6 * Address space accounting code <alan@redhat.com>
9 #include <linux/slab.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
32 static void unmap_region(struct mm_struct *mm,
33 struct vm_area_struct *vma, struct vm_area_struct *prev,
34 unsigned long start, unsigned long end);
37 * WARNING: the debugging will use recursive algorithms so never enable this
38 * unless you know what you are doing.
42 /* description of effects of mapping type and prot in current implementation.
43 * this is due to the limited x86 page protection hardware. The expected
44 * behavior is in parens:
47 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
48 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
49 * w: (no) no w: (no) no w: (yes) yes w: (no) no
50 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
52 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
53 * w: (no) no w: (no) no w: (copy) copy w: (no) no
54 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
57 pgprot_t protection_map[16] = {
58 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 atomic_t vm_committed_space = ATOMIC_INIT(0);
68 * Check that a process has enough memory to allocate a new virtual
69 * mapping. 0 means there is enough memory for the allocation to
70 * succeed and -ENOMEM implies there is not.
72 * We currently support three overcommit policies, which are set via the
73 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
75 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76 * Additional code 2002 Jul 20 by Robert Love.
78 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
80 * Note this is a helper function intended to be used by LSMs which
81 * wish to use this logic.
83 int __vm_enough_memory(long pages, int cap_sys_admin)
85 unsigned long free, allowed;
87 vm_acct_memory(pages);
90 * Sometimes we want to use more memory than we have
92 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
95 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
98 free = get_page_cache_size();
99 free += nr_swap_pages;
102 * Any slabs which are created with the
103 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104 * which are reclaimable, under pressure. The dentry
105 * cache and most inode caches should fall into this
107 free += atomic_read(&slab_reclaim_pages);
110 * Leave the last 3% for root
119 * nr_free_pages() is very expensive on large systems,
120 * only call if we're about to fail.
129 vm_unacct_memory(pages);
133 allowed = (totalram_pages - hugetlb_total_pages())
134 * sysctl_overcommit_ratio / 100;
136 * Leave the last 3% for root
139 allowed -= allowed / 32;
140 allowed += total_swap_pages;
142 /* Don't let a single process grow too big:
143 leave 3% of the size of this process for other processes */
144 allowed -= current->mm->total_vm / 32;
146 if (atomic_read(&vm_committed_space) < allowed)
149 vm_unacct_memory(pages);
154 EXPORT_SYMBOL(sysctl_overcommit_memory);
155 EXPORT_SYMBOL(sysctl_overcommit_ratio);
156 EXPORT_SYMBOL(sysctl_max_map_count);
157 EXPORT_SYMBOL(vm_committed_space);
158 EXPORT_SYMBOL(__vm_enough_memory);
161 * Requires inode->i_mapping->i_mmap_lock
163 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
164 struct file *file, struct address_space *mapping)
166 if (vma->vm_flags & VM_DENYWRITE)
167 atomic_inc(&file->f_dentry->d_inode->i_writecount);
168 if (vma->vm_flags & VM_SHARED)
169 mapping->i_mmap_writable--;
171 flush_dcache_mmap_lock(mapping);
172 if (unlikely(vma->vm_flags & VM_NONLINEAR))
173 list_del_init(&vma->shared.vm_set.list);
175 vma_prio_tree_remove(vma, &mapping->i_mmap);
176 flush_dcache_mmap_unlock(mapping);
180 * Remove one vm structure and free it.
182 static void remove_vm_struct(struct vm_area_struct *vma)
184 struct file *file = vma->vm_file;
188 struct address_space *mapping = file->f_mapping;
189 spin_lock(&mapping->i_mmap_lock);
190 __remove_shared_vm_struct(vma, file, mapping);
191 spin_unlock(&mapping->i_mmap_lock);
193 if (vma->vm_ops && vma->vm_ops->close)
194 vma->vm_ops->close(vma);
197 anon_vma_unlink(vma);
198 mpol_free(vma_policy(vma));
199 kmem_cache_free(vm_area_cachep, vma);
203 * sys_brk() for the most part doesn't need the global kernel
204 * lock, except when an application is doing something nasty
205 * like trying to un-brk an area that has already been mapped
206 * to a regular file. in this case, the unmapping will need
207 * to invoke file system routines that need the global lock.
209 asmlinkage unsigned long sys_brk(unsigned long brk)
211 unsigned long rlim, retval;
212 unsigned long newbrk, oldbrk;
213 struct mm_struct *mm = current->mm;
215 down_write(&mm->mmap_sem);
217 if (brk < mm->end_code)
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk)
224 /* Always allow shrinking brk. */
225 if (brk <= mm->brk) {
226 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
231 /* Check against rlimit.. */
232 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
233 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
236 /* Check against existing mmap mappings. */
237 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
240 /* Ok, looks good - let it rip. */
241 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
247 up_write(&mm->mmap_sem);
252 static int browse_rb(struct rb_root *root)
255 struct rb_node *nd, *pn = NULL;
256 unsigned long prev = 0, pend = 0;
258 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
259 struct vm_area_struct *vma;
260 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
261 if (vma->vm_start < prev)
262 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
263 if (vma->vm_start < pend)
264 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
265 if (vma->vm_start > vma->vm_end)
266 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
271 for (nd = pn; nd; nd = rb_prev(nd)) {
275 printk("backwards %d, forwards %d\n", j, i), i = 0;
279 void validate_mm(struct mm_struct *mm)
283 struct vm_area_struct *tmp = mm->mmap;
288 if (i != mm->map_count)
289 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
290 i = browse_rb(&mm->mm_rb);
291 if (i != mm->map_count)
292 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
297 #define validate_mm(mm) do { } while (0)
300 static struct vm_area_struct *
301 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
302 struct vm_area_struct **pprev, struct rb_node ***rb_link,
303 struct rb_node ** rb_parent)
305 struct vm_area_struct * vma;
306 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
308 __rb_link = &mm->mm_rb.rb_node;
309 rb_prev = __rb_parent = NULL;
313 struct vm_area_struct *vma_tmp;
315 __rb_parent = *__rb_link;
316 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
318 if (vma_tmp->vm_end > addr) {
320 if (vma_tmp->vm_start <= addr)
322 __rb_link = &__rb_parent->rb_left;
324 rb_prev = __rb_parent;
325 __rb_link = &__rb_parent->rb_right;
331 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
332 *rb_link = __rb_link;
333 *rb_parent = __rb_parent;
338 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
339 struct vm_area_struct *prev, struct rb_node *rb_parent)
342 vma->vm_next = prev->vm_next;
347 vma->vm_next = rb_entry(rb_parent,
348 struct vm_area_struct, vm_rb);
354 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
355 struct rb_node **rb_link, struct rb_node *rb_parent)
357 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
358 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
361 static inline void __vma_link_file(struct vm_area_struct *vma)
367 struct address_space *mapping = file->f_mapping;
369 if (vma->vm_flags & VM_DENYWRITE)
370 atomic_dec(&file->f_dentry->d_inode->i_writecount);
371 if (vma->vm_flags & VM_SHARED)
372 mapping->i_mmap_writable++;
374 flush_dcache_mmap_lock(mapping);
375 if (unlikely(vma->vm_flags & VM_NONLINEAR))
376 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
378 vma_prio_tree_insert(vma, &mapping->i_mmap);
379 flush_dcache_mmap_unlock(mapping);
384 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
385 struct vm_area_struct *prev, struct rb_node **rb_link,
386 struct rb_node *rb_parent)
388 __vma_link_list(mm, vma, prev, rb_parent);
389 __vma_link_rb(mm, vma, rb_link, rb_parent);
390 __anon_vma_link(vma);
393 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct vm_area_struct *prev, struct rb_node **rb_link,
395 struct rb_node *rb_parent)
397 struct address_space *mapping = NULL;
400 mapping = vma->vm_file->f_mapping;
403 spin_lock(&mapping->i_mmap_lock);
404 vma->vm_truncate_count = mapping->truncate_count;
408 __vma_link(mm, vma, prev, rb_link, rb_parent);
409 __vma_link_file(vma);
411 anon_vma_unlock(vma);
413 spin_unlock(&mapping->i_mmap_lock);
420 * Helper for vma_adjust in the split_vma insert case:
421 * insert vm structure into list and rbtree and anon_vma,
422 * but it has already been inserted into prio_tree earlier.
425 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
427 struct vm_area_struct * __vma, * prev;
428 struct rb_node ** rb_link, * rb_parent;
430 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
431 if (__vma && __vma->vm_start < vma->vm_end)
433 __vma_link(mm, vma, prev, rb_link, rb_parent);
438 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
439 struct vm_area_struct *prev)
441 prev->vm_next = vma->vm_next;
442 rb_erase(&vma->vm_rb, &mm->mm_rb);
443 if (mm->mmap_cache == vma)
444 mm->mmap_cache = prev;
448 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
449 * is already present in an i_mmap tree without adjusting the tree.
450 * The following helper function should be used when such adjustments
451 * are necessary. The "insert" vma (if any) is to be inserted
452 * before we drop the necessary locks.
454 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
455 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
457 struct mm_struct *mm = vma->vm_mm;
458 struct vm_area_struct *next = vma->vm_next;
459 struct vm_area_struct *importer = NULL;
460 struct address_space *mapping = NULL;
461 struct prio_tree_root *root = NULL;
462 struct file *file = vma->vm_file;
463 struct anon_vma *anon_vma = NULL;
464 long adjust_next = 0;
467 if (next && !insert) {
468 if (end >= next->vm_end) {
470 * vma expands, overlapping all the next, and
471 * perhaps the one after too (mprotect case 6).
473 again: remove_next = 1 + (end > next->vm_end);
475 anon_vma = next->anon_vma;
477 } else if (end > next->vm_start) {
479 * vma expands, overlapping part of the next:
480 * mprotect case 5 shifting the boundary up.
482 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
483 anon_vma = next->anon_vma;
485 } else if (end < vma->vm_end) {
487 * vma shrinks, and !insert tells it's not
488 * split_vma inserting another: so it must be
489 * mprotect case 4 shifting the boundary down.
491 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
492 anon_vma = next->anon_vma;
498 mapping = file->f_mapping;
499 if (!(vma->vm_flags & VM_NONLINEAR))
500 root = &mapping->i_mmap;
501 spin_lock(&mapping->i_mmap_lock);
503 vma->vm_truncate_count != next->vm_truncate_count) {
505 * unmap_mapping_range might be in progress:
506 * ensure that the expanding vma is rescanned.
508 importer->vm_truncate_count = 0;
511 insert->vm_truncate_count = vma->vm_truncate_count;
513 * Put into prio_tree now, so instantiated pages
514 * are visible to arm/parisc __flush_dcache_page
515 * throughout; but we cannot insert into address
516 * space until vma start or end is updated.
518 __vma_link_file(insert);
523 * When changing only vma->vm_end, we don't really need
524 * anon_vma lock: but is that case worth optimizing out?
527 anon_vma = vma->anon_vma;
529 spin_lock(&anon_vma->lock);
531 * Easily overlooked: when mprotect shifts the boundary,
532 * make sure the expanding vma has anon_vma set if the
533 * shrinking vma had, to cover any anon pages imported.
535 if (importer && !importer->anon_vma) {
536 importer->anon_vma = anon_vma;
537 __anon_vma_link(importer);
542 flush_dcache_mmap_lock(mapping);
543 vma_prio_tree_remove(vma, root);
545 vma_prio_tree_remove(next, root);
548 vma->vm_start = start;
550 vma->vm_pgoff = pgoff;
552 next->vm_start += adjust_next << PAGE_SHIFT;
553 next->vm_pgoff += adjust_next;
558 vma_prio_tree_insert(next, root);
559 vma_prio_tree_insert(vma, root);
560 flush_dcache_mmap_unlock(mapping);
565 * vma_merge has merged next into vma, and needs
566 * us to remove next before dropping the locks.
568 __vma_unlink(mm, next, vma);
570 __remove_shared_vm_struct(next, file, mapping);
572 __anon_vma_merge(vma, next);
575 * split_vma has split insert from vma, and needs
576 * us to insert it before dropping the locks
577 * (it may either follow vma or precede it).
579 __insert_vm_struct(mm, insert);
583 spin_unlock(&anon_vma->lock);
585 spin_unlock(&mapping->i_mmap_lock);
591 mpol_free(vma_policy(next));
592 kmem_cache_free(vm_area_cachep, next);
594 * In mprotect's case 6 (see comments on vma_merge),
595 * we must remove another next too. It would clutter
596 * up the code too much to do both in one go.
598 if (remove_next == 2) {
608 * If the vma has a ->close operation then the driver probably needs to release
609 * per-vma resources, so we don't attempt to merge those.
611 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
613 static inline int is_mergeable_vma(struct vm_area_struct *vma,
614 struct file *file, unsigned long vm_flags)
616 if (vma->vm_flags != vm_flags)
618 if (vma->vm_file != file)
620 if (vma->vm_ops && vma->vm_ops->close)
625 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
626 struct anon_vma *anon_vma2)
628 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
632 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
633 * in front of (at a lower virtual address and file offset than) the vma.
635 * We cannot merge two vmas if they have differently assigned (non-NULL)
636 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
638 * We don't check here for the merged mmap wrapping around the end of pagecache
639 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
640 * wrap, nor mmaps which cover the final page at index -1UL.
643 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
644 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
646 if (is_mergeable_vma(vma, file, vm_flags) &&
647 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
648 if (vma->vm_pgoff == vm_pgoff)
655 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
656 * beyond (at a higher virtual address and file offset than) the vma.
658 * We cannot merge two vmas if they have differently assigned (non-NULL)
659 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
662 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
663 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
665 if (is_mergeable_vma(vma, file, vm_flags) &&
666 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
668 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
669 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
676 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
677 * whether that can be merged with its predecessor or its successor.
678 * Or both (it neatly fills a hole).
680 * In most cases - when called for mmap, brk or mremap - [addr,end) is
681 * certain not to be mapped by the time vma_merge is called; but when
682 * called for mprotect, it is certain to be already mapped (either at
683 * an offset within prev, or at the start of next), and the flags of
684 * this area are about to be changed to vm_flags - and the no-change
685 * case has already been eliminated.
687 * The following mprotect cases have to be considered, where AAAA is
688 * the area passed down from mprotect_fixup, never extending beyond one
689 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
691 * AAAA AAAA AAAA AAAA
692 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
693 * cannot merge might become might become might become
694 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
695 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
696 * mremap move: PPPPNNNNNNNN 8
698 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
699 * might become case 1 below case 2 below case 3 below
701 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
702 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
704 struct vm_area_struct *vma_merge(struct mm_struct *mm,
705 struct vm_area_struct *prev, unsigned long addr,
706 unsigned long end, unsigned long vm_flags,
707 struct anon_vma *anon_vma, struct file *file,
708 pgoff_t pgoff, struct mempolicy *policy)
710 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
711 struct vm_area_struct *area, *next;
714 * We later require that vma->vm_flags == vm_flags,
715 * so this tests vma->vm_flags & VM_SPECIAL, too.
717 if (vm_flags & VM_SPECIAL)
721 next = prev->vm_next;
725 if (next && next->vm_end == end) /* cases 6, 7, 8 */
726 next = next->vm_next;
729 * Can it merge with the predecessor?
731 if (prev && prev->vm_end == addr &&
732 mpol_equal(vma_policy(prev), policy) &&
733 can_vma_merge_after(prev, vm_flags,
734 anon_vma, file, pgoff)) {
736 * OK, it can. Can we now merge in the successor as well?
738 if (next && end == next->vm_start &&
739 mpol_equal(policy, vma_policy(next)) &&
740 can_vma_merge_before(next, vm_flags,
741 anon_vma, file, pgoff+pglen) &&
742 is_mergeable_anon_vma(prev->anon_vma,
745 vma_adjust(prev, prev->vm_start,
746 next->vm_end, prev->vm_pgoff, NULL);
747 } else /* cases 2, 5, 7 */
748 vma_adjust(prev, prev->vm_start,
749 end, prev->vm_pgoff, NULL);
754 * Can this new request be merged in front of next?
756 if (next && end == next->vm_start &&
757 mpol_equal(policy, vma_policy(next)) &&
758 can_vma_merge_before(next, vm_flags,
759 anon_vma, file, pgoff+pglen)) {
760 if (prev && addr < prev->vm_end) /* case 4 */
761 vma_adjust(prev, prev->vm_start,
762 addr, prev->vm_pgoff, NULL);
763 else /* cases 3, 8 */
764 vma_adjust(area, addr, next->vm_end,
765 next->vm_pgoff - pglen, NULL);
773 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
774 * neighbouring vmas for a suitable anon_vma, before it goes off
775 * to allocate a new anon_vma. It checks because a repetitive
776 * sequence of mprotects and faults may otherwise lead to distinct
777 * anon_vmas being allocated, preventing vma merge in subsequent
780 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
782 struct vm_area_struct *near;
783 unsigned long vm_flags;
790 * Since only mprotect tries to remerge vmas, match flags
791 * which might be mprotected into each other later on.
792 * Neither mlock nor madvise tries to remerge at present,
793 * so leave their flags as obstructing a merge.
795 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
796 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
798 if (near->anon_vma && vma->vm_end == near->vm_start &&
799 mpol_equal(vma_policy(vma), vma_policy(near)) &&
800 can_vma_merge_before(near, vm_flags,
801 NULL, vma->vm_file, vma->vm_pgoff +
802 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
803 return near->anon_vma;
806 * It is potentially slow to have to call find_vma_prev here.
807 * But it's only on the first write fault on the vma, not
808 * every time, and we could devise a way to avoid it later
809 * (e.g. stash info in next's anon_vma_node when assigning
810 * an anon_vma, or when trying vma_merge). Another time.
812 if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
817 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
818 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
820 if (near->anon_vma && near->vm_end == vma->vm_start &&
821 mpol_equal(vma_policy(near), vma_policy(vma)) &&
822 can_vma_merge_after(near, vm_flags,
823 NULL, vma->vm_file, vma->vm_pgoff))
824 return near->anon_vma;
827 * There's no absolute need to look only at touching neighbours:
828 * we could search further afield for "compatible" anon_vmas.
829 * But it would probably just be a waste of time searching,
830 * or lead to too many vmas hanging off the same anon_vma.
831 * We're trying to allow mprotect remerging later on,
832 * not trying to minimize memory used for anon_vmas.
837 #ifdef CONFIG_PROC_FS
838 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
839 struct file *file, long pages)
841 const unsigned long stack_flags
842 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
844 #ifdef CONFIG_HUGETLB
845 if (flags & VM_HUGETLB) {
846 if (!(flags & VM_DONTCOPY))
847 mm->shared_vm += pages;
850 #endif /* CONFIG_HUGETLB */
853 mm->shared_vm += pages;
854 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
855 mm->exec_vm += pages;
856 } else if (flags & stack_flags)
857 mm->stack_vm += pages;
858 if (flags & (VM_RESERVED|VM_IO))
859 mm->reserved_vm += pages;
861 #endif /* CONFIG_PROC_FS */
864 * The caller must hold down_write(current->mm->mmap_sem).
867 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
868 unsigned long len, unsigned long prot,
869 unsigned long flags, unsigned long pgoff)
871 struct mm_struct * mm = current->mm;
872 struct vm_area_struct * vma, * prev;
874 unsigned int vm_flags;
875 int correct_wcount = 0;
877 struct rb_node ** rb_link, * rb_parent;
879 unsigned long charged = 0, reqprot = prot;
882 if (is_file_hugepages(file))
885 if (!file->f_op || !file->f_op->mmap)
888 if ((prot & PROT_EXEC) &&
889 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
893 * Does the application expect PROT_READ to imply PROT_EXEC?
895 * (the exception is when the underlying filesystem is noexec
896 * mounted, in which case we dont add PROT_EXEC.)
898 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
899 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
905 /* Careful about overflows.. */
906 len = PAGE_ALIGN(len);
907 if (!len || len > TASK_SIZE)
910 /* offset overflow? */
911 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
914 /* Too many mappings? */
915 if (mm->map_count > sysctl_max_map_count)
918 /* Obtain the address to map to. we verify (or select) it and ensure
919 * that it represents a valid section of the address space.
921 addr = get_unmapped_area(file, addr, len, pgoff, flags);
922 if (addr & ~PAGE_MASK)
925 /* Do simple checking here so the lower-level routines won't have
926 * to. we assume access permissions have been handled by the open
927 * of the memory object, so we don't do any here.
929 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
930 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
932 if (flags & MAP_LOCKED) {
935 vm_flags |= VM_LOCKED;
937 /* mlock MCL_FUTURE? */
938 if (vm_flags & VM_LOCKED) {
939 unsigned long locked, lock_limit;
940 locked = len >> PAGE_SHIFT;
941 locked += mm->locked_vm;
942 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
943 lock_limit >>= PAGE_SHIFT;
944 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
948 inode = file ? file->f_dentry->d_inode : NULL;
951 switch (flags & MAP_TYPE) {
953 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
957 * Make sure we don't allow writing to an append-only
960 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
964 * Make sure there are no mandatory locks on the file.
966 if (locks_verify_locked(inode))
969 vm_flags |= VM_SHARED | VM_MAYSHARE;
970 if (!(file->f_mode & FMODE_WRITE))
971 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
975 if (!(file->f_mode & FMODE_READ))
983 switch (flags & MAP_TYPE) {
985 vm_flags |= VM_SHARED | VM_MAYSHARE;
989 * Set pgoff according to addr for anon_vma.
991 pgoff = addr >> PAGE_SHIFT;
998 error = security_file_mmap(file, reqprot, prot, flags);
1002 /* Clear old maps */
1005 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1006 if (vma && vma->vm_start < addr + len) {
1007 if (do_munmap(mm, addr, len))
1012 /* Check against address space limit. */
1013 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1016 if (accountable && (!(flags & MAP_NORESERVE) ||
1017 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1018 if (vm_flags & VM_SHARED) {
1019 /* Check memory availability in shmem_file_setup? */
1020 vm_flags |= VM_ACCOUNT;
1021 } else if (vm_flags & VM_WRITE) {
1023 * Private writable mapping: check memory availability
1025 charged = len >> PAGE_SHIFT;
1026 if (security_vm_enough_memory(charged))
1028 vm_flags |= VM_ACCOUNT;
1033 * Can we just expand an old private anonymous mapping?
1034 * The VM_SHARED test is necessary because shmem_zero_setup
1035 * will create the file object for a shared anonymous map below.
1037 if (!file && !(vm_flags & VM_SHARED) &&
1038 vma_merge(mm, prev, addr, addr + len, vm_flags,
1039 NULL, NULL, pgoff, NULL))
1043 * Determine the object being mapped and call the appropriate
1044 * specific mapper. the address has already been validated, but
1045 * not unmapped, but the maps are removed from the list.
1047 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1052 memset(vma, 0, sizeof(*vma));
1055 vma->vm_start = addr;
1056 vma->vm_end = addr + len;
1057 vma->vm_flags = vm_flags;
1058 vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1059 vma->vm_pgoff = pgoff;
1063 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1065 if (vm_flags & VM_DENYWRITE) {
1066 error = deny_write_access(file);
1071 vma->vm_file = file;
1073 error = file->f_op->mmap(file, vma);
1075 goto unmap_and_free_vma;
1076 } else if (vm_flags & VM_SHARED) {
1077 error = shmem_zero_setup(vma);
1082 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1083 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1084 * that memory reservation must be checked; but that reservation
1085 * belongs to shared memory object, not to vma: so now clear it.
1087 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1088 vma->vm_flags &= ~VM_ACCOUNT;
1090 /* Can addr have changed??
1092 * Answer: Yes, several device drivers can do it in their
1093 * f_op->mmap method. -DaveM
1095 addr = vma->vm_start;
1096 pgoff = vma->vm_pgoff;
1097 vm_flags = vma->vm_flags;
1099 if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1100 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1101 file = vma->vm_file;
1102 vma_link(mm, vma, prev, rb_link, rb_parent);
1104 atomic_inc(&inode->i_writecount);
1108 atomic_inc(&inode->i_writecount);
1111 mpol_free(vma_policy(vma));
1112 kmem_cache_free(vm_area_cachep, vma);
1115 mm->total_vm += len >> PAGE_SHIFT;
1116 __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1117 if (vm_flags & VM_LOCKED) {
1118 mm->locked_vm += len >> PAGE_SHIFT;
1119 make_pages_present(addr, addr + len);
1121 if (flags & MAP_POPULATE) {
1122 up_write(&mm->mmap_sem);
1123 sys_remap_file_pages(addr, len, 0,
1124 pgoff, flags & MAP_NONBLOCK);
1125 down_write(&mm->mmap_sem);
1131 atomic_inc(&inode->i_writecount);
1132 vma->vm_file = NULL;
1135 /* Undo any partial mapping done by a device driver. */
1136 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1139 kmem_cache_free(vm_area_cachep, vma);
1142 vm_unacct_memory(charged);
1146 EXPORT_SYMBOL(do_mmap_pgoff);
1148 /* Get an address range which is currently unmapped.
1149 * For shmat() with addr=0.
1151 * Ugly calling convention alert:
1152 * Return value with the low bits set means error value,
1154 * if (ret & ~PAGE_MASK)
1157 * This function "knows" that -ENOMEM has the bits set.
1159 #ifndef HAVE_ARCH_UNMAPPED_AREA
1161 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1162 unsigned long len, unsigned long pgoff, unsigned long flags)
1164 struct mm_struct *mm = current->mm;
1165 struct vm_area_struct *vma;
1166 unsigned long start_addr;
1168 if (len > TASK_SIZE)
1172 addr = PAGE_ALIGN(addr);
1173 vma = find_vma(mm, addr);
1174 if (TASK_SIZE - len >= addr &&
1175 (!vma || addr + len <= vma->vm_start))
1178 if (len > mm->cached_hole_size) {
1179 start_addr = addr = mm->free_area_cache;
1181 start_addr = addr = TASK_UNMAPPED_BASE;
1182 mm->cached_hole_size = 0;
1186 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1187 /* At this point: (!vma || addr < vma->vm_end). */
1188 if (TASK_SIZE - len < addr) {
1190 * Start a new search - just in case we missed
1193 if (start_addr != TASK_UNMAPPED_BASE) {
1194 addr = TASK_UNMAPPED_BASE;
1196 mm->cached_hole_size = 0;
1201 if (!vma || addr + len <= vma->vm_start) {
1203 * Remember the place where we stopped the search:
1205 mm->free_area_cache = addr + len;
1208 if (addr + mm->cached_hole_size < vma->vm_start)
1209 mm->cached_hole_size = vma->vm_start - addr;
1215 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1218 * Is this a new hole at the lowest possible address?
1220 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1221 mm->free_area_cache = addr;
1222 mm->cached_hole_size = ~0UL;
1227 * This mmap-allocator allocates new areas top-down from below the
1228 * stack's low limit (the base):
1230 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1232 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1233 const unsigned long len, const unsigned long pgoff,
1234 const unsigned long flags)
1236 struct vm_area_struct *vma;
1237 struct mm_struct *mm = current->mm;
1238 unsigned long addr = addr0;
1240 /* requested length too big for entire address space */
1241 if (len > TASK_SIZE)
1244 /* requesting a specific address */
1246 addr = PAGE_ALIGN(addr);
1247 vma = find_vma(mm, addr);
1248 if (TASK_SIZE - len >= addr &&
1249 (!vma || addr + len <= vma->vm_start))
1253 /* check if free_area_cache is useful for us */
1254 if (len <= mm->cached_hole_size) {
1255 mm->cached_hole_size = 0;
1256 mm->free_area_cache = mm->mmap_base;
1259 /* either no address requested or can't fit in requested address hole */
1260 addr = mm->free_area_cache;
1262 /* make sure it can fit in the remaining address space */
1264 vma = find_vma(mm, addr-len);
1265 if (!vma || addr <= vma->vm_start)
1266 /* remember the address as a hint for next time */
1267 return (mm->free_area_cache = addr-len);
1270 if (mm->mmap_base < len)
1273 addr = mm->mmap_base-len;
1277 * Lookup failure means no vma is above this address,
1278 * else if new region fits below vma->vm_start,
1279 * return with success:
1281 vma = find_vma(mm, addr);
1282 if (!vma || addr+len <= vma->vm_start)
1283 /* remember the address as a hint for next time */
1284 return (mm->free_area_cache = addr);
1286 /* remember the largest hole we saw so far */
1287 if (addr + mm->cached_hole_size < vma->vm_start)
1288 mm->cached_hole_size = vma->vm_start - addr;
1290 /* try just below the current vma->vm_start */
1291 addr = vma->vm_start-len;
1292 } while (len < vma->vm_start);
1296 * A failed mmap() very likely causes application failure,
1297 * so fall back to the bottom-up function here. This scenario
1298 * can happen with large stack limits and large mmap()
1301 mm->cached_hole_size = ~0UL;
1302 mm->free_area_cache = TASK_UNMAPPED_BASE;
1303 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1305 * Restore the topdown base:
1307 mm->free_area_cache = mm->mmap_base;
1308 mm->cached_hole_size = ~0UL;
1314 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1317 * Is this a new hole at the highest possible address?
1319 if (addr > mm->free_area_cache)
1320 mm->free_area_cache = addr;
1322 /* dont allow allocations above current base */
1323 if (mm->free_area_cache > mm->mmap_base)
1324 mm->free_area_cache = mm->mmap_base;
1328 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1329 unsigned long pgoff, unsigned long flags)
1333 if (!(flags & MAP_FIXED)) {
1334 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1336 get_area = current->mm->get_unmapped_area;
1337 if (file && file->f_op && file->f_op->get_unmapped_area)
1338 get_area = file->f_op->get_unmapped_area;
1339 addr = get_area(file, addr, len, pgoff, flags);
1340 if (IS_ERR_VALUE(addr))
1344 if (addr > TASK_SIZE - len)
1346 if (addr & ~PAGE_MASK)
1348 if (file && is_file_hugepages(file)) {
1350 * Check if the given range is hugepage aligned, and
1351 * can be made suitable for hugepages.
1353 ret = prepare_hugepage_range(addr, len);
1356 * Ensure that a normal request is not falling in a
1357 * reserved hugepage range. For some archs like IA-64,
1358 * there is a separate region for hugepages.
1360 ret = is_hugepage_only_range(current->mm, addr, len);
1367 EXPORT_SYMBOL(get_unmapped_area);
1369 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1370 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1372 struct vm_area_struct *vma = NULL;
1375 /* Check the cache first. */
1376 /* (Cache hit rate is typically around 35%.) */
1377 vma = mm->mmap_cache;
1378 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1379 struct rb_node * rb_node;
1381 rb_node = mm->mm_rb.rb_node;
1385 struct vm_area_struct * vma_tmp;
1387 vma_tmp = rb_entry(rb_node,
1388 struct vm_area_struct, vm_rb);
1390 if (vma_tmp->vm_end > addr) {
1392 if (vma_tmp->vm_start <= addr)
1394 rb_node = rb_node->rb_left;
1396 rb_node = rb_node->rb_right;
1399 mm->mmap_cache = vma;
1405 EXPORT_SYMBOL(find_vma);
1407 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1408 struct vm_area_struct *
1409 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1410 struct vm_area_struct **pprev)
1412 struct vm_area_struct *vma = NULL, *prev = NULL;
1413 struct rb_node * rb_node;
1417 /* Guard against addr being lower than the first VMA */
1420 /* Go through the RB tree quickly. */
1421 rb_node = mm->mm_rb.rb_node;
1424 struct vm_area_struct *vma_tmp;
1425 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1427 if (addr < vma_tmp->vm_end) {
1428 rb_node = rb_node->rb_left;
1431 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1433 rb_node = rb_node->rb_right;
1439 return prev ? prev->vm_next : vma;
1443 * Verify that the stack growth is acceptable and
1444 * update accounting. This is shared with both the
1445 * grow-up and grow-down cases.
1447 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1449 struct mm_struct *mm = vma->vm_mm;
1450 struct rlimit *rlim = current->signal->rlim;
1452 /* address space limit tests */
1453 if (!may_expand_vm(mm, grow))
1456 /* Stack limit test */
1457 if (size > rlim[RLIMIT_STACK].rlim_cur)
1460 /* mlock limit tests */
1461 if (vma->vm_flags & VM_LOCKED) {
1462 unsigned long locked;
1463 unsigned long limit;
1464 locked = mm->locked_vm + grow;
1465 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1466 if (locked > limit && !capable(CAP_IPC_LOCK))
1471 * Overcommit.. This must be the final test, as it will
1472 * update security statistics.
1474 if (security_vm_enough_memory(grow))
1477 /* Ok, everything looks good - let it rip */
1478 mm->total_vm += grow;
1479 if (vma->vm_flags & VM_LOCKED)
1480 mm->locked_vm += grow;
1481 __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1485 #ifdef CONFIG_STACK_GROWSUP
1487 * vma is the first one with address > vma->vm_end. Have to extend vma.
1489 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1493 if (!(vma->vm_flags & VM_GROWSUP))
1497 * We must make sure the anon_vma is allocated
1498 * so that the anon_vma locking is not a noop.
1500 if (unlikely(anon_vma_prepare(vma)))
1505 * vma->vm_start/vm_end cannot change under us because the caller
1506 * is required to hold the mmap_sem in read mode. We need the
1507 * anon_vma lock to serialize against concurrent expand_stacks.
1509 address += 4 + PAGE_SIZE - 1;
1510 address &= PAGE_MASK;
1513 /* Somebody else might have raced and expanded it already */
1514 if (address > vma->vm_end) {
1515 unsigned long size, grow;
1517 size = address - vma->vm_start;
1518 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1520 error = acct_stack_growth(vma, size, grow);
1522 vma->vm_end = address;
1524 anon_vma_unlock(vma);
1528 struct vm_area_struct *
1529 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1531 struct vm_area_struct *vma, *prev;
1534 vma = find_vma_prev(mm, addr, &prev);
1535 if (vma && (vma->vm_start <= addr))
1537 if (!prev || expand_stack(prev, addr))
1539 if (prev->vm_flags & VM_LOCKED) {
1540 make_pages_present(addr, prev->vm_end);
1546 * vma is the first one with address < vma->vm_start. Have to extend vma.
1548 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1553 * We must make sure the anon_vma is allocated
1554 * so that the anon_vma locking is not a noop.
1556 if (unlikely(anon_vma_prepare(vma)))
1561 * vma->vm_start/vm_end cannot change under us because the caller
1562 * is required to hold the mmap_sem in read mode. We need the
1563 * anon_vma lock to serialize against concurrent expand_stacks.
1565 address &= PAGE_MASK;
1568 /* Somebody else might have raced and expanded it already */
1569 if (address < vma->vm_start) {
1570 unsigned long size, grow;
1572 size = vma->vm_end - address;
1573 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1575 error = acct_stack_growth(vma, size, grow);
1577 vma->vm_start = address;
1578 vma->vm_pgoff -= grow;
1581 anon_vma_unlock(vma);
1585 struct vm_area_struct *
1586 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1588 struct vm_area_struct * vma;
1589 unsigned long start;
1592 vma = find_vma(mm,addr);
1595 if (vma->vm_start <= addr)
1597 if (!(vma->vm_flags & VM_GROWSDOWN))
1599 start = vma->vm_start;
1600 if (expand_stack(vma, addr))
1602 if (vma->vm_flags & VM_LOCKED) {
1603 make_pages_present(addr, start);
1609 /* Normal function to fix up a mapping
1610 * This function is the default for when an area has no specific
1611 * function. This may be used as part of a more specific routine.
1613 * By the time this function is called, the area struct has been
1614 * removed from the process mapping list.
1616 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1618 size_t len = area->vm_end - area->vm_start;
1620 area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1621 if (area->vm_flags & VM_LOCKED)
1622 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1623 vm_stat_unaccount(area);
1624 remove_vm_struct(area);
1628 * Update the VMA and inode share lists.
1630 * Ok - we have the memory areas we should free on the 'free' list,
1631 * so release them, and do the vma updates.
1633 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1636 struct vm_area_struct *next = vma->vm_next;
1644 * Get rid of page table information in the indicated region.
1646 * Called with the page table lock held.
1648 static void unmap_region(struct mm_struct *mm,
1649 struct vm_area_struct *vma, struct vm_area_struct *prev,
1650 unsigned long start, unsigned long end)
1652 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1653 struct mmu_gather *tlb;
1654 unsigned long nr_accounted = 0;
1657 spin_lock(&mm->page_table_lock);
1658 tlb = tlb_gather_mmu(mm, 0);
1659 unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1660 vm_unacct_memory(nr_accounted);
1661 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1662 next? next->vm_start: 0);
1663 tlb_finish_mmu(tlb, start, end);
1664 spin_unlock(&mm->page_table_lock);
1668 * Create a list of vma's touched by the unmap, removing them from the mm's
1669 * vma list as we go..
1672 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1673 struct vm_area_struct *prev, unsigned long end)
1675 struct vm_area_struct **insertion_point;
1676 struct vm_area_struct *tail_vma = NULL;
1679 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1681 rb_erase(&vma->vm_rb, &mm->mm_rb);
1685 } while (vma && vma->vm_start < end);
1686 *insertion_point = vma;
1687 tail_vma->vm_next = NULL;
1688 if (mm->unmap_area == arch_unmap_area)
1689 addr = prev ? prev->vm_end : mm->mmap_base;
1691 addr = vma ? vma->vm_start : mm->mmap_base;
1692 mm->unmap_area(mm, addr);
1693 mm->mmap_cache = NULL; /* Kill the cache. */
1697 * Split a vma into two pieces at address 'addr', a new vma is allocated
1698 * either for the first part or the the tail.
1700 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1701 unsigned long addr, int new_below)
1703 struct mempolicy *pol;
1704 struct vm_area_struct *new;
1706 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1709 if (mm->map_count >= sysctl_max_map_count)
1712 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1716 /* most fields are the same, copy all, and then fixup */
1722 new->vm_start = addr;
1723 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1726 pol = mpol_copy(vma_policy(vma));
1728 kmem_cache_free(vm_area_cachep, new);
1729 return PTR_ERR(pol);
1731 vma_set_policy(new, pol);
1734 get_file(new->vm_file);
1736 if (new->vm_ops && new->vm_ops->open)
1737 new->vm_ops->open(new);
1740 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1741 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1743 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1748 /* Munmap is split into 2 main parts -- this part which finds
1749 * what needs doing, and the areas themselves, which do the
1750 * work. This now handles partial unmappings.
1751 * Jeremy Fitzhardinge <jeremy@goop.org>
1753 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1756 struct vm_area_struct *vma, *prev, *last;
1758 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1761 if ((len = PAGE_ALIGN(len)) == 0)
1764 /* Find the first overlapping VMA */
1765 vma = find_vma_prev(mm, start, &prev);
1768 /* we have start < vma->vm_end */
1770 /* if it doesn't overlap, we have nothing.. */
1772 if (vma->vm_start >= end)
1776 * If we need to split any vma, do it now to save pain later.
1778 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1779 * unmapped vm_area_struct will remain in use: so lower split_vma
1780 * places tmp vma above, and higher split_vma places tmp vma below.
1782 if (start > vma->vm_start) {
1783 int error = split_vma(mm, vma, start, 0);
1789 /* Does it split the last one? */
1790 last = find_vma(mm, end);
1791 if (last && end > last->vm_start) {
1792 int error = split_vma(mm, last, end, 1);
1796 vma = prev? prev->vm_next: mm->mmap;
1799 * Remove the vma's, and unmap the actual pages
1801 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1802 unmap_region(mm, vma, prev, start, end);
1804 /* Fix up all other VM information */
1805 unmap_vma_list(mm, vma);
1810 EXPORT_SYMBOL(do_munmap);
1812 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1815 struct mm_struct *mm = current->mm;
1817 profile_munmap(addr);
1819 down_write(&mm->mmap_sem);
1820 ret = do_munmap(mm, addr, len);
1821 up_write(&mm->mmap_sem);
1825 static inline void verify_mm_writelocked(struct mm_struct *mm)
1827 #ifdef CONFIG_DEBUG_KERNEL
1828 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1830 up_read(&mm->mmap_sem);
1836 * this is really a simplified "do_mmap". it only handles
1837 * anonymous maps. eventually we may be able to do some
1838 * brk-specific accounting here.
1840 unsigned long do_brk(unsigned long addr, unsigned long len)
1842 struct mm_struct * mm = current->mm;
1843 struct vm_area_struct * vma, * prev;
1844 unsigned long flags;
1845 struct rb_node ** rb_link, * rb_parent;
1846 pgoff_t pgoff = addr >> PAGE_SHIFT;
1848 len = PAGE_ALIGN(len);
1852 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1858 if (mm->def_flags & VM_LOCKED) {
1859 unsigned long locked, lock_limit;
1860 locked = len >> PAGE_SHIFT;
1861 locked += mm->locked_vm;
1862 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1863 lock_limit >>= PAGE_SHIFT;
1864 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1869 * mm->mmap_sem is required to protect against another thread
1870 * changing the mappings in case we sleep.
1872 verify_mm_writelocked(mm);
1875 * Clear old maps. this also does some error checking for us
1878 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1879 if (vma && vma->vm_start < addr + len) {
1880 if (do_munmap(mm, addr, len))
1885 /* Check against address space limits *after* clearing old maps... */
1886 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1889 if (mm->map_count > sysctl_max_map_count)
1892 if (security_vm_enough_memory(len >> PAGE_SHIFT))
1895 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1897 /* Can we just expand an old private anonymous mapping? */
1898 if (vma_merge(mm, prev, addr, addr + len, flags,
1899 NULL, NULL, pgoff, NULL))
1903 * create a vma struct for an anonymous mapping
1905 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1907 vm_unacct_memory(len >> PAGE_SHIFT);
1910 memset(vma, 0, sizeof(*vma));
1913 vma->vm_start = addr;
1914 vma->vm_end = addr + len;
1915 vma->vm_pgoff = pgoff;
1916 vma->vm_flags = flags;
1917 vma->vm_page_prot = protection_map[flags & 0x0f];
1918 vma_link(mm, vma, prev, rb_link, rb_parent);
1920 mm->total_vm += len >> PAGE_SHIFT;
1921 if (flags & VM_LOCKED) {
1922 mm->locked_vm += len >> PAGE_SHIFT;
1923 make_pages_present(addr, addr + len);
1928 EXPORT_SYMBOL(do_brk);
1930 /* Release all mmaps. */
1931 void exit_mmap(struct mm_struct *mm)
1933 struct mmu_gather *tlb;
1934 struct vm_area_struct *vma = mm->mmap;
1935 unsigned long nr_accounted = 0;
1940 spin_lock(&mm->page_table_lock);
1943 tlb = tlb_gather_mmu(mm, 1);
1944 /* Use -1 here to ensure all VMAs in the mm are unmapped */
1945 end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1946 vm_unacct_memory(nr_accounted);
1947 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1948 tlb_finish_mmu(tlb, 0, end);
1950 mm->mmap = mm->mmap_cache = NULL;
1951 mm->mm_rb = RB_ROOT;
1952 set_mm_counter(mm, rss, 0);
1956 spin_unlock(&mm->page_table_lock);
1959 * Walk the list again, actually closing and freeing it
1960 * without holding any MM locks.
1963 struct vm_area_struct *next = vma->vm_next;
1964 remove_vm_struct(vma);
1968 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1971 /* Insert vm structure into process list sorted by address
1972 * and into the inode's i_mmap tree. If vm_file is non-NULL
1973 * then i_mmap_lock is taken here.
1975 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1977 struct vm_area_struct * __vma, * prev;
1978 struct rb_node ** rb_link, * rb_parent;
1981 * The vm_pgoff of a purely anonymous vma should be irrelevant
1982 * until its first write fault, when page's anon_vma and index
1983 * are set. But now set the vm_pgoff it will almost certainly
1984 * end up with (unless mremap moves it elsewhere before that
1985 * first wfault), so /proc/pid/maps tells a consistent story.
1987 * By setting it to reflect the virtual start address of the
1988 * vma, merges and splits can happen in a seamless way, just
1989 * using the existing file pgoff checks and manipulations.
1990 * Similarly in do_mmap_pgoff and in do_brk.
1992 if (!vma->vm_file) {
1993 BUG_ON(vma->anon_vma);
1994 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1996 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1997 if (__vma && __vma->vm_start < vma->vm_end)
1999 vma_link(mm, vma, prev, rb_link, rb_parent);
2004 * Copy the vma structure to a new location in the same mm,
2005 * prior to moving page table entries, to effect an mremap move.
2007 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2008 unsigned long addr, unsigned long len, pgoff_t pgoff)
2010 struct vm_area_struct *vma = *vmap;
2011 unsigned long vma_start = vma->vm_start;
2012 struct mm_struct *mm = vma->vm_mm;
2013 struct vm_area_struct *new_vma, *prev;
2014 struct rb_node **rb_link, *rb_parent;
2015 struct mempolicy *pol;
2018 * If anonymous vma has not yet been faulted, update new pgoff
2019 * to match new location, to increase its chance of merging.
2021 if (!vma->vm_file && !vma->anon_vma)
2022 pgoff = addr >> PAGE_SHIFT;
2024 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2025 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2026 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2029 * Source vma may have been merged into new_vma
2031 if (vma_start >= new_vma->vm_start &&
2032 vma_start < new_vma->vm_end)
2035 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2038 pol = mpol_copy(vma_policy(vma));
2040 kmem_cache_free(vm_area_cachep, new_vma);
2043 vma_set_policy(new_vma, pol);
2044 new_vma->vm_start = addr;
2045 new_vma->vm_end = addr + len;
2046 new_vma->vm_pgoff = pgoff;
2047 if (new_vma->vm_file)
2048 get_file(new_vma->vm_file);
2049 if (new_vma->vm_ops && new_vma->vm_ops->open)
2050 new_vma->vm_ops->open(new_vma);
2051 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2058 * Return true if the calling process may expand its vm space by the passed
2061 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2063 unsigned long cur = mm->total_vm; /* pages */
2066 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2068 if (cur + npages > lim)