_prepare_write(page, 0, end, get_block);
2386 ret = block_commit_write(page, 0, end);
2394 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2395 * immediately, while under the page lock. So it needs a special end_io
2396 * handler which does not touch the bh after unlocking it.
2398 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2400 __end_buffer_read_notouch(bh, uptodate);
2404 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2405 * the page (converting it to circular linked list and taking care of page
2408 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2410 struct buffer_head *bh;
2412 BUG_ON(!PageLocked(page));
2414 spin_lock(&page->mapping->private_lock);
2417 if (PageDirty(page))
2418 set_buffer_dirty(bh);
2419 if (!bh->b_this_page)
2420 bh->b_this_page = head;
2421 bh = bh->b_this_page;
2422 } while (bh != head);
2423 attach_page_buffers(page, head);
2424 spin_unlock(&page->mapping->private_lock);
2428 * On entry, the page is fully not uptodate.
2429 * On exit the page is fully uptodate in the areas outside (from,to)
2431 int nobh_write_begin(struct file *file, struct address_space *mapping,
2432 loff_t pos, unsigned len, unsigned flags,
2433 struct page **pagep, void **fsdata,
2434 get_block_t *get_block)
2436 struct inode *inode = mapping->host;
2437 const unsigned blkbits = inode->i_blkbits;
2438 const unsigned blocksize = 1 << blkbits;
2439 struct buffer_head *head, *bh;
2443 unsigned block_in_page;
2444 unsigned block_start, block_end;
2445 sector_t block_in_file;
2448 int is_mapped_to_disk = 1;
2450 index = pos >> PAGE_CACHE_SHIFT;
2451 from = pos & (PAGE_CACHE_SIZE - 1);
2454 page = __grab_cache_page(mapping, index);
2460 if (page_has_buffers(page)) {
2462 page_cache_release(page);
2464 return block_write_begin(file, mapping, pos, len, flags, pagep,
2468 if (PageMappedToDisk(page))
2472 * Allocate buffers so that we can keep track of state, and potentially
2473 * attach them to the page if an error occurs. In the common case of
2474 * no error, they will just be freed again without ever being attached
2475 * to the page (which is all OK, because we're under the page lock).
2477 * Be careful: the buffer linked list is a NULL terminated one, rather
2478 * than the circular one we're used to.
2480 head = alloc_page_buffers(page, blocksize, 0);
2486 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2489 * We loop across all blocks in the page, whether or not they are
2490 * part of the affected region. This is so we can discover if the
2491 * page is fully mapped-to-disk.
2493 for (block_start = 0, block_in_page = 0, bh = head;
2494 block_start < PAGE_CACHE_SIZE;
2495 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2498 block_end = block_start + blocksize;
2501 if (block_start >= to)
2503 ret = get_block(inode, block_in_file + block_in_page,
2507 if (!buffer_mapped(bh))
2508 is_mapped_to_disk = 0;
2510 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2511 if (PageUptodate(page)) {
2512 set_buffer_uptodate(bh);
2515 if (buffer_new(bh) || !buffer_mapped(bh)) {
2516 zero_user_segments(page, block_start, from,
2520 if (buffer_uptodate(bh))
2521 continue; /* reiserfs does this */
2522 if (block_start < from || block_end > to) {
2524 bh->b_end_io = end_buffer_read_nobh;
2525 submit_bh(READ, bh);
2532 * The page is locked, so these buffers are protected from
2533 * any VM or truncate activity. Hence we don't need to care
2534 * for the buffer_head refcounts.
2536 for (bh = head; bh; bh = bh->b_this_page) {
2538 if (!buffer_uptodate(bh))
2545 if (is_mapped_to_disk)
2546 SetPageMappedToDisk(page);
2548 *fsdata = head; /* to be released by nobh_write_end */
2555 * Error recovery is a bit difficult. We need to zero out blocks that
2556 * were newly allocated, and dirty them to ensure they get written out.
2557 * Buffers need to be attached to the page at this point, otherwise
2558 * the handling of potential IO errors during writeout would be hard
2559 * (could try doing synchronous writeout, but what if that fails too?)
2561 attach_nobh_buffers(page, head);
2562 page_zero_new_buffers(page, from, to);
2566 page_cache_release(page);
2569 if (pos + len > inode->i_size)
2570 vmtruncate(inode, inode->i_size);
2574 EXPORT_SYMBOL(nobh_write_begin);
2576 int nobh_write_end(struct file *file, struct address_space *mapping,
2577 loff_t pos, unsigned len, unsigned copied,
2578 struct page *page, void *fsdata)
2580 struct inode *inode = page->mapping->host;
2581 struct buffer_head *head = fsdata;
2582 struct buffer_head *bh;
2583 BUG_ON(fsdata != NULL && page_has_buffers(page));
2585 if (unlikely(copied < len) && !page_has_buffers(page))
2586 attach_nobh_buffers(page, head);
2587 if (page_has_buffers(page))
2588 return generic_write_end(file, mapping, pos, len,
2589 copied, page, fsdata);
2591 SetPageUptodate(page);
2592 set_page_dirty(page);
2593 if (pos+copied > inode->i_size) {
2594 i_size_write(inode, pos+copied);
2595 mark_inode_dirty(inode);
2599 page_cache_release(page);
2603 head = head->b_this_page;
2604 free_buffer_head(bh);
2609 EXPORT_SYMBOL(nobh_write_end);
2612 * nobh_writepage() - based on block_full_write_page() except
2613 * that it tries to operate without attaching bufferheads to
2616 int nobh_writepage(struct page *page, get_block_t *get_block,
2617 struct writeback_control *wbc)
2619 struct inode * const inode = page->mapping->host;
2620 loff_t i_size = i_size_read(inode);
2621 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2625 /* Is the page fully inside i_size? */
2626 if (page->index < end_index)
2629 /* Is the page fully outside i_size? (truncate in progress) */
2630 offset = i_size & (PAGE_CACHE_SIZE-1);
2631 if (page->index >= end_index+1 || !offset) {
2633 * The page may have dirty, unmapped buffers. For example,
2634 * they may have been added in ext3_writepage(). Make them
2635 * freeable here, so the page does not leak.
2638 /* Not really sure about this - do we need this ? */
2639 if (page->mapping->a_ops->invalidatepage)
2640 page->mapping->a_ops->invalidatepage(page, offset);
2643 return 0; /* don't care */
2647 * The page straddles i_size. It must be zeroed out on each and every
2648 * writepage invocation because it may be mmapped. "A file is mapped
2649 * in multiples of the page size. For a file that is not a multiple of
2650 * the page size, the remaining memory is zeroed when mapped, and
2651 * writes to that region are not written out to the file."
2653 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2655 ret = mpage_writepage(page, get_block, wbc);
2657 ret = __block_write_full_page(inode, page, get_block, wbc);
2660 EXPORT_SYMBOL(nobh_writepage);
2662 int nobh_truncate_page(struct address_space *mapping,
2663 loff_t from, get_block_t *get_block)
2665 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2666 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2669 unsigned length, pos;
2670 struct inode *inode = mapping->host;
2672 struct buffer_head map_bh;
2675 blocksize = 1 << inode->i_blkbits;
2676 length = offset & (blocksize - 1);
2678 /* Block boundary? Nothing to do */
2682 length = blocksize - length;
2683 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2685 page = grab_cache_page(mapping, index);
2690 if (page_has_buffers(page)) {
2693 page_cache_release(page);
2694 return block_truncate_page(mapping, from, get_block);
2697 /* Find the buffer that contains "offset" */
2699 while (offset >= pos) {
2704 err = get_block(inode, iblock, &map_bh, 0);
2707 /* unmapped? It's a hole - nothing to do */
2708 if (!buffer_mapped(&map_bh))
2711 /* Ok, it's mapped. Make sure it's up-to-date */
2712 if (!PageUptodate(page)) {
2713 err = mapping->a_ops->readpage(NULL, page);
2715 page_cache_release(page);
2719 if (!PageUptodate(page)) {
2723 if (page_has_buffers(page))
2726 zero_user(page, offset, length);
2727 set_page_dirty(page);
2732 page_cache_release(page);
2736 EXPORT_SYMBOL(nobh_truncate_page);
2738 int block_truncate_page(struct address_space *mapping,
2739 loff_t from, get_block_t *get_block)
2741 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2745 unsigned length, pos;
2746 struct inode *inode = mapping->host;
2748 struct buffer_head *bh;
2751 blocksize = 1 << inode->i_blkbits;
2752 length = offset & (blocksize - 1);
2754 /* Block boundary? Nothing to do */
2758 length = blocksize - length;
2759 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761 page = grab_cache_page(mapping, index);
2766 if (!page_has_buffers(page))
2767 create_empty_buffers(page, blocksize, 0);
2769 /* Find the buffer that contains "offset" */
2770 bh = page_buffers(page);
2772 while (offset >= pos) {
2773 bh = bh->b_this_page;
2779 if (!buffer_mapped(bh)) {
2780 WARN_ON(bh->b_size != blocksize);
2781 err = get_block(inode, iblock, bh, 0);
2784 /* unmapped? It's a hole - nothing to do */
2785 if (!buffer_mapped(bh))
2789 /* Ok, it's mapped. Make sure it's up-to-date */
2790 if (PageUptodate(page))
2791 set_buffer_uptodate(bh);
2793 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795 ll_rw_block(READ, 1, &bh);
2797 /* Uhhuh. Read error. Complain and punt. */
2798 if (!buffer_uptodate(bh))
2802 zero_user(page, offset, length);
2803 mark_buffer_dirty(bh);
2808 page_cache_release(page);
2814 * The generic ->writepage function for buffer-backed address_spaces
2816 int block_write_full_page(struct page *page, get_block_t *get_block,
2817 struct writeback_control *wbc)
2819 struct inode * const inode = page->mapping->host;
2820 loff_t i_size = i_size_read(inode);
2821 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2824 /* Is the page fully inside i_size? */
2825 if (page->index < end_index)
2826 return __block_write_full_page(inode, page, get_block, wbc);
2828 /* Is the page fully outside i_size? (truncate in progress) */
2829 offset = i_size & (PAGE_CACHE_SIZE-1);
2830 if (page->index >= end_index+1 || !offset) {
2832 * The page may have dirty, unmapped buffers. For example,
2833 * they may have been added in ext3_writepage(). Make them
2834 * freeable here, so the page does not leak.
2836 do_invalidatepage(page, 0);
2838 return 0; /* don't care */
2842 * The page straddles i_size. It must be zeroed out on each and every
2843 * writepage invokation because it may be mmapped. "A file is mapped
2844 * in multiples of the page size. For a file that is not a multiple of
2845 * the page size, the remaining memory is zeroed when mapped, and
2846 * writes to that region are not written out to the file."
2848 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2849 return __block_write_full_page(inode, page, get_block, wbc);
2852 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2853 get_block_t *get_block)
2855 struct buffer_head tmp;
2856 struct inode *inode = mapping->host;
2859 tmp.b_size = 1 << inode->i_blkbits;
2860 get_block(inode, block, &tmp, 0);
2861 return tmp.b_blocknr;
2864 static void end_bio_bh_io_sync(struct bio *bio, int err)
2866 struct buffer_head *bh = bio->bi_private;
2868 if (err == -EOPNOTSUPP) {
2869 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2870 set_bit(BH_Eopnotsupp, &bh->b_state);
2873 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2877 int submit_bh(int rw, struct buffer_head * bh)
2882 BUG_ON(!buffer_locked(bh));
2883 BUG_ON(!buffer_mapped(bh));
2884 BUG_ON(!bh->b_end_io);
2886 if (buffer_ordered(bh) && (rw == WRITE))
2890 * Only clear out a write error when rewriting, should this
2891 * include WRITE_SYNC as well?
2893 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2894 clear_buffer_write_io_error(bh);
2897 * from here on down, it's all bio -- do the initial mapping,
2898 * submit_bio -> generic_make_request may further map this bio around
2900 bio = bio_alloc(GFP_NOIO, 1);
2902 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2903 bio->bi_bdev = bh->b_bdev;
2904 bio->bi_io_vec[0].bv_page = bh->b_page;
2905 bio->bi_io_vec[0].bv_len = bh->b_size;
2906 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2910 bio->bi_size = bh->b_size;
2912 bio->bi_end_io = end_bio_bh_io_sync;
2913 bio->bi_private = bh;
2916 submit_bio(rw, bio);
2918 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2926 * ll_rw_block: low-level access to block devices (DEPRECATED)
2927 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2928 * @nr: number of &struct buffer_heads in the array
2929 * @bhs: array of pointers to &struct buffer_head
2931 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2932 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2933 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2934 * are sent to disk. The fourth %READA option is described in the documentation
2935 * for generic_make_request() which ll_rw_block() calls.
2937 * This function drops any buffer that it cannot get a lock on (with the
2938 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2939 * clean when doing a write request, and any buffer that appears to be
2940 * up-to-date when doing read request. Further it marks as clean buffers that
2941 * are processed for writing (the buffer cache won't assume that they are
2942 * actually clean until the buffer gets unlocked).
2944 * ll_rw_block sets b_end_io to simple completion handler that marks
2945 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2948 * All of the buffers must be for the same device, and must also be a
2949 * multiple of the current approved size for the device.
2951 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2955 for (i = 0; i < nr; i++) {
2956 struct buffer_head *bh = bhs[i];
2960 else if (test_set_buffer_locked(bh))
2963 if (rw == WRITE || rw == SWRITE) {
2964 if (test_clear_buffer_dirty(bh)) {
2965 bh->b_end_io = end_buffer_write_sync;
2967 submit_bh(WRITE, bh);
2971 if (!buffer_uptodate(bh)) {
2972 bh->b_end_io = end_buffer_read_sync;
2983 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2984 * and then start new I/O and then wait upon it. The caller must have a ref on
2987 int sync_dirty_buffer(struct buffer_head *bh)
2991 WARN_ON(atomic_read(&bh->b_count) < 1);
2993 if (test_clear_buffer_dirty(bh)) {
2995 bh->b_end_io = end_buffer_write_sync;
2996 ret = submit_bh(WRITE, bh);
2998 if (buffer_eopnotsupp(bh)) {
2999 clear_buffer_eopnotsupp(bh);
3002 if (!ret && !buffer_uptodate(bh))
3011 * try_to_free_buffers() checks if all the buffers on this particular page
3012 * are unused, and releases them if so.
3014 * Exclusion against try_to_free_buffers may be obtained by either
3015 * locking the page or by holding its mapping's private_lock.
3017 * If the page is dirty but all the buffers are clean then we need to
3018 * be sure to mark the page clean as well. This is because the page
3019 * may be against a block device, and a later reattachment of buffers
3020 * to a dirty page will set *all* buffers dirty. Which would corrupt
3021 * filesystem data on the same device.
3023 * The same applies to regular filesystem pages: if all the buffers are
3024 * clean then we set the page clean and proceed. To do that, we require
3025 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3028 * try_to_free_buffers() is non-blocking.
3030 static inline int buffer_busy(struct buffer_head *bh)
3032 return atomic_read(&bh->b_count) |
3033 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3037 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3039 struct buffer_head *head = page_buffers(page);
3040 struct buffer_head *bh;
3044 if (buffer_write_io_error(bh) && page->mapping)
3045 set_bit(AS_EIO, &page->mapping->flags);
3046 if (buffer_busy(bh))
3048 bh = bh->b_this_page;
3049 } while (bh != head);
3052 struct buffer_head *next = bh->b_this_page;
3054 if (bh->b_assoc_map)
3055 __remove_assoc_queue(bh);
3057 } while (bh != head);
3058 *buffers_to_free = head;
3059 __clear_page_buffers(page);
3065 int try_to_free_buffers(struct page *page)
3067 struct address_space * const mapping = page->mapping;
3068 struct buffer_head *buffers_to_free = NULL;
3071 BUG_ON(!PageLocked(page));
3072 if (PageWriteback(page))
3075 if (mapping == NULL) { /* can this still happen? */
3076 ret = drop_buffers(page, &buffers_to_free);
3080 spin_lock(&mapping->private_lock);
3081 ret = drop_buffers(page, &buffers_to_free);
3084 * If the filesystem writes its buffers by hand (eg ext3)
3085 * then we can have clean buffers against a dirty page. We
3086 * clean the page here; otherwise the VM will never notice
3087 * that the filesystem did any IO at all.
3089 * Also, during truncate, discard_buffer will have marked all
3090 * the page's buffers clean. We discover that here and clean
3093 * private_lock must be held over this entire operation in order
3094 * to synchronise against __set_page_dirty_buffers and prevent the
3095 * dirty bit from being lost.
3098 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3099 spin_unlock(&mapping->private_lock);
3101 if (buffers_to_free) {
3102 struct buffer_head *bh = buffers_to_free;
3105 struct buffer_head *next = bh->b_this_page;
3106 free_buffer_head(bh);
3108 } while (bh != buffers_to_free);
3112 EXPORT_SYMBOL(try_to_free_buffers);
3114 void block_sync_page(struct page *page)
3116 struct address_space *mapping;
3119 mapping = page_mapping(page);
3121 blk_run_backing_dev(mapping->backing_dev_info, page);
3125 * There are no bdflush tunables left. But distributions are
3126 * still running obsolete flush daemons, so we terminate them here.
3128 * Use of bdflush() is deprecated and will be removed in a future kernel.
3129 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3131 asmlinkage long sys_bdflush(int func, long data)
3133 static int msg_count;
3135 if (!capable(CAP_SYS_ADMIN))
3138 if (msg_count < 5) {
3141 "warning: process `%s' used the obsolete bdflush"
3142 " system call\n", current->comm);
3143 printk(KERN_INFO "Fix your initscripts?\n");
3152 * Buffer-head allocation
3154 static struct kmem_cache *bh_cachep;
3157 * Once the number of bh's in the machine exceeds this level, we start
3158 * stripping them in writeback.
3160 static int max_buffer_heads;
3162 int buffer_heads_over_limit;
3164 struct bh_accounting {
3165 int nr; /* Number of live bh's */
3166 int ratelimit; /* Limit cacheline bouncing */
3169 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3171 static void recalc_bh_state(void)
3176 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3178 __get_cpu_var(bh_accounting).ratelimit = 0;
3179 for_each_online_cpu(i)
3180 tot += per_cpu(bh_accounting, i).nr;
3181 buffer_heads_over_limit = (tot > max_buffer_heads);
3184 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3186 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3188 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3189 get_cpu_var(bh_accounting).nr++;
3191 put_cpu_var(bh_accounting);
3195 EXPORT_SYMBOL(alloc_buffer_head);
3197 void free_buffer_head(struct buffer_head *bh)
3199 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3200 kmem_cache_free(bh_cachep, bh);
3201 get_cpu_var(bh_accounting).nr--;
3203 put_cpu_var(bh_accounting);
3205 EXPORT_SYMBOL(free_buffer_head);
3207 static void buffer_exit_cpu(int cpu)
3210 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3212 for (i = 0; i < BH_LRU_SIZE; i++) {
3216 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3217 per_cpu(bh_accounting, cpu).nr = 0;
3218 put_cpu_var(bh_accounting);
3221 static int buffer_cpu_notify(struct notifier_block *self,
3222 unsigned long action, void *hcpu)
3224 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3225 buffer_exit_cpu((unsigned long)hcpu);
3230 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3231 * @bh: struct buffer_head
3233 * Return true if the buffer is up-to-date and false,
3234 * with the buffer locked, if not.
3236 int bh_uptodate_or_lock(struct buffer_head *bh)
3238 if (!buffer_uptodate(bh)) {
3240 if (!buffer_uptodate(bh))
3246 EXPORT_SYMBOL(bh_uptodate_or_lock);
3249 * bh_submit_read - Submit a locked buffer for reading
3250 * @bh: struct buffer_head
3252 * Returns zero on success and -EIO on error.
3254 int bh_submit_read(struct buffer_head *bh)
3256 BUG_ON(!buffer_locked(bh));
3258 if (buffer_uptodate(bh)) {
3264 bh->b_end_io = end_buffer_read_sync;
3265 submit_bh(READ, bh);
3267 if (buffer_uptodate(bh))
3271 EXPORT_SYMBOL(bh_submit_read);
3274 init_buffer_head(struct kmem_cache *cachep, void *data)
3276 struct buffer_head *bh = data;
3278 memset(bh, 0, sizeof(*bh));
3279 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3282 void __init buffer_init(void)
3286 bh_cachep = kmem_cache_create("buffer_head",
3287 sizeof(struct buffer_head), 0,
3288 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3293 * Limit the bh occupancy to 10% of ZONE_NORMAL
3295 nrpages = (nr_free_buffer_pages() * 10) / 100;
3296 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3297 hotcpu_notifier(buffer_cpu_notify, 0);
3300 EXPORT_SYMBOL(__bforget);
3301 EXPORT_SYMBOL(__brelse);
3302 EXPORT_SYMBOL(__wait_on_buffer);
3303 EXPORT_SYMBOL(block_commit_write);
3304 EXPORT_SYMBOL(block_prepare_write);
3305 EXPORT_SYMBOL(block_page_mkwrite);
3306 EXPORT_SYMBOL(block_read_full_page);
3307 EXPORT_SYMBOL(block_sync_page);
3308 EXPORT_SYMBOL(block_truncate_page);
3309 EXPORT_SYMBOL(block_write_full_page);
3310 EXPORT_SYMBOL(cont_write_begin);
3311 EXPORT_SYMBOL(end_buffer_read_sync);
3312 EXPORT_SYMBOL(end_buffer_write_sync);
3313 EXPORT_SYMBOL(file_fsync);
3314 EXPORT_SYMBOL(fsync_bdev);
3315 EXPORT_SYMBOL(generic_block_bmap);
3316 EXPORT_SYMBOL(generic_commit_write);
3317 EXPORT_SYMBOL(generic_cont_expand_simple);
3318 EXPORT_SYMBOL(init_buffer);
3319 EXPORT_SYMBOL(invalidate_bdev);
3320 EXPORT_SYMBOL(ll_rw_block);
3321 EXPORT_SYMBOL(mark_buffer_dirty);
3322 EXPORT_SYMBOL(submit_bh);
3323 EXPORT_SYMBOL(sync_dirty_buffer);
3324 EXPORT_SYMBOL(unlock_buffer);