[NETFILTER]: nf_queue: handle NF_STOP and unknown verdicts in nf_reinject
[linux-2.6] / net / core / neighbour.c
1 /*
2  *      Generic address resolution entity
3  *
4  *      Authors:
5  *      Pedro Roque             <roque@di.fc.ul.pt>
6  *      Alexey Kuznetsov        <kuznet@ms2.inr.ac.ru>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Fixes:
14  *      Vitaly E. Lavrov        releasing NULL neighbor in neigh_add.
15  *      Harald Welte            Add neighbour cache statistics like rtstat
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/sched.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35
36 #define NEIGH_DEBUG 1
37
38 #define NEIGH_PRINTK(x...) printk(x)
39 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
40 #define NEIGH_PRINTK0 NEIGH_PRINTK
41 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
42 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
43
44 #if NEIGH_DEBUG >= 1
45 #undef NEIGH_PRINTK1
46 #define NEIGH_PRINTK1 NEIGH_PRINTK
47 #endif
48 #if NEIGH_DEBUG >= 2
49 #undef NEIGH_PRINTK2
50 #define NEIGH_PRINTK2 NEIGH_PRINTK
51 #endif
52
53 #define PNEIGH_HASHMASK         0xF
54
55 static void neigh_timer_handler(unsigned long arg);
56 #ifdef CONFIG_ARPD
57 static void neigh_app_notify(struct neighbour *n);
58 #endif
59 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
60 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
61
62 static struct neigh_table *neigh_tables;
63 #ifdef CONFIG_PROC_FS
64 static struct file_operations neigh_stat_seq_fops;
65 #endif
66
67 /*
68    Neighbour hash table buckets are protected with rwlock tbl->lock.
69
70    - All the scans/updates to hash buckets MUST be made under this lock.
71    - NOTHING clever should be made under this lock: no callbacks
72      to protocol backends, no attempts to send something to network.
73      It will result in deadlocks, if backend/driver wants to use neighbour
74      cache.
75    - If the entry requires some non-trivial actions, increase
76      its reference count and release table lock.
77
78    Neighbour entries are protected:
79    - with reference count.
80    - with rwlock neigh->lock
81
82    Reference count prevents destruction.
83
84    neigh->lock mainly serializes ll address data and its validity state.
85    However, the same lock is used to protect another entry fields:
86     - timer
87     - resolution queue
88
89    Again, nothing clever shall be made under neigh->lock,
90    the most complicated procedure, which we allow is dev->hard_header.
91    It is supposed, that dev->hard_header is simplistic and does
92    not make callbacks to neighbour tables.
93
94    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
95    list of neighbour tables. This list is used only in process context,
96  */
97
98 static DEFINE_RWLOCK(neigh_tbl_lock);
99
100 static int neigh_blackhole(struct sk_buff *skb)
101 {
102         kfree_skb(skb);
103         return -ENETDOWN;
104 }
105
106 /*
107  * It is random distribution in the interval (1/2)*base...(3/2)*base.
108  * It corresponds to default IPv6 settings and is not overridable,
109  * because it is really reasonable choice.
110  */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114         return (base ? (net_random() % base) + (base >> 1) : 0);
115 }
116
117
118 static int neigh_forced_gc(struct neigh_table *tbl)
119 {
120         int shrunk = 0;
121         int i;
122
123         NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
124
125         write_lock_bh(&tbl->lock);
126         for (i = 0; i <= tbl->hash_mask; i++) {
127                 struct neighbour *n, **np;
128
129                 np = &tbl->hash_buckets[i];
130                 while ((n = *np) != NULL) {
131                         /* Neighbour record may be discarded if:
132                          * - nobody refers to it.
133                          * - it is not permanent
134                          */
135                         write_lock(&n->lock);
136                         if (atomic_read(&n->refcnt) == 1 &&
137                             !(n->nud_state & NUD_PERMANENT)) {
138                                 *np     = n->next;
139                                 n->dead = 1;
140                                 shrunk  = 1;
141                                 write_unlock(&n->lock);
142                                 neigh_release(n);
143                                 continue;
144                         }
145                         write_unlock(&n->lock);
146                         np = &n->next;
147                 }
148         }
149
150         tbl->last_flush = jiffies;
151
152         write_unlock_bh(&tbl->lock);
153
154         return shrunk;
155 }
156
157 static int neigh_del_timer(struct neighbour *n)
158 {
159         if ((n->nud_state & NUD_IN_TIMER) &&
160             del_timer(&n->timer)) {
161                 neigh_release(n);
162                 return 1;
163         }
164         return 0;
165 }
166
167 static void pneigh_queue_purge(struct sk_buff_head *list)
168 {
169         struct sk_buff *skb;
170
171         while ((skb = skb_dequeue(list)) != NULL) {
172                 dev_put(skb->dev);
173                 kfree_skb(skb);
174         }
175 }
176
177 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
178 {
179         int i;
180
181         for (i = 0; i <= tbl->hash_mask; i++) {
182                 struct neighbour *n, **np = &tbl->hash_buckets[i];
183
184                 while ((n = *np) != NULL) {
185                         if (dev && n->dev != dev) {
186                                 np = &n->next;
187                                 continue;
188                         }
189                         *np = n->next;
190                         write_lock(&n->lock);
191                         neigh_del_timer(n);
192                         n->dead = 1;
193
194                         if (atomic_read(&n->refcnt) != 1) {
195                                 /* The most unpleasant situation.
196                                    We must destroy neighbour entry,
197                                    but someone still uses it.
198
199                                    The destroy will be delayed until
200                                    the last user releases us, but
201                                    we must kill timers etc. and move
202                                    it to safe state.
203                                  */
204                                 skb_queue_purge(&n->arp_queue);
205                                 n->output = neigh_blackhole;
206                                 if (n->nud_state & NUD_VALID)
207                                         n->nud_state = NUD_NOARP;
208                                 else
209                                         n->nud_state = NUD_NONE;
210                                 NEIGH_PRINTK2("neigh %p is stray.\n", n);
211                         }
212                         write_unlock(&n->lock);
213                         neigh_release(n);
214                 }
215         }
216 }
217
218 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
219 {
220         write_lock_bh(&tbl->lock);
221         neigh_flush_dev(tbl, dev);
222         write_unlock_bh(&tbl->lock);
223 }
224
225 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
226 {
227         write_lock_bh(&tbl->lock);
228         neigh_flush_dev(tbl, dev);
229         pneigh_ifdown(tbl, dev);
230         write_unlock_bh(&tbl->lock);
231
232         del_timer_sync(&tbl->proxy_timer);
233         pneigh_queue_purge(&tbl->proxy_queue);
234         return 0;
235 }
236
237 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
238 {
239         struct neighbour *n = NULL;
240         unsigned long now = jiffies;
241         int entries;
242
243         entries = atomic_inc_return(&tbl->entries) - 1;
244         if (entries >= tbl->gc_thresh3 ||
245             (entries >= tbl->gc_thresh2 &&
246              time_after(now, tbl->last_flush + 5 * HZ))) {
247                 if (!neigh_forced_gc(tbl) &&
248                     entries >= tbl->gc_thresh3)
249                         goto out_entries;
250         }
251
252         n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
253         if (!n)
254                 goto out_entries;
255
256         memset(n, 0, tbl->entry_size);
257
258         skb_queue_head_init(&n->arp_queue);
259         rwlock_init(&n->lock);
260         n->updated        = n->used = now;
261         n->nud_state      = NUD_NONE;
262         n->output         = neigh_blackhole;
263         n->parms          = neigh_parms_clone(&tbl->parms);
264         init_timer(&n->timer);
265         n->timer.function = neigh_timer_handler;
266         n->timer.data     = (unsigned long)n;
267
268         NEIGH_CACHE_STAT_INC(tbl, allocs);
269         n->tbl            = tbl;
270         atomic_set(&n->refcnt, 1);
271         n->dead           = 1;
272 out:
273         return n;
274
275 out_entries:
276         atomic_dec(&tbl->entries);
277         goto out;
278 }
279
280 static struct neighbour **neigh_hash_alloc(unsigned int entries)
281 {
282         unsigned long size = entries * sizeof(struct neighbour *);
283         struct neighbour **ret;
284
285         if (size <= PAGE_SIZE) {
286                 ret = kzalloc(size, GFP_ATOMIC);
287         } else {
288                 ret = (struct neighbour **)
289                       __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
290         }
291         return ret;
292 }
293
294 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
295 {
296         unsigned long size = entries * sizeof(struct neighbour *);
297
298         if (size <= PAGE_SIZE)
299                 kfree(hash);
300         else
301                 free_pages((unsigned long)hash, get_order(size));
302 }
303
304 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
305 {
306         struct neighbour **new_hash, **old_hash;
307         unsigned int i, new_hash_mask, old_entries;
308
309         NEIGH_CACHE_STAT_INC(tbl, hash_grows);
310
311         BUG_ON(new_entries & (new_entries - 1));
312         new_hash = neigh_hash_alloc(new_entries);
313         if (!new_hash)
314                 return;
315
316         old_entries = tbl->hash_mask + 1;
317         new_hash_mask = new_entries - 1;
318         old_hash = tbl->hash_buckets;
319
320         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
321         for (i = 0; i < old_entries; i++) {
322                 struct neighbour *n, *next;
323
324                 for (n = old_hash[i]; n; n = next) {
325                         unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
326
327                         hash_val &= new_hash_mask;
328                         next = n->next;
329
330                         n->next = new_hash[hash_val];
331                         new_hash[hash_val] = n;
332                 }
333         }
334         tbl->hash_buckets = new_hash;
335         tbl->hash_mask = new_hash_mask;
336
337         neigh_hash_free(old_hash, old_entries);
338 }
339
340 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
341                                struct net_device *dev)
342 {
343         struct neighbour *n;
344         int key_len = tbl->key_len;
345         u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
346         
347         NEIGH_CACHE_STAT_INC(tbl, lookups);
348
349         read_lock_bh(&tbl->lock);
350         for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
351                 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
352                         neigh_hold(n);
353                         NEIGH_CACHE_STAT_INC(tbl, hits);
354                         break;
355                 }
356         }
357         read_unlock_bh(&tbl->lock);
358         return n;
359 }
360
361 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
362 {
363         struct neighbour *n;
364         int key_len = tbl->key_len;
365         u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
366
367         NEIGH_CACHE_STAT_INC(tbl, lookups);
368
369         read_lock_bh(&tbl->lock);
370         for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
371                 if (!memcmp(n->primary_key, pkey, key_len)) {
372                         neigh_hold(n);
373                         NEIGH_CACHE_STAT_INC(tbl, hits);
374                         break;
375                 }
376         }
377         read_unlock_bh(&tbl->lock);
378         return n;
379 }
380
381 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
382                                struct net_device *dev)
383 {
384         u32 hash_val;
385         int key_len = tbl->key_len;
386         int error;
387         struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
388
389         if (!n) {
390                 rc = ERR_PTR(-ENOBUFS);
391                 goto out;
392         }
393
394         memcpy(n->primary_key, pkey, key_len);
395         n->dev = dev;
396         dev_hold(dev);
397
398         /* Protocol specific setup. */
399         if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
400                 rc = ERR_PTR(error);
401                 goto out_neigh_release;
402         }
403
404         /* Device specific setup. */
405         if (n->parms->neigh_setup &&
406             (error = n->parms->neigh_setup(n)) < 0) {
407                 rc = ERR_PTR(error);
408                 goto out_neigh_release;
409         }
410
411         n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
412
413         write_lock_bh(&tbl->lock);
414
415         if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
416                 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
417
418         hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
419
420         if (n->parms->dead) {
421                 rc = ERR_PTR(-EINVAL);
422                 goto out_tbl_unlock;
423         }
424
425         for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
426                 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
427                         neigh_hold(n1);
428                         rc = n1;
429                         goto out_tbl_unlock;
430                 }
431         }
432
433         n->next = tbl->hash_buckets[hash_val];
434         tbl->hash_buckets[hash_val] = n;
435         n->dead = 0;
436         neigh_hold(n);
437         write_unlock_bh(&tbl->lock);
438         NEIGH_PRINTK2("neigh %p is created.\n", n);
439         rc = n;
440 out:
441         return rc;
442 out_tbl_unlock:
443         write_unlock_bh(&tbl->lock);
444 out_neigh_release:
445         neigh_release(n);
446         goto out;
447 }
448
449 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
450                                     struct net_device *dev, int creat)
451 {
452         struct pneigh_entry *n;
453         int key_len = tbl->key_len;
454         u32 hash_val = *(u32 *)(pkey + key_len - 4);
455
456         hash_val ^= (hash_val >> 16);
457         hash_val ^= hash_val >> 8;
458         hash_val ^= hash_val >> 4;
459         hash_val &= PNEIGH_HASHMASK;
460
461         read_lock_bh(&tbl->lock);
462
463         for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
464                 if (!memcmp(n->key, pkey, key_len) &&
465                     (n->dev == dev || !n->dev)) {
466                         read_unlock_bh(&tbl->lock);
467                         goto out;
468                 }
469         }
470         read_unlock_bh(&tbl->lock);
471         n = NULL;
472         if (!creat)
473                 goto out;
474
475         n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
476         if (!n)
477                 goto out;
478
479         memcpy(n->key, pkey, key_len);
480         n->dev = dev;
481         if (dev)
482                 dev_hold(dev);
483
484         if (tbl->pconstructor && tbl->pconstructor(n)) {
485                 if (dev)
486                         dev_put(dev);
487                 kfree(n);
488                 n = NULL;
489                 goto out;
490         }
491
492         write_lock_bh(&tbl->lock);
493         n->next = tbl->phash_buckets[hash_val];
494         tbl->phash_buckets[hash_val] = n;
495         write_unlock_bh(&tbl->lock);
496 out:
497         return n;
498 }
499
500
501 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
502                   struct net_device *dev)
503 {
504         struct pneigh_entry *n, **np;
505         int key_len = tbl->key_len;
506         u32 hash_val = *(u32 *)(pkey + key_len - 4);
507
508         hash_val ^= (hash_val >> 16);
509         hash_val ^= hash_val >> 8;
510         hash_val ^= hash_val >> 4;
511         hash_val &= PNEIGH_HASHMASK;
512
513         write_lock_bh(&tbl->lock);
514         for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
515              np = &n->next) {
516                 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
517                         *np = n->next;
518                         write_unlock_bh(&tbl->lock);
519                         if (tbl->pdestructor)
520                                 tbl->pdestructor(n);
521                         if (n->dev)
522                                 dev_put(n->dev);
523                         kfree(n);
524                         return 0;
525                 }
526         }
527         write_unlock_bh(&tbl->lock);
528         return -ENOENT;
529 }
530
531 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
532 {
533         struct pneigh_entry *n, **np;
534         u32 h;
535
536         for (h = 0; h <= PNEIGH_HASHMASK; h++) {
537                 np = &tbl->phash_buckets[h];
538                 while ((n = *np) != NULL) {
539                         if (!dev || n->dev == dev) {
540                                 *np = n->next;
541                                 if (tbl->pdestructor)
542                                         tbl->pdestructor(n);
543                                 if (n->dev)
544                                         dev_put(n->dev);
545                                 kfree(n);
546                                 continue;
547                         }
548                         np = &n->next;
549                 }
550         }
551         return -ENOENT;
552 }
553
554
555 /*
556  *      neighbour must already be out of the table;
557  *
558  */
559 void neigh_destroy(struct neighbour *neigh)
560 {
561         struct hh_cache *hh;
562
563         NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
564
565         if (!neigh->dead) {
566                 printk(KERN_WARNING
567                        "Destroying alive neighbour %p\n", neigh);
568                 dump_stack();
569                 return;
570         }
571
572         if (neigh_del_timer(neigh))
573                 printk(KERN_WARNING "Impossible event.\n");
574
575         while ((hh = neigh->hh) != NULL) {
576                 neigh->hh = hh->hh_next;
577                 hh->hh_next = NULL;
578                 write_lock_bh(&hh->hh_lock);
579                 hh->hh_output = neigh_blackhole;
580                 write_unlock_bh(&hh->hh_lock);
581                 if (atomic_dec_and_test(&hh->hh_refcnt))
582                         kfree(hh);
583         }
584
585         if (neigh->parms->neigh_destructor)
586                 (neigh->parms->neigh_destructor)(neigh);
587
588         skb_queue_purge(&neigh->arp_queue);
589
590         dev_put(neigh->dev);
591         neigh_parms_put(neigh->parms);
592
593         NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
594
595         atomic_dec(&neigh->tbl->entries);
596         kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
597 }
598
599 /* Neighbour state is suspicious;
600    disable fast path.
601
602    Called with write_locked neigh.
603  */
604 static void neigh_suspect(struct neighbour *neigh)
605 {
606         struct hh_cache *hh;
607
608         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
609
610         neigh->output = neigh->ops->output;
611
612         for (hh = neigh->hh; hh; hh = hh->hh_next)
613                 hh->hh_output = neigh->ops->output;
614 }
615
616 /* Neighbour state is OK;
617    enable fast path.
618
619    Called with write_locked neigh.
620  */
621 static void neigh_connect(struct neighbour *neigh)
622 {
623         struct hh_cache *hh;
624
625         NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
626
627         neigh->output = neigh->ops->connected_output;
628
629         for (hh = neigh->hh; hh; hh = hh->hh_next)
630                 hh->hh_output = neigh->ops->hh_output;
631 }
632
633 static void neigh_periodic_timer(unsigned long arg)
634 {
635         struct neigh_table *tbl = (struct neigh_table *)arg;
636         struct neighbour *n, **np;
637         unsigned long expire, now = jiffies;
638
639         NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
640
641         write_lock(&tbl->lock);
642
643         /*
644          *      periodically recompute ReachableTime from random function
645          */
646
647         if (time_after(now, tbl->last_rand + 300 * HZ)) {
648                 struct neigh_parms *p;
649                 tbl->last_rand = now;
650                 for (p = &tbl->parms; p; p = p->next)
651                         p->reachable_time =
652                                 neigh_rand_reach_time(p->base_reachable_time);
653         }
654
655         np = &tbl->hash_buckets[tbl->hash_chain_gc];
656         tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
657
658         while ((n = *np) != NULL) {
659                 unsigned int state;
660
661                 write_lock(&n->lock);
662
663                 state = n->nud_state;
664                 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
665                         write_unlock(&n->lock);
666                         goto next_elt;
667                 }
668
669                 if (time_before(n->used, n->confirmed))
670                         n->used = n->confirmed;
671
672                 if (atomic_read(&n->refcnt) == 1 &&
673                     (state == NUD_FAILED ||
674                      time_after(now, n->used + n->parms->gc_staletime))) {
675                         *np = n->next;
676                         n->dead = 1;
677                         write_unlock(&n->lock);
678                         neigh_release(n);
679                         continue;
680                 }
681                 write_unlock(&n->lock);
682
683 next_elt:
684                 np = &n->next;
685         }
686
687         /* Cycle through all hash buckets every base_reachable_time/2 ticks.
688          * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
689          * base_reachable_time.
690          */
691         expire = tbl->parms.base_reachable_time >> 1;
692         expire /= (tbl->hash_mask + 1);
693         if (!expire)
694                 expire = 1;
695
696         mod_timer(&tbl->gc_timer, now + expire);
697
698         write_unlock(&tbl->lock);
699 }
700
701 static __inline__ int neigh_max_probes(struct neighbour *n)
702 {
703         struct neigh_parms *p = n->parms;
704         return (n->nud_state & NUD_PROBE ?
705                 p->ucast_probes :
706                 p->ucast_probes + p->app_probes + p->mcast_probes);
707 }
708
709 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
710 {
711         if (unlikely(mod_timer(&n->timer, when))) {
712                 printk("NEIGH: BUG, double timer add, state is %x\n",
713                        n->nud_state);
714                 dump_stack();
715         }
716 }
717
718 /* Called when a timer expires for a neighbour entry. */
719
720 static void neigh_timer_handler(unsigned long arg)
721 {
722         unsigned long now, next;
723         struct neighbour *neigh = (struct neighbour *)arg;
724         unsigned state;
725         int notify = 0;
726
727         write_lock(&neigh->lock);
728
729         state = neigh->nud_state;
730         now = jiffies;
731         next = now + HZ;
732
733         if (!(state & NUD_IN_TIMER)) {
734 #ifndef CONFIG_SMP
735                 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
736 #endif
737                 goto out;
738         }
739
740         if (state & NUD_REACHABLE) {
741                 if (time_before_eq(now, 
742                                    neigh->confirmed + neigh->parms->reachable_time)) {
743                         NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
744                         next = neigh->confirmed + neigh->parms->reachable_time;
745                 } else if (time_before_eq(now,
746                                           neigh->used + neigh->parms->delay_probe_time)) {
747                         NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
748                         neigh->nud_state = NUD_DELAY;
749                         neigh->updated = jiffies;
750                         neigh_suspect(neigh);
751                         next = now + neigh->parms->delay_probe_time;
752                 } else {
753                         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
754                         neigh->nud_state = NUD_STALE;
755                         neigh->updated = jiffies;
756                         neigh_suspect(neigh);
757                 }
758         } else if (state & NUD_DELAY) {
759                 if (time_before_eq(now, 
760                                    neigh->confirmed + neigh->parms->delay_probe_time)) {
761                         NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
762                         neigh->nud_state = NUD_REACHABLE;
763                         neigh->updated = jiffies;
764                         neigh_connect(neigh);
765                         next = neigh->confirmed + neigh->parms->reachable_time;
766                 } else {
767                         NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
768                         neigh->nud_state = NUD_PROBE;
769                         neigh->updated = jiffies;
770                         atomic_set(&neigh->probes, 0);
771                         next = now + neigh->parms->retrans_time;
772                 }
773         } else {
774                 /* NUD_PROBE|NUD_INCOMPLETE */
775                 next = now + neigh->parms->retrans_time;
776         }
777
778         if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
779             atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
780                 struct sk_buff *skb;
781
782                 neigh->nud_state = NUD_FAILED;
783                 neigh->updated = jiffies;
784                 notify = 1;
785                 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
786                 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
787
788                 /* It is very thin place. report_unreachable is very complicated
789                    routine. Particularly, it can hit the same neighbour entry!
790
791                    So that, we try to be accurate and avoid dead loop. --ANK
792                  */
793                 while (neigh->nud_state == NUD_FAILED &&
794                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
795                         write_unlock(&neigh->lock);
796                         neigh->ops->error_report(neigh, skb);
797                         write_lock(&neigh->lock);
798                 }
799                 skb_queue_purge(&neigh->arp_queue);
800         }
801
802         if (neigh->nud_state & NUD_IN_TIMER) {
803                 if (time_before(next, jiffies + HZ/2))
804                         next = jiffies + HZ/2;
805                 if (!mod_timer(&neigh->timer, next))
806                         neigh_hold(neigh);
807         }
808         if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
809                 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
810                 /* keep skb alive even if arp_queue overflows */
811                 if (skb)
812                         skb_get(skb);
813                 write_unlock(&neigh->lock);
814                 neigh->ops->solicit(neigh, skb);
815                 atomic_inc(&neigh->probes);
816                 if (skb)
817                         kfree_skb(skb);
818         } else {
819 out:
820                 write_unlock(&neigh->lock);
821         }
822
823 #ifdef CONFIG_ARPD
824         if (notify && neigh->parms->app_probes)
825                 neigh_app_notify(neigh);
826 #endif
827         neigh_release(neigh);
828 }
829
830 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
831 {
832         int rc;
833         unsigned long now;
834
835         write_lock_bh(&neigh->lock);
836
837         rc = 0;
838         if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
839                 goto out_unlock_bh;
840
841         now = jiffies;
842         
843         if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
844                 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
845                         atomic_set(&neigh->probes, neigh->parms->ucast_probes);
846                         neigh->nud_state     = NUD_INCOMPLETE;
847                         neigh->updated = jiffies;
848                         neigh_hold(neigh);
849                         neigh_add_timer(neigh, now + 1);
850                 } else {
851                         neigh->nud_state = NUD_FAILED;
852                         neigh->updated = jiffies;
853                         write_unlock_bh(&neigh->lock);
854
855                         if (skb)
856                                 kfree_skb(skb);
857                         return 1;
858                 }
859         } else if (neigh->nud_state & NUD_STALE) {
860                 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
861                 neigh_hold(neigh);
862                 neigh->nud_state = NUD_DELAY;
863                 neigh->updated = jiffies;
864                 neigh_add_timer(neigh,
865                                 jiffies + neigh->parms->delay_probe_time);
866         }
867
868         if (neigh->nud_state == NUD_INCOMPLETE) {
869                 if (skb) {
870                         if (skb_queue_len(&neigh->arp_queue) >=
871                             neigh->parms->queue_len) {
872                                 struct sk_buff *buff;
873                                 buff = neigh->arp_queue.next;
874                                 __skb_unlink(buff, &neigh->arp_queue);
875                                 kfree_skb(buff);
876                         }
877                         __skb_queue_tail(&neigh->arp_queue, skb);
878                 }
879                 rc = 1;
880         }
881 out_unlock_bh:
882         write_unlock_bh(&neigh->lock);
883         return rc;
884 }
885
886 static __inline__ void neigh_update_hhs(struct neighbour *neigh)
887 {
888         struct hh_cache *hh;
889         void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
890                 neigh->dev->header_cache_update;
891
892         if (update) {
893                 for (hh = neigh->hh; hh; hh = hh->hh_next) {
894                         write_lock_bh(&hh->hh_lock);
895                         update(hh, neigh->dev, neigh->ha);
896                         write_unlock_bh(&hh->hh_lock);
897                 }
898         }
899 }
900
901
902
903 /* Generic update routine.
904    -- lladdr is new lladdr or NULL, if it is not supplied.
905    -- new    is new state.
906    -- flags
907         NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
908                                 if it is different.
909         NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
910                                 lladdr instead of overriding it 
911                                 if it is different.
912                                 It also allows to retain current state
913                                 if lladdr is unchanged.
914         NEIGH_UPDATE_F_ADMIN    means that the change is administrative.
915
916         NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 
917                                 NTF_ROUTER flag.
918         NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
919                                 a router.
920
921    Caller MUST hold reference count on the entry.
922  */
923
924 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
925                  u32 flags)
926 {
927         u8 old;
928         int err;
929 #ifdef CONFIG_ARPD
930         int notify = 0;
931 #endif
932         struct net_device *dev;
933         int update_isrouter = 0;
934
935         write_lock_bh(&neigh->lock);
936
937         dev    = neigh->dev;
938         old    = neigh->nud_state;
939         err    = -EPERM;
940
941         if (!(flags & NEIGH_UPDATE_F_ADMIN) && 
942             (old & (NUD_NOARP | NUD_PERMANENT)))
943                 goto out;
944
945         if (!(new & NUD_VALID)) {
946                 neigh_del_timer(neigh);
947                 if (old & NUD_CONNECTED)
948                         neigh_suspect(neigh);
949                 neigh->nud_state = new;
950                 err = 0;
951 #ifdef CONFIG_ARPD
952                 notify = old & NUD_VALID;
953 #endif
954                 goto out;
955         }
956
957         /* Compare new lladdr with cached one */
958         if (!dev->addr_len) {
959                 /* First case: device needs no address. */
960                 lladdr = neigh->ha;
961         } else if (lladdr) {
962                 /* The second case: if something is already cached
963                    and a new address is proposed:
964                    - compare new & old
965                    - if they are different, check override flag
966                  */
967                 if ((old & NUD_VALID) && 
968                     !memcmp(lladdr, neigh->ha, dev->addr_len))
969                         lladdr = neigh->ha;
970         } else {
971                 /* No address is supplied; if we know something,
972                    use it, otherwise discard the request.
973                  */
974                 err = -EINVAL;
975                 if (!(old & NUD_VALID))
976                         goto out;
977                 lladdr = neigh->ha;
978         }
979
980         if (new & NUD_CONNECTED)
981                 neigh->confirmed = jiffies;
982         neigh->updated = jiffies;
983
984         /* If entry was valid and address is not changed,
985            do not change entry state, if new one is STALE.
986          */
987         err = 0;
988         update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
989         if (old & NUD_VALID) {
990                 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
991                         update_isrouter = 0;
992                         if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
993                             (old & NUD_CONNECTED)) {
994                                 lladdr = neigh->ha;
995                                 new = NUD_STALE;
996                         } else
997                                 goto out;
998                 } else {
999                         if (lladdr == neigh->ha && new == NUD_STALE &&
1000                             ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1001                              (old & NUD_CONNECTED))
1002                             )
1003                                 new = old;
1004                 }
1005         }
1006
1007         if (new != old) {
1008                 neigh_del_timer(neigh);
1009                 if (new & NUD_IN_TIMER) {
1010                         neigh_hold(neigh);
1011                         neigh_add_timer(neigh, (jiffies + 
1012                                                 ((new & NUD_REACHABLE) ? 
1013                                                  neigh->parms->reachable_time :
1014                                                  0)));
1015                 }
1016                 neigh->nud_state = new;
1017         }
1018
1019         if (lladdr != neigh->ha) {
1020                 memcpy(&neigh->ha, lladdr, dev->addr_len);
1021                 neigh_update_hhs(neigh);
1022                 if (!(new & NUD_CONNECTED))
1023                         neigh->confirmed = jiffies -
1024                                       (neigh->parms->base_reachable_time << 1);
1025 #ifdef CONFIG_ARPD
1026                 notify = 1;
1027 #endif
1028         }
1029         if (new == old)
1030                 goto out;
1031         if (new & NUD_CONNECTED)
1032                 neigh_connect(neigh);
1033         else
1034                 neigh_suspect(neigh);
1035         if (!(old & NUD_VALID)) {
1036                 struct sk_buff *skb;
1037
1038                 /* Again: avoid dead loop if something went wrong */
1039
1040                 while (neigh->nud_state & NUD_VALID &&
1041                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1042                         struct neighbour *n1 = neigh;
1043                         write_unlock_bh(&neigh->lock);
1044                         /* On shaper/eql skb->dst->neighbour != neigh :( */
1045                         if (skb->dst && skb->dst->neighbour)
1046                                 n1 = skb->dst->neighbour;
1047                         n1->output(skb);
1048                         write_lock_bh(&neigh->lock);
1049                 }
1050                 skb_queue_purge(&neigh->arp_queue);
1051         }
1052 out:
1053         if (update_isrouter) {
1054                 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1055                         (neigh->flags | NTF_ROUTER) :
1056                         (neigh->flags & ~NTF_ROUTER);
1057         }
1058         write_unlock_bh(&neigh->lock);
1059 #ifdef CONFIG_ARPD
1060         if (notify && neigh->parms->app_probes)
1061                 neigh_app_notify(neigh);
1062 #endif
1063         return err;
1064 }
1065
1066 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1067                                  u8 *lladdr, void *saddr,
1068                                  struct net_device *dev)
1069 {
1070         struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1071                                                  lladdr || !dev->addr_len);
1072         if (neigh)
1073                 neigh_update(neigh, lladdr, NUD_STALE, 
1074                              NEIGH_UPDATE_F_OVERRIDE);
1075         return neigh;
1076 }
1077
1078 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1079                           u16 protocol)
1080 {
1081         struct hh_cache *hh;
1082         struct net_device *dev = dst->dev;
1083
1084         for (hh = n->hh; hh; hh = hh->hh_next)
1085                 if (hh->hh_type == protocol)
1086                         break;
1087
1088         if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1089                 rwlock_init(&hh->hh_lock);
1090                 hh->hh_type = protocol;
1091                 atomic_set(&hh->hh_refcnt, 0);
1092                 hh->hh_next = NULL;
1093                 if (dev->hard_header_cache(n, hh)) {
1094                         kfree(hh);
1095                         hh = NULL;
1096                 } else {
1097                         atomic_inc(&hh->hh_refcnt);
1098                         hh->hh_next = n->hh;
1099                         n->hh       = hh;
1100                         if (n->nud_state & NUD_CONNECTED)
1101                                 hh->hh_output = n->ops->hh_output;
1102                         else
1103                                 hh->hh_output = n->ops->output;
1104                 }
1105         }
1106         if (hh) {
1107                 atomic_inc(&hh->hh_refcnt);
1108                 dst->hh = hh;
1109         }
1110 }
1111
1112 /* This function can be used in contexts, where only old dev_queue_xmit
1113    worked, f.e. if you want to override normal output path (eql, shaper),
1114    but resolution is not made yet.
1115  */
1116
1117 int neigh_compat_output(struct sk_buff *skb)
1118 {
1119         struct net_device *dev = skb->dev;
1120
1121         __skb_pull(skb, skb->nh.raw - skb->data);
1122
1123         if (dev->hard_header &&
1124             dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1125                              skb->len) < 0 &&
1126             dev->rebuild_header(skb))
1127                 return 0;
1128
1129         return dev_queue_xmit(skb);
1130 }
1131
1132 /* Slow and careful. */
1133
1134 int neigh_resolve_output(struct sk_buff *skb)
1135 {
1136         struct dst_entry *dst = skb->dst;
1137         struct neighbour *neigh;
1138         int rc = 0;
1139
1140         if (!dst || !(neigh = dst->neighbour))
1141                 goto discard;
1142
1143         __skb_pull(skb, skb->nh.raw - skb->data);
1144
1145         if (!neigh_event_send(neigh, skb)) {
1146                 int err;
1147                 struct net_device *dev = neigh->dev;
1148                 if (dev->hard_header_cache && !dst->hh) {
1149                         write_lock_bh(&neigh->lock);
1150                         if (!dst->hh)
1151                                 neigh_hh_init(neigh, dst, dst->ops->protocol);
1152                         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1153                                                neigh->ha, NULL, skb->len);
1154                         write_unlock_bh(&neigh->lock);
1155                 } else {
1156                         read_lock_bh(&neigh->lock);
1157                         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1158                                                neigh->ha, NULL, skb->len);
1159                         read_unlock_bh(&neigh->lock);
1160                 }
1161                 if (err >= 0)
1162                         rc = neigh->ops->queue_xmit(skb);
1163                 else
1164                         goto out_kfree_skb;
1165         }
1166 out:
1167         return rc;
1168 discard:
1169         NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1170                       dst, dst ? dst->neighbour : NULL);
1171 out_kfree_skb:
1172         rc = -EINVAL;
1173         kfree_skb(skb);
1174         goto out;
1175 }
1176
1177 /* As fast as possible without hh cache */
1178
1179 int neigh_connected_output(struct sk_buff *skb)
1180 {
1181         int err;
1182         struct dst_entry *dst = skb->dst;
1183         struct neighbour *neigh = dst->neighbour;
1184         struct net_device *dev = neigh->dev;
1185
1186         __skb_pull(skb, skb->nh.raw - skb->data);
1187
1188         read_lock_bh(&neigh->lock);
1189         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1190                                neigh->ha, NULL, skb->len);
1191         read_unlock_bh(&neigh->lock);
1192         if (err >= 0)
1193                 err = neigh->ops->queue_xmit(skb);
1194         else {
1195                 err = -EINVAL;
1196                 kfree_skb(skb);
1197         }
1198         return err;
1199 }
1200
1201 static void neigh_proxy_process(unsigned long arg)
1202 {
1203         struct neigh_table *tbl = (struct neigh_table *)arg;
1204         long sched_next = 0;
1205         unsigned long now = jiffies;
1206         struct sk_buff *skb;
1207
1208         spin_lock(&tbl->proxy_queue.lock);
1209
1210         skb = tbl->proxy_queue.next;
1211
1212         while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1213                 struct sk_buff *back = skb;
1214                 long tdif = NEIGH_CB(back)->sched_next - now;
1215
1216                 skb = skb->next;
1217                 if (tdif <= 0) {
1218                         struct net_device *dev = back->dev;
1219                         __skb_unlink(back, &tbl->proxy_queue);
1220                         if (tbl->proxy_redo && netif_running(dev))
1221                                 tbl->proxy_redo(back);
1222                         else
1223                                 kfree_skb(back);
1224
1225                         dev_put(dev);
1226                 } else if (!sched_next || tdif < sched_next)
1227                         sched_next = tdif;
1228         }
1229         del_timer(&tbl->proxy_timer);
1230         if (sched_next)
1231                 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1232         spin_unlock(&tbl->proxy_queue.lock);
1233 }
1234
1235 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1236                     struct sk_buff *skb)
1237 {
1238         unsigned long now = jiffies;
1239         unsigned long sched_next = now + (net_random() % p->proxy_delay);
1240
1241         if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1242                 kfree_skb(skb);
1243                 return;
1244         }
1245
1246         NEIGH_CB(skb)->sched_next = sched_next;
1247         NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1248
1249         spin_lock(&tbl->proxy_queue.lock);
1250         if (del_timer(&tbl->proxy_timer)) {
1251                 if (time_before(tbl->proxy_timer.expires, sched_next))
1252                         sched_next = tbl->proxy_timer.expires;
1253         }
1254         dst_release(skb->dst);
1255         skb->dst = NULL;
1256         dev_hold(skb->dev);
1257         __skb_queue_tail(&tbl->proxy_queue, skb);
1258         mod_timer(&tbl->proxy_timer, sched_next);
1259         spin_unlock(&tbl->proxy_queue.lock);
1260 }
1261
1262
1263 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1264                                       struct neigh_table *tbl)
1265 {
1266         struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1267
1268         if (p) {
1269                 memcpy(p, &tbl->parms, sizeof(*p));
1270                 p->tbl            = tbl;
1271                 atomic_set(&p->refcnt, 1);
1272                 INIT_RCU_HEAD(&p->rcu_head);
1273                 p->reachable_time =
1274                                 neigh_rand_reach_time(p->base_reachable_time);
1275                 if (dev) {
1276                         if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1277                                 kfree(p);
1278                                 return NULL;
1279                         }
1280
1281                         dev_hold(dev);
1282                         p->dev = dev;
1283                 }
1284                 p->sysctl_table = NULL;
1285                 write_lock_bh(&tbl->lock);
1286                 p->next         = tbl->parms.next;
1287                 tbl->parms.next = p;
1288                 write_unlock_bh(&tbl->lock);
1289         }
1290         return p;
1291 }
1292
1293 static void neigh_rcu_free_parms(struct rcu_head *head)
1294 {
1295         struct neigh_parms *parms =
1296                 container_of(head, struct neigh_parms, rcu_head);
1297
1298         neigh_parms_put(parms);
1299 }
1300
1301 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1302 {
1303         struct neigh_parms **p;
1304
1305         if (!parms || parms == &tbl->parms)
1306                 return;
1307         write_lock_bh(&tbl->lock);
1308         for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1309                 if (*p == parms) {
1310                         *p = parms->next;
1311                         parms->dead = 1;
1312                         write_unlock_bh(&tbl->lock);
1313                         if (parms->dev)
1314                                 dev_put(parms->dev);
1315                         call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1316                         return;
1317                 }
1318         }
1319         write_unlock_bh(&tbl->lock);
1320         NEIGH_PRINTK1("neigh_parms_release: not found\n");
1321 }
1322
1323 void neigh_parms_destroy(struct neigh_parms *parms)
1324 {
1325         kfree(parms);
1326 }
1327
1328 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1329 {
1330         unsigned long now = jiffies;
1331         unsigned long phsize;
1332
1333         atomic_set(&tbl->parms.refcnt, 1);
1334         INIT_RCU_HEAD(&tbl->parms.rcu_head);
1335         tbl->parms.reachable_time =
1336                           neigh_rand_reach_time(tbl->parms.base_reachable_time);
1337
1338         if (!tbl->kmem_cachep)
1339                 tbl->kmem_cachep = kmem_cache_create(tbl->id,
1340                                                      tbl->entry_size,
1341                                                      0, SLAB_HWCACHE_ALIGN,
1342                                                      NULL, NULL);
1343
1344         if (!tbl->kmem_cachep)
1345                 panic("cannot create neighbour cache");
1346
1347         tbl->stats = alloc_percpu(struct neigh_statistics);
1348         if (!tbl->stats)
1349                 panic("cannot create neighbour cache statistics");
1350         
1351 #ifdef CONFIG_PROC_FS
1352         tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1353         if (!tbl->pde) 
1354                 panic("cannot create neighbour proc dir entry");
1355         tbl->pde->proc_fops = &neigh_stat_seq_fops;
1356         tbl->pde->data = tbl;
1357 #endif
1358
1359         tbl->hash_mask = 1;
1360         tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1361
1362         phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1363         tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1364
1365         if (!tbl->hash_buckets || !tbl->phash_buckets)
1366                 panic("cannot allocate neighbour cache hashes");
1367
1368         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1369
1370         rwlock_init(&tbl->lock);
1371         init_timer(&tbl->gc_timer);
1372         tbl->gc_timer.data     = (unsigned long)tbl;
1373         tbl->gc_timer.function = neigh_periodic_timer;
1374         tbl->gc_timer.expires  = now + 1;
1375         add_timer(&tbl->gc_timer);
1376
1377         init_timer(&tbl->proxy_timer);
1378         tbl->proxy_timer.data     = (unsigned long)tbl;
1379         tbl->proxy_timer.function = neigh_proxy_process;
1380         skb_queue_head_init(&tbl->proxy_queue);
1381
1382         tbl->last_flush = now;
1383         tbl->last_rand  = now + tbl->parms.reachable_time * 20;
1384 }
1385
1386 void neigh_table_init(struct neigh_table *tbl)
1387 {
1388         struct neigh_table *tmp;
1389
1390         neigh_table_init_no_netlink(tbl);
1391         write_lock(&neigh_tbl_lock);
1392         for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1393                 if (tmp->family == tbl->family)
1394                         break;
1395         }
1396         tbl->next       = neigh_tables;
1397         neigh_tables    = tbl;
1398         write_unlock(&neigh_tbl_lock);
1399
1400         if (unlikely(tmp)) {
1401                 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1402                        "family %d\n", tbl->family);
1403                 dump_stack();
1404         }
1405 }
1406
1407 int neigh_table_clear(struct neigh_table *tbl)
1408 {
1409         struct neigh_table **tp;
1410
1411         /* It is not clean... Fix it to unload IPv6 module safely */
1412         del_timer_sync(&tbl->gc_timer);
1413         del_timer_sync(&tbl->proxy_timer);
1414         pneigh_queue_purge(&tbl->proxy_queue);
1415         neigh_ifdown(tbl, NULL);
1416         if (atomic_read(&tbl->entries))
1417                 printk(KERN_CRIT "neighbour leakage\n");
1418         write_lock(&neigh_tbl_lock);
1419         for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1420                 if (*tp == tbl) {
1421                         *tp = tbl->next;
1422                         break;
1423                 }
1424         }
1425         write_unlock(&neigh_tbl_lock);
1426
1427         neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1428         tbl->hash_buckets = NULL;
1429
1430         kfree(tbl->phash_buckets);
1431         tbl->phash_buckets = NULL;
1432
1433         return 0;
1434 }
1435
1436 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1437 {
1438         struct ndmsg *ndm = NLMSG_DATA(nlh);
1439         struct rtattr **nda = arg;
1440         struct neigh_table *tbl;
1441         struct net_device *dev = NULL;
1442         int err = -ENODEV;
1443
1444         if (ndm->ndm_ifindex &&
1445             (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1446                 goto out;
1447
1448         read_lock(&neigh_tbl_lock);
1449         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1450                 struct rtattr *dst_attr = nda[NDA_DST - 1];
1451                 struct neighbour *n;
1452
1453                 if (tbl->family != ndm->ndm_family)
1454                         continue;
1455                 read_unlock(&neigh_tbl_lock);
1456
1457                 err = -EINVAL;
1458                 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1459                         goto out_dev_put;
1460
1461                 if (ndm->ndm_flags & NTF_PROXY) {
1462                         err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1463                         goto out_dev_put;
1464                 }
1465
1466                 if (!dev)
1467                         goto out;
1468
1469                 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1470                 if (n) {
1471                         err = neigh_update(n, NULL, NUD_FAILED, 
1472                                            NEIGH_UPDATE_F_OVERRIDE|
1473                                            NEIGH_UPDATE_F_ADMIN);
1474                         neigh_release(n);
1475                 }
1476                 goto out_dev_put;
1477         }
1478         read_unlock(&neigh_tbl_lock);
1479         err = -EADDRNOTAVAIL;
1480 out_dev_put:
1481         if (dev)
1482                 dev_put(dev);
1483 out:
1484         return err;
1485 }
1486
1487 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1488 {
1489         struct ndmsg *ndm = NLMSG_DATA(nlh);
1490         struct rtattr **nda = arg;
1491         struct neigh_table *tbl;
1492         struct net_device *dev = NULL;
1493         int err = -ENODEV;
1494
1495         if (ndm->ndm_ifindex &&
1496             (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1497                 goto out;
1498
1499         read_lock(&neigh_tbl_lock);
1500         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1501                 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1502                 struct rtattr *dst_attr = nda[NDA_DST - 1];
1503                 int override = 1;
1504                 struct neighbour *n;
1505
1506                 if (tbl->family != ndm->ndm_family)
1507                         continue;
1508                 read_unlock(&neigh_tbl_lock);
1509
1510                 err = -EINVAL;
1511                 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1512                         goto out_dev_put;
1513
1514                 if (ndm->ndm_flags & NTF_PROXY) {
1515                         err = -ENOBUFS;
1516                         if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1517                                 err = 0;
1518                         goto out_dev_put;
1519                 }
1520
1521                 err = -EINVAL;
1522                 if (!dev)
1523                         goto out;
1524                 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1525                         goto out_dev_put;
1526         
1527                 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1528                 if (n) {
1529                         if (nlh->nlmsg_flags & NLM_F_EXCL) {
1530                                 err = -EEXIST;
1531                                 neigh_release(n);
1532                                 goto out_dev_put;
1533                         }
1534                         
1535                         override = nlh->nlmsg_flags & NLM_F_REPLACE;
1536                 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1537                         err = -ENOENT;
1538                         goto out_dev_put;
1539                 } else {
1540                         n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1541                         if (IS_ERR(n)) {
1542                                 err = PTR_ERR(n);
1543                                 goto out_dev_put;
1544                         }
1545                 }
1546
1547                 err = neigh_update(n,
1548                                    lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1549                                    ndm->ndm_state,
1550                                    (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1551                                    NEIGH_UPDATE_F_ADMIN);
1552
1553                 neigh_release(n);
1554                 goto out_dev_put;
1555         }
1556
1557         read_unlock(&neigh_tbl_lock);
1558         err = -EADDRNOTAVAIL;
1559 out_dev_put:
1560         if (dev)
1561                 dev_put(dev);
1562 out:
1563         return err;
1564 }
1565
1566 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1567 {
1568         struct rtattr *nest = NULL;
1569         
1570         nest = RTA_NEST(skb, NDTA_PARMS);
1571
1572         if (parms->dev)
1573                 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1574
1575         RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1576         RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1577         RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1578         RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1579         RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1580         RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1581         RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1582         RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1583                       parms->base_reachable_time);
1584         RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1585         RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1586         RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1587         RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1588         RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1589         RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1590
1591         return RTA_NEST_END(skb, nest);
1592
1593 rtattr_failure:
1594         return RTA_NEST_CANCEL(skb, nest);
1595 }
1596
1597 static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb,
1598                               struct netlink_callback *cb)
1599 {
1600         struct nlmsghdr *nlh;
1601         struct ndtmsg *ndtmsg;
1602
1603         nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1604                                NLM_F_MULTI);
1605
1606         ndtmsg = NLMSG_DATA(nlh);
1607
1608         read_lock_bh(&tbl->lock);
1609         ndtmsg->ndtm_family = tbl->family;
1610         ndtmsg->ndtm_pad1   = 0;
1611         ndtmsg->ndtm_pad2   = 0;
1612
1613         RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1614         RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1615         RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1616         RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1617         RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1618
1619         {
1620                 unsigned long now = jiffies;
1621                 unsigned int flush_delta = now - tbl->last_flush;
1622                 unsigned int rand_delta = now - tbl->last_rand;
1623
1624                 struct ndt_config ndc = {
1625                         .ndtc_key_len           = tbl->key_len,
1626                         .ndtc_entry_size        = tbl->entry_size,
1627                         .ndtc_entries           = atomic_read(&tbl->entries),
1628                         .ndtc_last_flush        = jiffies_to_msecs(flush_delta),
1629                         .ndtc_last_rand         = jiffies_to_msecs(rand_delta),
1630                         .ndtc_hash_rnd          = tbl->hash_rnd,
1631                         .ndtc_hash_mask         = tbl->hash_mask,
1632                         .ndtc_hash_chain_gc     = tbl->hash_chain_gc,
1633                         .ndtc_proxy_qlen        = tbl->proxy_queue.qlen,
1634                 };
1635
1636                 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1637         }
1638
1639         {
1640                 int cpu;
1641                 struct ndt_stats ndst;
1642
1643                 memset(&ndst, 0, sizeof(ndst));
1644
1645                 for_each_possible_cpu(cpu) {
1646                         struct neigh_statistics *st;
1647
1648                         st = per_cpu_ptr(tbl->stats, cpu);
1649                         ndst.ndts_allocs                += st->allocs;
1650                         ndst.ndts_destroys              += st->destroys;
1651                         ndst.ndts_hash_grows            += st->hash_grows;
1652                         ndst.ndts_res_failed            += st->res_failed;
1653                         ndst.ndts_lookups               += st->lookups;
1654                         ndst.ndts_hits                  += st->hits;
1655                         ndst.ndts_rcv_probes_mcast      += st->rcv_probes_mcast;
1656                         ndst.ndts_rcv_probes_ucast      += st->rcv_probes_ucast;
1657                         ndst.ndts_periodic_gc_runs      += st->periodic_gc_runs;
1658                         ndst.ndts_forced_gc_runs        += st->forced_gc_runs;
1659                 }
1660
1661                 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1662         }
1663
1664         BUG_ON(tbl->parms.dev);
1665         if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1666                 goto rtattr_failure;
1667
1668         read_unlock_bh(&tbl->lock);
1669         return NLMSG_END(skb, nlh);
1670
1671 rtattr_failure:
1672         read_unlock_bh(&tbl->lock);
1673         return NLMSG_CANCEL(skb, nlh);
1674  
1675 nlmsg_failure:
1676         return -1;
1677 }
1678
1679 static int neightbl_fill_param_info(struct neigh_table *tbl,
1680                                     struct neigh_parms *parms,
1681                                     struct sk_buff *skb,
1682                                     struct netlink_callback *cb)
1683 {
1684         struct ndtmsg *ndtmsg;
1685         struct nlmsghdr *nlh;
1686
1687         nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1688                                NLM_F_MULTI);
1689
1690         ndtmsg = NLMSG_DATA(nlh);
1691
1692         read_lock_bh(&tbl->lock);
1693         ndtmsg->ndtm_family = tbl->family;
1694         ndtmsg->ndtm_pad1   = 0;
1695         ndtmsg->ndtm_pad2   = 0;
1696         RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1697
1698         if (neightbl_fill_parms(skb, parms) < 0)
1699                 goto rtattr_failure;
1700
1701         read_unlock_bh(&tbl->lock);
1702         return NLMSG_END(skb, nlh);
1703
1704 rtattr_failure:
1705         read_unlock_bh(&tbl->lock);
1706         return NLMSG_CANCEL(skb, nlh);
1707
1708 nlmsg_failure:
1709         return -1;
1710 }
1711  
1712 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1713                                                       int ifindex)
1714 {
1715         struct neigh_parms *p;
1716         
1717         for (p = &tbl->parms; p; p = p->next)
1718                 if ((p->dev && p->dev->ifindex == ifindex) ||
1719                     (!p->dev && !ifindex))
1720                         return p;
1721
1722         return NULL;
1723 }
1724
1725 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1726 {
1727         struct neigh_table *tbl;
1728         struct ndtmsg *ndtmsg = NLMSG_DATA(nlh);
1729         struct rtattr **tb = arg;
1730         int err = -EINVAL;
1731
1732         if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1]))
1733                 return -EINVAL;
1734
1735         read_lock(&neigh_tbl_lock);
1736         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1737                 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1738                         continue;
1739
1740                 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id))
1741                         break;
1742         }
1743
1744         if (tbl == NULL) {
1745                 err = -ENOENT;
1746                 goto errout;
1747         }
1748
1749         /* 
1750          * We acquire tbl->lock to be nice to the periodic timers and
1751          * make sure they always see a consistent set of values.
1752          */
1753         write_lock_bh(&tbl->lock);
1754
1755         if (tb[NDTA_THRESH1 - 1])
1756                 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]);
1757
1758         if (tb[NDTA_THRESH2 - 1])
1759                 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]);
1760
1761         if (tb[NDTA_THRESH3 - 1])
1762                 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]);
1763
1764         if (tb[NDTA_GC_INTERVAL - 1])
1765                 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]);
1766
1767         if (tb[NDTA_PARMS - 1]) {
1768                 struct rtattr *tbp[NDTPA_MAX];
1769                 struct neigh_parms *p;
1770                 u32 ifindex = 0;
1771
1772                 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0)
1773                         goto rtattr_failure;
1774
1775                 if (tbp[NDTPA_IFINDEX - 1])
1776                         ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]);
1777
1778                 p = lookup_neigh_params(tbl, ifindex);
1779                 if (p == NULL) {
1780                         err = -ENOENT;
1781                         goto rtattr_failure;
1782                 }
1783         
1784                 if (tbp[NDTPA_QUEUE_LEN - 1])
1785                         p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]);
1786
1787                 if (tbp[NDTPA_PROXY_QLEN - 1])
1788                         p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]);
1789
1790                 if (tbp[NDTPA_APP_PROBES - 1])
1791                         p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]);
1792
1793                 if (tbp[NDTPA_UCAST_PROBES - 1])
1794                         p->ucast_probes =
1795                            RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]);
1796
1797                 if (tbp[NDTPA_MCAST_PROBES - 1])
1798                         p->mcast_probes =
1799                            RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]);
1800
1801                 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1])
1802                         p->base_reachable_time =
1803                            RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]);
1804
1805                 if (tbp[NDTPA_GC_STALETIME - 1])
1806                         p->gc_staletime =
1807                            RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]);
1808
1809                 if (tbp[NDTPA_DELAY_PROBE_TIME - 1])
1810                         p->delay_probe_time =
1811                            RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]);
1812
1813                 if (tbp[NDTPA_RETRANS_TIME - 1])
1814                         p->retrans_time =
1815                            RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]);
1816
1817                 if (tbp[NDTPA_ANYCAST_DELAY - 1])
1818                         p->anycast_delay =
1819                            RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]);
1820
1821                 if (tbp[NDTPA_PROXY_DELAY - 1])
1822                         p->proxy_delay =
1823                            RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]);
1824
1825                 if (tbp[NDTPA_LOCKTIME - 1])
1826                         p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]);
1827         }
1828
1829         err = 0;
1830
1831 rtattr_failure:
1832         write_unlock_bh(&tbl->lock);
1833 errout:
1834         read_unlock(&neigh_tbl_lock);
1835         return err;
1836 }
1837
1838 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1839 {
1840         int idx, family;
1841         int s_idx = cb->args[0];
1842         struct neigh_table *tbl;
1843
1844         family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1845
1846         read_lock(&neigh_tbl_lock);
1847         for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) {
1848                 struct neigh_parms *p;
1849
1850                 if (idx < s_idx || (family && tbl->family != family))
1851                         continue;
1852
1853                 if (neightbl_fill_info(tbl, skb, cb) <= 0)
1854                         break;
1855
1856                 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) {
1857                         if (idx < s_idx)
1858                                 continue;
1859
1860                         if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0)
1861                                 goto out;
1862                 }
1863
1864         }
1865 out:
1866         read_unlock(&neigh_tbl_lock);
1867         cb->args[0] = idx;
1868
1869         return skb->len;
1870 }
1871
1872 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
1873                            u32 pid, u32 seq, int event, unsigned int flags)
1874 {
1875         unsigned long now = jiffies;
1876         unsigned char *b = skb->tail;
1877         struct nda_cacheinfo ci;
1878         int locked = 0;
1879         u32 probes;
1880         struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
1881                                          sizeof(struct ndmsg), flags);
1882         struct ndmsg *ndm = NLMSG_DATA(nlh);
1883
1884         ndm->ndm_family  = n->ops->family;
1885         ndm->ndm_pad1    = 0;
1886         ndm->ndm_pad2    = 0;
1887         ndm->ndm_flags   = n->flags;
1888         ndm->ndm_type    = n->type;
1889         ndm->ndm_ifindex = n->dev->ifindex;
1890         RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1891         read_lock_bh(&n->lock);
1892         locked           = 1;
1893         ndm->ndm_state   = n->nud_state;
1894         if (n->nud_state & NUD_VALID)
1895                 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1896         ci.ndm_used      = now - n->used;
1897         ci.ndm_confirmed = now - n->confirmed;
1898         ci.ndm_updated   = now - n->updated;
1899         ci.ndm_refcnt    = atomic_read(&n->refcnt) - 1;
1900         probes = atomic_read(&n->probes);
1901         read_unlock_bh(&n->lock);
1902         locked           = 0;
1903         RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1904         RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1905         nlh->nlmsg_len   = skb->tail - b;
1906         return skb->len;
1907
1908 nlmsg_failure:
1909 rtattr_failure:
1910         if (locked)
1911                 read_unlock_bh(&n->lock);
1912         skb_trim(skb, b - skb->data);
1913         return -1;
1914 }
1915
1916
1917 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1918                             struct netlink_callback *cb)
1919 {
1920         struct neighbour *n;
1921         int rc, h, s_h = cb->args[1];
1922         int idx, s_idx = idx = cb->args[2];
1923
1924         for (h = 0; h <= tbl->hash_mask; h++) {
1925                 if (h < s_h)
1926                         continue;
1927                 if (h > s_h)
1928                         s_idx = 0;
1929                 read_lock_bh(&tbl->lock);
1930                 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1931                         if (idx < s_idx)
1932                                 continue;
1933                         if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1934                                             cb->nlh->nlmsg_seq,
1935                                             RTM_NEWNEIGH,
1936                                             NLM_F_MULTI) <= 0) {
1937                                 read_unlock_bh(&tbl->lock);
1938                                 rc = -1;
1939                                 goto out;
1940                         }
1941                 }
1942                 read_unlock_bh(&tbl->lock);
1943         }
1944         rc = skb->len;
1945 out:
1946         cb->args[1] = h;
1947         cb->args[2] = idx;
1948         return rc;
1949 }
1950
1951 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1952 {
1953         struct neigh_table *tbl;
1954         int t, family, s_t;
1955
1956         read_lock(&neigh_tbl_lock);
1957         family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1958         s_t = cb->args[0];
1959
1960         for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1961                 if (t < s_t || (family && tbl->family != family))
1962                         continue;
1963                 if (t > s_t)
1964                         memset(&cb->args[1], 0, sizeof(cb->args) -
1965                                                 sizeof(cb->args[0]));
1966                 if (neigh_dump_table(tbl, skb, cb) < 0)
1967                         break;
1968         }
1969         read_unlock(&neigh_tbl_lock);
1970
1971         cb->args[0] = t;
1972         return skb->len;
1973 }
1974
1975 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1976 {
1977         int chain;
1978
1979         read_lock_bh(&tbl->lock);
1980         for (chain = 0; chain <= tbl->hash_mask; chain++) {
1981                 struct neighbour *n;
1982
1983                 for (n = tbl->hash_buckets[chain]; n; n = n->next)
1984                         cb(n, cookie);
1985         }
1986         read_unlock_bh(&tbl->lock);
1987 }
1988 EXPORT_SYMBOL(neigh_for_each);
1989
1990 /* The tbl->lock must be held as a writer and BH disabled. */
1991 void __neigh_for_each_release(struct neigh_table *tbl,
1992                               int (*cb)(struct neighbour *))
1993 {
1994         int chain;
1995
1996         for (chain = 0; chain <= tbl->hash_mask; chain++) {
1997                 struct neighbour *n, **np;
1998
1999                 np = &tbl->hash_buckets[chain];
2000                 while ((n = *np) != NULL) {
2001                         int release;
2002
2003                         write_lock(&n->lock);
2004                         release = cb(n);
2005                         if (release) {
2006                                 *np = n->next;
2007                                 n->dead = 1;
2008                         } else
2009                                 np = &n->next;
2010                         write_unlock(&n->lock);
2011                         if (release)
2012                                 neigh_release(n);
2013                 }
2014         }
2015 }
2016 EXPORT_SYMBOL(__neigh_for_each_release);
2017
2018 #ifdef CONFIG_PROC_FS
2019
2020 static struct neighbour *neigh_get_first(struct seq_file *seq)
2021 {
2022         struct neigh_seq_state *state = seq->private;
2023         struct neigh_table *tbl = state->tbl;
2024         struct neighbour *n = NULL;
2025         int bucket = state->bucket;
2026
2027         state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2028         for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2029                 n = tbl->hash_buckets[bucket];
2030
2031                 while (n) {
2032                         if (state->neigh_sub_iter) {
2033                                 loff_t fakep = 0;
2034                                 void *v;
2035
2036                                 v = state->neigh_sub_iter(state, n, &fakep);
2037                                 if (!v)
2038                                         goto next;
2039                         }
2040                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2041                                 break;
2042                         if (n->nud_state & ~NUD_NOARP)
2043                                 break;
2044                 next:
2045                         n = n->next;
2046                 }
2047
2048                 if (n)
2049                         break;
2050         }
2051         state->bucket = bucket;
2052
2053         return n;
2054 }
2055
2056 static struct neighbour *neigh_get_next(struct seq_file *seq,
2057                                         struct neighbour *n,
2058                                         loff_t *pos)
2059 {
2060         struct neigh_seq_state *state = seq->private;
2061         struct neigh_table *tbl = state->tbl;
2062
2063         if (state->neigh_sub_iter) {
2064                 void *v = state->neigh_sub_iter(state, n, pos);
2065                 if (v)
2066                         return n;
2067         }
2068         n = n->next;
2069
2070         while (1) {
2071                 while (n) {
2072                         if (state->neigh_sub_iter) {
2073                                 void *v = state->neigh_sub_iter(state, n, pos);
2074                                 if (v)
2075                                         return n;
2076                                 goto next;
2077                         }
2078                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2079                                 break;
2080
2081                         if (n->nud_state & ~NUD_NOARP)
2082                                 break;
2083                 next:
2084                         n = n->next;
2085                 }
2086
2087                 if (n)
2088                         break;
2089
2090                 if (++state->bucket > tbl->hash_mask)
2091                         break;
2092
2093                 n = tbl->hash_buckets[state->bucket];
2094         }
2095
2096         if (n && pos)
2097                 --(*pos);
2098         return n;
2099 }
2100
2101 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2102 {
2103         struct neighbour *n = neigh_get_first(seq);
2104
2105         if (n) {
2106                 while (*pos) {
2107                         n = neigh_get_next(seq, n, pos);
2108                         if (!n)
2109                                 break;
2110                 }
2111         }
2112         return *pos ? NULL : n;
2113 }
2114
2115 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2116 {
2117         struct neigh_seq_state *state = seq->private;
2118         struct neigh_table *tbl = state->tbl;
2119         struct pneigh_entry *pn = NULL;
2120         int bucket = state->bucket;
2121
2122         state->flags |= NEIGH_SEQ_IS_PNEIGH;
2123         for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2124                 pn = tbl->phash_buckets[bucket];
2125                 if (pn)
2126                         break;
2127         }
2128         state->bucket = bucket;
2129
2130         return pn;
2131 }
2132
2133 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2134                                             struct pneigh_entry *pn,
2135                                             loff_t *pos)
2136 {
2137         struct neigh_seq_state *state = seq->private;
2138         struct neigh_table *tbl = state->tbl;
2139
2140         pn = pn->next;
2141         while (!pn) {
2142                 if (++state->bucket > PNEIGH_HASHMASK)
2143                         break;
2144                 pn = tbl->phash_buckets[state->bucket];
2145                 if (pn)
2146                         break;
2147         }
2148
2149         if (pn && pos)
2150                 --(*pos);
2151
2152         return pn;
2153 }
2154
2155 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2156 {
2157         struct pneigh_entry *pn = pneigh_get_first(seq);
2158
2159         if (pn) {
2160                 while (*pos) {
2161                         pn = pneigh_get_next(seq, pn, pos);
2162                         if (!pn)
2163                                 break;
2164                 }
2165         }
2166         return *pos ? NULL : pn;
2167 }
2168
2169 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2170 {
2171         struct neigh_seq_state *state = seq->private;
2172         void *rc;
2173
2174         rc = neigh_get_idx(seq, pos);
2175         if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2176                 rc = pneigh_get_idx(seq, pos);
2177
2178         return rc;
2179 }
2180
2181 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2182 {
2183         struct neigh_seq_state *state = seq->private;
2184         loff_t pos_minus_one;
2185
2186         state->tbl = tbl;
2187         state->bucket = 0;
2188         state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2189
2190         read_lock_bh(&tbl->lock);
2191
2192         pos_minus_one = *pos - 1;
2193         return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2194 }
2195 EXPORT_SYMBOL(neigh_seq_start);
2196
2197 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2198 {
2199         struct neigh_seq_state *state;
2200         void *rc;
2201
2202         if (v == SEQ_START_TOKEN) {
2203                 rc = neigh_get_idx(seq, pos);
2204                 goto out;
2205         }
2206
2207         state = seq->private;
2208         if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2209                 rc = neigh_get_next(seq, v, NULL);
2210                 if (rc)
2211                         goto out;
2212                 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2213                         rc = pneigh_get_first(seq);
2214         } else {
2215                 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2216                 rc = pneigh_get_next(seq, v, NULL);
2217         }
2218 out:
2219         ++(*pos);
2220         return rc;
2221 }
2222 EXPORT_SYMBOL(neigh_seq_next);
2223
2224 void neigh_seq_stop(struct seq_file *seq, void *v)
2225 {
2226         struct neigh_seq_state *state = seq->private;
2227         struct neigh_table *tbl = state->tbl;
2228
2229         read_unlock_bh(&tbl->lock);
2230 }
2231 EXPORT_SYMBOL(neigh_seq_stop);
2232
2233 /* statistics via seq_file */
2234
2235 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2236 {
2237         struct proc_dir_entry *pde = seq->private;
2238         struct neigh_table *tbl = pde->data;
2239         int cpu;
2240
2241         if (*pos == 0)
2242                 return SEQ_START_TOKEN;
2243         
2244         for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2245                 if (!cpu_possible(cpu))
2246                         continue;
2247                 *pos = cpu+1;
2248                 return per_cpu_ptr(tbl->stats, cpu);
2249         }
2250         return NULL;
2251 }
2252
2253 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2254 {
2255         struct proc_dir_entry *pde = seq->private;
2256         struct neigh_table *tbl = pde->data;
2257         int cpu;
2258
2259         for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2260                 if (!cpu_possible(cpu))
2261                         continue;
2262                 *pos = cpu+1;
2263                 return per_cpu_ptr(tbl->stats, cpu);
2264         }
2265         return NULL;
2266 }
2267
2268 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2269 {
2270
2271 }
2272
2273 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2274 {
2275         struct proc_dir_entry *pde = seq->private;
2276         struct neigh_table *tbl = pde->data;
2277         struct neigh_statistics *st = v;
2278
2279         if (v == SEQ_START_TOKEN) {
2280                 seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs\n");
2281                 return 0;
2282         }
2283
2284         seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2285                         "%08lx %08lx  %08lx %08lx\n",
2286                    atomic_read(&tbl->entries),
2287
2288                    st->allocs,
2289                    st->destroys,
2290                    st->hash_grows,
2291
2292                    st->lookups,
2293                    st->hits,
2294
2295                    st->res_failed,
2296
2297                    st->rcv_probes_mcast,
2298                    st->rcv_probes_ucast,
2299
2300                    st->periodic_gc_runs,
2301                    st->forced_gc_runs
2302                    );
2303
2304         return 0;
2305 }
2306
2307 static struct seq_operations neigh_stat_seq_ops = {
2308         .start  = neigh_stat_seq_start,
2309         .next   = neigh_stat_seq_next,
2310         .stop   = neigh_stat_seq_stop,
2311         .show   = neigh_stat_seq_show,
2312 };
2313
2314 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2315 {
2316         int ret = seq_open(file, &neigh_stat_seq_ops);
2317
2318         if (!ret) {
2319                 struct seq_file *sf = file->private_data;
2320                 sf->private = PDE(inode);
2321         }
2322         return ret;
2323 };
2324
2325 static struct file_operations neigh_stat_seq_fops = {
2326         .owner   = THIS_MODULE,
2327         .open    = neigh_stat_seq_open,
2328         .read    = seq_read,
2329         .llseek  = seq_lseek,
2330         .release = seq_release,
2331 };
2332
2333 #endif /* CONFIG_PROC_FS */
2334
2335 #ifdef CONFIG_ARPD
2336 void neigh_app_ns(struct neighbour *n)
2337 {
2338         struct nlmsghdr  *nlh;
2339         int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2340         struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2341
2342         if (!skb)
2343                 return;
2344
2345         if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) {
2346                 kfree_skb(skb);
2347                 return;
2348         }
2349         nlh                        = (struct nlmsghdr *)skb->data;
2350         nlh->nlmsg_flags           = NLM_F_REQUEST;
2351         NETLINK_CB(skb).dst_group  = RTNLGRP_NEIGH;
2352         netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
2353 }
2354
2355 static void neigh_app_notify(struct neighbour *n)
2356 {
2357         struct nlmsghdr *nlh;
2358         int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2359         struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2360
2361         if (!skb)
2362                 return;
2363
2364         if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) {
2365                 kfree_skb(skb);
2366                 return;
2367         }
2368         nlh                        = (struct nlmsghdr *)skb->data;
2369         NETLINK_CB(skb).dst_group  = RTNLGRP_NEIGH;
2370         netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
2371 }
2372
2373 #endif /* CONFIG_ARPD */
2374
2375 #ifdef CONFIG_SYSCTL
2376
2377 static struct neigh_sysctl_table {
2378         struct ctl_table_header *sysctl_header;
2379         ctl_table               neigh_vars[__NET_NEIGH_MAX];
2380         ctl_table               neigh_dev[2];
2381         ctl_table               neigh_neigh_dir[2];
2382         ctl_table               neigh_proto_dir[2];
2383         ctl_table               neigh_root_dir[2];
2384 } neigh_sysctl_template = {
2385         .neigh_vars = {
2386                 {
2387                         .ctl_name       = NET_NEIGH_MCAST_SOLICIT,
2388                         .procname       = "mcast_solicit",
2389                         .maxlen         = sizeof(int),
2390                         .mode           = 0644,
2391                         .proc_handler   = &proc_dointvec,
2392                 },
2393                 {
2394                         .ctl_name       = NET_NEIGH_UCAST_SOLICIT,
2395                         .procname       = "ucast_solicit",
2396                         .maxlen         = sizeof(int),
2397                         .mode           = 0644,
2398                         .proc_handler   = &proc_dointvec,
2399                 },
2400                 {
2401                         .ctl_name       = NET_NEIGH_APP_SOLICIT,
2402                         .procname       = "app_solicit",
2403                         .maxlen         = sizeof(int),
2404                         .mode           = 0644,
2405                         .proc_handler   = &proc_dointvec,
2406                 },
2407                 {
2408                         .ctl_name       = NET_NEIGH_RETRANS_TIME,
2409                         .procname       = "retrans_time",
2410                         .maxlen         = sizeof(int),
2411                         .mode           = 0644,
2412                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2413                 },
2414                 {
2415                         .ctl_name       = NET_NEIGH_REACHABLE_TIME,
2416                         .procname       = "base_reachable_time",
2417                         .maxlen         = sizeof(int),
2418                         .mode           = 0644,
2419                         .proc_handler   = &proc_dointvec_jiffies,
2420                         .strategy       = &sysctl_jiffies,
2421                 },
2422                 {
2423                         .ctl_name       = NET_NEIGH_DELAY_PROBE_TIME,
2424                         .procname       = "delay_first_probe_time",
2425                         .maxlen         = sizeof(int),
2426                         .mode           = 0644,
2427                         .proc_handler   = &proc_dointvec_jiffies,
2428                         .strategy       = &sysctl_jiffies,
2429                 },
2430                 {
2431                         .ctl_name       = NET_NEIGH_GC_STALE_TIME,
2432                         .procname       = "gc_stale_time",
2433                         .maxlen         = sizeof(int),
2434                         .mode           = 0644,
2435                         .proc_handler   = &proc_dointvec_jiffies,
2436                         .strategy       = &sysctl_jiffies,
2437                 },
2438                 {
2439                         .ctl_name       = NET_NEIGH_UNRES_QLEN,
2440                         .procname       = "unres_qlen",
2441                         .maxlen         = sizeof(int),
2442                         .mode           = 0644,
2443                         .proc_handler   = &proc_dointvec,
2444                 },
2445                 {
2446                         .ctl_name       = NET_NEIGH_PROXY_QLEN,
2447                         .procname       = "proxy_qlen",
2448                         .maxlen         = sizeof(int),
2449                         .mode           = 0644,
2450                         .proc_handler   = &proc_dointvec,
2451                 },
2452                 {
2453                         .ctl_name       = NET_NEIGH_ANYCAST_DELAY,
2454                         .procname       = "anycast_delay",
2455                         .maxlen         = sizeof(int),
2456                         .mode           = 0644,
2457                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2458                 },
2459                 {
2460                         .ctl_name       = NET_NEIGH_PROXY_DELAY,
2461                         .procname       = "proxy_delay",
2462                         .maxlen         = sizeof(int),
2463                         .mode           = 0644,
2464                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2465                 },
2466                 {
2467                         .ctl_name       = NET_NEIGH_LOCKTIME,
2468                         .procname       = "locktime",
2469                         .maxlen         = sizeof(int),
2470                         .mode           = 0644,
2471                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2472                 },
2473                 {
2474                         .ctl_name       = NET_NEIGH_GC_INTERVAL,
2475                         .procname       = "gc_interval",
2476                         .maxlen         = sizeof(int),
2477                         .mode           = 0644,
2478                         .proc_handler   = &proc_dointvec_jiffies,
2479                         .strategy       = &sysctl_jiffies,
2480                 },
2481                 {
2482                         .ctl_name       = NET_NEIGH_GC_THRESH1,
2483                         .procname       = "gc_thresh1",
2484                         .maxlen         = sizeof(int),
2485                         .mode           = 0644,
2486                         .proc_handler   = &proc_dointvec,
2487                 },
2488                 {
2489                         .ctl_name       = NET_NEIGH_GC_THRESH2,
2490                         .procname       = "gc_thresh2",
2491                         .maxlen         = sizeof(int),
2492                         .mode           = 0644,
2493                         .proc_handler   = &proc_dointvec,
2494                 },
2495                 {
2496                         .ctl_name       = NET_NEIGH_GC_THRESH3,
2497                         .procname       = "gc_thresh3",
2498                         .maxlen         = sizeof(int),
2499                         .mode           = 0644,
2500                         .proc_handler   = &proc_dointvec,
2501                 },
2502                 {
2503                         .ctl_name       = NET_NEIGH_RETRANS_TIME_MS,
2504                         .procname       = "retrans_time_ms",
2505                         .maxlen         = sizeof(int),
2506                         .mode           = 0644,
2507                         .proc_handler   = &proc_dointvec_ms_jiffies,
2508                         .strategy       = &sysctl_ms_jiffies,
2509                 },
2510                 {
2511                         .ctl_name       = NET_NEIGH_REACHABLE_TIME_MS,
2512                         .procname       = "base_reachable_time_ms",
2513                         .maxlen         = sizeof(int),
2514                         .mode           = 0644,
2515                         .proc_handler   = &proc_dointvec_ms_jiffies,
2516                         .strategy       = &sysctl_ms_jiffies,
2517                 },
2518         },
2519         .neigh_dev = {
2520                 {
2521                         .ctl_name       = NET_PROTO_CONF_DEFAULT,
2522                         .procname       = "default",
2523                         .mode           = 0555,
2524                 },
2525         },
2526         .neigh_neigh_dir = {
2527                 {
2528                         .procname       = "neigh",
2529                         .mode           = 0555,
2530                 },
2531         },
2532         .neigh_proto_dir = {
2533                 {
2534                         .mode           = 0555,
2535                 },
2536         },
2537         .neigh_root_dir = {
2538                 {
2539                         .ctl_name       = CTL_NET,
2540                         .procname       = "net",
2541                         .mode           = 0555,
2542                 },
2543         },
2544 };
2545
2546 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2547                           int p_id, int pdev_id, char *p_name, 
2548                           proc_handler *handler, ctl_handler *strategy)
2549 {
2550         struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2551         const char *dev_name_source = NULL;
2552         char *dev_name = NULL;
2553         int err = 0;
2554
2555         if (!t)
2556                 return -ENOBUFS;
2557         memcpy(t, &neigh_sysctl_template, sizeof(*t));
2558         t->neigh_vars[0].data  = &p->mcast_probes;
2559         t->neigh_vars[1].data  = &p->ucast_probes;
2560         t->neigh_vars[2].data  = &p->app_probes;
2561         t->neigh_vars[3].data  = &p->retrans_time;
2562         t->neigh_vars[4].data  = &p->base_reachable_time;
2563         t->neigh_vars[5].data  = &p->delay_probe_time;
2564         t->neigh_vars[6].data  = &p->gc_staletime;
2565         t->neigh_vars[7].data  = &p->queue_len;
2566         t->neigh_vars[8].data  = &p->proxy_qlen;
2567         t->neigh_vars[9].data  = &p->anycast_delay;
2568         t->neigh_vars[10].data = &p->proxy_delay;
2569         t->neigh_vars[11].data = &p->locktime;
2570
2571         if (dev) {
2572                 dev_name_source = dev->name;
2573                 t->neigh_dev[0].ctl_name = dev->ifindex;
2574                 t->neigh_vars[12].procname = NULL;
2575                 t->neigh_vars[13].procname = NULL;
2576                 t->neigh_vars[14].procname = NULL;
2577                 t->neigh_vars[15].procname = NULL;
2578         } else {
2579                 dev_name_source = t->neigh_dev[0].procname;
2580                 t->neigh_vars[12].data = (int *)(p + 1);
2581                 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2582                 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2583                 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2584         }
2585
2586         t->neigh_vars[16].data  = &p->retrans_time;
2587         t->neigh_vars[17].data  = &p->base_reachable_time;
2588
2589         if (handler || strategy) {
2590                 /* RetransTime */
2591                 t->neigh_vars[3].proc_handler = handler;
2592                 t->neigh_vars[3].strategy = strategy;
2593                 t->neigh_vars[3].extra1 = dev;
2594                 /* ReachableTime */
2595                 t->neigh_vars[4].proc_handler = handler;
2596                 t->neigh_vars[4].strategy = strategy;
2597                 t->neigh_vars[4].extra1 = dev;
2598                 /* RetransTime (in milliseconds)*/
2599                 t->neigh_vars[16].proc_handler = handler;
2600                 t->neigh_vars[16].strategy = strategy;
2601                 t->neigh_vars[16].extra1 = dev;
2602                 /* ReachableTime (in milliseconds) */
2603                 t->neigh_vars[17].proc_handler = handler;
2604                 t->neigh_vars[17].strategy = strategy;
2605                 t->neigh_vars[17].extra1 = dev;
2606         }
2607
2608         dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2609         if (!dev_name) {
2610                 err = -ENOBUFS;
2611                 goto free;
2612         }
2613
2614         t->neigh_dev[0].procname = dev_name;
2615
2616         t->neigh_neigh_dir[0].ctl_name = pdev_id;
2617
2618         t->neigh_proto_dir[0].procname = p_name;
2619         t->neigh_proto_dir[0].ctl_name = p_id;
2620
2621         t->neigh_dev[0].child          = t->neigh_vars;
2622         t->neigh_neigh_dir[0].child    = t->neigh_dev;
2623         t->neigh_proto_dir[0].child    = t->neigh_neigh_dir;
2624         t->neigh_root_dir[0].child     = t->neigh_proto_dir;
2625
2626         t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2627         if (!t->sysctl_header) {
2628                 err = -ENOBUFS;
2629                 goto free_procname;
2630         }
2631         p->sysctl_table = t;
2632         return 0;
2633
2634         /* error path */
2635  free_procname:
2636         kfree(dev_name);
2637  free:
2638         kfree(t);
2639
2640         return err;
2641 }
2642
2643 void neigh_sysctl_unregister(struct neigh_parms *p)
2644 {
2645         if (p->sysctl_table) {
2646                 struct neigh_sysctl_table *t = p->sysctl_table;
2647                 p->sysctl_table = NULL;
2648                 unregister_sysctl_table(t->sysctl_header);
2649                 kfree(t->neigh_dev[0].procname);
2650                 kfree(t);
2651         }
2652 }
2653
2654 #endif  /* CONFIG_SYSCTL */
2655
2656 EXPORT_SYMBOL(__neigh_event_send);
2657 EXPORT_SYMBOL(neigh_add);
2658 EXPORT_SYMBOL(neigh_changeaddr);
2659 EXPORT_SYMBOL(neigh_compat_output);
2660 EXPORT_SYMBOL(neigh_connected_output);
2661 EXPORT_SYMBOL(neigh_create);
2662 EXPORT_SYMBOL(neigh_delete);
2663 EXPORT_SYMBOL(neigh_destroy);
2664 EXPORT_SYMBOL(neigh_dump_info);
2665 EXPORT_SYMBOL(neigh_event_ns);
2666 EXPORT_SYMBOL(neigh_ifdown);
2667 EXPORT_SYMBOL(neigh_lookup);
2668 EXPORT_SYMBOL(neigh_lookup_nodev);
2669 EXPORT_SYMBOL(neigh_parms_alloc);
2670 EXPORT_SYMBOL(neigh_parms_release);
2671 EXPORT_SYMBOL(neigh_rand_reach_time);
2672 EXPORT_SYMBOL(neigh_resolve_output);
2673 EXPORT_SYMBOL(neigh_table_clear);
2674 EXPORT_SYMBOL(neigh_table_init);
2675 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2676 EXPORT_SYMBOL(neigh_update);
2677 EXPORT_SYMBOL(neigh_update_hhs);
2678 EXPORT_SYMBOL(pneigh_enqueue);
2679 EXPORT_SYMBOL(pneigh_lookup);
2680 EXPORT_SYMBOL(neightbl_dump_info);
2681 EXPORT_SYMBOL(neightbl_set);
2682
2683 #ifdef CONFIG_ARPD
2684 EXPORT_SYMBOL(neigh_app_ns);
2685 #endif
2686 #ifdef CONFIG_SYSCTL
2687 EXPORT_SYMBOL(neigh_sysctl_register);
2688 EXPORT_SYMBOL(neigh_sysctl_unregister);
2689 #endif