4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/fdtable.h>
60 #include <linux/string.h>
61 #include <linux/seq_file.h>
62 #include <linux/namei.h>
63 #include <linux/mnt_namespace.h>
65 #include <linux/rcupdate.h>
66 #include <linux/kallsyms.h>
67 #include <linux/resource.h>
68 #include <linux/module.h>
69 #include <linux/mount.h>
70 #include <linux/security.h>
71 #include <linux/ptrace.h>
72 #include <linux/tracehook.h>
73 #include <linux/cgroup.h>
74 #include <linux/cpuset.h>
75 #include <linux/audit.h>
76 #include <linux/poll.h>
77 #include <linux/nsproxy.h>
78 #include <linux/oom.h>
79 #include <linux/elf.h>
80 #include <linux/pid_namespace.h>
84 * Implementing inode permission operations in /proc is almost
85 * certainly an error. Permission checks need to happen during
86 * each system call not at open time. The reason is that most of
87 * what we wish to check for permissions in /proc varies at runtime.
89 * The classic example of a problem is opening file descriptors
90 * in /proc for a task before it execs a suid executable.
97 const struct inode_operations *iop;
98 const struct file_operations *fop;
102 #define NOD(NAME, MODE, IOP, FOP, OP) { \
104 .len = sizeof(NAME) - 1, \
111 #define DIR(NAME, MODE, OTYPE) \
112 NOD(NAME, (S_IFDIR|(MODE)), \
113 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
115 #define LNK(NAME, OTYPE) \
116 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
117 &proc_pid_link_inode_operations, NULL, \
118 { .proc_get_link = &proc_##OTYPE##_link } )
119 #define REG(NAME, MODE, OTYPE) \
120 NOD(NAME, (S_IFREG|(MODE)), NULL, \
121 &proc_##OTYPE##_operations, {})
122 #define INF(NAME, MODE, OTYPE) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = &proc_##OTYPE } )
126 #define ONE(NAME, MODE, OTYPE) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = &proc_##OTYPE } )
132 * Count the number of hardlinks for the pid_entry table, excluding the .
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
151 EXPORT_SYMBOL(maps_protect);
153 static struct fs_struct *get_fs_struct(struct task_struct *task)
155 struct fs_struct *fs;
159 atomic_inc(&fs->count);
164 static int get_nr_threads(struct task_struct *tsk)
166 /* Must be called with the rcu_read_lock held */
170 if (lock_task_sighand(tsk, &flags)) {
171 count = atomic_read(&tsk->signal->count);
172 unlock_task_sighand(tsk, &flags);
177 static int proc_cwd_link(struct inode *inode, struct path *path)
179 struct task_struct *task = get_proc_task(inode);
180 struct fs_struct *fs = NULL;
181 int result = -ENOENT;
184 fs = get_fs_struct(task);
185 put_task_struct(task);
188 read_lock(&fs->lock);
191 read_unlock(&fs->lock);
198 static int proc_root_link(struct inode *inode, struct path *path)
200 struct task_struct *task = get_proc_task(inode);
201 struct fs_struct *fs = NULL;
202 int result = -ENOENT;
205 fs = get_fs_struct(task);
206 put_task_struct(task);
209 read_lock(&fs->lock);
212 read_unlock(&fs->lock);
220 * Return zero if current may access user memory in @task, -error if not.
222 static int check_mem_permission(struct task_struct *task)
225 * A task can always look at itself, in case it chooses
226 * to use system calls instead of load instructions.
232 * If current is actively ptrace'ing, and would also be
233 * permitted to freshly attach with ptrace now, permit it.
235 if (task_is_stopped_or_traced(task)) {
238 match = (tracehook_tracer_task(task) == current);
240 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
245 * Noone else is allowed.
250 struct mm_struct *mm_for_maps(struct task_struct *task)
252 struct mm_struct *mm = get_task_mm(task);
255 down_read(&mm->mmap_sem);
259 if (task->mm != current->mm &&
260 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
266 up_read(&mm->mmap_sem);
271 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
275 struct mm_struct *mm = get_task_mm(task);
279 goto out_mm; /* Shh! No looking before we're done */
281 len = mm->arg_end - mm->arg_start;
286 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
288 // If the nul at the end of args has been overwritten, then
289 // assume application is using setproctitle(3).
290 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
291 len = strnlen(buffer, res);
295 len = mm->env_end - mm->env_start;
296 if (len > PAGE_SIZE - res)
297 len = PAGE_SIZE - res;
298 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
299 res = strnlen(buffer, res);
308 static int proc_pid_auxv(struct task_struct *task, char *buffer)
311 struct mm_struct *mm = get_task_mm(task);
313 unsigned int nwords = 0;
316 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
317 res = nwords * sizeof(mm->saved_auxv[0]);
320 memcpy(buffer, mm->saved_auxv, res);
327 #ifdef CONFIG_KALLSYMS
329 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
330 * Returns the resolved symbol. If that fails, simply return the address.
332 static int proc_pid_wchan(struct task_struct *task, char *buffer)
335 char symname[KSYM_NAME_LEN];
337 wchan = get_wchan(task);
339 if (lookup_symbol_name(wchan, symname) < 0)
340 return sprintf(buffer, "%lu", wchan);
342 return sprintf(buffer, "%s", symname);
344 #endif /* CONFIG_KALLSYMS */
346 #ifdef CONFIG_SCHEDSTATS
348 * Provides /proc/PID/schedstat
350 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
352 return sprintf(buffer, "%llu %llu %lu\n",
353 task->sched_info.cpu_time,
354 task->sched_info.run_delay,
355 task->sched_info.pcount);
359 #ifdef CONFIG_LATENCYTOP
360 static int lstats_show_proc(struct seq_file *m, void *v)
363 struct inode *inode = m->private;
364 struct task_struct *task = get_proc_task(inode);
368 seq_puts(m, "Latency Top version : v0.1\n");
369 for (i = 0; i < 32; i++) {
370 if (task->latency_record[i].backtrace[0]) {
372 seq_printf(m, "%i %li %li ",
373 task->latency_record[i].count,
374 task->latency_record[i].time,
375 task->latency_record[i].max);
376 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
377 char sym[KSYM_NAME_LEN];
379 if (!task->latency_record[i].backtrace[q])
381 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
383 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
384 c = strchr(sym, '+');
387 seq_printf(m, "%s ", sym);
393 put_task_struct(task);
397 static int lstats_open(struct inode *inode, struct file *file)
399 return single_open(file, lstats_show_proc, inode);
402 static ssize_t lstats_write(struct file *file, const char __user *buf,
403 size_t count, loff_t *offs)
405 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
409 clear_all_latency_tracing(task);
410 put_task_struct(task);
415 static const struct file_operations proc_lstats_operations = {
418 .write = lstats_write,
420 .release = single_release,
425 /* The badness from the OOM killer */
426 unsigned long badness(struct task_struct *p, unsigned long uptime);
427 static int proc_oom_score(struct task_struct *task, char *buffer)
429 unsigned long points;
430 struct timespec uptime;
432 do_posix_clock_monotonic_gettime(&uptime);
433 read_lock(&tasklist_lock);
434 points = badness(task, uptime.tv_sec);
435 read_unlock(&tasklist_lock);
436 return sprintf(buffer, "%lu\n", points);
444 static const struct limit_names lnames[RLIM_NLIMITS] = {
445 [RLIMIT_CPU] = {"Max cpu time", "ms"},
446 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
447 [RLIMIT_DATA] = {"Max data size", "bytes"},
448 [RLIMIT_STACK] = {"Max stack size", "bytes"},
449 [RLIMIT_CORE] = {"Max core file size", "bytes"},
450 [RLIMIT_RSS] = {"Max resident set", "bytes"},
451 [RLIMIT_NPROC] = {"Max processes", "processes"},
452 [RLIMIT_NOFILE] = {"Max open files", "files"},
453 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
454 [RLIMIT_AS] = {"Max address space", "bytes"},
455 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
456 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
457 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
458 [RLIMIT_NICE] = {"Max nice priority", NULL},
459 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
460 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
463 /* Display limits for a process */
464 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 char *bufptr = buffer;
471 struct rlimit rlim[RLIM_NLIMITS];
474 if (!lock_task_sighand(task,&flags)) {
478 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
479 unlock_task_sighand(task, &flags);
483 * print the file header
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
499 count += sprintf(&bufptr[count], "%-20lu ",
503 count += sprintf(&bufptr[count], "%-10s\n",
506 count += sprintf(&bufptr[count], "\n");
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
516 unsigned long args[6], sp, pc;
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
527 args[0], args[1], args[2], args[3], args[4], args[5],
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
539 struct task_struct *task;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
545 task = get_proc_task(inode);
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
556 struct inode *inode = dentry->d_inode;
558 if (attr->ia_valid & ATTR_MODE)
561 error = inode_change_ok(inode, attr);
563 error = inode_setattr(inode, attr);
567 static const struct inode_operations proc_def_inode_operations = {
568 .setattr = proc_setattr,
571 static int mounts_open_common(struct inode *inode, struct file *file,
572 const struct seq_operations *op)
574 struct task_struct *task = get_proc_task(inode);
576 struct mnt_namespace *ns = NULL;
577 struct fs_struct *fs = NULL;
579 struct proc_mounts *p;
584 nsp = task_nsproxy(task);
592 fs = get_fs_struct(task);
593 put_task_struct(task);
601 read_lock(&fs->lock);
604 read_unlock(&fs->lock);
608 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 file->private_data = &p->m;
613 ret = seq_open(file, op);
620 p->event = ns->event;
634 static int mounts_release(struct inode *inode, struct file *file)
636 struct proc_mounts *p = file->private_data;
639 return seq_release(inode, file);
642 static unsigned mounts_poll(struct file *file, poll_table *wait)
644 struct proc_mounts *p = file->private_data;
645 struct mnt_namespace *ns = p->ns;
648 poll_wait(file, &ns->poll, wait);
650 spin_lock(&vfsmount_lock);
651 if (p->event != ns->event) {
652 p->event = ns->event;
655 spin_unlock(&vfsmount_lock);
660 static int mounts_open(struct inode *inode, struct file *file)
662 return mounts_open_common(inode, file, &mounts_op);
665 static const struct file_operations proc_mounts_operations = {
669 .release = mounts_release,
673 static int mountinfo_open(struct inode *inode, struct file *file)
675 return mounts_open_common(inode, file, &mountinfo_op);
678 static const struct file_operations proc_mountinfo_operations = {
679 .open = mountinfo_open,
682 .release = mounts_release,
686 static int mountstats_open(struct inode *inode, struct file *file)
688 return mounts_open_common(inode, file, &mountstats_op);
691 static const struct file_operations proc_mountstats_operations = {
692 .open = mountstats_open,
695 .release = mounts_release,
698 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
700 static ssize_t proc_info_read(struct file * file, char __user * buf,
701 size_t count, loff_t *ppos)
703 struct inode * inode = file->f_path.dentry->d_inode;
706 struct task_struct *task = get_proc_task(inode);
712 if (count > PROC_BLOCK_SIZE)
713 count = PROC_BLOCK_SIZE;
716 if (!(page = __get_free_page(GFP_TEMPORARY)))
719 length = PROC_I(inode)->op.proc_read(task, (char*)page);
722 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
725 put_task_struct(task);
730 static const struct file_operations proc_info_file_operations = {
731 .read = proc_info_read,
734 static int proc_single_show(struct seq_file *m, void *v)
736 struct inode *inode = m->private;
737 struct pid_namespace *ns;
739 struct task_struct *task;
742 ns = inode->i_sb->s_fs_info;
743 pid = proc_pid(inode);
744 task = get_pid_task(pid, PIDTYPE_PID);
748 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
750 put_task_struct(task);
754 static int proc_single_open(struct inode *inode, struct file *filp)
757 ret = single_open(filp, proc_single_show, NULL);
759 struct seq_file *m = filp->private_data;
766 static const struct file_operations proc_single_file_operations = {
767 .open = proc_single_open,
770 .release = single_release,
773 static int mem_open(struct inode* inode, struct file* file)
775 file->private_data = (void*)((long)current->self_exec_id);
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 size_t count, loff_t *ppos)
782 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
784 unsigned long src = *ppos;
786 struct mm_struct *mm;
791 if (check_mem_permission(task))
795 page = (char *)__get_free_page(GFP_TEMPORARY);
801 mm = get_task_mm(task);
807 if (file->private_data != (void*)((long)current->self_exec_id))
813 int this_len, retval;
815 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 retval = access_process_vm(task, src, page, this_len, 0);
817 if (!retval || check_mem_permission(task)) {
823 if (copy_to_user(buf, page, retval)) {
838 free_page((unsigned long) page);
840 put_task_struct(task);
845 #define mem_write NULL
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 size_t count, loff_t *ppos)
854 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 unsigned long dst = *ppos;
861 if (check_mem_permission(task))
865 page = (char *)__get_free_page(GFP_TEMPORARY);
871 int this_len, retval;
873 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 if (copy_from_user(page, buf, this_len)) {
878 retval = access_process_vm(task, dst, page, this_len, 1);
890 free_page((unsigned long) page);
892 put_task_struct(task);
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
902 file->f_pos = offset;
905 file->f_pos += offset;
910 force_successful_syscall_return();
914 static const struct file_operations proc_mem_operations = {
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 size_t count, loff_t *ppos)
924 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
926 unsigned long src = *ppos;
928 struct mm_struct *mm;
933 if (!ptrace_may_access(task, PTRACE_MODE_READ))
937 page = (char *)__get_free_page(GFP_TEMPORARY);
943 mm = get_task_mm(task);
948 int this_len, retval, max_len;
950 this_len = mm->env_end - (mm->env_start + src);
955 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 this_len = (this_len > max_len) ? max_len : this_len;
958 retval = access_process_vm(task, (mm->env_start + src),
966 if (copy_to_user(buf, page, retval)) {
980 free_page((unsigned long) page);
982 put_task_struct(task);
987 static const struct file_operations proc_environ_operations = {
988 .read = environ_read,
991 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
992 size_t count, loff_t *ppos)
994 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
995 char buffer[PROC_NUMBUF];
1001 oom_adjust = task->oomkilladj;
1002 put_task_struct(task);
1004 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1006 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1009 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1010 size_t count, loff_t *ppos)
1012 struct task_struct *task;
1013 char buffer[PROC_NUMBUF], *end;
1016 memset(buffer, 0, sizeof(buffer));
1017 if (count > sizeof(buffer) - 1)
1018 count = sizeof(buffer) - 1;
1019 if (copy_from_user(buffer, buf, count))
1021 oom_adjust = simple_strtol(buffer, &end, 0);
1022 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1023 oom_adjust != OOM_DISABLE)
1027 task = get_proc_task(file->f_path.dentry->d_inode);
1030 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1031 put_task_struct(task);
1034 task->oomkilladj = oom_adjust;
1035 put_task_struct(task);
1036 if (end - buffer == 0)
1038 return end - buffer;
1041 static const struct file_operations proc_oom_adjust_operations = {
1042 .read = oom_adjust_read,
1043 .write = oom_adjust_write,
1046 #ifdef CONFIG_AUDITSYSCALL
1047 #define TMPBUFLEN 21
1048 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1049 size_t count, loff_t *ppos)
1051 struct inode * inode = file->f_path.dentry->d_inode;
1052 struct task_struct *task = get_proc_task(inode);
1054 char tmpbuf[TMPBUFLEN];
1058 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1059 audit_get_loginuid(task));
1060 put_task_struct(task);
1061 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1064 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1065 size_t count, loff_t *ppos)
1067 struct inode * inode = file->f_path.dentry->d_inode;
1072 if (!capable(CAP_AUDIT_CONTROL))
1075 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1078 if (count >= PAGE_SIZE)
1079 count = PAGE_SIZE - 1;
1082 /* No partial writes. */
1085 page = (char*)__get_free_page(GFP_TEMPORARY);
1089 if (copy_from_user(page, buf, count))
1093 loginuid = simple_strtoul(page, &tmp, 10);
1099 length = audit_set_loginuid(current, loginuid);
1100 if (likely(length == 0))
1104 free_page((unsigned long) page);
1108 static const struct file_operations proc_loginuid_operations = {
1109 .read = proc_loginuid_read,
1110 .write = proc_loginuid_write,
1113 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1114 size_t count, loff_t *ppos)
1116 struct inode * inode = file->f_path.dentry->d_inode;
1117 struct task_struct *task = get_proc_task(inode);
1119 char tmpbuf[TMPBUFLEN];
1123 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1124 audit_get_sessionid(task));
1125 put_task_struct(task);
1126 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1129 static const struct file_operations proc_sessionid_operations = {
1130 .read = proc_sessionid_read,
1134 #ifdef CONFIG_FAULT_INJECTION
1135 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1136 size_t count, loff_t *ppos)
1138 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1139 char buffer[PROC_NUMBUF];
1145 make_it_fail = task->make_it_fail;
1146 put_task_struct(task);
1148 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1150 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1153 static ssize_t proc_fault_inject_write(struct file * file,
1154 const char __user * buf, size_t count, loff_t *ppos)
1156 struct task_struct *task;
1157 char buffer[PROC_NUMBUF], *end;
1160 if (!capable(CAP_SYS_RESOURCE))
1162 memset(buffer, 0, sizeof(buffer));
1163 if (count > sizeof(buffer) - 1)
1164 count = sizeof(buffer) - 1;
1165 if (copy_from_user(buffer, buf, count))
1167 make_it_fail = simple_strtol(buffer, &end, 0);
1170 task = get_proc_task(file->f_dentry->d_inode);
1173 task->make_it_fail = make_it_fail;
1174 put_task_struct(task);
1175 if (end - buffer == 0)
1177 return end - buffer;
1180 static const struct file_operations proc_fault_inject_operations = {
1181 .read = proc_fault_inject_read,
1182 .write = proc_fault_inject_write,
1187 #ifdef CONFIG_SCHED_DEBUG
1189 * Print out various scheduling related per-task fields:
1191 static int sched_show(struct seq_file *m, void *v)
1193 struct inode *inode = m->private;
1194 struct task_struct *p;
1198 p = get_proc_task(inode);
1201 proc_sched_show_task(p, m);
1209 sched_write(struct file *file, const char __user *buf,
1210 size_t count, loff_t *offset)
1212 struct inode *inode = file->f_path.dentry->d_inode;
1213 struct task_struct *p;
1217 p = get_proc_task(inode);
1220 proc_sched_set_task(p);
1227 static int sched_open(struct inode *inode, struct file *filp)
1231 ret = single_open(filp, sched_show, NULL);
1233 struct seq_file *m = filp->private_data;
1240 static const struct file_operations proc_pid_sched_operations = {
1243 .write = sched_write,
1244 .llseek = seq_lseek,
1245 .release = single_release,
1251 * We added or removed a vma mapping the executable. The vmas are only mapped
1252 * during exec and are not mapped with the mmap system call.
1253 * Callers must hold down_write() on the mm's mmap_sem for these
1255 void added_exe_file_vma(struct mm_struct *mm)
1257 mm->num_exe_file_vmas++;
1260 void removed_exe_file_vma(struct mm_struct *mm)
1262 mm->num_exe_file_vmas--;
1263 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1265 mm->exe_file = NULL;
1270 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1273 get_file(new_exe_file);
1276 mm->exe_file = new_exe_file;
1277 mm->num_exe_file_vmas = 0;
1280 struct file *get_mm_exe_file(struct mm_struct *mm)
1282 struct file *exe_file;
1284 /* We need mmap_sem to protect against races with removal of
1285 * VM_EXECUTABLE vmas */
1286 down_read(&mm->mmap_sem);
1287 exe_file = mm->exe_file;
1290 up_read(&mm->mmap_sem);
1294 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1296 /* It's safe to write the exe_file pointer without exe_file_lock because
1297 * this is called during fork when the task is not yet in /proc */
1298 newmm->exe_file = get_mm_exe_file(oldmm);
1301 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1303 struct task_struct *task;
1304 struct mm_struct *mm;
1305 struct file *exe_file;
1307 task = get_proc_task(inode);
1310 mm = get_task_mm(task);
1311 put_task_struct(task);
1314 exe_file = get_mm_exe_file(mm);
1317 *exe_path = exe_file->f_path;
1318 path_get(&exe_file->f_path);
1325 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1327 struct inode *inode = dentry->d_inode;
1328 int error = -EACCES;
1330 /* We don't need a base pointer in the /proc filesystem */
1331 path_put(&nd->path);
1333 /* Are we allowed to snoop on the tasks file descriptors? */
1334 if (!proc_fd_access_allowed(inode))
1337 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1338 nd->last_type = LAST_BIND;
1340 return ERR_PTR(error);
1343 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1345 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1352 pathname = d_path(path, tmp, PAGE_SIZE);
1353 len = PTR_ERR(pathname);
1354 if (IS_ERR(pathname))
1356 len = tmp + PAGE_SIZE - 1 - pathname;
1360 if (copy_to_user(buffer, pathname, len))
1363 free_page((unsigned long)tmp);
1367 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1369 int error = -EACCES;
1370 struct inode *inode = dentry->d_inode;
1373 /* Are we allowed to snoop on the tasks file descriptors? */
1374 if (!proc_fd_access_allowed(inode))
1377 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1381 error = do_proc_readlink(&path, buffer, buflen);
1387 static const struct inode_operations proc_pid_link_inode_operations = {
1388 .readlink = proc_pid_readlink,
1389 .follow_link = proc_pid_follow_link,
1390 .setattr = proc_setattr,
1394 /* building an inode */
1396 static int task_dumpable(struct task_struct *task)
1399 struct mm_struct *mm;
1404 dumpable = get_dumpable(mm);
1412 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1414 struct inode * inode;
1415 struct proc_inode *ei;
1417 /* We need a new inode */
1419 inode = new_inode(sb);
1425 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1426 inode->i_op = &proc_def_inode_operations;
1429 * grab the reference to task.
1431 ei->pid = get_task_pid(task, PIDTYPE_PID);
1437 if (task_dumpable(task)) {
1438 inode->i_uid = task->euid;
1439 inode->i_gid = task->egid;
1441 security_task_to_inode(task, inode);
1451 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1453 struct inode *inode = dentry->d_inode;
1454 struct task_struct *task;
1455 generic_fillattr(inode, stat);
1460 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1462 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1463 task_dumpable(task)) {
1464 stat->uid = task->euid;
1465 stat->gid = task->egid;
1475 * Exceptional case: normally we are not allowed to unhash a busy
1476 * directory. In this case, however, we can do it - no aliasing problems
1477 * due to the way we treat inodes.
1479 * Rewrite the inode's ownerships here because the owning task may have
1480 * performed a setuid(), etc.
1482 * Before the /proc/pid/status file was created the only way to read
1483 * the effective uid of a /process was to stat /proc/pid. Reading
1484 * /proc/pid/status is slow enough that procps and other packages
1485 * kept stating /proc/pid. To keep the rules in /proc simple I have
1486 * made this apply to all per process world readable and executable
1489 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1491 struct inode *inode = dentry->d_inode;
1492 struct task_struct *task = get_proc_task(inode);
1494 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1495 task_dumpable(task)) {
1496 inode->i_uid = task->euid;
1497 inode->i_gid = task->egid;
1502 inode->i_mode &= ~(S_ISUID | S_ISGID);
1503 security_task_to_inode(task, inode);
1504 put_task_struct(task);
1511 static int pid_delete_dentry(struct dentry * dentry)
1513 /* Is the task we represent dead?
1514 * If so, then don't put the dentry on the lru list,
1515 * kill it immediately.
1517 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1520 static struct dentry_operations pid_dentry_operations =
1522 .d_revalidate = pid_revalidate,
1523 .d_delete = pid_delete_dentry,
1528 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1529 struct task_struct *, const void *);
1532 * Fill a directory entry.
1534 * If possible create the dcache entry and derive our inode number and
1535 * file type from dcache entry.
1537 * Since all of the proc inode numbers are dynamically generated, the inode
1538 * numbers do not exist until the inode is cache. This means creating the
1539 * the dcache entry in readdir is necessary to keep the inode numbers
1540 * reported by readdir in sync with the inode numbers reported
1543 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1544 char *name, int len,
1545 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1547 struct dentry *child, *dir = filp->f_path.dentry;
1548 struct inode *inode;
1551 unsigned type = DT_UNKNOWN;
1555 qname.hash = full_name_hash(name, len);
1557 child = d_lookup(dir, &qname);
1560 new = d_alloc(dir, &qname);
1562 child = instantiate(dir->d_inode, new, task, ptr);
1569 if (!child || IS_ERR(child) || !child->d_inode)
1570 goto end_instantiate;
1571 inode = child->d_inode;
1574 type = inode->i_mode >> 12;
1579 ino = find_inode_number(dir, &qname);
1582 return filldir(dirent, name, len, filp->f_pos, ino, type);
1585 static unsigned name_to_int(struct dentry *dentry)
1587 const char *name = dentry->d_name.name;
1588 int len = dentry->d_name.len;
1591 if (len > 1 && *name == '0')
1594 unsigned c = *name++ - '0';
1597 if (n >= (~0U-9)/10)
1607 #define PROC_FDINFO_MAX 64
1609 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1611 struct task_struct *task = get_proc_task(inode);
1612 struct files_struct *files = NULL;
1614 int fd = proc_fd(inode);
1617 files = get_files_struct(task);
1618 put_task_struct(task);
1622 * We are not taking a ref to the file structure, so we must
1625 spin_lock(&files->file_lock);
1626 file = fcheck_files(files, fd);
1629 *path = file->f_path;
1630 path_get(&file->f_path);
1633 snprintf(info, PROC_FDINFO_MAX,
1636 (long long) file->f_pos,
1638 spin_unlock(&files->file_lock);
1639 put_files_struct(files);
1642 spin_unlock(&files->file_lock);
1643 put_files_struct(files);
1648 static int proc_fd_link(struct inode *inode, struct path *path)
1650 return proc_fd_info(inode, path, NULL);
1653 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1655 struct inode *inode = dentry->d_inode;
1656 struct task_struct *task = get_proc_task(inode);
1657 int fd = proc_fd(inode);
1658 struct files_struct *files;
1661 files = get_files_struct(task);
1664 if (fcheck_files(files, fd)) {
1666 put_files_struct(files);
1667 if (task_dumpable(task)) {
1668 inode->i_uid = task->euid;
1669 inode->i_gid = task->egid;
1674 inode->i_mode &= ~(S_ISUID | S_ISGID);
1675 security_task_to_inode(task, inode);
1676 put_task_struct(task);
1680 put_files_struct(files);
1682 put_task_struct(task);
1688 static struct dentry_operations tid_fd_dentry_operations =
1690 .d_revalidate = tid_fd_revalidate,
1691 .d_delete = pid_delete_dentry,
1694 static struct dentry *proc_fd_instantiate(struct inode *dir,
1695 struct dentry *dentry, struct task_struct *task, const void *ptr)
1697 unsigned fd = *(const unsigned *)ptr;
1699 struct files_struct *files;
1700 struct inode *inode;
1701 struct proc_inode *ei;
1702 struct dentry *error = ERR_PTR(-ENOENT);
1704 inode = proc_pid_make_inode(dir->i_sb, task);
1709 files = get_files_struct(task);
1712 inode->i_mode = S_IFLNK;
1715 * We are not taking a ref to the file structure, so we must
1718 spin_lock(&files->file_lock);
1719 file = fcheck_files(files, fd);
1722 if (file->f_mode & 1)
1723 inode->i_mode |= S_IRUSR | S_IXUSR;
1724 if (file->f_mode & 2)
1725 inode->i_mode |= S_IWUSR | S_IXUSR;
1726 spin_unlock(&files->file_lock);
1727 put_files_struct(files);
1729 inode->i_op = &proc_pid_link_inode_operations;
1731 ei->op.proc_get_link = proc_fd_link;
1732 dentry->d_op = &tid_fd_dentry_operations;
1733 d_add(dentry, inode);
1734 /* Close the race of the process dying before we return the dentry */
1735 if (tid_fd_revalidate(dentry, NULL))
1741 spin_unlock(&files->file_lock);
1742 put_files_struct(files);
1748 static struct dentry *proc_lookupfd_common(struct inode *dir,
1749 struct dentry *dentry,
1750 instantiate_t instantiate)
1752 struct task_struct *task = get_proc_task(dir);
1753 unsigned fd = name_to_int(dentry);
1754 struct dentry *result = ERR_PTR(-ENOENT);
1761 result = instantiate(dir, dentry, task, &fd);
1763 put_task_struct(task);
1768 static int proc_readfd_common(struct file * filp, void * dirent,
1769 filldir_t filldir, instantiate_t instantiate)
1771 struct dentry *dentry = filp->f_path.dentry;
1772 struct inode *inode = dentry->d_inode;
1773 struct task_struct *p = get_proc_task(inode);
1774 unsigned int fd, ino;
1776 struct files_struct * files;
1786 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1790 ino = parent_ino(dentry);
1791 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1795 files = get_files_struct(p);
1799 for (fd = filp->f_pos-2;
1800 fd < files_fdtable(files)->max_fds;
1801 fd++, filp->f_pos++) {
1802 char name[PROC_NUMBUF];
1805 if (!fcheck_files(files, fd))
1809 len = snprintf(name, sizeof(name), "%d", fd);
1810 if (proc_fill_cache(filp, dirent, filldir,
1811 name, len, instantiate,
1819 put_files_struct(files);
1827 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1828 struct nameidata *nd)
1830 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1833 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1835 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1838 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1839 size_t len, loff_t *ppos)
1841 char tmp[PROC_FDINFO_MAX];
1842 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1844 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1848 static const struct file_operations proc_fdinfo_file_operations = {
1849 .open = nonseekable_open,
1850 .read = proc_fdinfo_read,
1853 static const struct file_operations proc_fd_operations = {
1854 .read = generic_read_dir,
1855 .readdir = proc_readfd,
1859 * /proc/pid/fd needs a special permission handler so that a process can still
1860 * access /proc/self/fd after it has executed a setuid().
1862 static int proc_fd_permission(struct inode *inode, int mask,
1863 struct nameidata *nd)
1867 rv = generic_permission(inode, mask, NULL);
1870 if (task_pid(current) == proc_pid(inode))
1876 * proc directories can do almost nothing..
1878 static const struct inode_operations proc_fd_inode_operations = {
1879 .lookup = proc_lookupfd,
1880 .permission = proc_fd_permission,
1881 .setattr = proc_setattr,
1884 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1885 struct dentry *dentry, struct task_struct *task, const void *ptr)
1887 unsigned fd = *(unsigned *)ptr;
1888 struct inode *inode;
1889 struct proc_inode *ei;
1890 struct dentry *error = ERR_PTR(-ENOENT);
1892 inode = proc_pid_make_inode(dir->i_sb, task);
1897 inode->i_mode = S_IFREG | S_IRUSR;
1898 inode->i_fop = &proc_fdinfo_file_operations;
1899 dentry->d_op = &tid_fd_dentry_operations;
1900 d_add(dentry, inode);
1901 /* Close the race of the process dying before we return the dentry */
1902 if (tid_fd_revalidate(dentry, NULL))
1909 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1910 struct dentry *dentry,
1911 struct nameidata *nd)
1913 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1916 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1918 return proc_readfd_common(filp, dirent, filldir,
1919 proc_fdinfo_instantiate);
1922 static const struct file_operations proc_fdinfo_operations = {
1923 .read = generic_read_dir,
1924 .readdir = proc_readfdinfo,
1928 * proc directories can do almost nothing..
1930 static const struct inode_operations proc_fdinfo_inode_operations = {
1931 .lookup = proc_lookupfdinfo,
1932 .setattr = proc_setattr,
1936 static struct dentry *proc_pident_instantiate(struct inode *dir,
1937 struct dentry *dentry, struct task_struct *task, const void *ptr)
1939 const struct pid_entry *p = ptr;
1940 struct inode *inode;
1941 struct proc_inode *ei;
1942 struct dentry *error = ERR_PTR(-EINVAL);
1944 inode = proc_pid_make_inode(dir->i_sb, task);
1949 inode->i_mode = p->mode;
1950 if (S_ISDIR(inode->i_mode))
1951 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1953 inode->i_op = p->iop;
1955 inode->i_fop = p->fop;
1957 dentry->d_op = &pid_dentry_operations;
1958 d_add(dentry, inode);
1959 /* Close the race of the process dying before we return the dentry */
1960 if (pid_revalidate(dentry, NULL))
1966 static struct dentry *proc_pident_lookup(struct inode *dir,
1967 struct dentry *dentry,
1968 const struct pid_entry *ents,
1971 struct inode *inode;
1972 struct dentry *error;
1973 struct task_struct *task = get_proc_task(dir);
1974 const struct pid_entry *p, *last;
1976 error = ERR_PTR(-ENOENT);
1983 * Yes, it does not scale. And it should not. Don't add
1984 * new entries into /proc/<tgid>/ without very good reasons.
1986 last = &ents[nents - 1];
1987 for (p = ents; p <= last; p++) {
1988 if (p->len != dentry->d_name.len)
1990 if (!memcmp(dentry->d_name.name, p->name, p->len))
1996 error = proc_pident_instantiate(dir, dentry, task, p);
1998 put_task_struct(task);
2003 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2004 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2006 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2007 proc_pident_instantiate, task, p);
2010 static int proc_pident_readdir(struct file *filp,
2011 void *dirent, filldir_t filldir,
2012 const struct pid_entry *ents, unsigned int nents)
2015 struct dentry *dentry = filp->f_path.dentry;
2016 struct inode *inode = dentry->d_inode;
2017 struct task_struct *task = get_proc_task(inode);
2018 const struct pid_entry *p, *last;
2031 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2037 ino = parent_ino(dentry);
2038 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2050 last = &ents[nents - 1];
2052 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2061 put_task_struct(task);
2066 #ifdef CONFIG_SECURITY
2067 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2068 size_t count, loff_t *ppos)
2070 struct inode * inode = file->f_path.dentry->d_inode;
2073 struct task_struct *task = get_proc_task(inode);
2078 length = security_getprocattr(task,
2079 (char*)file->f_path.dentry->d_name.name,
2081 put_task_struct(task);
2083 length = simple_read_from_buffer(buf, count, ppos, p, length);
2088 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2089 size_t count, loff_t *ppos)
2091 struct inode * inode = file->f_path.dentry->d_inode;
2094 struct task_struct *task = get_proc_task(inode);
2099 if (count > PAGE_SIZE)
2102 /* No partial writes. */
2108 page = (char*)__get_free_page(GFP_TEMPORARY);
2113 if (copy_from_user(page, buf, count))
2116 length = security_setprocattr(task,
2117 (char*)file->f_path.dentry->d_name.name,
2118 (void*)page, count);
2120 free_page((unsigned long) page);
2122 put_task_struct(task);
2127 static const struct file_operations proc_pid_attr_operations = {
2128 .read = proc_pid_attr_read,
2129 .write = proc_pid_attr_write,
2132 static const struct pid_entry attr_dir_stuff[] = {
2133 REG("current", S_IRUGO|S_IWUGO, pid_attr),
2134 REG("prev", S_IRUGO, pid_attr),
2135 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
2136 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
2137 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
2138 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2141 static int proc_attr_dir_readdir(struct file * filp,
2142 void * dirent, filldir_t filldir)
2144 return proc_pident_readdir(filp,dirent,filldir,
2145 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2148 static const struct file_operations proc_attr_dir_operations = {
2149 .read = generic_read_dir,
2150 .readdir = proc_attr_dir_readdir,
2153 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2154 struct dentry *dentry, struct nameidata *nd)
2156 return proc_pident_lookup(dir, dentry,
2157 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2160 static const struct inode_operations proc_attr_dir_inode_operations = {
2161 .lookup = proc_attr_dir_lookup,
2162 .getattr = pid_getattr,
2163 .setattr = proc_setattr,
2168 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2169 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2170 size_t count, loff_t *ppos)
2172 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2173 struct mm_struct *mm;
2174 char buffer[PROC_NUMBUF];
2182 mm = get_task_mm(task);
2184 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2185 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2186 MMF_DUMP_FILTER_SHIFT));
2188 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2191 put_task_struct(task);
2196 static ssize_t proc_coredump_filter_write(struct file *file,
2197 const char __user *buf,
2201 struct task_struct *task;
2202 struct mm_struct *mm;
2203 char buffer[PROC_NUMBUF], *end;
2210 memset(buffer, 0, sizeof(buffer));
2211 if (count > sizeof(buffer) - 1)
2212 count = sizeof(buffer) - 1;
2213 if (copy_from_user(buffer, buf, count))
2217 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2220 if (end - buffer == 0)
2224 task = get_proc_task(file->f_dentry->d_inode);
2229 mm = get_task_mm(task);
2233 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2235 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2237 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2242 put_task_struct(task);
2247 static const struct file_operations proc_coredump_filter_operations = {
2248 .read = proc_coredump_filter_read,
2249 .write = proc_coredump_filter_write,
2256 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2259 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2260 pid_t tgid = task_tgid_nr_ns(current, ns);
2261 char tmp[PROC_NUMBUF];
2264 sprintf(tmp, "%d", tgid);
2265 return vfs_readlink(dentry,buffer,buflen,tmp);
2268 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2270 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2271 pid_t tgid = task_tgid_nr_ns(current, ns);
2272 char tmp[PROC_NUMBUF];
2274 return ERR_PTR(-ENOENT);
2275 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2276 return ERR_PTR(vfs_follow_link(nd,tmp));
2279 static const struct inode_operations proc_self_inode_operations = {
2280 .readlink = proc_self_readlink,
2281 .follow_link = proc_self_follow_link,
2287 * These are the directory entries in the root directory of /proc
2288 * that properly belong to the /proc filesystem, as they describe
2289 * describe something that is process related.
2291 static const struct pid_entry proc_base_stuff[] = {
2292 NOD("self", S_IFLNK|S_IRWXUGO,
2293 &proc_self_inode_operations, NULL, {}),
2297 * Exceptional case: normally we are not allowed to unhash a busy
2298 * directory. In this case, however, we can do it - no aliasing problems
2299 * due to the way we treat inodes.
2301 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2303 struct inode *inode = dentry->d_inode;
2304 struct task_struct *task = get_proc_task(inode);
2306 put_task_struct(task);
2313 static struct dentry_operations proc_base_dentry_operations =
2315 .d_revalidate = proc_base_revalidate,
2316 .d_delete = pid_delete_dentry,
2319 static struct dentry *proc_base_instantiate(struct inode *dir,
2320 struct dentry *dentry, struct task_struct *task, const void *ptr)
2322 const struct pid_entry *p = ptr;
2323 struct inode *inode;
2324 struct proc_inode *ei;
2325 struct dentry *error = ERR_PTR(-EINVAL);
2327 /* Allocate the inode */
2328 error = ERR_PTR(-ENOMEM);
2329 inode = new_inode(dir->i_sb);
2333 /* Initialize the inode */
2335 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2338 * grab the reference to the task.
2340 ei->pid = get_task_pid(task, PIDTYPE_PID);
2346 inode->i_mode = p->mode;
2347 if (S_ISDIR(inode->i_mode))
2349 if (S_ISLNK(inode->i_mode))
2352 inode->i_op = p->iop;
2354 inode->i_fop = p->fop;
2356 dentry->d_op = &proc_base_dentry_operations;
2357 d_add(dentry, inode);
2366 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2368 struct dentry *error;
2369 struct task_struct *task = get_proc_task(dir);
2370 const struct pid_entry *p, *last;
2372 error = ERR_PTR(-ENOENT);
2377 /* Lookup the directory entry */
2378 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2379 for (p = proc_base_stuff; p <= last; p++) {
2380 if (p->len != dentry->d_name.len)
2382 if (!memcmp(dentry->d_name.name, p->name, p->len))
2388 error = proc_base_instantiate(dir, dentry, task, p);
2391 put_task_struct(task);
2396 static int proc_base_fill_cache(struct file *filp, void *dirent,
2397 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2399 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2400 proc_base_instantiate, task, p);
2403 #ifdef CONFIG_TASK_IO_ACCOUNTING
2404 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2406 u64 rchar, wchar, syscr, syscw;
2407 struct task_io_accounting ioac;
2409 rchar = task->rchar;
2410 wchar = task->wchar;
2411 syscr = task->syscr;
2412 syscw = task->syscw;
2413 memcpy(&ioac, &task->ioac, sizeof(ioac));
2416 unsigned long flags;
2418 if (lock_task_sighand(task, &flags)) {
2419 struct signal_struct *sig = task->signal;
2420 struct task_struct *t = task;
2422 rchar += sig->rchar;
2423 wchar += sig->wchar;
2424 syscr += sig->syscr;
2425 syscw += sig->syscw;
2427 ioac.read_bytes += sig->ioac.read_bytes;
2428 ioac.write_bytes += sig->ioac.write_bytes;
2429 ioac.cancelled_write_bytes +=
2430 sig->ioac.cancelled_write_bytes;
2431 while_each_thread(task, t) {
2437 ioac.read_bytes += t->ioac.read_bytes;
2438 ioac.write_bytes += t->ioac.write_bytes;
2439 ioac.cancelled_write_bytes +=
2440 t->ioac.cancelled_write_bytes;
2442 unlock_task_sighand(task, &flags);
2445 return sprintf(buffer,
2450 "read_bytes: %llu\n"
2451 "write_bytes: %llu\n"
2452 "cancelled_write_bytes: %llu\n",
2453 rchar, wchar, syscr, syscw,
2454 ioac.read_bytes, ioac.write_bytes,
2455 ioac.cancelled_write_bytes);
2458 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2460 return do_io_accounting(task, buffer, 0);
2463 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2465 return do_io_accounting(task, buffer, 1);
2467 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2472 static const struct file_operations proc_task_operations;
2473 static const struct inode_operations proc_task_inode_operations;
2475 static const struct pid_entry tgid_base_stuff[] = {
2476 DIR("task", S_IRUGO|S_IXUGO, task),
2477 DIR("fd", S_IRUSR|S_IXUSR, fd),
2478 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2480 DIR("net", S_IRUGO|S_IXUGO, net),
2482 REG("environ", S_IRUSR, environ),
2483 INF("auxv", S_IRUSR, pid_auxv),
2484 ONE("status", S_IRUGO, pid_status),
2485 INF("limits", S_IRUSR, pid_limits),
2486 #ifdef CONFIG_SCHED_DEBUG
2487 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2490 INF("syscall", S_IRUSR, pid_syscall),
2492 INF("cmdline", S_IRUGO, pid_cmdline),
2493 ONE("stat", S_IRUGO, tgid_stat),
2494 ONE("statm", S_IRUGO, pid_statm),
2495 REG("maps", S_IRUGO, maps),
2497 REG("numa_maps", S_IRUGO, numa_maps),
2499 REG("mem", S_IRUSR|S_IWUSR, mem),
2503 REG("mounts", S_IRUGO, mounts),
2504 REG("mountinfo", S_IRUGO, mountinfo),
2505 REG("mountstats", S_IRUSR, mountstats),
2506 #ifdef CONFIG_PROC_PAGE_MONITOR
2507 REG("clear_refs", S_IWUSR, clear_refs),
2508 REG("smaps", S_IRUGO, smaps),
2509 REG("pagemap", S_IRUSR, pagemap),
2511 #ifdef CONFIG_SECURITY
2512 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2514 #ifdef CONFIG_KALLSYMS
2515 INF("wchan", S_IRUGO, pid_wchan),
2517 #ifdef CONFIG_SCHEDSTATS
2518 INF("schedstat", S_IRUGO, pid_schedstat),
2520 #ifdef CONFIG_LATENCYTOP
2521 REG("latency", S_IRUGO, lstats),
2523 #ifdef CONFIG_PROC_PID_CPUSET
2524 REG("cpuset", S_IRUGO, cpuset),
2526 #ifdef CONFIG_CGROUPS
2527 REG("cgroup", S_IRUGO, cgroup),
2529 INF("oom_score", S_IRUGO, oom_score),
2530 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2531 #ifdef CONFIG_AUDITSYSCALL
2532 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2533 REG("sessionid", S_IRUGO, sessionid),
2535 #ifdef CONFIG_FAULT_INJECTION
2536 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2538 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2539 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2541 #ifdef CONFIG_TASK_IO_ACCOUNTING
2542 INF("io", S_IRUGO, tgid_io_accounting),
2546 static int proc_tgid_base_readdir(struct file * filp,
2547 void * dirent, filldir_t filldir)
2549 return proc_pident_readdir(filp,dirent,filldir,
2550 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2553 static const struct file_operations proc_tgid_base_operations = {
2554 .read = generic_read_dir,
2555 .readdir = proc_tgid_base_readdir,
2558 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2559 return proc_pident_lookup(dir, dentry,
2560 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2563 static const struct inode_operations proc_tgid_base_inode_operations = {
2564 .lookup = proc_tgid_base_lookup,
2565 .getattr = pid_getattr,
2566 .setattr = proc_setattr,
2569 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2571 struct dentry *dentry, *leader, *dir;
2572 char buf[PROC_NUMBUF];
2576 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2577 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2579 if (!(current->flags & PF_EXITING))
2580 shrink_dcache_parent(dentry);
2589 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2590 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2595 name.len = strlen(name.name);
2596 dir = d_hash_and_lookup(leader, &name);
2598 goto out_put_leader;
2601 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2602 dentry = d_hash_and_lookup(dir, &name);
2604 shrink_dcache_parent(dentry);
2617 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2618 * @task: task that should be flushed.
2620 * When flushing dentries from proc, one needs to flush them from global
2621 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2622 * in. This call is supposed to do all of this job.
2624 * Looks in the dcache for
2626 * /proc/@tgid/task/@pid
2627 * if either directory is present flushes it and all of it'ts children
2630 * It is safe and reasonable to cache /proc entries for a task until
2631 * that task exits. After that they just clog up the dcache with
2632 * useless entries, possibly causing useful dcache entries to be
2633 * flushed instead. This routine is proved to flush those useless
2634 * dcache entries at process exit time.
2636 * NOTE: This routine is just an optimization so it does not guarantee
2637 * that no dcache entries will exist at process exit time it
2638 * just makes it very unlikely that any will persist.
2641 void proc_flush_task(struct task_struct *task)
2644 struct pid *pid, *tgid = NULL;
2647 pid = task_pid(task);
2648 if (thread_group_leader(task))
2649 tgid = task_tgid(task);
2651 for (i = 0; i <= pid->level; i++) {
2652 upid = &pid->numbers[i];
2653 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2654 tgid ? tgid->numbers[i].nr : 0);
2657 upid = &pid->numbers[pid->level];
2659 pid_ns_release_proc(upid->ns);
2662 static struct dentry *proc_pid_instantiate(struct inode *dir,
2663 struct dentry * dentry,
2664 struct task_struct *task, const void *ptr)
2666 struct dentry *error = ERR_PTR(-ENOENT);
2667 struct inode *inode;
2669 inode = proc_pid_make_inode(dir->i_sb, task);
2673 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2674 inode->i_op = &proc_tgid_base_inode_operations;
2675 inode->i_fop = &proc_tgid_base_operations;
2676 inode->i_flags|=S_IMMUTABLE;
2678 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2679 ARRAY_SIZE(tgid_base_stuff));
2681 dentry->d_op = &pid_dentry_operations;
2683 d_add(dentry, inode);
2684 /* Close the race of the process dying before we return the dentry */
2685 if (pid_revalidate(dentry, NULL))
2691 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2693 struct dentry *result = ERR_PTR(-ENOENT);
2694 struct task_struct *task;
2696 struct pid_namespace *ns;
2698 result = proc_base_lookup(dir, dentry);
2699 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2702 tgid = name_to_int(dentry);
2706 ns = dentry->d_sb->s_fs_info;
2708 task = find_task_by_pid_ns(tgid, ns);
2710 get_task_struct(task);
2715 result = proc_pid_instantiate(dir, dentry, task, NULL);
2716 put_task_struct(task);
2722 * Find the first task with tgid >= tgid
2727 struct task_struct *task;
2729 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2734 put_task_struct(iter.task);
2738 pid = find_ge_pid(iter.tgid, ns);
2740 iter.tgid = pid_nr_ns(pid, ns);
2741 iter.task = pid_task(pid, PIDTYPE_PID);
2742 /* What we to know is if the pid we have find is the
2743 * pid of a thread_group_leader. Testing for task
2744 * being a thread_group_leader is the obvious thing
2745 * todo but there is a window when it fails, due to
2746 * the pid transfer logic in de_thread.
2748 * So we perform the straight forward test of seeing
2749 * if the pid we have found is the pid of a thread
2750 * group leader, and don't worry if the task we have
2751 * found doesn't happen to be a thread group leader.
2752 * As we don't care in the case of readdir.
2754 if (!iter.task || !has_group_leader_pid(iter.task)) {
2758 get_task_struct(iter.task);
2764 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2766 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2767 struct tgid_iter iter)
2769 char name[PROC_NUMBUF];
2770 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2771 return proc_fill_cache(filp, dirent, filldir, name, len,
2772 proc_pid_instantiate, iter.task, NULL);
2775 /* for the /proc/ directory itself, after non-process stuff has been done */
2776 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2778 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2779 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2780 struct tgid_iter iter;
2781 struct pid_namespace *ns;
2786 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2787 const struct pid_entry *p = &proc_base_stuff[nr];
2788 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2792 ns = filp->f_dentry->d_sb->s_fs_info;
2794 iter.tgid = filp->f_pos - TGID_OFFSET;
2795 for (iter = next_tgid(ns, iter);
2797 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2798 filp->f_pos = iter.tgid + TGID_OFFSET;
2799 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2800 put_task_struct(iter.task);
2804 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2806 put_task_struct(reaper);
2814 static const struct pid_entry tid_base_stuff[] = {
2815 DIR("fd", S_IRUSR|S_IXUSR, fd),
2816 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2817 REG("environ", S_IRUSR, environ),
2818 INF("auxv", S_IRUSR, pid_auxv),
2819 ONE("status", S_IRUGO, pid_status),
2820 INF("limits", S_IRUSR, pid_limits),
2821 #ifdef CONFIG_SCHED_DEBUG
2822 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2824 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2825 INF("syscall", S_IRUSR, pid_syscall),
2827 INF("cmdline", S_IRUGO, pid_cmdline),
2828 ONE("stat", S_IRUGO, tid_stat),
2829 ONE("statm", S_IRUGO, pid_statm),
2830 REG("maps", S_IRUGO, maps),
2832 REG("numa_maps", S_IRUGO, numa_maps),
2834 REG("mem", S_IRUSR|S_IWUSR, mem),
2838 REG("mounts", S_IRUGO, mounts),
2839 REG("mountinfo", S_IRUGO, mountinfo),
2840 #ifdef CONFIG_PROC_PAGE_MONITOR
2841 REG("clear_refs", S_IWUSR, clear_refs),
2842 REG("smaps", S_IRUGO, smaps),
2843 REG("pagemap", S_IRUSR, pagemap),
2845 #ifdef CONFIG_SECURITY
2846 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2848 #ifdef CONFIG_KALLSYMS
2849 INF("wchan", S_IRUGO, pid_wchan),
2851 #ifdef CONFIG_SCHEDSTATS
2852 INF("schedstat", S_IRUGO, pid_schedstat),
2854 #ifdef CONFIG_LATENCYTOP
2855 REG("latency", S_IRUGO, lstats),
2857 #ifdef CONFIG_PROC_PID_CPUSET
2858 REG("cpuset", S_IRUGO, cpuset),
2860 #ifdef CONFIG_CGROUPS
2861 REG("cgroup", S_IRUGO, cgroup),
2863 INF("oom_score", S_IRUGO, oom_score),
2864 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2865 #ifdef CONFIG_AUDITSYSCALL
2866 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2867 REG("sessionid", S_IRUSR, sessionid),
2869 #ifdef CONFIG_FAULT_INJECTION
2870 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2872 #ifdef CONFIG_TASK_IO_ACCOUNTING
2873 INF("io", S_IRUGO, tid_io_accounting),
2877 static int proc_tid_base_readdir(struct file * filp,
2878 void * dirent, filldir_t filldir)
2880 return proc_pident_readdir(filp,dirent,filldir,
2881 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2884 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2885 return proc_pident_lookup(dir, dentry,
2886 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2889 static const struct file_operations proc_tid_base_operations = {
2890 .read = generic_read_dir,
2891 .readdir = proc_tid_base_readdir,
2894 static const struct inode_operations proc_tid_base_inode_operations = {
2895 .lookup = proc_tid_base_lookup,
2896 .getattr = pid_getattr,
2897 .setattr = proc_setattr,
2900 static struct dentry *proc_task_instantiate(struct inode *dir,
2901 struct dentry *dentry, struct task_struct *task, const void *ptr)
2903 struct dentry *error = ERR_PTR(-ENOENT);
2904 struct inode *inode;
2905 inode = proc_pid_make_inode(dir->i_sb, task);
2909 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2910 inode->i_op = &proc_tid_base_inode_operations;
2911 inode->i_fop = &proc_tid_base_operations;
2912 inode->i_flags|=S_IMMUTABLE;
2914 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2915 ARRAY_SIZE(tid_base_stuff));
2917 dentry->d_op = &pid_dentry_operations;
2919 d_add(dentry, inode);
2920 /* Close the race of the process dying before we return the dentry */
2921 if (pid_revalidate(dentry, NULL))
2927 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2929 struct dentry *result = ERR_PTR(-ENOENT);
2930 struct task_struct *task;
2931 struct task_struct *leader = get_proc_task(dir);
2933 struct pid_namespace *ns;
2938 tid = name_to_int(dentry);
2942 ns = dentry->d_sb->s_fs_info;
2944 task = find_task_by_pid_ns(tid, ns);
2946 get_task_struct(task);
2950 if (!same_thread_group(leader, task))
2953 result = proc_task_instantiate(dir, dentry, task, NULL);
2955 put_task_struct(task);
2957 put_task_struct(leader);
2963 * Find the first tid of a thread group to return to user space.
2965 * Usually this is just the thread group leader, but if the users
2966 * buffer was too small or there was a seek into the middle of the
2967 * directory we have more work todo.
2969 * In the case of a short read we start with find_task_by_pid.
2971 * In the case of a seek we start with the leader and walk nr
2974 static struct task_struct *first_tid(struct task_struct *leader,
2975 int tid, int nr, struct pid_namespace *ns)
2977 struct task_struct *pos;
2980 /* Attempt to start with the pid of a thread */
2981 if (tid && (nr > 0)) {
2982 pos = find_task_by_pid_ns(tid, ns);
2983 if (pos && (pos->group_leader == leader))
2987 /* If nr exceeds the number of threads there is nothing todo */
2989 if (nr && nr >= get_nr_threads(leader))
2992 /* If we haven't found our starting place yet start
2993 * with the leader and walk nr threads forward.
2995 for (pos = leader; nr > 0; --nr) {
2996 pos = next_thread(pos);
2997 if (pos == leader) {
3003 get_task_struct(pos);
3010 * Find the next thread in the thread list.
3011 * Return NULL if there is an error or no next thread.
3013 * The reference to the input task_struct is released.
3015 static struct task_struct *next_tid(struct task_struct *start)
3017 struct task_struct *pos = NULL;
3019 if (pid_alive(start)) {
3020 pos = next_thread(start);
3021 if (thread_group_leader(pos))
3024 get_task_struct(pos);
3027 put_task_struct(start);
3031 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3032 struct task_struct *task, int tid)
3034 char name[PROC_NUMBUF];
3035 int len = snprintf(name, sizeof(name), "%d", tid);
3036 return proc_fill_cache(filp, dirent, filldir, name, len,
3037 proc_task_instantiate, task, NULL);
3040 /* for the /proc/TGID/task/ directories */
3041 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3043 struct dentry *dentry = filp->f_path.dentry;
3044 struct inode *inode = dentry->d_inode;
3045 struct task_struct *leader = NULL;
3046 struct task_struct *task;
3047 int retval = -ENOENT;
3050 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
3051 struct pid_namespace *ns;
3053 task = get_proc_task(inode);
3057 if (pid_alive(task)) {
3058 leader = task->group_leader;
3059 get_task_struct(leader);
3062 put_task_struct(task);
3070 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3075 ino = parent_ino(dentry);
3076 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3082 /* f_version caches the tgid value that the last readdir call couldn't
3083 * return. lseek aka telldir automagically resets f_version to 0.
3085 ns = filp->f_dentry->d_sb->s_fs_info;
3086 tid = (int)filp->f_version;
3087 filp->f_version = 0;
3088 for (task = first_tid(leader, tid, pos - 2, ns);
3090 task = next_tid(task), pos++) {
3091 tid = task_pid_nr_ns(task, ns);
3092 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3093 /* returning this tgid failed, save it as the first
3094 * pid for the next readir call */
3095 filp->f_version = (u64)tid;
3096 put_task_struct(task);
3102 put_task_struct(leader);
3107 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3109 struct inode *inode = dentry->d_inode;
3110 struct task_struct *p = get_proc_task(inode);
3111 generic_fillattr(inode, stat);
3115 stat->nlink += get_nr_threads(p);
3123 static const struct inode_operations proc_task_inode_operations = {
3124 .lookup = proc_task_lookup,
3125 .getattr = proc_task_getattr,
3126 .setattr = proc_setattr,
3129 static const struct file_operations proc_task_operations = {
3130 .read = generic_read_dir,
3131 .readdir = proc_task_readdir,