SELinux: Don't flush inherited SIGKILL during execve()
[linux-2.6] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
8 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
9 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
10 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
11 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD    0x00010000      /* Same thread group? */
16 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
17 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
21 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
22 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
24 #define CLONE_STOPPED           0x02000000      /* Start in stopped state */
25 #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
26 #define CLONE_NEWIPC            0x08000000      /* New ipcs */
27 #define CLONE_NEWUSER           0x10000000      /* New user namespace */
28 #define CLONE_NEWPID            0x20000000      /* New pid namespace */
29 #define CLONE_NEWNET            0x40000000      /* New network namespace */
30 #define CLONE_IO                0x80000000      /* Clone io context */
31
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL            0
36 #define SCHED_FIFO              1
37 #define SCHED_RR                2
38 #define SCHED_BATCH             3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE              5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45         int sched_priority;
46 };
47
48 #include <asm/param.h>  /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102  * List of flags we want to share for kernel threads,
103  * if only because they are not used by them anyway.
104  */
105 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108  * These are the constant used to fake the fixed-point load-average
109  * counting. Some notes:
110  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
111  *    a load-average precision of 10 bits integer + 11 bits fractional
112  *  - if you want to count load-averages more often, you need more
113  *    precision, or rounding will get you. With 2-second counting freq,
114  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
115  *    11 bit fractions.
116  */
117 extern unsigned long avenrun[];         /* Load averages */
118
119 #define FSHIFT          11              /* nr of bits of precision */
120 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
121 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
122 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5           2014            /* 1/exp(5sec/5min) */
124 #define EXP_15          2037            /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127         load *= exp; \
128         load += n*(FIXED_1-exp); \
129         load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165  * Task state bitmask. NOTE! These bits are also
166  * encoded in fs/proc/array.c: get_task_state().
167  *
168  * We have two separate sets of flags: task->state
169  * is about runnability, while task->exit_state are
170  * about the task exiting. Confusing, but this way
171  * modifying one set can't modify the other one by
172  * mistake.
173  */
174 #define TASK_RUNNING            0
175 #define TASK_INTERRUPTIBLE      1
176 #define TASK_UNINTERRUPTIBLE    2
177 #define __TASK_STOPPED          4
178 #define __TASK_TRACED           8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE             16
181 #define EXIT_DEAD               32
182 /* in tsk->state again */
183 #define TASK_DEAD               64
184 #define TASK_WAKEKILL           128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198                                  __TASK_TRACED)
199
200 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task)  \
205                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value)              \
208         do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value)                \
210         set_mb((tsk)->state, (state_value))
211
212 /*
213  * set_current_state() includes a barrier so that the write of current->state
214  * is correctly serialised wrt the caller's subsequent test of whether to
215  * actually sleep:
216  *
217  *      set_current_state(TASK_UNINTERRUPTIBLE);
218  *      if (do_i_need_to_sleep())
219  *              schedule();
220  *
221  * If the caller does not need such serialisation then use __set_current_state()
222  */
223 #define __set_current_state(state_value)                        \
224         do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value)          \
226         set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234  * This serializes "schedule()" and also protects
235  * the run-queue from deletions/modifications (but
236  * _adding_ to the beginning of the run-queue has
237  * a separate lock).
238  */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_var_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259         return 0;
260 }
261 #endif
262
263 /*
264  * Only dump TASK_* tasks. (0 for all tasks)
265  */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270         show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277  * task), SP is the stack pointer of the first frame that should be shown in the back
278  * trace (or NULL if the entire call-chain of the task should be shown).
279  */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
297                                     struct file *filp, void __user *buffer,
298                                     size_t *lenp, loff_t *ppos);
299 extern unsigned int  softlockup_panic;
300 extern unsigned long sysctl_hung_task_check_count;
301 extern unsigned long sysctl_hung_task_timeout_secs;
302 extern unsigned long sysctl_hung_task_warnings;
303 extern int softlockup_thresh;
304 #else
305 static inline void softlockup_tick(void)
306 {
307 }
308 static inline void spawn_softlockup_task(void)
309 {
310 }
311 static inline void touch_softlockup_watchdog(void)
312 {
313 }
314 static inline void touch_all_softlockup_watchdogs(void)
315 {
316 }
317 #endif
318
319
320 /* Attach to any functions which should be ignored in wchan output. */
321 #define __sched         __attribute__((__section__(".sched.text")))
322
323 /* Linker adds these: start and end of __sched functions */
324 extern char __sched_text_start[], __sched_text_end[];
325
326 /* Is this address in the __sched functions? */
327 extern int in_sched_functions(unsigned long addr);
328
329 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
330 extern signed long schedule_timeout(signed long timeout);
331 extern signed long schedule_timeout_interruptible(signed long timeout);
332 extern signed long schedule_timeout_killable(signed long timeout);
333 extern signed long schedule_timeout_uninterruptible(signed long timeout);
334 asmlinkage void schedule(void);
335
336 struct nsproxy;
337 struct user_namespace;
338
339 /* Maximum number of active map areas.. This is a random (large) number */
340 #define DEFAULT_MAX_MAP_COUNT   65536
341
342 extern int sysctl_max_map_count;
343
344 #include <linux/aio.h>
345
346 extern unsigned long
347 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
348                        unsigned long, unsigned long);
349 extern unsigned long
350 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
351                           unsigned long len, unsigned long pgoff,
352                           unsigned long flags);
353 extern void arch_unmap_area(struct mm_struct *, unsigned long);
354 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
355
356 #if USE_SPLIT_PTLOCKS
357 /*
358  * The mm counters are not protected by its page_table_lock,
359  * so must be incremented atomically.
360  */
361 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
362 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
363 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
364 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
365 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
366
367 #else  /* !USE_SPLIT_PTLOCKS */
368 /*
369  * The mm counters are protected by its page_table_lock,
370  * so can be incremented directly.
371  */
372 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
373 #define get_mm_counter(mm, member) ((mm)->_##member)
374 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
375 #define inc_mm_counter(mm, member) (mm)->_##member++
376 #define dec_mm_counter(mm, member) (mm)->_##member--
377
378 #endif /* !USE_SPLIT_PTLOCKS */
379
380 #define get_mm_rss(mm)                                  \
381         (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
382 #define update_hiwater_rss(mm)  do {                    \
383         unsigned long _rss = get_mm_rss(mm);            \
384         if ((mm)->hiwater_rss < _rss)                   \
385                 (mm)->hiwater_rss = _rss;               \
386 } while (0)
387 #define update_hiwater_vm(mm)   do {                    \
388         if ((mm)->hiwater_vm < (mm)->total_vm)          \
389                 (mm)->hiwater_vm = (mm)->total_vm;      \
390 } while (0)
391
392 #define get_mm_hiwater_rss(mm)  max((mm)->hiwater_rss, get_mm_rss(mm))
393 #define get_mm_hiwater_vm(mm)   max((mm)->hiwater_vm, (mm)->total_vm)
394
395 extern void set_dumpable(struct mm_struct *mm, int value);
396 extern int get_dumpable(struct mm_struct *mm);
397
398 /* mm flags */
399 /* dumpable bits */
400 #define MMF_DUMPABLE      0  /* core dump is permitted */
401 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
402 #define MMF_DUMPABLE_BITS 2
403
404 /* coredump filter bits */
405 #define MMF_DUMP_ANON_PRIVATE   2
406 #define MMF_DUMP_ANON_SHARED    3
407 #define MMF_DUMP_MAPPED_PRIVATE 4
408 #define MMF_DUMP_MAPPED_SHARED  5
409 #define MMF_DUMP_ELF_HEADERS    6
410 #define MMF_DUMP_HUGETLB_PRIVATE 7
411 #define MMF_DUMP_HUGETLB_SHARED  8
412 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
413 #define MMF_DUMP_FILTER_BITS    7
414 #define MMF_DUMP_FILTER_MASK \
415         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
416 #define MMF_DUMP_FILTER_DEFAULT \
417         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
418          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
419
420 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
421 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
422 #else
423 # define MMF_DUMP_MASK_DEFAULT_ELF      0
424 #endif
425
426 struct sighand_struct {
427         atomic_t                count;
428         struct k_sigaction      action[_NSIG];
429         spinlock_t              siglock;
430         wait_queue_head_t       signalfd_wqh;
431 };
432
433 struct pacct_struct {
434         int                     ac_flag;
435         long                    ac_exitcode;
436         unsigned long           ac_mem;
437         cputime_t               ac_utime, ac_stime;
438         unsigned long           ac_minflt, ac_majflt;
439 };
440
441 /**
442  * struct task_cputime - collected CPU time counts
443  * @utime:              time spent in user mode, in &cputime_t units
444  * @stime:              time spent in kernel mode, in &cputime_t units
445  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
446  *
447  * This structure groups together three kinds of CPU time that are
448  * tracked for threads and thread groups.  Most things considering
449  * CPU time want to group these counts together and treat all three
450  * of them in parallel.
451  */
452 struct task_cputime {
453         cputime_t utime;
454         cputime_t stime;
455         unsigned long long sum_exec_runtime;
456 };
457 /* Alternate field names when used to cache expirations. */
458 #define prof_exp        stime
459 #define virt_exp        utime
460 #define sched_exp       sum_exec_runtime
461
462 #define INIT_CPUTIME    \
463         (struct task_cputime) {                                 \
464                 .utime = cputime_zero,                          \
465                 .stime = cputime_zero,                          \
466                 .sum_exec_runtime = 0,                          \
467         }
468
469 /**
470  * struct thread_group_cputimer - thread group interval timer counts
471  * @cputime:            thread group interval timers.
472  * @running:            non-zero when there are timers running and
473  *                      @cputime receives updates.
474  * @lock:               lock for fields in this struct.
475  *
476  * This structure contains the version of task_cputime, above, that is
477  * used for thread group CPU timer calculations.
478  */
479 struct thread_group_cputimer {
480         struct task_cputime cputime;
481         int running;
482         spinlock_t lock;
483 };
484
485 /*
486  * NOTE! "signal_struct" does not have it's own
487  * locking, because a shared signal_struct always
488  * implies a shared sighand_struct, so locking
489  * sighand_struct is always a proper superset of
490  * the locking of signal_struct.
491  */
492 struct signal_struct {
493         atomic_t                count;
494         atomic_t                live;
495
496         wait_queue_head_t       wait_chldexit;  /* for wait4() */
497
498         /* current thread group signal load-balancing target: */
499         struct task_struct      *curr_target;
500
501         /* shared signal handling: */
502         struct sigpending       shared_pending;
503
504         /* thread group exit support */
505         int                     group_exit_code;
506         /* overloaded:
507          * - notify group_exit_task when ->count is equal to notify_count
508          * - everyone except group_exit_task is stopped during signal delivery
509          *   of fatal signals, group_exit_task processes the signal.
510          */
511         int                     notify_count;
512         struct task_struct      *group_exit_task;
513
514         /* thread group stop support, overloads group_exit_code too */
515         int                     group_stop_count;
516         unsigned int            flags; /* see SIGNAL_* flags below */
517
518         /* POSIX.1b Interval Timers */
519         struct list_head posix_timers;
520
521         /* ITIMER_REAL timer for the process */
522         struct hrtimer real_timer;
523         struct pid *leader_pid;
524         ktime_t it_real_incr;
525
526         /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
527         cputime_t it_prof_expires, it_virt_expires;
528         cputime_t it_prof_incr, it_virt_incr;
529
530         /*
531          * Thread group totals for process CPU timers.
532          * See thread_group_cputimer(), et al, for details.
533          */
534         struct thread_group_cputimer cputimer;
535
536         /* Earliest-expiration cache. */
537         struct task_cputime cputime_expires;
538
539         struct list_head cpu_timers[3];
540
541         /* job control IDs */
542
543         /*
544          * pgrp and session fields are deprecated.
545          * use the task_session_Xnr and task_pgrp_Xnr routines below
546          */
547
548         union {
549                 pid_t pgrp __deprecated;
550                 pid_t __pgrp;
551         };
552
553         struct pid *tty_old_pgrp;
554
555         union {
556                 pid_t session __deprecated;
557                 pid_t __session;
558         };
559
560         /* boolean value for session group leader */
561         int leader;
562
563         struct tty_struct *tty; /* NULL if no tty */
564
565         /*
566          * Cumulative resource counters for dead threads in the group,
567          * and for reaped dead child processes forked by this group.
568          * Live threads maintain their own counters and add to these
569          * in __exit_signal, except for the group leader.
570          */
571         cputime_t utime, stime, cutime, cstime;
572         cputime_t gtime;
573         cputime_t cgtime;
574         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
575         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
576         unsigned long inblock, oublock, cinblock, coublock;
577         struct task_io_accounting ioac;
578
579         /*
580          * Cumulative ns of schedule CPU time fo dead threads in the
581          * group, not including a zombie group leader, (This only differs
582          * from jiffies_to_ns(utime + stime) if sched_clock uses something
583          * other than jiffies.)
584          */
585         unsigned long long sum_sched_runtime;
586
587         /*
588          * We don't bother to synchronize most readers of this at all,
589          * because there is no reader checking a limit that actually needs
590          * to get both rlim_cur and rlim_max atomically, and either one
591          * alone is a single word that can safely be read normally.
592          * getrlimit/setrlimit use task_lock(current->group_leader) to
593          * protect this instead of the siglock, because they really
594          * have no need to disable irqs.
595          */
596         struct rlimit rlim[RLIM_NLIMITS];
597
598 #ifdef CONFIG_BSD_PROCESS_ACCT
599         struct pacct_struct pacct;      /* per-process accounting information */
600 #endif
601 #ifdef CONFIG_TASKSTATS
602         struct taskstats *stats;
603 #endif
604 #ifdef CONFIG_AUDIT
605         unsigned audit_tty;
606         struct tty_audit_buf *tty_audit_buf;
607 #endif
608 };
609
610 /* Context switch must be unlocked if interrupts are to be enabled */
611 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
612 # define __ARCH_WANT_UNLOCKED_CTXSW
613 #endif
614
615 /*
616  * Bits in flags field of signal_struct.
617  */
618 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
619 #define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
620 #define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
621 #define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
622 /*
623  * Pending notifications to parent.
624  */
625 #define SIGNAL_CLD_STOPPED      0x00000010
626 #define SIGNAL_CLD_CONTINUED    0x00000020
627 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
628
629 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
630
631 /* If true, all threads except ->group_exit_task have pending SIGKILL */
632 static inline int signal_group_exit(const struct signal_struct *sig)
633 {
634         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
635                 (sig->group_exit_task != NULL);
636 }
637
638 /*
639  * Some day this will be a full-fledged user tracking system..
640  */
641 struct user_struct {
642         atomic_t __count;       /* reference count */
643         atomic_t processes;     /* How many processes does this user have? */
644         atomic_t files;         /* How many open files does this user have? */
645         atomic_t sigpending;    /* How many pending signals does this user have? */
646 #ifdef CONFIG_INOTIFY_USER
647         atomic_t inotify_watches; /* How many inotify watches does this user have? */
648         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
649 #endif
650 #ifdef CONFIG_EPOLL
651         atomic_t epoll_watches; /* The number of file descriptors currently watched */
652 #endif
653 #ifdef CONFIG_POSIX_MQUEUE
654         /* protected by mq_lock */
655         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
656 #endif
657         unsigned long locked_shm; /* How many pages of mlocked shm ? */
658
659 #ifdef CONFIG_KEYS
660         struct key *uid_keyring;        /* UID specific keyring */
661         struct key *session_keyring;    /* UID's default session keyring */
662 #endif
663
664         /* Hash table maintenance information */
665         struct hlist_node uidhash_node;
666         uid_t uid;
667         struct user_namespace *user_ns;
668
669 #ifdef CONFIG_USER_SCHED
670         struct task_group *tg;
671 #ifdef CONFIG_SYSFS
672         struct kobject kobj;
673         struct work_struct work;
674 #endif
675 #endif
676 };
677
678 extern int uids_sysfs_init(void);
679
680 extern struct user_struct *find_user(uid_t);
681
682 extern struct user_struct root_user;
683 #define INIT_USER (&root_user)
684
685
686 struct backing_dev_info;
687 struct reclaim_state;
688
689 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
690 struct sched_info {
691         /* cumulative counters */
692         unsigned long pcount;         /* # of times run on this cpu */
693         unsigned long long run_delay; /* time spent waiting on a runqueue */
694
695         /* timestamps */
696         unsigned long long last_arrival,/* when we last ran on a cpu */
697                            last_queued; /* when we were last queued to run */
698 #ifdef CONFIG_SCHEDSTATS
699         /* BKL stats */
700         unsigned int bkl_count;
701 #endif
702 };
703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705 #ifdef CONFIG_TASK_DELAY_ACCT
706 struct task_delay_info {
707         spinlock_t      lock;
708         unsigned int    flags;  /* Private per-task flags */
709
710         /* For each stat XXX, add following, aligned appropriately
711          *
712          * struct timespec XXX_start, XXX_end;
713          * u64 XXX_delay;
714          * u32 XXX_count;
715          *
716          * Atomicity of updates to XXX_delay, XXX_count protected by
717          * single lock above (split into XXX_lock if contention is an issue).
718          */
719
720         /*
721          * XXX_count is incremented on every XXX operation, the delay
722          * associated with the operation is added to XXX_delay.
723          * XXX_delay contains the accumulated delay time in nanoseconds.
724          */
725         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726         u64 blkio_delay;        /* wait for sync block io completion */
727         u64 swapin_delay;       /* wait for swapin block io completion */
728         u32 blkio_count;        /* total count of the number of sync block */
729                                 /* io operations performed */
730         u32 swapin_count;       /* total count of the number of swapin block */
731                                 /* io operations performed */
732
733         struct timespec freepages_start, freepages_end;
734         u64 freepages_delay;    /* wait for memory reclaim */
735         u32 freepages_count;    /* total count of memory reclaim */
736 };
737 #endif  /* CONFIG_TASK_DELAY_ACCT */
738
739 static inline int sched_info_on(void)
740 {
741 #ifdef CONFIG_SCHEDSTATS
742         return 1;
743 #elif defined(CONFIG_TASK_DELAY_ACCT)
744         extern int delayacct_on;
745         return delayacct_on;
746 #else
747         return 0;
748 #endif
749 }
750
751 enum cpu_idle_type {
752         CPU_IDLE,
753         CPU_NOT_IDLE,
754         CPU_NEWLY_IDLE,
755         CPU_MAX_IDLE_TYPES
756 };
757
758 /*
759  * sched-domains (multiprocessor balancing) declarations:
760  */
761
762 /*
763  * Increase resolution of nice-level calculations:
764  */
765 #define SCHED_LOAD_SHIFT        10
766 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
767
768 #define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
769
770 #ifdef CONFIG_SMP
771 #define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
772 #define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
773 #define SD_BALANCE_EXEC         4       /* Balance on exec */
774 #define SD_BALANCE_FORK         8       /* Balance on fork, clone */
775 #define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
776 #define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
777 #define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
778 #define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
779 #define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
780 #define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
781 #define SD_SERIALIZE            1024    /* Only a single load balancing instance */
782 #define SD_WAKE_IDLE_FAR        2048    /* Gain latency sacrificing cache hit */
783
784 enum powersavings_balance_level {
785         POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
786         POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
787                                          * first for long running threads
788                                          */
789         POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
790                                          * cpu package for power savings
791                                          */
792         MAX_POWERSAVINGS_BALANCE_LEVELS
793 };
794
795 extern int sched_mc_power_savings, sched_smt_power_savings;
796
797 static inline int sd_balance_for_mc_power(void)
798 {
799         if (sched_smt_power_savings)
800                 return SD_POWERSAVINGS_BALANCE;
801
802         return 0;
803 }
804
805 static inline int sd_balance_for_package_power(void)
806 {
807         if (sched_mc_power_savings | sched_smt_power_savings)
808                 return SD_POWERSAVINGS_BALANCE;
809
810         return 0;
811 }
812
813 /*
814  * Optimise SD flags for power savings:
815  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
816  * Keep default SD flags if sched_{smt,mc}_power_saving=0
817  */
818
819 static inline int sd_power_saving_flags(void)
820 {
821         if (sched_mc_power_savings | sched_smt_power_savings)
822                 return SD_BALANCE_NEWIDLE;
823
824         return 0;
825 }
826
827 struct sched_group {
828         struct sched_group *next;       /* Must be a circular list */
829
830         /*
831          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
832          * single CPU. This is read only (except for setup, hotplug CPU).
833          * Note : Never change cpu_power without recompute its reciprocal
834          */
835         unsigned int __cpu_power;
836         /*
837          * reciprocal value of cpu_power to avoid expensive divides
838          * (see include/linux/reciprocal_div.h)
839          */
840         u32 reciprocal_cpu_power;
841
842         unsigned long cpumask[];
843 };
844
845 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
846 {
847         return to_cpumask(sg->cpumask);
848 }
849
850 enum sched_domain_level {
851         SD_LV_NONE = 0,
852         SD_LV_SIBLING,
853         SD_LV_MC,
854         SD_LV_CPU,
855         SD_LV_NODE,
856         SD_LV_ALLNODES,
857         SD_LV_MAX
858 };
859
860 struct sched_domain_attr {
861         int relax_domain_level;
862 };
863
864 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
865         .relax_domain_level = -1,                       \
866 }
867
868 struct sched_domain {
869         /* These fields must be setup */
870         struct sched_domain *parent;    /* top domain must be null terminated */
871         struct sched_domain *child;     /* bottom domain must be null terminated */
872         struct sched_group *groups;     /* the balancing groups of the domain */
873         unsigned long min_interval;     /* Minimum balance interval ms */
874         unsigned long max_interval;     /* Maximum balance interval ms */
875         unsigned int busy_factor;       /* less balancing by factor if busy */
876         unsigned int imbalance_pct;     /* No balance until over watermark */
877         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
878         unsigned int busy_idx;
879         unsigned int idle_idx;
880         unsigned int newidle_idx;
881         unsigned int wake_idx;
882         unsigned int forkexec_idx;
883         int flags;                      /* See SD_* */
884         enum sched_domain_level level;
885
886         /* Runtime fields. */
887         unsigned long last_balance;     /* init to jiffies. units in jiffies */
888         unsigned int balance_interval;  /* initialise to 1. units in ms. */
889         unsigned int nr_balance_failed; /* initialise to 0 */
890
891         u64 last_update;
892
893 #ifdef CONFIG_SCHEDSTATS
894         /* load_balance() stats */
895         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
896         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
897         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
898         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
899         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
900         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
901         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
902         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
903
904         /* Active load balancing */
905         unsigned int alb_count;
906         unsigned int alb_failed;
907         unsigned int alb_pushed;
908
909         /* SD_BALANCE_EXEC stats */
910         unsigned int sbe_count;
911         unsigned int sbe_balanced;
912         unsigned int sbe_pushed;
913
914         /* SD_BALANCE_FORK stats */
915         unsigned int sbf_count;
916         unsigned int sbf_balanced;
917         unsigned int sbf_pushed;
918
919         /* try_to_wake_up() stats */
920         unsigned int ttwu_wake_remote;
921         unsigned int ttwu_move_affine;
922         unsigned int ttwu_move_balance;
923 #endif
924 #ifdef CONFIG_SCHED_DEBUG
925         char *name;
926 #endif
927
928         /* span of all CPUs in this domain */
929         unsigned long span[];
930 };
931
932 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
933 {
934         return to_cpumask(sd->span);
935 }
936
937 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
938                                     struct sched_domain_attr *dattr_new);
939
940 /* Test a flag in parent sched domain */
941 static inline int test_sd_parent(struct sched_domain *sd, int flag)
942 {
943         if (sd->parent && (sd->parent->flags & flag))
944                 return 1;
945
946         return 0;
947 }
948
949 #else /* CONFIG_SMP */
950
951 struct sched_domain_attr;
952
953 static inline void
954 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
955                         struct sched_domain_attr *dattr_new)
956 {
957 }
958 #endif  /* !CONFIG_SMP */
959
960 struct io_context;                      /* See blkdev.h */
961
962
963 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
964 extern void prefetch_stack(struct task_struct *t);
965 #else
966 static inline void prefetch_stack(struct task_struct *t) { }
967 #endif
968
969 struct audit_context;           /* See audit.c */
970 struct mempolicy;
971 struct pipe_inode_info;
972 struct uts_namespace;
973
974 struct rq;
975 struct sched_domain;
976
977 struct sched_class {
978         const struct sched_class *next;
979
980         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
981         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
982         void (*yield_task) (struct rq *rq);
983
984         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
985
986         struct task_struct * (*pick_next_task) (struct rq *rq);
987         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
988
989 #ifdef CONFIG_SMP
990         int  (*select_task_rq)(struct task_struct *p, int sync);
991
992         unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
993                         struct rq *busiest, unsigned long max_load_move,
994                         struct sched_domain *sd, enum cpu_idle_type idle,
995                         int *all_pinned, int *this_best_prio);
996
997         int (*move_one_task) (struct rq *this_rq, int this_cpu,
998                               struct rq *busiest, struct sched_domain *sd,
999                               enum cpu_idle_type idle);
1000         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1001         int (*needs_post_schedule) (struct rq *this_rq);
1002         void (*post_schedule) (struct rq *this_rq);
1003         void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1004
1005         void (*set_cpus_allowed)(struct task_struct *p,
1006                                  const struct cpumask *newmask);
1007
1008         void (*rq_online)(struct rq *rq);
1009         void (*rq_offline)(struct rq *rq);
1010 #endif
1011
1012         void (*set_curr_task) (struct rq *rq);
1013         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1014         void (*task_new) (struct rq *rq, struct task_struct *p);
1015
1016         void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1017                                int running);
1018         void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1019                              int running);
1020         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1021                              int oldprio, int running);
1022
1023 #ifdef CONFIG_FAIR_GROUP_SCHED
1024         void (*moved_group) (struct task_struct *p);
1025 #endif
1026 };
1027
1028 struct load_weight {
1029         unsigned long weight, inv_weight;
1030 };
1031
1032 /*
1033  * CFS stats for a schedulable entity (task, task-group etc)
1034  *
1035  * Current field usage histogram:
1036  *
1037  *     4 se->block_start
1038  *     4 se->run_node
1039  *     4 se->sleep_start
1040  *     6 se->load.weight
1041  */
1042 struct sched_entity {
1043         struct load_weight      load;           /* for load-balancing */
1044         struct rb_node          run_node;
1045         struct list_head        group_node;
1046         unsigned int            on_rq;
1047
1048         u64                     exec_start;
1049         u64                     sum_exec_runtime;
1050         u64                     vruntime;
1051         u64                     prev_sum_exec_runtime;
1052
1053         u64                     last_wakeup;
1054         u64                     avg_overlap;
1055
1056         u64                     start_runtime;
1057         u64                     avg_wakeup;
1058         u64                     nr_migrations;
1059
1060 #ifdef CONFIG_SCHEDSTATS
1061         u64                     wait_start;
1062         u64                     wait_max;
1063         u64                     wait_count;
1064         u64                     wait_sum;
1065
1066         u64                     sleep_start;
1067         u64                     sleep_max;
1068         s64                     sum_sleep_runtime;
1069
1070         u64                     block_start;
1071         u64                     block_max;
1072         u64                     exec_max;
1073         u64                     slice_max;
1074
1075         u64                     nr_migrations_cold;
1076         u64                     nr_failed_migrations_affine;
1077         u64                     nr_failed_migrations_running;
1078         u64                     nr_failed_migrations_hot;
1079         u64                     nr_forced_migrations;
1080         u64                     nr_forced2_migrations;
1081
1082         u64                     nr_wakeups;
1083         u64                     nr_wakeups_sync;
1084         u64                     nr_wakeups_migrate;
1085         u64                     nr_wakeups_local;
1086         u64                     nr_wakeups_remote;
1087         u64                     nr_wakeups_affine;
1088         u64                     nr_wakeups_affine_attempts;
1089         u64                     nr_wakeups_passive;
1090         u64                     nr_wakeups_idle;
1091 #endif
1092
1093 #ifdef CONFIG_FAIR_GROUP_SCHED
1094         struct sched_entity     *parent;
1095         /* rq on which this entity is (to be) queued: */
1096         struct cfs_rq           *cfs_rq;
1097         /* rq "owned" by this entity/group: */
1098         struct cfs_rq           *my_q;
1099 #endif
1100 };
1101
1102 struct sched_rt_entity {
1103         struct list_head run_list;
1104         unsigned long timeout;
1105         unsigned int time_slice;
1106         int nr_cpus_allowed;
1107
1108         struct sched_rt_entity *back;
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110         struct sched_rt_entity  *parent;
1111         /* rq on which this entity is (to be) queued: */
1112         struct rt_rq            *rt_rq;
1113         /* rq "owned" by this entity/group: */
1114         struct rt_rq            *my_q;
1115 #endif
1116 };
1117
1118 struct task_struct {
1119         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1120         void *stack;
1121         atomic_t usage;
1122         unsigned int flags;     /* per process flags, defined below */
1123         unsigned int ptrace;
1124
1125         int lock_depth;         /* BKL lock depth */
1126
1127 #ifdef CONFIG_SMP
1128 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1129         int oncpu;
1130 #endif
1131 #endif
1132
1133         int prio, static_prio, normal_prio;
1134         unsigned int rt_priority;
1135         const struct sched_class *sched_class;
1136         struct sched_entity se;
1137         struct sched_rt_entity rt;
1138
1139 #ifdef CONFIG_PREEMPT_NOTIFIERS
1140         /* list of struct preempt_notifier: */
1141         struct hlist_head preempt_notifiers;
1142 #endif
1143
1144         /*
1145          * fpu_counter contains the number of consecutive context switches
1146          * that the FPU is used. If this is over a threshold, the lazy fpu
1147          * saving becomes unlazy to save the trap. This is an unsigned char
1148          * so that after 256 times the counter wraps and the behavior turns
1149          * lazy again; this to deal with bursty apps that only use FPU for
1150          * a short time
1151          */
1152         unsigned char fpu_counter;
1153         s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1154 #ifdef CONFIG_BLK_DEV_IO_TRACE
1155         unsigned int btrace_seq;
1156 #endif
1157
1158         unsigned int policy;
1159         cpumask_t cpus_allowed;
1160
1161 #ifdef CONFIG_PREEMPT_RCU
1162         int rcu_read_lock_nesting;
1163         int rcu_flipctr_idx;
1164 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1165
1166 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1167         struct sched_info sched_info;
1168 #endif
1169
1170         struct list_head tasks;
1171         struct plist_node pushable_tasks;
1172
1173         struct mm_struct *mm, *active_mm;
1174
1175 /* task state */
1176         struct linux_binfmt *binfmt;
1177         int exit_state;
1178         int exit_code, exit_signal;
1179         int pdeath_signal;  /*  The signal sent when the parent dies  */
1180         /* ??? */
1181         unsigned int personality;
1182         unsigned did_exec:1;
1183         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1184                                  * execve */
1185         pid_t pid;
1186         pid_t tgid;
1187
1188         /* Canary value for the -fstack-protector gcc feature */
1189         unsigned long stack_canary;
1190
1191         /* 
1192          * pointers to (original) parent process, youngest child, younger sibling,
1193          * older sibling, respectively.  (p->father can be replaced with 
1194          * p->real_parent->pid)
1195          */
1196         struct task_struct *real_parent; /* real parent process */
1197         struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1198         /*
1199          * children/sibling forms the list of my natural children
1200          */
1201         struct list_head children;      /* list of my children */
1202         struct list_head sibling;       /* linkage in my parent's children list */
1203         struct task_struct *group_leader;       /* threadgroup leader */
1204
1205         /*
1206          * ptraced is the list of tasks this task is using ptrace on.
1207          * This includes both natural children and PTRACE_ATTACH targets.
1208          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1209          */
1210         struct list_head ptraced;
1211         struct list_head ptrace_entry;
1212
1213 #ifdef CONFIG_X86_PTRACE_BTS
1214         /*
1215          * This is the tracer handle for the ptrace BTS extension.
1216          * This field actually belongs to the ptracer task.
1217          */
1218         struct bts_tracer *bts;
1219         /*
1220          * The buffer to hold the BTS data.
1221          */
1222         void *bts_buffer;
1223         size_t bts_size;
1224 #endif /* CONFIG_X86_PTRACE_BTS */
1225
1226         /* PID/PID hash table linkage. */
1227         struct pid_link pids[PIDTYPE_MAX];
1228         struct list_head thread_group;
1229
1230         struct completion *vfork_done;          /* for vfork() */
1231         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1232         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1233
1234         cputime_t utime, stime, utimescaled, stimescaled;
1235         cputime_t gtime;
1236         cputime_t prev_utime, prev_stime;
1237         unsigned long nvcsw, nivcsw; /* context switch counts */
1238         struct timespec start_time;             /* monotonic time */
1239         struct timespec real_start_time;        /* boot based time */
1240 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1241         unsigned long min_flt, maj_flt;
1242
1243         struct task_cputime cputime_expires;
1244         struct list_head cpu_timers[3];
1245
1246 /* process credentials */
1247         const struct cred *real_cred;   /* objective and real subjective task
1248                                          * credentials (COW) */
1249         const struct cred *cred;        /* effective (overridable) subjective task
1250                                          * credentials (COW) */
1251         struct mutex cred_exec_mutex;   /* execve vs ptrace cred calculation mutex */
1252
1253         char comm[TASK_COMM_LEN]; /* executable name excluding path
1254                                      - access with [gs]et_task_comm (which lock
1255                                        it with task_lock())
1256                                      - initialized normally by flush_old_exec */
1257 /* file system info */
1258         int link_count, total_link_count;
1259 #ifdef CONFIG_SYSVIPC
1260 /* ipc stuff */
1261         struct sysv_sem sysvsem;
1262 #endif
1263 #ifdef CONFIG_DETECT_SOFTLOCKUP
1264 /* hung task detection */
1265         unsigned long last_switch_timestamp;
1266         unsigned long last_switch_count;
1267 #endif
1268 /* CPU-specific state of this task */
1269         struct thread_struct thread;
1270 /* filesystem information */
1271         struct fs_struct *fs;
1272 /* open file information */
1273         struct files_struct *files;
1274 /* namespaces */
1275         struct nsproxy *nsproxy;
1276 /* signal handlers */
1277         struct signal_struct *signal;
1278         struct sighand_struct *sighand;
1279
1280         sigset_t blocked, real_blocked;
1281         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1282         struct sigpending pending;
1283
1284         unsigned long sas_ss_sp;
1285         size_t sas_ss_size;
1286         int (*notifier)(void *priv);
1287         void *notifier_data;
1288         sigset_t *notifier_mask;
1289         struct audit_context *audit_context;
1290 #ifdef CONFIG_AUDITSYSCALL
1291         uid_t loginuid;
1292         unsigned int sessionid;
1293 #endif
1294         seccomp_t seccomp;
1295
1296 /* Thread group tracking */
1297         u32 parent_exec_id;
1298         u32 self_exec_id;
1299 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1300         spinlock_t alloc_lock;
1301
1302         /* Protection of the PI data structures: */
1303         spinlock_t pi_lock;
1304
1305 #ifdef CONFIG_RT_MUTEXES
1306         /* PI waiters blocked on a rt_mutex held by this task */
1307         struct plist_head pi_waiters;
1308         /* Deadlock detection and priority inheritance handling */
1309         struct rt_mutex_waiter *pi_blocked_on;
1310 #endif
1311
1312 #ifdef CONFIG_DEBUG_MUTEXES
1313         /* mutex deadlock detection */
1314         struct mutex_waiter *blocked_on;
1315 #endif
1316 #ifdef CONFIG_TRACE_IRQFLAGS
1317         unsigned int irq_events;
1318         int hardirqs_enabled;
1319         unsigned long hardirq_enable_ip;
1320         unsigned int hardirq_enable_event;
1321         unsigned long hardirq_disable_ip;
1322         unsigned int hardirq_disable_event;
1323         int softirqs_enabled;
1324         unsigned long softirq_disable_ip;
1325         unsigned int softirq_disable_event;
1326         unsigned long softirq_enable_ip;
1327         unsigned int softirq_enable_event;
1328         int hardirq_context;
1329         int softirq_context;
1330 #endif
1331 #ifdef CONFIG_LOCKDEP
1332 # define MAX_LOCK_DEPTH 48UL
1333         u64 curr_chain_key;
1334         int lockdep_depth;
1335         unsigned int lockdep_recursion;
1336         struct held_lock held_locks[MAX_LOCK_DEPTH];
1337 #endif
1338
1339 /* journalling filesystem info */
1340         void *journal_info;
1341
1342 /* stacked block device info */
1343         struct bio *bio_list, **bio_tail;
1344
1345 /* VM state */
1346         struct reclaim_state *reclaim_state;
1347
1348         struct backing_dev_info *backing_dev_info;
1349
1350         struct io_context *io_context;
1351
1352         unsigned long ptrace_message;
1353         siginfo_t *last_siginfo; /* For ptrace use.  */
1354         struct task_io_accounting ioac;
1355 #if defined(CONFIG_TASK_XACCT)
1356         u64 acct_rss_mem1;      /* accumulated rss usage */
1357         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1358         cputime_t acct_timexpd; /* stime + utime since last update */
1359 #endif
1360 #ifdef CONFIG_CPUSETS
1361         nodemask_t mems_allowed;
1362         int cpuset_mems_generation;
1363         int cpuset_mem_spread_rotor;
1364 #endif
1365 #ifdef CONFIG_CGROUPS
1366         /* Control Group info protected by css_set_lock */
1367         struct css_set *cgroups;
1368         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1369         struct list_head cg_list;
1370 #endif
1371 #ifdef CONFIG_FUTEX
1372         struct robust_list_head __user *robust_list;
1373 #ifdef CONFIG_COMPAT
1374         struct compat_robust_list_head __user *compat_robust_list;
1375 #endif
1376         struct list_head pi_state_list;
1377         struct futex_pi_state *pi_state_cache;
1378 #endif
1379 #ifdef CONFIG_NUMA
1380         struct mempolicy *mempolicy;
1381         short il_next;
1382 #endif
1383         atomic_t fs_excl;       /* holding fs exclusive resources */
1384         struct rcu_head rcu;
1385
1386         /*
1387          * cache last used pipe for splice
1388          */
1389         struct pipe_inode_info *splice_pipe;
1390 #ifdef  CONFIG_TASK_DELAY_ACCT
1391         struct task_delay_info *delays;
1392 #endif
1393 #ifdef CONFIG_FAULT_INJECTION
1394         int make_it_fail;
1395 #endif
1396         struct prop_local_single dirties;
1397 #ifdef CONFIG_LATENCYTOP
1398         int latency_record_count;
1399         struct latency_record latency_record[LT_SAVECOUNT];
1400 #endif
1401         /*
1402          * time slack values; these are used to round up poll() and
1403          * select() etc timeout values. These are in nanoseconds.
1404          */
1405         unsigned long timer_slack_ns;
1406         unsigned long default_timer_slack_ns;
1407
1408         struct list_head        *scm_work_list;
1409 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1410         /* Index of current stored adress in ret_stack */
1411         int curr_ret_stack;
1412         /* Stack of return addresses for return function tracing */
1413         struct ftrace_ret_stack *ret_stack;
1414         /*
1415          * Number of functions that haven't been traced
1416          * because of depth overrun.
1417          */
1418         atomic_t trace_overrun;
1419         /* Pause for the tracing */
1420         atomic_t tracing_graph_pause;
1421 #endif
1422 #ifdef CONFIG_TRACING
1423         /* state flags for use by tracers */
1424         unsigned long trace;
1425 #endif
1426 };
1427
1428 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1429 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1430
1431 /*
1432  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1433  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1434  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1435  * values are inverted: lower p->prio value means higher priority.
1436  *
1437  * The MAX_USER_RT_PRIO value allows the actual maximum
1438  * RT priority to be separate from the value exported to
1439  * user-space.  This allows kernel threads to set their
1440  * priority to a value higher than any user task. Note:
1441  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1442  */
1443
1444 #define MAX_USER_RT_PRIO        100
1445 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1446
1447 #define MAX_PRIO                (MAX_RT_PRIO + 40)
1448 #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1449
1450 static inline int rt_prio(int prio)
1451 {
1452         if (unlikely(prio < MAX_RT_PRIO))
1453                 return 1;
1454         return 0;
1455 }
1456
1457 static inline int rt_task(struct task_struct *p)
1458 {
1459         return rt_prio(p->prio);
1460 }
1461
1462 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1463 {
1464         tsk->signal->__session = session;
1465 }
1466
1467 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1468 {
1469         tsk->signal->__pgrp = pgrp;
1470 }
1471
1472 static inline struct pid *task_pid(struct task_struct *task)
1473 {
1474         return task->pids[PIDTYPE_PID].pid;
1475 }
1476
1477 static inline struct pid *task_tgid(struct task_struct *task)
1478 {
1479         return task->group_leader->pids[PIDTYPE_PID].pid;
1480 }
1481
1482 static inline struct pid *task_pgrp(struct task_struct *task)
1483 {
1484         return task->group_leader->pids[PIDTYPE_PGID].pid;
1485 }
1486
1487 static inline struct pid *task_session(struct task_struct *task)
1488 {
1489         return task->group_leader->pids[PIDTYPE_SID].pid;
1490 }
1491
1492 struct pid_namespace;
1493
1494 /*
1495  * the helpers to get the task's different pids as they are seen
1496  * from various namespaces
1497  *
1498  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1499  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1500  *                     current.
1501  * task_xid_nr_ns()  : id seen from the ns specified;
1502  *
1503  * set_task_vxid()   : assigns a virtual id to a task;
1504  *
1505  * see also pid_nr() etc in include/linux/pid.h
1506  */
1507
1508 static inline pid_t task_pid_nr(struct task_struct *tsk)
1509 {
1510         return tsk->pid;
1511 }
1512
1513 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1514
1515 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1516 {
1517         return pid_vnr(task_pid(tsk));
1518 }
1519
1520
1521 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1522 {
1523         return tsk->tgid;
1524 }
1525
1526 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1527
1528 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1529 {
1530         return pid_vnr(task_tgid(tsk));
1531 }
1532
1533
1534 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1535 {
1536         return tsk->signal->__pgrp;
1537 }
1538
1539 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1540
1541 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1542 {
1543         return pid_vnr(task_pgrp(tsk));
1544 }
1545
1546
1547 static inline pid_t task_session_nr(struct task_struct *tsk)
1548 {
1549         return tsk->signal->__session;
1550 }
1551
1552 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1553
1554 static inline pid_t task_session_vnr(struct task_struct *tsk)
1555 {
1556         return pid_vnr(task_session(tsk));
1557 }
1558
1559
1560 /**
1561  * pid_alive - check that a task structure is not stale
1562  * @p: Task structure to be checked.
1563  *
1564  * Test if a process is not yet dead (at most zombie state)
1565  * If pid_alive fails, then pointers within the task structure
1566  * can be stale and must not be dereferenced.
1567  */
1568 static inline int pid_alive(struct task_struct *p)
1569 {
1570         return p->pids[PIDTYPE_PID].pid != NULL;
1571 }
1572
1573 /**
1574  * is_global_init - check if a task structure is init
1575  * @tsk: Task structure to be checked.
1576  *
1577  * Check if a task structure is the first user space task the kernel created.
1578  */
1579 static inline int is_global_init(struct task_struct *tsk)
1580 {
1581         return tsk->pid == 1;
1582 }
1583
1584 /*
1585  * is_container_init:
1586  * check whether in the task is init in its own pid namespace.
1587  */
1588 extern int is_container_init(struct task_struct *tsk);
1589
1590 extern struct pid *cad_pid;
1591
1592 extern void free_task(struct task_struct *tsk);
1593 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1594
1595 extern void __put_task_struct(struct task_struct *t);
1596
1597 static inline void put_task_struct(struct task_struct *t)
1598 {
1599         if (atomic_dec_and_test(&t->usage))
1600                 __put_task_struct(t);
1601 }
1602
1603 extern cputime_t task_utime(struct task_struct *p);
1604 extern cputime_t task_stime(struct task_struct *p);
1605 extern cputime_t task_gtime(struct task_struct *p);
1606
1607 /*
1608  * Per process flags
1609  */
1610 #define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1611                                         /* Not implemented yet, only for 486*/
1612 #define PF_STARTING     0x00000002      /* being created */
1613 #define PF_EXITING      0x00000004      /* getting shut down */
1614 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1615 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1616 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1617 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1618 #define PF_DUMPCORE     0x00000200      /* dumped core */
1619 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1620 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1621 #define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1622 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1623 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1624 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1625 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1626 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1627 #define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1628 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1629 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1630 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1631 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1632 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1633 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1634 #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1635 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1636 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1637 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1638 #define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1639
1640 /*
1641  * Only the _current_ task can read/write to tsk->flags, but other
1642  * tasks can access tsk->flags in readonly mode for example
1643  * with tsk_used_math (like during threaded core dumping).
1644  * There is however an exception to this rule during ptrace
1645  * or during fork: the ptracer task is allowed to write to the
1646  * child->flags of its traced child (same goes for fork, the parent
1647  * can write to the child->flags), because we're guaranteed the
1648  * child is not running and in turn not changing child->flags
1649  * at the same time the parent does it.
1650  */
1651 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1652 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1653 #define clear_used_math() clear_stopped_child_used_math(current)
1654 #define set_used_math() set_stopped_child_used_math(current)
1655 #define conditional_stopped_child_used_math(condition, child) \
1656         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1657 #define conditional_used_math(condition) \
1658         conditional_stopped_child_used_math(condition, current)
1659 #define copy_to_stopped_child_used_math(child) \
1660         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1661 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1662 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1663 #define used_math() tsk_used_math(current)
1664
1665 #ifdef CONFIG_SMP
1666 extern int set_cpus_allowed_ptr(struct task_struct *p,
1667                                 const struct cpumask *new_mask);
1668 #else
1669 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1670                                        const struct cpumask *new_mask)
1671 {
1672         if (!cpumask_test_cpu(0, new_mask))
1673                 return -EINVAL;
1674         return 0;
1675 }
1676 #endif
1677 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1678 {
1679         return set_cpus_allowed_ptr(p, &new_mask);
1680 }
1681
1682 /*
1683  * Architectures can set this to 1 if they have specified
1684  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1685  * but then during bootup it turns out that sched_clock()
1686  * is reliable after all:
1687  */
1688 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1689 extern int sched_clock_stable;
1690 #endif
1691
1692 extern unsigned long long sched_clock(void);
1693
1694 extern void sched_clock_init(void);
1695 extern u64 sched_clock_cpu(int cpu);
1696
1697 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1698 static inline void sched_clock_tick(void)
1699 {
1700 }
1701
1702 static inline void sched_clock_idle_sleep_event(void)
1703 {
1704 }
1705
1706 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1707 {
1708 }
1709 #else
1710 extern void sched_clock_tick(void);
1711 extern void sched_clock_idle_sleep_event(void);
1712 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1713 #endif
1714
1715 /*
1716  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1717  * clock constructed from sched_clock():
1718  */
1719 extern unsigned long long cpu_clock(int cpu);
1720
1721 extern unsigned long long
1722 task_sched_runtime(struct task_struct *task);
1723 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1724
1725 /* sched_exec is called by processes performing an exec */
1726 #ifdef CONFIG_SMP
1727 extern void sched_exec(void);
1728 #else
1729 #define sched_exec()   {}
1730 #endif
1731
1732 extern void sched_clock_idle_sleep_event(void);
1733 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1734
1735 #ifdef CONFIG_HOTPLUG_CPU
1736 extern void idle_task_exit(void);
1737 #else
1738 static inline void idle_task_exit(void) {}
1739 #endif
1740
1741 extern void sched_idle_next(void);
1742
1743 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1744 extern void wake_up_idle_cpu(int cpu);
1745 #else
1746 static inline void wake_up_idle_cpu(int cpu) { }
1747 #endif
1748
1749 extern unsigned int sysctl_sched_latency;
1750 extern unsigned int sysctl_sched_min_granularity;
1751 extern unsigned int sysctl_sched_wakeup_granularity;
1752 extern unsigned int sysctl_sched_shares_ratelimit;
1753 extern unsigned int sysctl_sched_shares_thresh;
1754 #ifdef CONFIG_SCHED_DEBUG
1755 extern unsigned int sysctl_sched_child_runs_first;
1756 extern unsigned int sysctl_sched_features;
1757 extern unsigned int sysctl_sched_migration_cost;
1758 extern unsigned int sysctl_sched_nr_migrate;
1759
1760 int sched_nr_latency_handler(struct ctl_table *table, int write,
1761                 struct file *file, void __user *buffer, size_t *length,
1762                 loff_t *ppos);
1763 #endif
1764 extern unsigned int sysctl_sched_rt_period;
1765 extern int sysctl_sched_rt_runtime;
1766
1767 int sched_rt_handler(struct ctl_table *table, int write,
1768                 struct file *filp, void __user *buffer, size_t *lenp,
1769                 loff_t *ppos);
1770
1771 extern unsigned int sysctl_sched_compat_yield;
1772
1773 #ifdef CONFIG_RT_MUTEXES
1774 extern int rt_mutex_getprio(struct task_struct *p);
1775 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1776 extern void rt_mutex_adjust_pi(struct task_struct *p);
1777 #else
1778 static inline int rt_mutex_getprio(struct task_struct *p)
1779 {
1780         return p->normal_prio;
1781 }
1782 # define rt_mutex_adjust_pi(p)          do { } while (0)
1783 #endif
1784
1785 extern void set_user_nice(struct task_struct *p, long nice);
1786 extern int task_prio(const struct task_struct *p);
1787 extern int task_nice(const struct task_struct *p);
1788 extern int can_nice(const struct task_struct *p, const int nice);
1789 extern int task_curr(const struct task_struct *p);
1790 extern int idle_cpu(int cpu);
1791 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1792 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1793                                       struct sched_param *);
1794 extern struct task_struct *idle_task(int cpu);
1795 extern struct task_struct *curr_task(int cpu);
1796 extern void set_curr_task(int cpu, struct task_struct *p);
1797
1798 void yield(void);
1799
1800 /*
1801  * The default (Linux) execution domain.
1802  */
1803 extern struct exec_domain       default_exec_domain;
1804
1805 union thread_union {
1806         struct thread_info thread_info;
1807         unsigned long stack[THREAD_SIZE/sizeof(long)];
1808 };
1809
1810 #ifndef __HAVE_ARCH_KSTACK_END
1811 static inline int kstack_end(void *addr)
1812 {
1813         /* Reliable end of stack detection:
1814          * Some APM bios versions misalign the stack
1815          */
1816         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1817 }
1818 #endif
1819
1820 extern union thread_union init_thread_union;
1821 extern struct task_struct init_task;
1822
1823 extern struct   mm_struct init_mm;
1824
1825 extern struct pid_namespace init_pid_ns;
1826
1827 /*
1828  * find a task by one of its numerical ids
1829  *
1830  * find_task_by_pid_type_ns():
1831  *      it is the most generic call - it finds a task by all id,
1832  *      type and namespace specified
1833  * find_task_by_pid_ns():
1834  *      finds a task by its pid in the specified namespace
1835  * find_task_by_vpid():
1836  *      finds a task by its virtual pid
1837  *
1838  * see also find_vpid() etc in include/linux/pid.h
1839  */
1840
1841 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1842                 struct pid_namespace *ns);
1843
1844 extern struct task_struct *find_task_by_vpid(pid_t nr);
1845 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1846                 struct pid_namespace *ns);
1847
1848 extern void __set_special_pids(struct pid *pid);
1849
1850 /* per-UID process charging. */
1851 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1852 static inline struct user_struct *get_uid(struct user_struct *u)
1853 {
1854         atomic_inc(&u->__count);
1855         return u;
1856 }
1857 extern void free_uid(struct user_struct *);
1858 extern void release_uids(struct user_namespace *ns);
1859
1860 #include <asm/current.h>
1861
1862 extern void do_timer(unsigned long ticks);
1863
1864 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1865 extern int wake_up_process(struct task_struct *tsk);
1866 extern void wake_up_new_task(struct task_struct *tsk,
1867                                 unsigned long clone_flags);
1868 #ifdef CONFIG_SMP
1869  extern void kick_process(struct task_struct *tsk);
1870 #else
1871  static inline void kick_process(struct task_struct *tsk) { }
1872 #endif
1873 extern void sched_fork(struct task_struct *p, int clone_flags);
1874 extern void sched_dead(struct task_struct *p);
1875
1876 extern void proc_caches_init(void);
1877 extern void flush_signals(struct task_struct *);
1878 extern void __flush_signals(struct task_struct *);
1879 extern void ignore_signals(struct task_struct *);
1880 extern void flush_signal_handlers(struct task_struct *, int force_default);
1881 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1882
1883 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1884 {
1885         unsigned long flags;
1886         int ret;
1887
1888         spin_lock_irqsave(&tsk->sighand->siglock, flags);
1889         ret = dequeue_signal(tsk, mask, info);
1890         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1891
1892         return ret;
1893 }       
1894
1895 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1896                               sigset_t *mask);
1897 extern void unblock_all_signals(void);
1898 extern void release_task(struct task_struct * p);
1899 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1900 extern int force_sigsegv(int, struct task_struct *);
1901 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1902 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1903 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1904 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1905 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1906 extern int kill_pid(struct pid *pid, int sig, int priv);
1907 extern int kill_proc_info(int, struct siginfo *, pid_t);
1908 extern int do_notify_parent(struct task_struct *, int);
1909 extern void force_sig(int, struct task_struct *);
1910 extern void force_sig_specific(int, struct task_struct *);
1911 extern int send_sig(int, struct task_struct *, int);
1912 extern void zap_other_threads(struct task_struct *p);
1913 extern struct sigqueue *sigqueue_alloc(void);
1914 extern void sigqueue_free(struct sigqueue *);
1915 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1916 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1917 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1918
1919 static inline int kill_cad_pid(int sig, int priv)
1920 {
1921         return kill_pid(cad_pid, sig, priv);
1922 }
1923
1924 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1925 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1926 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
1927 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1928
1929 static inline int is_si_special(const struct siginfo *info)
1930 {
1931         return info <= SEND_SIG_FORCED;
1932 }
1933
1934 /* True if we are on the alternate signal stack.  */
1935
1936 static inline int on_sig_stack(unsigned long sp)
1937 {
1938         return (sp - current->sas_ss_sp < current->sas_ss_size);
1939 }
1940
1941 static inline int sas_ss_flags(unsigned long sp)
1942 {
1943         return (current->sas_ss_size == 0 ? SS_DISABLE
1944                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1945 }
1946
1947 /*
1948  * Routines for handling mm_structs
1949  */
1950 extern struct mm_struct * mm_alloc(void);
1951
1952 /* mmdrop drops the mm and the page tables */
1953 extern void __mmdrop(struct mm_struct *);
1954 static inline void mmdrop(struct mm_struct * mm)
1955 {
1956         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1957                 __mmdrop(mm);
1958 }
1959
1960 /* mmput gets rid of the mappings and all user-space */
1961 extern void mmput(struct mm_struct *);
1962 /* Grab a reference to a task's mm, if it is not already going away */
1963 extern struct mm_struct *get_task_mm(struct task_struct *task);
1964 /* Remove the current tasks stale references to the old mm_struct */
1965 extern void mm_release(struct task_struct *, struct mm_struct *);
1966 /* Allocate a new mm structure and copy contents from tsk->mm */
1967 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1968
1969 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1970 extern void flush_thread(void);
1971 extern void exit_thread(void);
1972
1973 extern void exit_files(struct task_struct *);
1974 extern void __cleanup_signal(struct signal_struct *);
1975 extern void __cleanup_sighand(struct sighand_struct *);
1976
1977 extern void exit_itimers(struct signal_struct *);
1978 extern void flush_itimer_signals(void);
1979
1980 extern NORET_TYPE void do_group_exit(int);
1981
1982 extern void daemonize(const char *, ...);
1983 extern int allow_signal(int);
1984 extern int disallow_signal(int);
1985
1986 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1987 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1988 struct task_struct *fork_idle(int);
1989
1990 extern void set_task_comm(struct task_struct *tsk, char *from);
1991 extern char *get_task_comm(char *to, struct task_struct *tsk);
1992
1993 #ifdef CONFIG_SMP
1994 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1995 #else
1996 static inline unsigned long wait_task_inactive(struct task_struct *p,
1997                                                long match_state)
1998 {
1999         return 1;
2000 }
2001 #endif
2002
2003 #define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
2004
2005 #define for_each_process(p) \
2006         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2007
2008 extern bool is_single_threaded(struct task_struct *);
2009
2010 /*
2011  * Careful: do_each_thread/while_each_thread is a double loop so
2012  *          'break' will not work as expected - use goto instead.
2013  */
2014 #define do_each_thread(g, t) \
2015         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2016
2017 #define while_each_thread(g, t) \
2018         while ((t = next_thread(t)) != g)
2019
2020 /* de_thread depends on thread_group_leader not being a pid based check */
2021 #define thread_group_leader(p)  (p == p->group_leader)
2022
2023 /* Do to the insanities of de_thread it is possible for a process
2024  * to have the pid of the thread group leader without actually being
2025  * the thread group leader.  For iteration through the pids in proc
2026  * all we care about is that we have a task with the appropriate
2027  * pid, we don't actually care if we have the right task.
2028  */
2029 static inline int has_group_leader_pid(struct task_struct *p)
2030 {
2031         return p->pid == p->tgid;
2032 }
2033
2034 static inline
2035 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2036 {
2037         return p1->tgid == p2->tgid;
2038 }
2039
2040 static inline struct task_struct *next_thread(const struct task_struct *p)
2041 {
2042         return list_entry(rcu_dereference(p->thread_group.next),
2043                           struct task_struct, thread_group);
2044 }
2045
2046 static inline int thread_group_empty(struct task_struct *p)
2047 {
2048         return list_empty(&p->thread_group);
2049 }
2050
2051 #define delay_group_leader(p) \
2052                 (thread_group_leader(p) && !thread_group_empty(p))
2053
2054 /*
2055  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2056  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2057  * pins the final release of task.io_context.  Also protects ->cpuset and
2058  * ->cgroup.subsys[].
2059  *
2060  * Nests both inside and outside of read_lock(&tasklist_lock).
2061  * It must not be nested with write_lock_irq(&tasklist_lock),
2062  * neither inside nor outside.
2063  */
2064 static inline void task_lock(struct task_struct *p)
2065 {
2066         spin_lock(&p->alloc_lock);
2067 }
2068
2069 static inline void task_unlock(struct task_struct *p)
2070 {
2071         spin_unlock(&p->alloc_lock);
2072 }
2073
2074 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2075                                                         unsigned long *flags);
2076
2077 static inline void unlock_task_sighand(struct task_struct *tsk,
2078                                                 unsigned long *flags)
2079 {
2080         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2081 }
2082
2083 #ifndef __HAVE_THREAD_FUNCTIONS
2084
2085 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2086 #define task_stack_page(task)   ((task)->stack)
2087
2088 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2089 {
2090         *task_thread_info(p) = *task_thread_info(org);
2091         task_thread_info(p)->task = p;
2092 }
2093
2094 static inline unsigned long *end_of_stack(struct task_struct *p)
2095 {
2096         return (unsigned long *)(task_thread_info(p) + 1);
2097 }
2098
2099 #endif
2100
2101 static inline int object_is_on_stack(void *obj)
2102 {
2103         void *stack = task_stack_page(current);
2104
2105         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2106 }
2107
2108 extern void thread_info_cache_init(void);
2109
2110 #ifdef CONFIG_DEBUG_STACK_USAGE
2111 static inline unsigned long stack_not_used(struct task_struct *p)
2112 {
2113         unsigned long *n = end_of_stack(p);
2114
2115         do {    /* Skip over canary */
2116                 n++;
2117         } while (!*n);
2118
2119         return (unsigned long)n - (unsigned long)end_of_stack(p);
2120 }
2121 #endif
2122
2123 /* set thread flags in other task's structures
2124  * - see asm/thread_info.h for TIF_xxxx flags available
2125  */
2126 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2127 {
2128         set_ti_thread_flag(task_thread_info(tsk), flag);
2129 }
2130
2131 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2132 {
2133         clear_ti_thread_flag(task_thread_info(tsk), flag);
2134 }
2135
2136 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2137 {
2138         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2139 }
2140
2141 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2142 {
2143         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2144 }
2145
2146 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2147 {
2148         return test_ti_thread_flag(task_thread_info(tsk), flag);
2149 }
2150
2151 static inline void set_tsk_need_resched(struct task_struct *tsk)
2152 {
2153         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2154 }
2155
2156 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2157 {
2158         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2159 }
2160
2161 static inline int test_tsk_need_resched(struct task_struct *tsk)
2162 {
2163         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2164 }
2165
2166 static inline int signal_pending(struct task_struct *p)
2167 {
2168         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2169 }
2170
2171 extern int __fatal_signal_pending(struct task_struct *p);
2172
2173 static inline int fatal_signal_pending(struct task_struct *p)
2174 {
2175         return signal_pending(p) && __fatal_signal_pending(p);
2176 }
2177
2178 static inline int signal_pending_state(long state, struct task_struct *p)
2179 {
2180         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2181                 return 0;
2182         if (!signal_pending(p))
2183                 return 0;
2184
2185         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2186 }
2187
2188 static inline int need_resched(void)
2189 {
2190         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2191 }
2192
2193 /*
2194  * cond_resched() and cond_resched_lock(): latency reduction via
2195  * explicit rescheduling in places that are safe. The return
2196  * value indicates whether a reschedule was done in fact.
2197  * cond_resched_lock() will drop the spinlock before scheduling,
2198  * cond_resched_softirq() will enable bhs before scheduling.
2199  */
2200 extern int _cond_resched(void);
2201 #ifdef CONFIG_PREEMPT_BKL
2202 static inline int cond_resched(void)
2203 {
2204         return 0;
2205 }
2206 #else
2207 static inline int cond_resched(void)
2208 {
2209         return _cond_resched();
2210 }
2211 #endif
2212 extern int cond_resched_lock(spinlock_t * lock);
2213 extern int cond_resched_softirq(void);
2214 static inline int cond_resched_bkl(void)
2215 {
2216         return _cond_resched();
2217 }
2218
2219 /*
2220  * Does a critical section need to be broken due to another
2221  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2222  * but a general need for low latency)
2223  */
2224 static inline int spin_needbreak(spinlock_t *lock)
2225 {
2226 #ifdef CONFIG_PREEMPT
2227         return spin_is_contended(lock);
2228 #else
2229         return 0;
2230 #endif
2231 }
2232
2233 /*
2234  * Thread group CPU time accounting.
2235  */
2236 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2237 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2238
2239 static inline void thread_group_cputime_init(struct signal_struct *sig)
2240 {
2241         sig->cputimer.cputime = INIT_CPUTIME;
2242         spin_lock_init(&sig->cputimer.lock);
2243         sig->cputimer.running = 0;
2244 }
2245
2246 static inline void thread_group_cputime_free(struct signal_struct *sig)
2247 {
2248 }
2249
2250 /*
2251  * Reevaluate whether the task has signals pending delivery.
2252  * Wake the task if so.
2253  * This is required every time the blocked sigset_t changes.
2254  * callers must hold sighand->siglock.
2255  */
2256 extern void recalc_sigpending_and_wake(struct task_struct *t);
2257 extern void recalc_sigpending(void);
2258
2259 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2260
2261 /*
2262  * Wrappers for p->thread_info->cpu access. No-op on UP.
2263  */
2264 #ifdef CONFIG_SMP
2265
2266 static inline unsigned int task_cpu(const struct task_struct *p)
2267 {
2268         return task_thread_info(p)->cpu;
2269 }
2270
2271 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2272
2273 #else
2274
2275 static inline unsigned int task_cpu(const struct task_struct *p)
2276 {
2277         return 0;
2278 }
2279
2280 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2281 {
2282 }
2283
2284 #endif /* CONFIG_SMP */
2285
2286 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2287
2288 #ifdef CONFIG_TRACING
2289 extern void
2290 __trace_special(void *__tr, void *__data,
2291                 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2292 #else
2293 static inline void
2294 __trace_special(void *__tr, void *__data,
2295                 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2296 {
2297 }
2298 #endif
2299
2300 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2301 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2302
2303 extern void normalize_rt_tasks(void);
2304
2305 #ifdef CONFIG_GROUP_SCHED
2306
2307 extern struct task_group init_task_group;
2308 #ifdef CONFIG_USER_SCHED
2309 extern struct task_group root_task_group;
2310 extern void set_tg_uid(struct user_struct *user);
2311 #endif
2312
2313 extern struct task_group *sched_create_group(struct task_group *parent);
2314 extern void sched_destroy_group(struct task_group *tg);
2315 extern void sched_move_task(struct task_struct *tsk);
2316 #ifdef CONFIG_FAIR_GROUP_SCHED
2317 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2318 extern unsigned long sched_group_shares(struct task_group *tg);
2319 #endif
2320 #ifdef CONFIG_RT_GROUP_SCHED
2321 extern int sched_group_set_rt_runtime(struct task_group *tg,
2322                                       long rt_runtime_us);
2323 extern long sched_group_rt_runtime(struct task_group *tg);
2324 extern int sched_group_set_rt_period(struct task_group *tg,
2325                                       long rt_period_us);
2326 extern long sched_group_rt_period(struct task_group *tg);
2327 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2328 #endif
2329 #endif
2330
2331 extern int task_can_switch_user(struct user_struct *up,
2332                                         struct task_struct *tsk);
2333
2334 #ifdef CONFIG_TASK_XACCT
2335 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2336 {
2337         tsk->ioac.rchar += amt;
2338 }
2339
2340 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2341 {
2342         tsk->ioac.wchar += amt;
2343 }
2344
2345 static inline void inc_syscr(struct task_struct *tsk)
2346 {
2347         tsk->ioac.syscr++;
2348 }
2349
2350 static inline void inc_syscw(struct task_struct *tsk)
2351 {
2352         tsk->ioac.syscw++;
2353 }
2354 #else
2355 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2356 {
2357 }
2358
2359 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2360 {
2361 }
2362
2363 static inline void inc_syscr(struct task_struct *tsk)
2364 {
2365 }
2366
2367 static inline void inc_syscw(struct task_struct *tsk)
2368 {
2369 }
2370 #endif
2371
2372 #ifndef TASK_SIZE_OF
2373 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2374 #endif
2375
2376 #ifdef CONFIG_MM_OWNER
2377 extern void mm_update_next_owner(struct mm_struct *mm);
2378 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2379 #else
2380 static inline void mm_update_next_owner(struct mm_struct *mm)
2381 {
2382 }
2383
2384 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2385 {
2386 }
2387 #endif /* CONFIG_MM_OWNER */
2388
2389 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2390
2391 #endif /* __KERNEL__ */
2392
2393 #endif