2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.24"
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
80 MV_IO_BAR = 2, /* offset 0x18: IO space */
81 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
87 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
89 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
90 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
91 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
94 MV_SATAHC0_REG_BASE = 0x20000,
95 MV_FLASH_CTL_OFS = 0x1046c,
96 MV_GPIO_PORT_CTL_OFS = 0x104f0,
97 MV_RESET_CFG_OFS = 0x180d8,
99 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
101 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
102 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
105 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
112 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
114 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT = 2,
118 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
123 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
126 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
127 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
128 ATA_FLAG_PIO_POLLING,
130 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
132 MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
133 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
134 ATA_FLAG_NCQ | ATA_FLAG_AN,
136 CRQB_FLAG_READ = (1 << 0),
138 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
139 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
140 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
141 CRQB_CMD_ADDR_SHIFT = 8,
142 CRQB_CMD_CS = (0x2 << 11),
143 CRQB_CMD_LAST = (1 << 15),
145 CRPB_FLAG_STATUS_SHIFT = 8,
146 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
147 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
149 EPRD_FLAG_END_OF_TBL = (1 << 31),
151 /* PCI interface registers */
153 PCI_COMMAND_OFS = 0xc00,
154 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
156 PCI_MAIN_CMD_STS_OFS = 0xd30,
157 STOP_PCI_MASTER = (1 << 2),
158 PCI_MASTER_EMPTY = (1 << 3),
159 GLOB_SFT_RST = (1 << 4),
161 MV_PCI_MODE_OFS = 0xd00,
162 MV_PCI_MODE_MASK = 0x30,
164 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
165 MV_PCI_DISC_TIMER = 0xd04,
166 MV_PCI_MSI_TRIGGER = 0xc38,
167 MV_PCI_SERR_MASK = 0xc28,
168 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
169 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
170 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
171 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
172 MV_PCI_ERR_COMMAND = 0x1d50,
174 PCI_IRQ_CAUSE_OFS = 0x1d58,
175 PCI_IRQ_MASK_OFS = 0x1d5c,
176 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
178 PCIE_IRQ_CAUSE_OFS = 0x1900,
179 PCIE_IRQ_MASK_OFS = 0x1910,
180 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
182 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
184 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
185 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
186 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
187 ERR_IRQ = (1 << 0), /* shift by port # */
188 DONE_IRQ = (1 << 1), /* shift by port # */
189 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
190 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
192 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
193 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
194 PORTS_0_3_COAL_DONE = (1 << 8),
195 PORTS_4_7_COAL_DONE = (1 << 17),
196 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
197 GPIO_INT = (1 << 22),
198 SELF_INT = (1 << 23),
199 TWSI_INT = (1 << 24),
200 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
201 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
202 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
204 /* SATAHC registers */
207 HC_IRQ_CAUSE_OFS = 0x14,
208 DMA_IRQ = (1 << 0), /* shift by port # */
209 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
210 DEV_IRQ = (1 << 8), /* shift by port # */
212 /* Shadow block registers */
214 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
217 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS = 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
220 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
223 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
228 SATA_IFCTL_OFS = 0x344,
229 SATA_TESTCTL_OFS = 0x348,
230 SATA_IFSTAT_OFS = 0x34c,
231 VENDOR_UNIQUE_FIS_OFS = 0x35c,
234 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
235 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
238 MV5_LTMODE_OFS = 0x30,
239 MV5_PHY_CTL_OFS = 0x0C,
240 SATA_INTERFACE_CFG_OFS = 0x050,
242 MV_M2_PREAMP_MASK = 0x7e0,
246 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
247 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
248 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
249 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
250 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
251 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
252 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
254 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
255 EDMA_ERR_IRQ_MASK_OFS = 0xc,
256 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
257 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
258 EDMA_ERR_DEV = (1 << 2), /* device error */
259 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
260 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
261 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
262 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
263 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
264 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
265 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
266 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
267 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
268 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
269 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
271 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
272 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
273 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
274 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
275 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
277 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
279 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
280 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
281 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
282 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
283 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
284 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
286 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
288 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
289 EDMA_ERR_OVERRUN_5 = (1 << 5),
290 EDMA_ERR_UNDERRUN_5 = (1 << 6),
292 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
293 EDMA_ERR_LNK_CTRL_RX_1 |
294 EDMA_ERR_LNK_CTRL_RX_3 |
295 EDMA_ERR_LNK_CTRL_TX,
297 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
307 EDMA_ERR_LNK_CTRL_RX_2 |
308 EDMA_ERR_LNK_DATA_RX |
309 EDMA_ERR_LNK_DATA_TX |
310 EDMA_ERR_TRANS_PROTO,
312 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
317 EDMA_ERR_UNDERRUN_5 |
318 EDMA_ERR_SELF_DIS_5 |
324 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
325 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
327 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
328 EDMA_REQ_Q_PTR_SHIFT = 5,
330 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
331 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
332 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
333 EDMA_RSP_Q_PTR_SHIFT = 3,
335 EDMA_CMD_OFS = 0x28, /* EDMA command register */
336 EDMA_EN = (1 << 0), /* enable EDMA */
337 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
338 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
340 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
341 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
342 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
344 EDMA_IORDY_TMOUT_OFS = 0x34,
345 EDMA_ARB_CFG_OFS = 0x38,
347 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
349 GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
351 /* Host private flags (hp_flags) */
352 MV_HP_FLAG_MSI = (1 << 0),
353 MV_HP_ERRATA_50XXB0 = (1 << 1),
354 MV_HP_ERRATA_50XXB2 = (1 << 2),
355 MV_HP_ERRATA_60X1B2 = (1 << 3),
356 MV_HP_ERRATA_60X1C0 = (1 << 4),
357 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
358 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
359 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
360 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
361 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
362 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
364 /* Port private flags (pp_flags) */
365 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
366 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
367 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
368 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
371 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
372 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
373 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
374 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
375 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
377 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
378 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
381 /* DMA boundary 0xffff is required by the s/g splitting
382 * we need on /length/ in mv_fill-sg().
384 MV_DMA_BOUNDARY = 0xffffU,
386 /* mask of register bits containing lower 32 bits
387 * of EDMA request queue DMA address
389 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
391 /* ditto, for response queue */
392 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
406 /* Command ReQuest Block: 32B */
422 /* Command ResPonse Block: 8B */
429 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
437 struct mv_port_priv {
438 struct mv_crqb *crqb;
440 struct mv_crpb *crpb;
442 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
443 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
445 unsigned int req_idx;
446 unsigned int resp_idx;
449 unsigned int delayed_eh_pmp_map;
452 struct mv_port_signal {
457 struct mv_host_priv {
460 struct mv_port_signal signal[8];
461 const struct mv_hw_ops *ops;
464 void __iomem *main_irq_cause_addr;
465 void __iomem *main_irq_mask_addr;
470 * These consistent DMA memory pools give us guaranteed
471 * alignment for hardware-accessed data structures,
472 * and less memory waste in accomplishing the alignment.
474 struct dma_pool *crqb_pool;
475 struct dma_pool *crpb_pool;
476 struct dma_pool *sg_tbl_pool;
480 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
482 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
483 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
485 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
487 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
491 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
492 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
493 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
494 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
495 static int mv_port_start(struct ata_port *ap);
496 static void mv_port_stop(struct ata_port *ap);
497 static int mv_qc_defer(struct ata_queued_cmd *qc);
498 static void mv_qc_prep(struct ata_queued_cmd *qc);
499 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
500 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
501 static int mv_hardreset(struct ata_link *link, unsigned int *class,
502 unsigned long deadline);
503 static void mv_eh_freeze(struct ata_port *ap);
504 static void mv_eh_thaw(struct ata_port *ap);
505 static void mv6_dev_config(struct ata_device *dev);
507 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
509 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
510 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
512 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
514 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
517 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
519 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
522 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
524 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
527 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
529 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
530 void __iomem *mmio, unsigned int n_hc);
531 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
533 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
534 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
536 unsigned int port_no);
537 static int mv_stop_edma(struct ata_port *ap);
538 static int mv_stop_edma_engine(void __iomem *port_mmio);
539 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
541 static void mv_pmp_select(struct ata_port *ap, int pmp);
542 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
543 unsigned long deadline);
544 static int mv_softreset(struct ata_link *link, unsigned int *class,
545 unsigned long deadline);
546 static void mv_pmp_error_handler(struct ata_port *ap);
547 static void mv_process_crpb_entries(struct ata_port *ap,
548 struct mv_port_priv *pp);
550 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
551 * because we have to allow room for worst case splitting of
552 * PRDs for 64K boundaries in mv_fill_sg().
554 static struct scsi_host_template mv5_sht = {
555 ATA_BASE_SHT(DRV_NAME),
556 .sg_tablesize = MV_MAX_SG_CT / 2,
557 .dma_boundary = MV_DMA_BOUNDARY,
560 static struct scsi_host_template mv6_sht = {
561 ATA_NCQ_SHT(DRV_NAME),
562 .can_queue = MV_MAX_Q_DEPTH - 1,
563 .sg_tablesize = MV_MAX_SG_CT / 2,
564 .dma_boundary = MV_DMA_BOUNDARY,
567 static struct ata_port_operations mv5_ops = {
568 .inherits = &ata_sff_port_ops,
570 .qc_defer = mv_qc_defer,
571 .qc_prep = mv_qc_prep,
572 .qc_issue = mv_qc_issue,
574 .freeze = mv_eh_freeze,
576 .hardreset = mv_hardreset,
577 .error_handler = ata_std_error_handler, /* avoid SFF EH */
578 .post_internal_cmd = ATA_OP_NULL,
580 .scr_read = mv5_scr_read,
581 .scr_write = mv5_scr_write,
583 .port_start = mv_port_start,
584 .port_stop = mv_port_stop,
587 static struct ata_port_operations mv6_ops = {
588 .inherits = &mv5_ops,
589 .dev_config = mv6_dev_config,
590 .scr_read = mv_scr_read,
591 .scr_write = mv_scr_write,
593 .pmp_hardreset = mv_pmp_hardreset,
594 .pmp_softreset = mv_softreset,
595 .softreset = mv_softreset,
596 .error_handler = mv_pmp_error_handler,
599 static struct ata_port_operations mv_iie_ops = {
600 .inherits = &mv6_ops,
601 .dev_config = ATA_OP_NULL,
602 .qc_prep = mv_qc_prep_iie,
605 static const struct ata_port_info mv_port_info[] = {
607 .flags = MV_COMMON_FLAGS,
608 .pio_mask = 0x1f, /* pio0-4 */
609 .udma_mask = ATA_UDMA6,
610 .port_ops = &mv5_ops,
613 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
614 .pio_mask = 0x1f, /* pio0-4 */
615 .udma_mask = ATA_UDMA6,
616 .port_ops = &mv5_ops,
619 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
620 .pio_mask = 0x1f, /* pio0-4 */
621 .udma_mask = ATA_UDMA6,
622 .port_ops = &mv5_ops,
625 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
626 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
628 .pio_mask = 0x1f, /* pio0-4 */
629 .udma_mask = ATA_UDMA6,
630 .port_ops = &mv6_ops,
633 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
634 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
635 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
636 .pio_mask = 0x1f, /* pio0-4 */
637 .udma_mask = ATA_UDMA6,
638 .port_ops = &mv6_ops,
641 .flags = MV_GENIIE_FLAGS,
642 .pio_mask = 0x1f, /* pio0-4 */
643 .udma_mask = ATA_UDMA6,
644 .port_ops = &mv_iie_ops,
647 .flags = MV_GENIIE_FLAGS,
648 .pio_mask = 0x1f, /* pio0-4 */
649 .udma_mask = ATA_UDMA6,
650 .port_ops = &mv_iie_ops,
653 .flags = MV_GENIIE_FLAGS,
654 .pio_mask = 0x1f, /* pio0-4 */
655 .udma_mask = ATA_UDMA6,
656 .port_ops = &mv_iie_ops,
660 static const struct pci_device_id mv_pci_tbl[] = {
661 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
662 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
663 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
664 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
665 /* RocketRAID 1740/174x have different identifiers */
666 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
667 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
669 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
670 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
671 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
672 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
673 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
675 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
678 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
680 /* Marvell 7042 support */
681 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
683 /* Highpoint RocketRAID PCIe series */
684 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
685 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
687 { } /* terminate list */
690 static const struct mv_hw_ops mv5xxx_ops = {
691 .phy_errata = mv5_phy_errata,
692 .enable_leds = mv5_enable_leds,
693 .read_preamp = mv5_read_preamp,
694 .reset_hc = mv5_reset_hc,
695 .reset_flash = mv5_reset_flash,
696 .reset_bus = mv5_reset_bus,
699 static const struct mv_hw_ops mv6xxx_ops = {
700 .phy_errata = mv6_phy_errata,
701 .enable_leds = mv6_enable_leds,
702 .read_preamp = mv6_read_preamp,
703 .reset_hc = mv6_reset_hc,
704 .reset_flash = mv6_reset_flash,
705 .reset_bus = mv_reset_pci_bus,
708 static const struct mv_hw_ops mv_soc_ops = {
709 .phy_errata = mv6_phy_errata,
710 .enable_leds = mv_soc_enable_leds,
711 .read_preamp = mv_soc_read_preamp,
712 .reset_hc = mv_soc_reset_hc,
713 .reset_flash = mv_soc_reset_flash,
714 .reset_bus = mv_soc_reset_bus,
721 static inline void writelfl(unsigned long data, void __iomem *addr)
724 (void) readl(addr); /* flush to avoid PCI posted write */
727 static inline unsigned int mv_hc_from_port(unsigned int port)
729 return port >> MV_PORT_HC_SHIFT;
732 static inline unsigned int mv_hardport_from_port(unsigned int port)
734 return port & MV_PORT_MASK;
738 * Consolidate some rather tricky bit shift calculations.
739 * This is hot-path stuff, so not a function.
740 * Simple code, with two return values, so macro rather than inline.
742 * port is the sole input, in range 0..7.
743 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
744 * hardport is the other output, in range 0..3.
746 * Note that port and hardport may be the same variable in some cases.
748 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
750 shift = mv_hc_from_port(port) * HC_SHIFT; \
751 hardport = mv_hardport_from_port(port); \
752 shift += hardport * 2; \
755 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
757 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
760 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
763 return mv_hc_base(base, mv_hc_from_port(port));
766 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
768 return mv_hc_base_from_port(base, port) +
769 MV_SATAHC_ARBTR_REG_SZ +
770 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
773 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
775 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
776 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
778 return hc_mmio + ofs;
781 static inline void __iomem *mv_host_base(struct ata_host *host)
783 struct mv_host_priv *hpriv = host->private_data;
787 static inline void __iomem *mv_ap_base(struct ata_port *ap)
789 return mv_port_base(mv_host_base(ap->host), ap->port_no);
792 static inline int mv_get_hc_count(unsigned long port_flags)
794 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
797 static void mv_set_edma_ptrs(void __iomem *port_mmio,
798 struct mv_host_priv *hpriv,
799 struct mv_port_priv *pp)
804 * initialize request queue
806 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
807 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
809 WARN_ON(pp->crqb_dma & 0x3ff);
810 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
811 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
812 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
813 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
816 * initialize response queue
818 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
819 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
821 WARN_ON(pp->crpb_dma & 0xff);
822 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
823 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
824 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
825 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
828 static void mv_set_main_irq_mask(struct ata_host *host,
829 u32 disable_bits, u32 enable_bits)
831 struct mv_host_priv *hpriv = host->private_data;
832 u32 old_mask, new_mask;
834 old_mask = hpriv->main_irq_mask;
835 new_mask = (old_mask & ~disable_bits) | enable_bits;
836 if (new_mask != old_mask) {
837 hpriv->main_irq_mask = new_mask;
838 writelfl(new_mask, hpriv->main_irq_mask_addr);
842 static void mv_enable_port_irqs(struct ata_port *ap,
843 unsigned int port_bits)
845 unsigned int shift, hardport, port = ap->port_no;
846 u32 disable_bits, enable_bits;
848 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
850 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
851 enable_bits = port_bits << shift;
852 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
856 * mv_start_dma - Enable eDMA engine
857 * @base: port base address
858 * @pp: port private data
860 * Verify the local cache of the eDMA state is accurate with a
864 * Inherited from caller.
866 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
867 struct mv_port_priv *pp, u8 protocol)
869 int want_ncq = (protocol == ATA_PROT_NCQ);
871 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
872 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
873 if (want_ncq != using_ncq)
876 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
877 struct mv_host_priv *hpriv = ap->host->private_data;
878 int hardport = mv_hardport_from_port(ap->port_no);
879 void __iomem *hc_mmio = mv_hc_base_from_port(
880 mv_host_base(ap->host), hardport);
881 u32 hc_irq_cause, ipending;
883 /* clear EDMA event indicators, if any */
884 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
886 /* clear EDMA interrupt indicator, if any */
887 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
888 ipending = (DEV_IRQ | DMA_IRQ) << hardport;
889 if (hc_irq_cause & ipending) {
890 writelfl(hc_irq_cause & ~ipending,
891 hc_mmio + HC_IRQ_CAUSE_OFS);
894 mv_edma_cfg(ap, want_ncq);
896 /* clear FIS IRQ Cause */
897 if (IS_GEN_IIE(hpriv))
898 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
900 mv_set_edma_ptrs(port_mmio, hpriv, pp);
901 mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
903 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
904 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
908 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
910 void __iomem *port_mmio = mv_ap_base(ap);
911 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
912 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
916 * Wait for the EDMA engine to finish transactions in progress.
917 * No idea what a good "timeout" value might be, but measurements
918 * indicate that it often requires hundreds of microseconds
919 * with two drives in-use. So we use the 15msec value above
920 * as a rough guess at what even more drives might require.
922 for (i = 0; i < timeout; ++i) {
923 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
924 if ((edma_stat & empty_idle) == empty_idle)
928 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
932 * mv_stop_edma_engine - Disable eDMA engine
933 * @port_mmio: io base address
936 * Inherited from caller.
938 static int mv_stop_edma_engine(void __iomem *port_mmio)
942 /* Disable eDMA. The disable bit auto clears. */
943 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
945 /* Wait for the chip to confirm eDMA is off. */
946 for (i = 10000; i > 0; i--) {
947 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
948 if (!(reg & EDMA_EN))
955 static int mv_stop_edma(struct ata_port *ap)
957 void __iomem *port_mmio = mv_ap_base(ap);
958 struct mv_port_priv *pp = ap->private_data;
960 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
962 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
963 mv_wait_for_edma_empty_idle(ap);
964 if (mv_stop_edma_engine(port_mmio)) {
965 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
972 static void mv_dump_mem(void __iomem *start, unsigned bytes)
975 for (b = 0; b < bytes; ) {
976 DPRINTK("%p: ", start + b);
977 for (w = 0; b < bytes && w < 4; w++) {
978 printk("%08x ", readl(start + b));
986 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
991 for (b = 0; b < bytes; ) {
992 DPRINTK("%02x: ", b);
993 for (w = 0; b < bytes && w < 4; w++) {
994 (void) pci_read_config_dword(pdev, b, &dw);
1002 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1003 struct pci_dev *pdev)
1006 void __iomem *hc_base = mv_hc_base(mmio_base,
1007 port >> MV_PORT_HC_SHIFT);
1008 void __iomem *port_base;
1009 int start_port, num_ports, p, start_hc, num_hcs, hc;
1012 start_hc = start_port = 0;
1013 num_ports = 8; /* shld be benign for 4 port devs */
1016 start_hc = port >> MV_PORT_HC_SHIFT;
1018 num_ports = num_hcs = 1;
1020 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1021 num_ports > 1 ? num_ports - 1 : start_port);
1024 DPRINTK("PCI config space regs:\n");
1025 mv_dump_pci_cfg(pdev, 0x68);
1027 DPRINTK("PCI regs:\n");
1028 mv_dump_mem(mmio_base+0xc00, 0x3c);
1029 mv_dump_mem(mmio_base+0xd00, 0x34);
1030 mv_dump_mem(mmio_base+0xf00, 0x4);
1031 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1032 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1033 hc_base = mv_hc_base(mmio_base, hc);
1034 DPRINTK("HC regs (HC %i):\n", hc);
1035 mv_dump_mem(hc_base, 0x1c);
1037 for (p = start_port; p < start_port + num_ports; p++) {
1038 port_base = mv_port_base(mmio_base, p);
1039 DPRINTK("EDMA regs (port %i):\n", p);
1040 mv_dump_mem(port_base, 0x54);
1041 DPRINTK("SATA regs (port %i):\n", p);
1042 mv_dump_mem(port_base+0x300, 0x60);
1047 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1051 switch (sc_reg_in) {
1055 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1058 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1067 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1069 unsigned int ofs = mv_scr_offset(sc_reg_in);
1071 if (ofs != 0xffffffffU) {
1072 *val = readl(mv_ap_base(ap) + ofs);
1078 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1080 unsigned int ofs = mv_scr_offset(sc_reg_in);
1082 if (ofs != 0xffffffffU) {
1083 writelfl(val, mv_ap_base(ap) + ofs);
1089 static void mv6_dev_config(struct ata_device *adev)
1092 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1094 * Gen-II does not support NCQ over a port multiplier
1095 * (no FIS-based switching).
1097 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1098 * See mv_qc_prep() for more info.
1100 if (adev->flags & ATA_DFLAG_NCQ) {
1101 if (sata_pmp_attached(adev->link->ap)) {
1102 adev->flags &= ~ATA_DFLAG_NCQ;
1103 ata_dev_printk(adev, KERN_INFO,
1104 "NCQ disabled for command-based switching\n");
1105 } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1106 adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1107 ata_dev_printk(adev, KERN_INFO,
1108 "max_sectors limited to %u for NCQ\n",
1114 static int mv_qc_defer(struct ata_queued_cmd *qc)
1116 struct ata_link *link = qc->dev->link;
1117 struct ata_port *ap = link->ap;
1118 struct mv_port_priv *pp = ap->private_data;
1121 * Don't allow new commands if we're in a delayed EH state
1122 * for NCQ and/or FIS-based switching.
1124 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1125 return ATA_DEFER_PORT;
1127 * If the port is completely idle, then allow the new qc.
1129 if (ap->nr_active_links == 0)
1132 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1134 * The port is operating in host queuing mode (EDMA).
1135 * It can accomodate a new qc if the qc protocol
1136 * is compatible with the current host queue mode.
1138 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1140 * The host queue (EDMA) is in NCQ mode.
1141 * If the new qc is also an NCQ command,
1142 * then allow the new qc.
1144 if (qc->tf.protocol == ATA_PROT_NCQ)
1148 * The host queue (EDMA) is in non-NCQ, DMA mode.
1149 * If the new qc is also a non-NCQ, DMA command,
1150 * then allow the new qc.
1152 if (qc->tf.protocol == ATA_PROT_DMA)
1156 return ATA_DEFER_PORT;
1159 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1161 u32 new_fiscfg, old_fiscfg;
1162 u32 new_ltmode, old_ltmode;
1163 u32 new_haltcond, old_haltcond;
1165 old_fiscfg = readl(port_mmio + FISCFG_OFS);
1166 old_ltmode = readl(port_mmio + LTMODE_OFS);
1167 old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1169 new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1170 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1171 new_haltcond = old_haltcond | EDMA_ERR_DEV;
1174 new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1175 new_ltmode = old_ltmode | LTMODE_BIT8;
1177 new_haltcond &= ~EDMA_ERR_DEV;
1179 new_fiscfg |= FISCFG_WAIT_DEV_ERR;
1182 if (new_fiscfg != old_fiscfg)
1183 writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1184 if (new_ltmode != old_ltmode)
1185 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1186 if (new_haltcond != old_haltcond)
1187 writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1190 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1192 struct mv_host_priv *hpriv = ap->host->private_data;
1195 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1196 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1198 new = old | (1 << 22);
1200 new = old & ~(1 << 22);
1202 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1205 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1208 struct mv_port_priv *pp = ap->private_data;
1209 struct mv_host_priv *hpriv = ap->host->private_data;
1210 void __iomem *port_mmio = mv_ap_base(ap);
1212 /* set up non-NCQ EDMA configuration */
1213 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1214 pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1216 if (IS_GEN_I(hpriv))
1217 cfg |= (1 << 8); /* enab config burst size mask */
1219 else if (IS_GEN_II(hpriv)) {
1220 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1221 mv_60x1_errata_sata25(ap, want_ncq);
1223 } else if (IS_GEN_IIE(hpriv)) {
1224 int want_fbs = sata_pmp_attached(ap);
1226 * Possible future enhancement:
1228 * The chip can use FBS with non-NCQ, if we allow it,
1229 * But first we need to have the error handling in place
1230 * for this mode (datasheet section 7.3.15.4.2.3).
1231 * So disallow non-NCQ FBS for now.
1233 want_fbs &= want_ncq;
1235 mv_config_fbs(port_mmio, want_ncq, want_fbs);
1238 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1239 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1242 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1243 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1245 cfg |= (1 << 18); /* enab early completion */
1246 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1247 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1251 cfg |= EDMA_CFG_NCQ;
1252 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1254 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1256 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1259 static void mv_port_free_dma_mem(struct ata_port *ap)
1261 struct mv_host_priv *hpriv = ap->host->private_data;
1262 struct mv_port_priv *pp = ap->private_data;
1266 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1270 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1274 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1275 * For later hardware, we have one unique sg_tbl per NCQ tag.
1277 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1278 if (pp->sg_tbl[tag]) {
1279 if (tag == 0 || !IS_GEN_I(hpriv))
1280 dma_pool_free(hpriv->sg_tbl_pool,
1282 pp->sg_tbl_dma[tag]);
1283 pp->sg_tbl[tag] = NULL;
1289 * mv_port_start - Port specific init/start routine.
1290 * @ap: ATA channel to manipulate
1292 * Allocate and point to DMA memory, init port private memory,
1296 * Inherited from caller.
1298 static int mv_port_start(struct ata_port *ap)
1300 struct device *dev = ap->host->dev;
1301 struct mv_host_priv *hpriv = ap->host->private_data;
1302 struct mv_port_priv *pp;
1305 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1308 ap->private_data = pp;
1310 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1313 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1315 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1317 goto out_port_free_dma_mem;
1318 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1321 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1322 * For later hardware, we need one unique sg_tbl per NCQ tag.
1324 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1325 if (tag == 0 || !IS_GEN_I(hpriv)) {
1326 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1327 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1328 if (!pp->sg_tbl[tag])
1329 goto out_port_free_dma_mem;
1331 pp->sg_tbl[tag] = pp->sg_tbl[0];
1332 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1337 out_port_free_dma_mem:
1338 mv_port_free_dma_mem(ap);
1343 * mv_port_stop - Port specific cleanup/stop routine.
1344 * @ap: ATA channel to manipulate
1346 * Stop DMA, cleanup port memory.
1349 * This routine uses the host lock to protect the DMA stop.
1351 static void mv_port_stop(struct ata_port *ap)
1354 mv_enable_port_irqs(ap, 0);
1355 mv_port_free_dma_mem(ap);
1359 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1360 * @qc: queued command whose SG list to source from
1362 * Populate the SG list and mark the last entry.
1365 * Inherited from caller.
1367 static void mv_fill_sg(struct ata_queued_cmd *qc)
1369 struct mv_port_priv *pp = qc->ap->private_data;
1370 struct scatterlist *sg;
1371 struct mv_sg *mv_sg, *last_sg = NULL;
1374 mv_sg = pp->sg_tbl[qc->tag];
1375 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1376 dma_addr_t addr = sg_dma_address(sg);
1377 u32 sg_len = sg_dma_len(sg);
1380 u32 offset = addr & 0xffff;
1383 if ((offset + sg_len > 0x10000))
1384 len = 0x10000 - offset;
1386 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1387 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1388 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1398 if (likely(last_sg))
1399 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1402 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1404 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1405 (last ? CRQB_CMD_LAST : 0);
1406 *cmdw = cpu_to_le16(tmp);
1410 * mv_qc_prep - Host specific command preparation.
1411 * @qc: queued command to prepare
1413 * This routine simply redirects to the general purpose routine
1414 * if command is not DMA. Else, it handles prep of the CRQB
1415 * (command request block), does some sanity checking, and calls
1416 * the SG load routine.
1419 * Inherited from caller.
1421 static void mv_qc_prep(struct ata_queued_cmd *qc)
1423 struct ata_port *ap = qc->ap;
1424 struct mv_port_priv *pp = ap->private_data;
1426 struct ata_taskfile *tf;
1430 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1431 (qc->tf.protocol != ATA_PROT_NCQ))
1434 /* Fill in command request block
1436 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1437 flags |= CRQB_FLAG_READ;
1438 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1439 flags |= qc->tag << CRQB_TAG_SHIFT;
1440 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1442 /* get current queue index from software */
1443 in_index = pp->req_idx;
1445 pp->crqb[in_index].sg_addr =
1446 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1447 pp->crqb[in_index].sg_addr_hi =
1448 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1449 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1451 cw = &pp->crqb[in_index].ata_cmd[0];
1454 /* Sadly, the CRQB cannot accomodate all registers--there are
1455 * only 11 bytes...so we must pick and choose required
1456 * registers based on the command. So, we drop feature and
1457 * hob_feature for [RW] DMA commands, but they are needed for
1458 * NCQ. NCQ will drop hob_nsect.
1460 switch (tf->command) {
1462 case ATA_CMD_READ_EXT:
1464 case ATA_CMD_WRITE_EXT:
1465 case ATA_CMD_WRITE_FUA_EXT:
1466 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1468 case ATA_CMD_FPDMA_READ:
1469 case ATA_CMD_FPDMA_WRITE:
1470 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1471 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1474 /* The only other commands EDMA supports in non-queued and
1475 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1476 * of which are defined/used by Linux. If we get here, this
1477 * driver needs work.
1479 * FIXME: modify libata to give qc_prep a return value and
1480 * return error here.
1482 BUG_ON(tf->command);
1485 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1486 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1487 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1488 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1489 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1490 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1491 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1492 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1493 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1495 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1501 * mv_qc_prep_iie - Host specific command preparation.
1502 * @qc: queued command to prepare
1504 * This routine simply redirects to the general purpose routine
1505 * if command is not DMA. Else, it handles prep of the CRQB
1506 * (command request block), does some sanity checking, and calls
1507 * the SG load routine.
1510 * Inherited from caller.
1512 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1514 struct ata_port *ap = qc->ap;
1515 struct mv_port_priv *pp = ap->private_data;
1516 struct mv_crqb_iie *crqb;
1517 struct ata_taskfile *tf;
1521 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1522 (qc->tf.protocol != ATA_PROT_NCQ))
1525 /* Fill in Gen IIE command request block */
1526 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1527 flags |= CRQB_FLAG_READ;
1529 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1530 flags |= qc->tag << CRQB_TAG_SHIFT;
1531 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1532 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1534 /* get current queue index from software */
1535 in_index = pp->req_idx;
1537 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1538 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1539 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1540 crqb->flags = cpu_to_le32(flags);
1543 crqb->ata_cmd[0] = cpu_to_le32(
1544 (tf->command << 16) |
1547 crqb->ata_cmd[1] = cpu_to_le32(
1553 crqb->ata_cmd[2] = cpu_to_le32(
1554 (tf->hob_lbal << 0) |
1555 (tf->hob_lbam << 8) |
1556 (tf->hob_lbah << 16) |
1557 (tf->hob_feature << 24)
1559 crqb->ata_cmd[3] = cpu_to_le32(
1561 (tf->hob_nsect << 8)
1564 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1570 * mv_qc_issue - Initiate a command to the host
1571 * @qc: queued command to start
1573 * This routine simply redirects to the general purpose routine
1574 * if command is not DMA. Else, it sanity checks our local
1575 * caches of the request producer/consumer indices then enables
1576 * DMA and bumps the request producer index.
1579 * Inherited from caller.
1581 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1583 struct ata_port *ap = qc->ap;
1584 void __iomem *port_mmio = mv_ap_base(ap);
1585 struct mv_port_priv *pp = ap->private_data;
1588 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1589 (qc->tf.protocol != ATA_PROT_NCQ)) {
1591 * We're about to send a non-EDMA capable command to the
1592 * port. Turn off EDMA so there won't be problems accessing
1593 * shadow block, etc registers.
1596 mv_enable_port_irqs(ap, ERR_IRQ);
1597 mv_pmp_select(ap, qc->dev->link->pmp);
1598 return ata_sff_qc_issue(qc);
1601 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1603 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1604 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1606 /* and write the request in pointer to kick the EDMA to life */
1607 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1608 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1613 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1615 struct mv_port_priv *pp = ap->private_data;
1616 struct ata_queued_cmd *qc;
1618 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1620 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1621 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1626 static void mv_pmp_error_handler(struct ata_port *ap)
1628 unsigned int pmp, pmp_map;
1629 struct mv_port_priv *pp = ap->private_data;
1631 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1633 * Perform NCQ error analysis on failed PMPs
1634 * before we freeze the port entirely.
1636 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1638 pmp_map = pp->delayed_eh_pmp_map;
1639 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1640 for (pmp = 0; pmp_map != 0; pmp++) {
1641 unsigned int this_pmp = (1 << pmp);
1642 if (pmp_map & this_pmp) {
1643 struct ata_link *link = &ap->pmp_link[pmp];
1644 pmp_map &= ~this_pmp;
1645 ata_eh_analyze_ncq_error(link);
1648 ata_port_freeze(ap);
1650 sata_pmp_error_handler(ap);
1653 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1655 void __iomem *port_mmio = mv_ap_base(ap);
1657 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1660 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1662 struct ata_eh_info *ehi;
1666 * Initialize EH info for PMPs which saw device errors
1668 ehi = &ap->link.eh_info;
1669 for (pmp = 0; pmp_map != 0; pmp++) {
1670 unsigned int this_pmp = (1 << pmp);
1671 if (pmp_map & this_pmp) {
1672 struct ata_link *link = &ap->pmp_link[pmp];
1674 pmp_map &= ~this_pmp;
1675 ehi = &link->eh_info;
1676 ata_ehi_clear_desc(ehi);
1677 ata_ehi_push_desc(ehi, "dev err");
1678 ehi->err_mask |= AC_ERR_DEV;
1679 ehi->action |= ATA_EH_RESET;
1680 ata_link_abort(link);
1685 static int mv_req_q_empty(struct ata_port *ap)
1687 void __iomem *port_mmio = mv_ap_base(ap);
1688 u32 in_ptr, out_ptr;
1690 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1691 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1692 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1693 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1694 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
1697 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1699 struct mv_port_priv *pp = ap->private_data;
1701 unsigned int old_map, new_map;
1704 * Device error during FBS+NCQ operation:
1706 * Set a port flag to prevent further I/O being enqueued.
1707 * Leave the EDMA running to drain outstanding commands from this port.
1708 * Perform the post-mortem/EH only when all responses are complete.
1709 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1711 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1712 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1713 pp->delayed_eh_pmp_map = 0;
1715 old_map = pp->delayed_eh_pmp_map;
1716 new_map = old_map | mv_get_err_pmp_map(ap);
1718 if (old_map != new_map) {
1719 pp->delayed_eh_pmp_map = new_map;
1720 mv_pmp_eh_prep(ap, new_map & ~old_map);
1722 failed_links = hweight16(new_map);
1724 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1725 "failed_links=%d nr_active_links=%d\n",
1726 __func__, pp->delayed_eh_pmp_map,
1727 ap->qc_active, failed_links,
1728 ap->nr_active_links);
1730 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1731 mv_process_crpb_entries(ap, pp);
1734 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1735 return 1; /* handled */
1737 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1738 return 1; /* handled */
1741 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1744 * Possible future enhancement:
1746 * FBS+non-NCQ operation is not yet implemented.
1747 * See related notes in mv_edma_cfg().
1749 * Device error during FBS+non-NCQ operation:
1751 * We need to snapshot the shadow registers for each failed command.
1752 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1754 return 0; /* not handled */
1757 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1759 struct mv_port_priv *pp = ap->private_data;
1761 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1762 return 0; /* EDMA was not active: not handled */
1763 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1764 return 0; /* FBS was not active: not handled */
1766 if (!(edma_err_cause & EDMA_ERR_DEV))
1767 return 0; /* non DEV error: not handled */
1768 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1769 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1770 return 0; /* other problems: not handled */
1772 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1774 * EDMA should NOT have self-disabled for this case.
1775 * If it did, then something is wrong elsewhere,
1776 * and we cannot handle it here.
1778 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1779 ata_port_printk(ap, KERN_WARNING,
1780 "%s: err_cause=0x%x pp_flags=0x%x\n",
1781 __func__, edma_err_cause, pp->pp_flags);
1782 return 0; /* not handled */
1784 return mv_handle_fbs_ncq_dev_err(ap);
1787 * EDMA should have self-disabled for this case.
1788 * If it did not, then something is wrong elsewhere,
1789 * and we cannot handle it here.
1791 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1792 ata_port_printk(ap, KERN_WARNING,
1793 "%s: err_cause=0x%x pp_flags=0x%x\n",
1794 __func__, edma_err_cause, pp->pp_flags);
1795 return 0; /* not handled */
1797 return mv_handle_fbs_non_ncq_dev_err(ap);
1799 return 0; /* not handled */
1802 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1804 struct ata_eh_info *ehi = &ap->link.eh_info;
1805 char *when = "idle";
1807 ata_ehi_clear_desc(ehi);
1808 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1810 } else if (edma_was_enabled) {
1811 when = "EDMA enabled";
1813 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1814 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1817 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1818 ehi->err_mask |= AC_ERR_OTHER;
1819 ehi->action |= ATA_EH_RESET;
1820 ata_port_freeze(ap);
1824 * mv_err_intr - Handle error interrupts on the port
1825 * @ap: ATA channel to manipulate
1826 * @qc: affected command (non-NCQ), or NULL
1828 * Most cases require a full reset of the chip's state machine,
1829 * which also performs a COMRESET.
1830 * Also, if the port disabled DMA, update our cached copy to match.
1833 * Inherited from caller.
1835 static void mv_err_intr(struct ata_port *ap)
1837 void __iomem *port_mmio = mv_ap_base(ap);
1838 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1840 struct mv_port_priv *pp = ap->private_data;
1841 struct mv_host_priv *hpriv = ap->host->private_data;
1842 unsigned int action = 0, err_mask = 0;
1843 struct ata_eh_info *ehi = &ap->link.eh_info;
1844 struct ata_queued_cmd *qc;
1848 * Read and clear the SError and err_cause bits.
1849 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1850 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1852 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1853 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1855 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1856 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1857 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1858 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1860 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1862 if (edma_err_cause & EDMA_ERR_DEV) {
1864 * Device errors during FIS-based switching operation
1865 * require special handling.
1867 if (mv_handle_dev_err(ap, edma_err_cause))
1871 qc = mv_get_active_qc(ap);
1872 ata_ehi_clear_desc(ehi);
1873 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1874 edma_err_cause, pp->pp_flags);
1876 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1877 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1878 if (fis_cause & SATA_FIS_IRQ_AN) {
1879 u32 ec = edma_err_cause &
1880 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1881 sata_async_notification(ap);
1883 return; /* Just an AN; no need for the nukes */
1884 ata_ehi_push_desc(ehi, "SDB notify");
1888 * All generations share these EDMA error cause bits:
1890 if (edma_err_cause & EDMA_ERR_DEV) {
1891 err_mask |= AC_ERR_DEV;
1892 action |= ATA_EH_RESET;
1893 ata_ehi_push_desc(ehi, "dev error");
1895 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1896 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1897 EDMA_ERR_INTRL_PAR)) {
1898 err_mask |= AC_ERR_ATA_BUS;
1899 action |= ATA_EH_RESET;
1900 ata_ehi_push_desc(ehi, "parity error");
1902 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1903 ata_ehi_hotplugged(ehi);
1904 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1905 "dev disconnect" : "dev connect");
1906 action |= ATA_EH_RESET;
1910 * Gen-I has a different SELF_DIS bit,
1911 * different FREEZE bits, and no SERR bit:
1913 if (IS_GEN_I(hpriv)) {
1914 eh_freeze_mask = EDMA_EH_FREEZE_5;
1915 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1916 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1917 ata_ehi_push_desc(ehi, "EDMA self-disable");
1920 eh_freeze_mask = EDMA_EH_FREEZE;
1921 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1922 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1923 ata_ehi_push_desc(ehi, "EDMA self-disable");
1925 if (edma_err_cause & EDMA_ERR_SERR) {
1926 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1927 err_mask |= AC_ERR_ATA_BUS;
1928 action |= ATA_EH_RESET;
1933 err_mask = AC_ERR_OTHER;
1934 action |= ATA_EH_RESET;
1937 ehi->serror |= serr;
1938 ehi->action |= action;
1941 qc->err_mask |= err_mask;
1943 ehi->err_mask |= err_mask;
1945 if (err_mask == AC_ERR_DEV) {
1947 * Cannot do ata_port_freeze() here,
1948 * because it would kill PIO access,
1949 * which is needed for further diagnosis.
1953 } else if (edma_err_cause & eh_freeze_mask) {
1955 * Note to self: ata_port_freeze() calls ata_port_abort()
1957 ata_port_freeze(ap);
1964 ata_link_abort(qc->dev->link);
1970 static void mv_process_crpb_response(struct ata_port *ap,
1971 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1973 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1977 u16 edma_status = le16_to_cpu(response->flags);
1979 * edma_status from a response queue entry:
1980 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1981 * MSB is saved ATA status from command completion.
1984 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1987 * Error will be seen/handled by mv_err_intr().
1988 * So do nothing at all here.
1993 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1994 if (!ac_err_mask(ata_status))
1995 ata_qc_complete(qc);
1996 /* else: leave it for mv_err_intr() */
1998 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2003 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2005 void __iomem *port_mmio = mv_ap_base(ap);
2006 struct mv_host_priv *hpriv = ap->host->private_data;
2008 bool work_done = false;
2009 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2011 /* Get the hardware queue position index */
2012 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2013 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2015 /* Process new responses from since the last time we looked */
2016 while (in_index != pp->resp_idx) {
2018 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2020 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2022 if (IS_GEN_I(hpriv)) {
2023 /* 50xx: no NCQ, only one command active at a time */
2024 tag = ap->link.active_tag;
2026 /* Gen II/IIE: get command tag from CRPB entry */
2027 tag = le16_to_cpu(response->id) & 0x1f;
2029 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2033 /* Update the software queue position index in hardware */
2035 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2036 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2037 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2040 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2042 struct mv_port_priv *pp;
2043 int edma_was_enabled;
2045 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2046 mv_unexpected_intr(ap, 0);
2050 * Grab a snapshot of the EDMA_EN flag setting,
2051 * so that we have a consistent view for this port,
2052 * even if something we call of our routines changes it.
2054 pp = ap->private_data;
2055 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2057 * Process completed CRPB response(s) before other events.
2059 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2060 mv_process_crpb_entries(ap, pp);
2061 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2062 mv_handle_fbs_ncq_dev_err(ap);
2065 * Handle chip-reported errors, or continue on to handle PIO.
2067 if (unlikely(port_cause & ERR_IRQ)) {
2069 } else if (!edma_was_enabled) {
2070 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2072 ata_sff_host_intr(ap, qc);
2074 mv_unexpected_intr(ap, edma_was_enabled);
2079 * mv_host_intr - Handle all interrupts on the given host controller
2080 * @host: host specific structure
2081 * @main_irq_cause: Main interrupt cause register for the chip.
2084 * Inherited from caller.
2086 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2088 struct mv_host_priv *hpriv = host->private_data;
2089 void __iomem *mmio = hpriv->base, *hc_mmio;
2090 unsigned int handled = 0, port;
2092 for (port = 0; port < hpriv->n_ports; port++) {
2093 struct ata_port *ap = host->ports[port];
2094 unsigned int p, shift, hardport, port_cause;
2096 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2098 * Each hc within the host has its own hc_irq_cause register,
2099 * where the interrupting ports bits get ack'd.
2101 if (hardport == 0) { /* first port on this hc ? */
2102 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2103 u32 port_mask, ack_irqs;
2105 * Skip this entire hc if nothing pending for any ports
2108 port += MV_PORTS_PER_HC - 1;
2112 * We don't need/want to read the hc_irq_cause register,
2113 * because doing so hurts performance, and
2114 * main_irq_cause already gives us everything we need.
2116 * But we do have to *write* to the hc_irq_cause to ack
2117 * the ports that we are handling this time through.
2119 * This requires that we create a bitmap for those
2120 * ports which interrupted us, and use that bitmap
2121 * to ack (only) those ports via hc_irq_cause.
2124 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2125 if ((port + p) >= hpriv->n_ports)
2127 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2128 if (hc_cause & port_mask)
2129 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2131 hc_mmio = mv_hc_base_from_port(mmio, port);
2132 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2136 * Handle interrupts signalled for this port:
2138 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2140 mv_port_intr(ap, port_cause);
2145 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2147 struct mv_host_priv *hpriv = host->private_data;
2148 struct ata_port *ap;
2149 struct ata_queued_cmd *qc;
2150 struct ata_eh_info *ehi;
2151 unsigned int i, err_mask, printed = 0;
2154 err_cause = readl(mmio + hpriv->irq_cause_ofs);
2156 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2159 DPRINTK("All regs @ PCI error\n");
2160 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2162 writelfl(0, mmio + hpriv->irq_cause_ofs);
2164 for (i = 0; i < host->n_ports; i++) {
2165 ap = host->ports[i];
2166 if (!ata_link_offline(&ap->link)) {
2167 ehi = &ap->link.eh_info;
2168 ata_ehi_clear_desc(ehi);
2170 ata_ehi_push_desc(ehi,
2171 "PCI err cause 0x%08x", err_cause);
2172 err_mask = AC_ERR_HOST_BUS;
2173 ehi->action = ATA_EH_RESET;
2174 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2176 qc->err_mask |= err_mask;
2178 ehi->err_mask |= err_mask;
2180 ata_port_freeze(ap);
2183 return 1; /* handled */
2187 * mv_interrupt - Main interrupt event handler
2189 * @dev_instance: private data; in this case the host structure
2191 * Read the read only register to determine if any host
2192 * controllers have pending interrupts. If so, call lower level
2193 * routine to handle. Also check for PCI errors which are only
2197 * This routine holds the host lock while processing pending
2200 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2202 struct ata_host *host = dev_instance;
2203 struct mv_host_priv *hpriv = host->private_data;
2204 unsigned int handled = 0;
2205 u32 main_irq_cause, pending_irqs;
2207 spin_lock(&host->lock);
2208 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2209 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2211 * Deal with cases where we either have nothing pending, or have read
2212 * a bogus register value which can indicate HW removal or PCI fault.
2214 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2215 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2216 handled = mv_pci_error(host, hpriv->base);
2218 handled = mv_host_intr(host, pending_irqs);
2220 spin_unlock(&host->lock);
2221 return IRQ_RETVAL(handled);
2224 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2228 switch (sc_reg_in) {
2232 ofs = sc_reg_in * sizeof(u32);
2241 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2243 struct mv_host_priv *hpriv = ap->host->private_data;
2244 void __iomem *mmio = hpriv->base;
2245 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2246 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2248 if (ofs != 0xffffffffU) {
2249 *val = readl(addr + ofs);
2255 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2257 struct mv_host_priv *hpriv = ap->host->private_data;
2258 void __iomem *mmio = hpriv->base;
2259 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2260 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2262 if (ofs != 0xffffffffU) {
2263 writelfl(val, addr + ofs);
2269 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2271 struct pci_dev *pdev = to_pci_dev(host->dev);
2274 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2277 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2279 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2282 mv_reset_pci_bus(host, mmio);
2285 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2287 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2290 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2293 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2296 tmp = readl(phy_mmio + MV5_PHY_MODE);
2298 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2299 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
2302 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2306 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2308 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2310 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2312 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2315 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2318 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2319 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2321 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2324 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2326 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2328 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2331 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2334 tmp = readl(phy_mmio + MV5_PHY_MODE);
2336 tmp |= hpriv->signal[port].pre;
2337 tmp |= hpriv->signal[port].amps;
2338 writel(tmp, phy_mmio + MV5_PHY_MODE);
2343 #define ZERO(reg) writel(0, port_mmio + (reg))
2344 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2347 void __iomem *port_mmio = mv_port_base(mmio, port);
2349 mv_reset_channel(hpriv, mmio, port);
2351 ZERO(0x028); /* command */
2352 writel(0x11f, port_mmio + EDMA_CFG_OFS);
2353 ZERO(0x004); /* timer */
2354 ZERO(0x008); /* irq err cause */
2355 ZERO(0x00c); /* irq err mask */
2356 ZERO(0x010); /* rq bah */
2357 ZERO(0x014); /* rq inp */
2358 ZERO(0x018); /* rq outp */
2359 ZERO(0x01c); /* respq bah */
2360 ZERO(0x024); /* respq outp */
2361 ZERO(0x020); /* respq inp */
2362 ZERO(0x02c); /* test control */
2363 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2367 #define ZERO(reg) writel(0, hc_mmio + (reg))
2368 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2371 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2379 tmp = readl(hc_mmio + 0x20);
2382 writel(tmp, hc_mmio + 0x20);
2386 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2389 unsigned int hc, port;
2391 for (hc = 0; hc < n_hc; hc++) {
2392 for (port = 0; port < MV_PORTS_PER_HC; port++)
2393 mv5_reset_hc_port(hpriv, mmio,
2394 (hc * MV_PORTS_PER_HC) + port);
2396 mv5_reset_one_hc(hpriv, mmio, hc);
2403 #define ZERO(reg) writel(0, mmio + (reg))
2404 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2406 struct mv_host_priv *hpriv = host->private_data;
2409 tmp = readl(mmio + MV_PCI_MODE_OFS);
2411 writel(tmp, mmio + MV_PCI_MODE_OFS);
2413 ZERO(MV_PCI_DISC_TIMER);
2414 ZERO(MV_PCI_MSI_TRIGGER);
2415 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2416 ZERO(MV_PCI_SERR_MASK);
2417 ZERO(hpriv->irq_cause_ofs);
2418 ZERO(hpriv->irq_mask_ofs);
2419 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2420 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2421 ZERO(MV_PCI_ERR_ATTRIBUTE);
2422 ZERO(MV_PCI_ERR_COMMAND);
2426 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2430 mv5_reset_flash(hpriv, mmio);
2432 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2434 tmp |= (1 << 5) | (1 << 6);
2435 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2439 * mv6_reset_hc - Perform the 6xxx global soft reset
2440 * @mmio: base address of the HBA
2442 * This routine only applies to 6xxx parts.
2445 * Inherited from caller.
2447 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2450 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2454 /* Following procedure defined in PCI "main command and status
2458 writel(t | STOP_PCI_MASTER, reg);
2460 for (i = 0; i < 1000; i++) {
2463 if (PCI_MASTER_EMPTY & t)
2466 if (!(PCI_MASTER_EMPTY & t)) {
2467 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2475 writel(t | GLOB_SFT_RST, reg);
2478 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2480 if (!(GLOB_SFT_RST & t)) {
2481 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2486 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2489 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2492 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2494 if (GLOB_SFT_RST & t) {
2495 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2502 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2505 void __iomem *port_mmio;
2508 tmp = readl(mmio + MV_RESET_CFG_OFS);
2509 if ((tmp & (1 << 0)) == 0) {
2510 hpriv->signal[idx].amps = 0x7 << 8;
2511 hpriv->signal[idx].pre = 0x1 << 5;
2515 port_mmio = mv_port_base(mmio, idx);
2516 tmp = readl(port_mmio + PHY_MODE2);
2518 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2519 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2522 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2524 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2527 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2530 void __iomem *port_mmio = mv_port_base(mmio, port);
2532 u32 hp_flags = hpriv->hp_flags;
2534 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2536 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2539 if (fix_phy_mode2) {
2540 m2 = readl(port_mmio + PHY_MODE2);
2543 writel(m2, port_mmio + PHY_MODE2);
2547 m2 = readl(port_mmio + PHY_MODE2);
2548 m2 &= ~((1 << 16) | (1 << 31));
2549 writel(m2, port_mmio + PHY_MODE2);
2555 * Gen-II/IIe PHY_MODE3 errata RM#2:
2556 * Achieves better receiver noise performance than the h/w default:
2558 m3 = readl(port_mmio + PHY_MODE3);
2559 m3 = (m3 & 0x1f) | (0x5555601 << 5);
2561 /* Guideline 88F5182 (GL# SATA-S11) */
2565 if (fix_phy_mode4) {
2568 m4 = readl(port_mmio + PHY_MODE4);
2570 /* workaround for errata FEr SATA#10 (part 1) */
2571 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2573 /* enforce bit restrictions on GenIIe devices */
2574 if (IS_GEN_IIE(hpriv))
2575 m4 = (m4 & ~0x5DE3FFFC) | (1 << 2);
2577 writel(m4, port_mmio + PHY_MODE4);
2580 * Workaround for 60x1-B2 errata SATA#13:
2581 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2582 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2584 writel(m3, port_mmio + PHY_MODE3);
2586 /* Revert values of pre-emphasis and signal amps to the saved ones */
2587 m2 = readl(port_mmio + PHY_MODE2);
2589 m2 &= ~MV_M2_PREAMP_MASK;
2590 m2 |= hpriv->signal[port].amps;
2591 m2 |= hpriv->signal[port].pre;
2594 /* according to mvSata 3.6.1, some IIE values are fixed */
2595 if (IS_GEN_IIE(hpriv)) {
2600 writel(m2, port_mmio + PHY_MODE2);
2603 /* TODO: use the generic LED interface to configure the SATA Presence */
2604 /* & Acitivy LEDs on the board */
2605 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2611 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2614 void __iomem *port_mmio;
2617 port_mmio = mv_port_base(mmio, idx);
2618 tmp = readl(port_mmio + PHY_MODE2);
2620 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2621 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2625 #define ZERO(reg) writel(0, port_mmio + (reg))
2626 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2627 void __iomem *mmio, unsigned int port)
2629 void __iomem *port_mmio = mv_port_base(mmio, port);
2631 mv_reset_channel(hpriv, mmio, port);
2633 ZERO(0x028); /* command */
2634 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2635 ZERO(0x004); /* timer */
2636 ZERO(0x008); /* irq err cause */
2637 ZERO(0x00c); /* irq err mask */
2638 ZERO(0x010); /* rq bah */
2639 ZERO(0x014); /* rq inp */
2640 ZERO(0x018); /* rq outp */
2641 ZERO(0x01c); /* respq bah */
2642 ZERO(0x024); /* respq outp */
2643 ZERO(0x020); /* respq inp */
2644 ZERO(0x02c); /* test control */
2645 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2650 #define ZERO(reg) writel(0, hc_mmio + (reg))
2651 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2654 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2664 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2665 void __iomem *mmio, unsigned int n_hc)
2669 for (port = 0; port < hpriv->n_ports; port++)
2670 mv_soc_reset_hc_port(hpriv, mmio, port);
2672 mv_soc_reset_one_hc(hpriv, mmio);
2677 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2683 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2688 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2690 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2692 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
2694 ifcfg |= (1 << 7); /* enable gen2i speed */
2695 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2698 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2699 unsigned int port_no)
2701 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2704 * The datasheet warns against setting EDMA_RESET when EDMA is active
2705 * (but doesn't say what the problem might be). So we first try
2706 * to disable the EDMA engine before doing the EDMA_RESET operation.
2708 mv_stop_edma_engine(port_mmio);
2709 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2711 if (!IS_GEN_I(hpriv)) {
2712 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2713 mv_setup_ifcfg(port_mmio, 1);
2716 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2717 * link, and physical layers. It resets all SATA interface registers
2718 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2720 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2721 udelay(25); /* allow reset propagation */
2722 writelfl(0, port_mmio + EDMA_CMD_OFS);
2724 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2726 if (IS_GEN_I(hpriv))
2730 static void mv_pmp_select(struct ata_port *ap, int pmp)
2732 if (sata_pmp_supported(ap)) {
2733 void __iomem *port_mmio = mv_ap_base(ap);
2734 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2735 int old = reg & 0xf;
2738 reg = (reg & ~0xf) | pmp;
2739 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2744 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2745 unsigned long deadline)
2747 mv_pmp_select(link->ap, sata_srst_pmp(link));
2748 return sata_std_hardreset(link, class, deadline);
2751 static int mv_softreset(struct ata_link *link, unsigned int *class,
2752 unsigned long deadline)
2754 mv_pmp_select(link->ap, sata_srst_pmp(link));
2755 return ata_sff_softreset(link, class, deadline);
2758 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2759 unsigned long deadline)
2761 struct ata_port *ap = link->ap;
2762 struct mv_host_priv *hpriv = ap->host->private_data;
2763 struct mv_port_priv *pp = ap->private_data;
2764 void __iomem *mmio = hpriv->base;
2765 int rc, attempts = 0, extra = 0;
2769 mv_reset_channel(hpriv, mmio, ap->port_no);
2770 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2772 /* Workaround for errata FEr SATA#10 (part 2) */
2774 const unsigned long *timing =
2775 sata_ehc_deb_timing(&link->eh_context);
2777 rc = sata_link_hardreset(link, timing, deadline + extra,
2779 rc = online ? -EAGAIN : rc;
2782 sata_scr_read(link, SCR_STATUS, &sstatus);
2783 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2784 /* Force 1.5gb/s link speed and try again */
2785 mv_setup_ifcfg(mv_ap_base(ap), 0);
2786 if (time_after(jiffies + HZ, deadline))
2787 extra = HZ; /* only extend it once, max */
2789 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2794 static void mv_eh_freeze(struct ata_port *ap)
2797 mv_enable_port_irqs(ap, 0);
2800 static void mv_eh_thaw(struct ata_port *ap)
2802 struct mv_host_priv *hpriv = ap->host->private_data;
2803 unsigned int port = ap->port_no;
2804 unsigned int hardport = mv_hardport_from_port(port);
2805 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2806 void __iomem *port_mmio = mv_ap_base(ap);
2809 /* clear EDMA errors on this port */
2810 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2812 /* clear pending irq events */
2813 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2814 hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2815 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2817 mv_enable_port_irqs(ap, ERR_IRQ);
2821 * mv_port_init - Perform some early initialization on a single port.
2822 * @port: libata data structure storing shadow register addresses
2823 * @port_mmio: base address of the port
2825 * Initialize shadow register mmio addresses, clear outstanding
2826 * interrupts on the port, and unmask interrupts for the future
2827 * start of the port.
2830 * Inherited from caller.
2832 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2834 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2837 /* PIO related setup
2839 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2841 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2842 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2843 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2844 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2845 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2846 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2848 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2849 /* special case: control/altstatus doesn't have ATA_REG_ address */
2850 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2853 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2855 /* Clear any currently outstanding port interrupt conditions */
2856 serr_ofs = mv_scr_offset(SCR_ERROR);
2857 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2858 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2860 /* unmask all non-transient EDMA error interrupts */
2861 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2863 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2864 readl(port_mmio + EDMA_CFG_OFS),
2865 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2866 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2869 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2871 struct mv_host_priv *hpriv = host->private_data;
2872 void __iomem *mmio = hpriv->base;
2875 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2876 return 0; /* not PCI-X capable */
2877 reg = readl(mmio + MV_PCI_MODE_OFS);
2878 if ((reg & MV_PCI_MODE_MASK) == 0)
2879 return 0; /* conventional PCI mode */
2880 return 1; /* chip is in PCI-X mode */
2883 static int mv_pci_cut_through_okay(struct ata_host *host)
2885 struct mv_host_priv *hpriv = host->private_data;
2886 void __iomem *mmio = hpriv->base;
2889 if (!mv_in_pcix_mode(host)) {
2890 reg = readl(mmio + PCI_COMMAND_OFS);
2891 if (reg & PCI_COMMAND_MRDTRIG)
2892 return 0; /* not okay */
2894 return 1; /* okay */
2897 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2899 struct pci_dev *pdev = to_pci_dev(host->dev);
2900 struct mv_host_priv *hpriv = host->private_data;
2901 u32 hp_flags = hpriv->hp_flags;
2903 switch (board_idx) {
2905 hpriv->ops = &mv5xxx_ops;
2906 hp_flags |= MV_HP_GEN_I;
2908 switch (pdev->revision) {
2910 hp_flags |= MV_HP_ERRATA_50XXB0;
2913 hp_flags |= MV_HP_ERRATA_50XXB2;
2916 dev_printk(KERN_WARNING, &pdev->dev,
2917 "Applying 50XXB2 workarounds to unknown rev\n");
2918 hp_flags |= MV_HP_ERRATA_50XXB2;
2925 hpriv->ops = &mv5xxx_ops;
2926 hp_flags |= MV_HP_GEN_I;
2928 switch (pdev->revision) {
2930 hp_flags |= MV_HP_ERRATA_50XXB0;
2933 hp_flags |= MV_HP_ERRATA_50XXB2;
2936 dev_printk(KERN_WARNING, &pdev->dev,
2937 "Applying B2 workarounds to unknown rev\n");
2938 hp_flags |= MV_HP_ERRATA_50XXB2;
2945 hpriv->ops = &mv6xxx_ops;
2946 hp_flags |= MV_HP_GEN_II;
2948 switch (pdev->revision) {
2950 hp_flags |= MV_HP_ERRATA_60X1B2;
2953 hp_flags |= MV_HP_ERRATA_60X1C0;
2956 dev_printk(KERN_WARNING, &pdev->dev,
2957 "Applying B2 workarounds to unknown rev\n");
2958 hp_flags |= MV_HP_ERRATA_60X1B2;
2964 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2965 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2966 (pdev->device == 0x2300 || pdev->device == 0x2310))
2969 * Highpoint RocketRAID PCIe 23xx series cards:
2971 * Unconfigured drives are treated as "Legacy"
2972 * by the BIOS, and it overwrites sector 8 with
2973 * a "Lgcy" metadata block prior to Linux boot.
2975 * Configured drives (RAID or JBOD) leave sector 8
2976 * alone, but instead overwrite a high numbered
2977 * sector for the RAID metadata. This sector can
2978 * be determined exactly, by truncating the physical
2979 * drive capacity to a nice even GB value.
2981 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2983 * Warn the user, lest they think we're just buggy.
2985 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2986 " BIOS CORRUPTS DATA on all attached drives,"
2987 " regardless of if/how they are configured."
2989 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2990 " use sectors 8-9 on \"Legacy\" drives,"
2991 " and avoid the final two gigabytes on"
2992 " all RocketRAID BIOS initialized drives.\n");
2996 hpriv->ops = &mv6xxx_ops;
2997 hp_flags |= MV_HP_GEN_IIE;
2998 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
2999 hp_flags |= MV_HP_CUT_THROUGH;
3001 switch (pdev->revision) {
3002 case 0x2: /* Rev.B0: the first/only public release */
3003 hp_flags |= MV_HP_ERRATA_60X1C0;
3006 dev_printk(KERN_WARNING, &pdev->dev,
3007 "Applying 60X1C0 workarounds to unknown rev\n");
3008 hp_flags |= MV_HP_ERRATA_60X1C0;
3013 hpriv->ops = &mv_soc_ops;
3014 hp_flags |= MV_HP_FLAG_SOC | MV_HP_ERRATA_60X1C0;
3018 dev_printk(KERN_ERR, host->dev,
3019 "BUG: invalid board index %u\n", board_idx);
3023 hpriv->hp_flags = hp_flags;
3024 if (hp_flags & MV_HP_PCIE) {
3025 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3026 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3027 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3029 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3030 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3031 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3038 * mv_init_host - Perform some early initialization of the host.
3039 * @host: ATA host to initialize
3040 * @board_idx: controller index
3042 * If possible, do an early global reset of the host. Then do
3043 * our port init and clear/unmask all/relevant host interrupts.
3046 * Inherited from caller.
3048 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3050 int rc = 0, n_hc, port, hc;
3051 struct mv_host_priv *hpriv = host->private_data;
3052 void __iomem *mmio = hpriv->base;
3054 rc = mv_chip_id(host, board_idx);
3058 if (IS_SOC(hpriv)) {
3059 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3060 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3062 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3063 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3066 /* global interrupt mask: 0 == mask everything */
3067 mv_set_main_irq_mask(host, ~0, 0);
3069 n_hc = mv_get_hc_count(host->ports[0]->flags);
3071 for (port = 0; port < host->n_ports; port++)
3072 hpriv->ops->read_preamp(hpriv, port, mmio);
3074 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3078 hpriv->ops->reset_flash(hpriv, mmio);
3079 hpriv->ops->reset_bus(host, mmio);
3080 hpriv->ops->enable_leds(hpriv, mmio);
3082 for (port = 0; port < host->n_ports; port++) {
3083 struct ata_port *ap = host->ports[port];
3084 void __iomem *port_mmio = mv_port_base(mmio, port);
3086 mv_port_init(&ap->ioaddr, port_mmio);
3089 if (!IS_SOC(hpriv)) {
3090 unsigned int offset = port_mmio - mmio;
3091 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3092 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3097 for (hc = 0; hc < n_hc; hc++) {
3098 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3100 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3101 "(before clear)=0x%08x\n", hc,
3102 readl(hc_mmio + HC_CFG_OFS),
3103 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3105 /* Clear any currently outstanding hc interrupt conditions */
3106 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3109 if (!IS_SOC(hpriv)) {
3110 /* Clear any currently outstanding host interrupt conditions */
3111 writelfl(0, mmio + hpriv->irq_cause_ofs);
3113 /* and unmask interrupt generation for host regs */
3114 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3117 * enable only global host interrupts for now.
3118 * The per-port interrupts get done later as ports are set up.
3120 mv_set_main_irq_mask(host, 0, PCI_ERR);
3126 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3128 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3130 if (!hpriv->crqb_pool)
3133 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3135 if (!hpriv->crpb_pool)
3138 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3140 if (!hpriv->sg_tbl_pool)
3146 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3147 struct mbus_dram_target_info *dram)
3151 for (i = 0; i < 4; i++) {
3152 writel(0, hpriv->base + WINDOW_CTRL(i));
3153 writel(0, hpriv->base + WINDOW_BASE(i));
3156 for (i = 0; i < dram->num_cs; i++) {
3157 struct mbus_dram_window *cs = dram->cs + i;
3159 writel(((cs->size - 1) & 0xffff0000) |
3160 (cs->mbus_attr << 8) |
3161 (dram->mbus_dram_target_id << 4) | 1,
3162 hpriv->base + WINDOW_CTRL(i));
3163 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3168 * mv_platform_probe - handle a positive probe of an soc Marvell
3170 * @pdev: platform device found
3173 * Inherited from caller.
3175 static int mv_platform_probe(struct platform_device *pdev)
3177 static int printed_version;
3178 const struct mv_sata_platform_data *mv_platform_data;
3179 const struct ata_port_info *ppi[] =
3180 { &mv_port_info[chip_soc], NULL };
3181 struct ata_host *host;
3182 struct mv_host_priv *hpriv;
3183 struct resource *res;
3186 if (!printed_version++)
3187 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3190 * Simple resource validation ..
3192 if (unlikely(pdev->num_resources != 2)) {
3193 dev_err(&pdev->dev, "invalid number of resources\n");
3198 * Get the register base first
3200 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3205 mv_platform_data = pdev->dev.platform_data;
3206 n_ports = mv_platform_data->n_ports;
3208 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3209 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3211 if (!host || !hpriv)
3213 host->private_data = hpriv;
3214 hpriv->n_ports = n_ports;
3217 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3218 res->end - res->start + 1);
3219 hpriv->base -= MV_SATAHC0_REG_BASE;
3222 * (Re-)program MBUS remapping windows if we are asked to.
3224 if (mv_platform_data->dram != NULL)
3225 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3227 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3231 /* initialize adapter */
3232 rc = mv_init_host(host, chip_soc);
3236 dev_printk(KERN_INFO, &pdev->dev,
3237 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3240 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3241 IRQF_SHARED, &mv6_sht);
3246 * mv_platform_remove - unplug a platform interface
3247 * @pdev: platform device
3249 * A platform bus SATA device has been unplugged. Perform the needed
3250 * cleanup. Also called on module unload for any active devices.
3252 static int __devexit mv_platform_remove(struct platform_device *pdev)
3254 struct device *dev = &pdev->dev;
3255 struct ata_host *host = dev_get_drvdata(dev);
3257 ata_host_detach(host);
3261 static struct platform_driver mv_platform_driver = {
3262 .probe = mv_platform_probe,
3263 .remove = __devexit_p(mv_platform_remove),
3266 .owner = THIS_MODULE,
3272 static int mv_pci_init_one(struct pci_dev *pdev,
3273 const struct pci_device_id *ent);
3276 static struct pci_driver mv_pci_driver = {
3278 .id_table = mv_pci_tbl,
3279 .probe = mv_pci_init_one,
3280 .remove = ata_pci_remove_one,
3286 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
3289 /* move to PCI layer or libata core? */
3290 static int pci_go_64(struct pci_dev *pdev)
3294 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3295 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3297 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3299 dev_printk(KERN_ERR, &pdev->dev,
3300 "64-bit DMA enable failed\n");
3305 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3307 dev_printk(KERN_ERR, &pdev->dev,
3308 "32-bit DMA enable failed\n");
3311 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3313 dev_printk(KERN_ERR, &pdev->dev,
3314 "32-bit consistent DMA enable failed\n");
3323 * mv_print_info - Dump key info to kernel log for perusal.
3324 * @host: ATA host to print info about
3326 * FIXME: complete this.
3329 * Inherited from caller.
3331 static void mv_print_info(struct ata_host *host)
3333 struct pci_dev *pdev = to_pci_dev(host->dev);
3334 struct mv_host_priv *hpriv = host->private_data;
3336 const char *scc_s, *gen;
3338 /* Use this to determine the HW stepping of the chip so we know
3339 * what errata to workaround
3341 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3344 else if (scc == 0x01)
3349 if (IS_GEN_I(hpriv))
3351 else if (IS_GEN_II(hpriv))
3353 else if (IS_GEN_IIE(hpriv))
3358 dev_printk(KERN_INFO, &pdev->dev,
3359 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3360 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3361 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3365 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3366 * @pdev: PCI device found
3367 * @ent: PCI device ID entry for the matched host
3370 * Inherited from caller.
3372 static int mv_pci_init_one(struct pci_dev *pdev,
3373 const struct pci_device_id *ent)
3375 static int printed_version;
3376 unsigned int board_idx = (unsigned int)ent->driver_data;
3377 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3378 struct ata_host *host;
3379 struct mv_host_priv *hpriv;
3382 if (!printed_version++)
3383 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3386 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3388 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3389 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3390 if (!host || !hpriv)
3392 host->private_data = hpriv;
3393 hpriv->n_ports = n_ports;
3395 /* acquire resources */
3396 rc = pcim_enable_device(pdev);
3400 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3402 pcim_pin_device(pdev);
3405 host->iomap = pcim_iomap_table(pdev);
3406 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3408 rc = pci_go_64(pdev);
3412 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3416 /* initialize adapter */
3417 rc = mv_init_host(host, board_idx);
3421 /* Enable interrupts */
3422 if (msi && pci_enable_msi(pdev))
3425 mv_dump_pci_cfg(pdev, 0x68);
3426 mv_print_info(host);
3428 pci_set_master(pdev);
3429 pci_try_set_mwi(pdev);
3430 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3431 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3435 static int mv_platform_probe(struct platform_device *pdev);
3436 static int __devexit mv_platform_remove(struct platform_device *pdev);
3438 static int __init mv_init(void)
3442 rc = pci_register_driver(&mv_pci_driver);
3446 rc = platform_driver_register(&mv_platform_driver);
3450 pci_unregister_driver(&mv_pci_driver);
3455 static void __exit mv_exit(void)
3458 pci_unregister_driver(&mv_pci_driver);
3460 platform_driver_unregister(&mv_platform_driver);
3463 MODULE_AUTHOR("Brett Russ");
3464 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3465 MODULE_LICENSE("GPL");
3466 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3467 MODULE_VERSION(DRV_VERSION);
3468 MODULE_ALIAS("platform:" DRV_NAME);
3471 module_param(msi, int, 0444);
3472 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3475 module_init(mv_init);
3476 module_exit(mv_exit);