3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
30 #include <asm/eeh_event.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 100000
79 /* Misc forward declaraions */
80 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
89 static int eeh_subsystem_enabled;
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
99 /* System monitoring statistics */
100 static DEFINE_PER_CPU(unsigned long, no_device);
101 static DEFINE_PER_CPU(unsigned long, no_dn);
102 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
103 static DEFINE_PER_CPU(unsigned long, ignored_check);
104 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
105 static DEFINE_PER_CPU(unsigned long, false_positives);
106 static DEFINE_PER_CPU(unsigned long, ignored_failures);
107 static DEFINE_PER_CPU(unsigned long, slot_resets);
110 * The pci address cache subsystem. This subsystem places
111 * PCI device address resources into a red-black tree, sorted
112 * according to the address range, so that given only an i/o
113 * address, the corresponding PCI device can be **quickly**
114 * found. It is safe to perform an address lookup in an interrupt
115 * context; this ability is an important feature.
117 * Currently, the only customer of this code is the EEH subsystem;
118 * thus, this code has been somewhat tailored to suit EEH better.
119 * In particular, the cache does *not* hold the addresses of devices
120 * for which EEH is not enabled.
122 * (Implementation Note: The RB tree seems to be better/faster
123 * than any hash algo I could think of for this problem, even
124 * with the penalty of slow pointer chases for d-cache misses).
126 struct pci_io_addr_range
128 struct rb_node rb_node;
129 unsigned long addr_lo;
130 unsigned long addr_hi;
131 struct pci_dev *pcidev;
135 static struct pci_io_addr_cache
137 struct rb_root rb_root;
138 spinlock_t piar_lock;
139 } pci_io_addr_cache_root;
141 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
143 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
146 struct pci_io_addr_range *piar;
147 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
149 if (addr < piar->addr_lo) {
152 if (addr > piar->addr_hi) {
155 pci_dev_get(piar->pcidev);
165 * pci_get_device_by_addr - Get device, given only address
166 * @addr: mmio (PIO) phys address or i/o port number
168 * Given an mmio phys address, or a port number, find a pci device
169 * that implements this address. Be sure to pci_dev_put the device
170 * when finished. I/O port numbers are assumed to be offset
171 * from zero (that is, they do *not* have pci_io_addr added in).
172 * It is safe to call this function within an interrupt.
174 static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
179 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
180 dev = __pci_get_device_by_addr(addr);
181 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
187 * Handy-dandy debug print routine, does nothing more
188 * than print out the contents of our addr cache.
190 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
195 n = rb_first(&cache->rb_root);
197 struct pci_io_addr_range *piar;
198 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
199 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
200 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
201 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
208 /* Insert address range into the rb tree. */
209 static struct pci_io_addr_range *
210 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
211 unsigned long ahi, unsigned int flags)
213 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
214 struct rb_node *parent = NULL;
215 struct pci_io_addr_range *piar;
217 /* Walk tree, find a place to insert into tree */
220 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
221 if (ahi < piar->addr_lo) {
222 p = &parent->rb_left;
223 } else if (alo > piar->addr_hi) {
224 p = &parent->rb_right;
226 if (dev != piar->pcidev ||
227 alo != piar->addr_lo || ahi != piar->addr_hi) {
228 printk(KERN_WARNING "PIAR: overlapping address range\n");
233 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
243 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
244 alo, ahi, pci_name (dev));
247 rb_link_node(&piar->rb_node, parent, p);
248 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
253 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
255 struct device_node *dn;
260 dn = pci_device_to_OF_node(dev);
262 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
266 /* Skip any devices for which EEH is not enabled. */
268 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
269 pdn->eeh_mode & EEH_MODE_NOCHECK) {
271 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
272 pci_name(dev), pdn->node->full_name);
277 /* The cache holds a reference to the device... */
280 /* Walk resources on this device, poke them into the tree */
281 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
282 unsigned long start = pci_resource_start(dev,i);
283 unsigned long end = pci_resource_end(dev,i);
284 unsigned int flags = pci_resource_flags(dev,i);
286 /* We are interested only bus addresses, not dma or other stuff */
287 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
289 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
291 pci_addr_cache_insert(dev, start, end, flags);
295 /* If there was nothing to add, the cache has no reference... */
301 * pci_addr_cache_insert_device - Add a device to the address cache
302 * @dev: PCI device whose I/O addresses we are interested in.
304 * In order to support the fast lookup of devices based on addresses,
305 * we maintain a cache of devices that can be quickly searched.
306 * This routine adds a device to that cache.
308 static void pci_addr_cache_insert_device(struct pci_dev *dev)
312 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
313 __pci_addr_cache_insert_device(dev);
314 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
317 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
323 n = rb_first(&pci_io_addr_cache_root.rb_root);
325 struct pci_io_addr_range *piar;
326 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
328 if (piar->pcidev == dev) {
329 rb_erase(n, &pci_io_addr_cache_root.rb_root);
337 /* The cache no longer holds its reference to this device... */
343 * pci_addr_cache_remove_device - remove pci device from addr cache
344 * @dev: device to remove
346 * Remove a device from the addr-cache tree.
347 * This is potentially expensive, since it will walk
348 * the tree multiple times (once per resource).
349 * But so what; device removal doesn't need to be that fast.
351 static void pci_addr_cache_remove_device(struct pci_dev *dev)
355 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
356 __pci_addr_cache_remove_device(dev);
357 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
361 * pci_addr_cache_build - Build a cache of I/O addresses
363 * Build a cache of pci i/o addresses. This cache will be used to
364 * find the pci device that corresponds to a given address.
365 * This routine scans all pci busses to build the cache.
366 * Must be run late in boot process, after the pci controllers
367 * have been scaned for devices (after all device resources are known).
369 void __init pci_addr_cache_build(void)
371 struct device_node *dn;
372 struct pci_dev *dev = NULL;
374 if (!eeh_subsystem_enabled)
377 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
379 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
380 /* Ignore PCI bridges ( XXX why ??) */
381 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
384 pci_addr_cache_insert_device(dev);
386 /* Save the BAR's; firmware doesn't restore these after EEH reset */
387 dn = pci_device_to_OF_node(dev);
388 eeh_save_bars(dev, PCI_DN(dn));
392 /* Verify tree built up above, echo back the list of addrs. */
393 pci_addr_cache_print(&pci_io_addr_cache_root);
397 /* --------------------------------------------------------------- */
398 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
400 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
405 /* Log the error with the rtas logger */
406 spin_lock_irqsave(&slot_errbuf_lock, flags);
407 memset(slot_errbuf, 0, eeh_error_buf_size);
409 rc = rtas_call(ibm_slot_error_detail,
410 8, 1, NULL, pdn->eeh_config_addr,
411 BUID_HI(pdn->phb->buid),
412 BUID_LO(pdn->phb->buid), NULL, 0,
413 virt_to_phys(slot_errbuf),
418 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
419 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
423 * read_slot_reset_state - Read the reset state of a device node's slot
424 * @dn: device node to read
425 * @rets: array to return results in
427 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
431 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
432 token = ibm_read_slot_reset_state2;
435 token = ibm_read_slot_reset_state;
436 rets[2] = 0; /* fake PE Unavailable info */
440 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
441 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
445 * eeh_token_to_phys - convert EEH address token to phys address
446 * @token i/o token, should be address in the form 0xA....
448 static inline unsigned long eeh_token_to_phys(unsigned long token)
453 ptep = find_linux_pte(init_mm.pgd, token);
456 pa = pte_pfn(*ptep) << PAGE_SHIFT;
458 return pa | (token & (PAGE_SIZE-1));
462 * Return the "partitionable endpoint" (pe) under which this device lies
464 static struct device_node * find_device_pe(struct device_node *dn)
466 while ((dn->parent) && PCI_DN(dn->parent) &&
467 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
473 /** Mark all devices that are peers of this device as failed.
474 * Mark the device driver too, so that it can see the failure
475 * immediately; this is critical, since some drivers poll
476 * status registers in interrupts ... If a driver is polling,
477 * and the slot is frozen, then the driver can deadlock in
478 * an interrupt context, which is bad.
481 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
485 PCI_DN(dn)->eeh_mode |= mode_flag;
488 __eeh_mark_slot (dn->child, mode_flag);
494 void eeh_mark_slot (struct device_node *dn, int mode_flag)
496 dn = find_device_pe (dn);
497 PCI_DN(dn)->eeh_mode |= mode_flag;
498 __eeh_mark_slot (dn->child, mode_flag);
501 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
505 PCI_DN(dn)->eeh_mode &= ~mode_flag;
506 PCI_DN(dn)->eeh_check_count = 0;
508 __eeh_clear_slot (dn->child, mode_flag);
514 void eeh_clear_slot (struct device_node *dn, int mode_flag)
517 spin_lock_irqsave(&confirm_error_lock, flags);
518 dn = find_device_pe (dn);
519 PCI_DN(dn)->eeh_mode &= ~mode_flag;
520 PCI_DN(dn)->eeh_check_count = 0;
521 __eeh_clear_slot (dn->child, mode_flag);
522 spin_unlock_irqrestore(&confirm_error_lock, flags);
526 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
528 * @dev pci device, if known
530 * Check for an EEH failure for the given device node. Call this
531 * routine if the result of a read was all 0xff's and you want to
532 * find out if this is due to an EEH slot freeze. This routine
533 * will query firmware for the EEH status.
535 * Returns 0 if there has not been an EEH error; otherwise returns
536 * a non-zero value and queues up a slot isolation event notification.
538 * It is safe to call this routine in an interrupt context.
540 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
548 __get_cpu_var(total_mmio_ffs)++;
550 if (!eeh_subsystem_enabled)
554 __get_cpu_var(no_dn)++;
559 /* Access to IO BARs might get this far and still not want checking. */
560 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
561 pdn->eeh_mode & EEH_MODE_NOCHECK) {
562 __get_cpu_var(ignored_check)++;
564 printk ("EEH:ignored check (%x) for %s %s\n",
565 pdn->eeh_mode, pci_name (dev), dn->full_name);
570 if (!pdn->eeh_config_addr) {
571 __get_cpu_var(no_cfg_addr)++;
575 /* If we already have a pending isolation event for this
576 * slot, we know it's bad already, we don't need to check.
577 * Do this checking under a lock; as multiple PCI devices
578 * in one slot might report errors simultaneously, and we
579 * only want one error recovery routine running.
581 spin_lock_irqsave(&confirm_error_lock, flags);
583 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
584 pdn->eeh_check_count ++;
585 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
586 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
587 pdn->eeh_check_count);
590 /* re-read the slot reset state */
591 if (read_slot_reset_state(pdn, rets) != 0)
592 rets[0] = -1; /* reset state unknown */
594 /* If we are here, then we hit an infinite loop. Stop. */
595 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
601 * Now test for an EEH failure. This is VERY expensive.
602 * Note that the eeh_config_addr may be a parent device
603 * in the case of a device behind a bridge, or it may be
604 * function zero of a multi-function device.
605 * In any case they must share a common PHB.
607 ret = read_slot_reset_state(pdn, rets);
609 /* If the call to firmware failed, punt */
611 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
613 __get_cpu_var(false_positives)++;
618 /* If EEH is not supported on this device, punt. */
620 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
622 __get_cpu_var(false_positives)++;
627 /* If not the kind of error we know about, punt. */
628 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
629 __get_cpu_var(false_positives)++;
634 /* Note that config-io to empty slots may fail;
635 * we recognize empty because they don't have children. */
636 if ((rets[0] == 5) && (dn->child == NULL)) {
637 __get_cpu_var(false_positives)++;
642 __get_cpu_var(slot_resets)++;
644 /* Avoid repeated reports of this failure, including problems
645 * with other functions on this device, and functions under
647 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
648 spin_unlock_irqrestore(&confirm_error_lock, flags);
650 eeh_send_failure_event (dn, dev, rets[0], rets[2]);
652 /* Most EEH events are due to device driver bugs. Having
653 * a stack trace will help the device-driver authors figure
654 * out what happened. So print that out. */
655 if (rets[0] != 5) dump_stack();
659 spin_unlock_irqrestore(&confirm_error_lock, flags);
663 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
666 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
667 * @token i/o token, should be address in the form 0xA....
668 * @val value, should be all 1's (XXX why do we need this arg??)
670 * Check for an EEH failure at the given token address. Call this
671 * routine if the result of a read was all 0xff's and you want to
672 * find out if this is due to an EEH slot freeze event. This routine
673 * will query firmware for the EEH status.
675 * Note this routine is safe to call in an interrupt context.
677 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
681 struct device_node *dn;
683 /* Finding the phys addr + pci device; this is pretty quick. */
684 addr = eeh_token_to_phys((unsigned long __force) token);
685 dev = pci_get_device_by_addr(addr);
687 __get_cpu_var(no_device)++;
691 dn = pci_device_to_OF_node(dev);
692 eeh_dn_check_failure (dn, dev);
698 EXPORT_SYMBOL(eeh_check_failure);
700 /* ------------------------------------------------------------- */
701 /* The code below deals with error recovery */
703 /** Return negative value if a permanent error, else return
704 * a number of milliseconds to wait until the PCI slot is
708 eeh_slot_availability(struct pci_dn *pdn)
713 rc = read_slot_reset_state(pdn, rets);
717 if (rets[1] == 0) return -1; /* EEH is not supported */
718 if (rets[0] == 0) return 0; /* Oll Korrect */
720 if (rets[2] == 0) return -1; /* permanently unavailable */
721 return rets[2]; /* number of millisecs to wait */
726 /** rtas_pci_slot_reset raises/lowers the pci #RST line
727 * state: 1/0 to raise/lower the #RST
729 * Clear the EEH-frozen condition on a slot. This routine
730 * asserts the PCI #RST line if the 'state' argument is '1',
731 * and drops the #RST line if 'state is '0'. This routine is
732 * safe to call in an interrupt context.
737 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
744 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
745 pdn->node->full_name);
749 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
750 pdn->eeh_config_addr,
751 BUID_HI(pdn->phb->buid),
752 BUID_LO(pdn->phb->buid),
755 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
756 rc, state, pdn->node->full_name);
761 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
762 * dn -- device node to be reset.
766 rtas_set_slot_reset(struct pci_dn *pdn)
770 rtas_pci_slot_reset (pdn, 1);
772 /* The PCI bus requires that the reset be held high for at least
773 * a 100 milliseconds. We wait a bit longer 'just in case'. */
775 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
776 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
778 /* We might get hit with another EEH freeze as soon as the
779 * pci slot reset line is dropped. Make sure we don't miss
780 * these, and clear the flag now. */
781 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
783 rtas_pci_slot_reset (pdn, 0);
785 /* After a PCI slot has been reset, the PCI Express spec requires
786 * a 1.5 second idle time for the bus to stabilize, before starting
788 #define PCI_BUS_SETTLE_TIME_MSEC 1800
789 msleep (PCI_BUS_SETTLE_TIME_MSEC);
791 /* Now double check with the firmware to make sure the device is
792 * ready to be used; if not, wait for recovery. */
793 for (i=0; i<10; i++) {
794 rc = eeh_slot_availability (pdn);
801 /* ------------------------------------------------------- */
802 /** Save and restore of PCI BARs
804 * Although firmware will set up BARs during boot, it doesn't
805 * set up device BAR's after a device reset, although it will,
806 * if requested, set up bridge configuration. Thus, we need to
807 * configure the PCI devices ourselves.
811 * __restore_bars - Restore the Base Address Registers
812 * Loads the PCI configuration space base address registers,
813 * the expansion ROM base address, the latency timer, and etc.
814 * from the saved values in the device node.
816 static inline void __restore_bars (struct pci_dn *pdn)
820 if (NULL==pdn->phb) return;
821 for (i=4; i<10; i++) {
822 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
825 /* 12 == Expansion ROM Address */
826 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
828 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
829 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
831 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
832 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
834 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
835 SAVED_BYTE(PCI_LATENCY_TIMER));
837 /* max latency, min grant, interrupt pin and line */
838 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
842 * eeh_restore_bars - restore the PCI config space info
844 * This routine performs a recursive walk to the children
845 * of this device as well.
847 void eeh_restore_bars(struct pci_dn *pdn)
849 struct device_node *dn;
853 if (! pdn->eeh_is_bridge)
854 __restore_bars (pdn);
856 dn = pdn->node->child;
858 eeh_restore_bars (PCI_DN(dn));
864 * eeh_save_bars - save device bars
866 * Save the values of the device bars. Unlike the restore
867 * routine, this routine is *not* recursive. This is because
868 * PCI devices are added individuallly; but, for the restore,
869 * an entire slot is reset at a time.
871 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
878 for (i = 0; i < 16; i++)
879 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
881 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
882 pdn->eeh_is_bridge = 1;
886 rtas_configure_bridge(struct pci_dn *pdn)
888 int token = rtas_token ("ibm,configure-bridge");
891 if (token == RTAS_UNKNOWN_SERVICE)
893 rc = rtas_call(token,3,1, NULL,
894 pdn->eeh_config_addr,
895 BUID_HI(pdn->phb->buid),
896 BUID_LO(pdn->phb->buid));
898 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
899 rc, pdn->node->full_name);
903 /* ------------------------------------------------------------- */
904 /* The code below deals with enabling EEH for devices during the
905 * early boot sequence. EEH must be enabled before any PCI probing
911 struct eeh_early_enable_info {
912 unsigned int buid_hi;
913 unsigned int buid_lo;
916 /* Enable eeh for the given device node. */
917 static void *early_enable_eeh(struct device_node *dn, void *data)
919 struct eeh_early_enable_info *info = data;
921 char *status = get_property(dn, "status", NULL);
922 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
923 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
924 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
927 struct pci_dn *pdn = PCI_DN(dn);
930 pdn->eeh_check_count = 0;
931 pdn->eeh_freeze_count = 0;
933 if (status && strcmp(status, "ok") != 0)
934 return NULL; /* ignore devices with bad status */
936 /* Ignore bad nodes. */
937 if (!class_code || !vendor_id || !device_id)
940 /* There is nothing to check on PCI to ISA bridges */
941 if (dn->type && !strcmp(dn->type, "isa")) {
942 pdn->eeh_mode |= EEH_MODE_NOCHECK;
947 * Now decide if we are going to "Disable" EEH checking
948 * for this device. We still run with the EEH hardware active,
949 * but we won't be checking for ff's. This means a driver
950 * could return bad data (very bad!), an interrupt handler could
951 * hang waiting on status bits that won't change, etc.
952 * But there are a few cases like display devices that make sense.
954 enable = 1; /* i.e. we will do checking */
955 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
959 pdn->eeh_mode |= EEH_MODE_NOCHECK;
961 /* Ok... see if this device supports EEH. Some do, some don't,
962 * and the only way to find out is to check each and every one. */
963 regs = (u32 *)get_property(dn, "reg", NULL);
965 /* First register entry is addr (00BBSS00) */
966 /* Try to enable eeh */
967 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
968 regs[0], info->buid_hi, info->buid_lo,
972 eeh_subsystem_enabled = 1;
973 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
974 pdn->eeh_config_addr = regs[0];
976 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
980 /* This device doesn't support EEH, but it may have an
981 * EEH parent, in which case we mark it as supported. */
982 if (dn->parent && PCI_DN(dn->parent)
983 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
984 /* Parent supports EEH. */
985 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
986 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
991 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
999 * Initialize EEH by trying to enable it for all of the adapters in the system.
1000 * As a side effect we can determine here if eeh is supported at all.
1001 * Note that we leave EEH on so failed config cycles won't cause a machine
1002 * check. If a user turns off EEH for a particular adapter they are really
1003 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1004 * grant access to a slot if EEH isn't enabled, and so we always enable
1005 * EEH for all slots/all devices.
1007 * The eeh-force-off option disables EEH checking globally, for all slots.
1008 * Even if force-off is set, the EEH hardware is still enabled, so that
1009 * newer systems can boot.
1011 void __init eeh_init(void)
1013 struct device_node *phb, *np;
1014 struct eeh_early_enable_info info;
1016 spin_lock_init(&confirm_error_lock);
1017 spin_lock_init(&slot_errbuf_lock);
1019 np = of_find_node_by_path("/rtas");
1023 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1024 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1025 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1026 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1027 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1029 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1032 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1033 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1034 eeh_error_buf_size = 1024;
1036 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1037 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1038 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1039 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1042 /* Enable EEH for all adapters. Note that eeh requires buid's */
1043 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1044 phb = of_find_node_by_name(phb, "pci")) {
1047 buid = get_phb_buid(phb);
1048 if (buid == 0 || PCI_DN(phb) == NULL)
1051 info.buid_lo = BUID_LO(buid);
1052 info.buid_hi = BUID_HI(buid);
1053 traverse_pci_devices(phb, early_enable_eeh, &info);
1056 if (eeh_subsystem_enabled)
1057 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1059 printk(KERN_WARNING "EEH: No capable adapters found\n");
1063 * eeh_add_device_early - enable EEH for the indicated device_node
1064 * @dn: device node for which to set up EEH
1066 * This routine must be used to perform EEH initialization for PCI
1067 * devices that were added after system boot (e.g. hotplug, dlpar).
1068 * This routine must be called before any i/o is performed to the
1069 * adapter (inluding any config-space i/o).
1070 * Whether this actually enables EEH or not for this device depends
1071 * on the CEC architecture, type of the device, on earlier boot
1072 * command-line arguments & etc.
1074 void eeh_add_device_early(struct device_node *dn)
1076 struct pci_controller *phb;
1077 struct eeh_early_enable_info info;
1079 if (!dn || !PCI_DN(dn))
1081 phb = PCI_DN(dn)->phb;
1082 if (NULL == phb || 0 == phb->buid) {
1083 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
1089 info.buid_hi = BUID_HI(phb->buid);
1090 info.buid_lo = BUID_LO(phb->buid);
1091 early_enable_eeh(dn, &info);
1093 EXPORT_SYMBOL_GPL(eeh_add_device_early);
1096 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1097 * @dev: pci device for which to set up EEH
1099 * This routine must be used to complete EEH initialization for PCI
1100 * devices that were added after system boot (e.g. hotplug, dlpar).
1102 void eeh_add_device_late(struct pci_dev *dev)
1104 struct device_node *dn;
1107 if (!dev || !eeh_subsystem_enabled)
1111 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1115 dn = pci_device_to_OF_node(dev);
1119 pci_addr_cache_insert_device (dev);
1120 eeh_save_bars(dev, pdn);
1122 EXPORT_SYMBOL_GPL(eeh_add_device_late);
1125 * eeh_remove_device - undo EEH setup for the indicated pci device
1126 * @dev: pci device to be removed
1128 * This routine should be when a device is removed from a running
1129 * system (e.g. by hotplug or dlpar).
1131 void eeh_remove_device(struct pci_dev *dev)
1133 struct device_node *dn;
1134 if (!dev || !eeh_subsystem_enabled)
1137 /* Unregister the device with the EEH/PCI address search system */
1139 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1141 pci_addr_cache_remove_device(dev);
1143 dn = pci_device_to_OF_node(dev);
1144 PCI_DN(dn)->pcidev = NULL;
1147 EXPORT_SYMBOL_GPL(eeh_remove_device);
1149 static int proc_eeh_show(struct seq_file *m, void *v)
1152 unsigned long ffs = 0, positives = 0, failures = 0;
1153 unsigned long resets = 0;
1154 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
1157 ffs += per_cpu(total_mmio_ffs, cpu);
1158 positives += per_cpu(false_positives, cpu);
1159 failures += per_cpu(ignored_failures, cpu);
1160 resets += per_cpu(slot_resets, cpu);
1161 no_dev += per_cpu(no_device, cpu);
1162 no_dn += per_cpu(no_dn, cpu);
1163 no_cfg += per_cpu(no_cfg_addr, cpu);
1164 no_check += per_cpu(ignored_check, cpu);
1167 if (0 == eeh_subsystem_enabled) {
1168 seq_printf(m, "EEH Subsystem is globally disabled\n");
1169 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1171 seq_printf(m, "EEH Subsystem is enabled\n");
1174 "no device node=%ld\n"
1175 "no config address=%ld\n"
1176 "check not wanted=%ld\n"
1177 "eeh_total_mmio_ffs=%ld\n"
1178 "eeh_false_positives=%ld\n"
1179 "eeh_ignored_failures=%ld\n"
1180 "eeh_slot_resets=%ld\n",
1181 no_dev, no_dn, no_cfg, no_check,
1182 ffs, positives, failures, resets);
1188 static int proc_eeh_open(struct inode *inode, struct file *file)
1190 return single_open(file, proc_eeh_show, NULL);
1193 static struct file_operations proc_eeh_operations = {
1194 .open = proc_eeh_open,
1196 .llseek = seq_lseek,
1197 .release = single_release,
1200 static int __init eeh_init_proc(void)
1202 struct proc_dir_entry *e;
1204 if (platform_is_pseries()) {
1205 e = create_proc_entry("ppc64/eeh", 0, NULL);
1207 e->proc_fops = &proc_eeh_operations;
1212 __initcall(eeh_init_proc);