2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/sysctl.h>
77 #include <linux/wait.h>
78 #include <linux/bcd.h>
79 #include <linux/delay.h>
81 #include <asm/current.h>
82 #include <asm/uaccess.h>
83 #include <asm/system.h>
90 #include <linux/pci.h>
96 static unsigned long rtc_port;
97 static int rtc_irq = PCI_IRQ_NONE;
100 #ifdef CONFIG_HPET_RTC_IRQ
105 static int rtc_has_irq = 1;
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled() 0
110 #define hpet_set_alarm_time(hrs, min, sec) 0
111 #define hpet_set_periodic_freq(arg) 0
112 #define hpet_mask_rtc_irq_bit(arg) 0
113 #define hpet_set_rtc_irq_bit(arg) 0
114 #define hpet_rtc_timer_init() do { } while (0)
115 #define hpet_rtc_dropped_irq() 0
116 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) {return 0;}
118 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
122 * We sponge a minor off of the misc major. No need slurping
123 * up another valuable major dev number for this. If you add
124 * an ioctl, make sure you don't conflict with SPARC's RTC
128 static struct fasync_struct *rtc_async_queue;
130 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
133 static struct timer_list rtc_irq_timer;
136 static ssize_t rtc_read(struct file *file, char __user *buf,
137 size_t count, loff_t *ppos);
139 static int rtc_ioctl(struct inode *inode, struct file *file,
140 unsigned int cmd, unsigned long arg);
143 static unsigned int rtc_poll(struct file *file, poll_table *wait);
146 static void get_rtc_alm_time (struct rtc_time *alm_tm);
148 static void rtc_dropped_irq(unsigned long data);
150 static void set_rtc_irq_bit_locked(unsigned char bit);
151 static void mask_rtc_irq_bit_locked(unsigned char bit);
153 static inline void set_rtc_irq_bit(unsigned char bit)
155 spin_lock_irq(&rtc_lock);
156 set_rtc_irq_bit_locked(bit);
157 spin_unlock_irq(&rtc_lock);
160 static void mask_rtc_irq_bit(unsigned char bit)
162 spin_lock_irq(&rtc_lock);
163 mask_rtc_irq_bit_locked(bit);
164 spin_unlock_irq(&rtc_lock);
168 #ifdef CONFIG_PROC_FS
169 static int rtc_proc_open(struct inode *inode, struct file *file);
173 * Bits in rtc_status. (6 bits of room for future expansion)
176 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
177 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
180 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
181 * protected by the big kernel lock. However, ioctl can still disable the timer
182 * in rtc_status and then with del_timer after the interrupt has read
183 * rtc_status but before mod_timer is called, which would then reenable the
184 * timer (but you would need to have an awful timing before you'd trip on it)
186 static unsigned long rtc_status = 0; /* bitmapped status byte. */
187 static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
188 static unsigned long rtc_irq_data = 0; /* our output to the world */
189 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
193 * rtc_task_lock nests inside rtc_lock.
195 static DEFINE_SPINLOCK(rtc_task_lock);
196 static rtc_task_t *rtc_callback = NULL;
200 * If this driver ever becomes modularised, it will be really nice
201 * to make the epoch retain its value across module reload...
204 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
206 static const unsigned char days_in_mo[] =
207 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
210 * Returns true if a clock update is in progress
212 static inline unsigned char rtc_is_updating(void)
217 spin_lock_irqsave(&rtc_lock, flags);
218 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
219 spin_unlock_irqrestore(&rtc_lock, flags);
225 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
226 * but there is possibility of conflicting with the set_rtc_mmss()
227 * call (the rtc irq and the timer irq can easily run at the same
228 * time in two different CPUs). So we need to serialize
229 * accesses to the chip with the rtc_lock spinlock that each
230 * architecture should implement in the timer code.
231 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
234 irqreturn_t rtc_interrupt(int irq, void *dev_id)
237 * Can be an alarm interrupt, update complete interrupt,
238 * or a periodic interrupt. We store the status in the
239 * low byte and the number of interrupts received since
240 * the last read in the remainder of rtc_irq_data.
243 spin_lock (&rtc_lock);
244 rtc_irq_data += 0x100;
245 rtc_irq_data &= ~0xff;
246 if (is_hpet_enabled()) {
248 * In this case it is HPET RTC interrupt handler
249 * calling us, with the interrupt information
250 * passed as arg1, instead of irq.
252 rtc_irq_data |= (unsigned long)irq & 0xF0;
254 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
257 if (rtc_status & RTC_TIMER_ON)
258 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
260 spin_unlock (&rtc_lock);
262 /* Now do the rest of the actions */
263 spin_lock(&rtc_task_lock);
265 rtc_callback->func(rtc_callback->private_data);
266 spin_unlock(&rtc_task_lock);
267 wake_up_interruptible(&rtc_wait);
269 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
276 * sysctl-tuning infrastructure.
278 static ctl_table rtc_table[] = {
281 .procname = "max-user-freq",
282 .data = &rtc_max_user_freq,
283 .maxlen = sizeof(int),
285 .proc_handler = &proc_dointvec,
290 static ctl_table rtc_root[] = {
301 static ctl_table dev_root[] = {
312 static struct ctl_table_header *sysctl_header;
314 static int __init init_sysctl(void)
316 sysctl_header = register_sysctl_table(dev_root, 0);
320 static void __exit cleanup_sysctl(void)
322 unregister_sysctl_table(sysctl_header);
326 * Now all the various file operations that we export.
329 static ssize_t rtc_read(struct file *file, char __user *buf,
330 size_t count, loff_t *ppos)
335 DECLARE_WAITQUEUE(wait, current);
339 if (rtc_has_irq == 0)
343 * Historically this function used to assume that sizeof(unsigned long)
344 * is the same in userspace and kernelspace. This lead to problems
345 * for configurations with multiple ABIs such a the MIPS o32 and 64
346 * ABIs supported on the same kernel. So now we support read of both
347 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
353 add_wait_queue(&rtc_wait, &wait);
356 /* First make it right. Then make it fast. Putting this whole
357 * block within the parentheses of a while would be too
358 * confusing. And no, xchg() is not the answer. */
360 __set_current_state(TASK_INTERRUPTIBLE);
362 spin_lock_irq (&rtc_lock);
365 spin_unlock_irq (&rtc_lock);
370 if (file->f_flags & O_NONBLOCK) {
374 if (signal_pending(current)) {
375 retval = -ERESTARTSYS;
381 if (count == sizeof(unsigned int))
382 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
384 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
388 current->state = TASK_RUNNING;
389 remove_wait_queue(&rtc_wait, &wait);
395 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
397 struct rtc_time wtime;
400 if (rtc_has_irq == 0) {
417 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
419 mask_rtc_irq_bit(RTC_AIE);
422 case RTC_AIE_ON: /* Allow alarm interrupts. */
424 set_rtc_irq_bit(RTC_AIE);
427 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
429 unsigned long flags; /* can be called from isr via rtc_control() */
430 spin_lock_irqsave (&rtc_lock, flags);
431 mask_rtc_irq_bit_locked(RTC_PIE);
432 if (rtc_status & RTC_TIMER_ON) {
433 rtc_status &= ~RTC_TIMER_ON;
434 del_timer(&rtc_irq_timer);
436 spin_unlock_irqrestore (&rtc_lock, flags);
439 case RTC_PIE_ON: /* Allow periodic ints */
441 unsigned long flags; /* can be called from isr via rtc_control() */
443 * We don't really want Joe User enabling more
444 * than 64Hz of interrupts on a multi-user machine.
446 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
447 (!capable(CAP_SYS_RESOURCE)))
450 spin_lock_irqsave (&rtc_lock, flags);
451 if (!(rtc_status & RTC_TIMER_ON)) {
452 rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
453 add_timer(&rtc_irq_timer);
454 rtc_status |= RTC_TIMER_ON;
456 set_rtc_irq_bit_locked(RTC_PIE);
457 spin_unlock_irqrestore (&rtc_lock, flags);
460 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
462 mask_rtc_irq_bit(RTC_UIE);
465 case RTC_UIE_ON: /* Allow ints for RTC updates. */
467 set_rtc_irq_bit(RTC_UIE);
471 case RTC_ALM_READ: /* Read the present alarm time */
474 * This returns a struct rtc_time. Reading >= 0xc0
475 * means "don't care" or "match all". Only the tm_hour,
476 * tm_min, and tm_sec values are filled in.
478 memset(&wtime, 0, sizeof(struct rtc_time));
479 get_rtc_alm_time(&wtime);
482 case RTC_ALM_SET: /* Store a time into the alarm */
485 * This expects a struct rtc_time. Writing 0xff means
486 * "don't care" or "match all". Only the tm_hour,
487 * tm_min and tm_sec are used.
489 unsigned char hrs, min, sec;
490 struct rtc_time alm_tm;
492 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
493 sizeof(struct rtc_time)))
496 hrs = alm_tm.tm_hour;
500 spin_lock_irq(&rtc_lock);
501 if (hpet_set_alarm_time(hrs, min, sec)) {
503 * Fallthru and set alarm time in CMOS too,
504 * so that we will get proper value in RTC_ALM_READ
507 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
510 if (sec < 60) BIN_TO_BCD(sec);
513 if (min < 60) BIN_TO_BCD(min);
516 if (hrs < 24) BIN_TO_BCD(hrs);
519 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
520 CMOS_WRITE(min, RTC_MINUTES_ALARM);
521 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
522 spin_unlock_irq(&rtc_lock);
526 case RTC_RD_TIME: /* Read the time/date from RTC */
528 memset(&wtime, 0, sizeof(struct rtc_time));
529 rtc_get_rtc_time(&wtime);
532 case RTC_SET_TIME: /* Set the RTC */
534 struct rtc_time rtc_tm;
535 unsigned char mon, day, hrs, min, sec, leap_yr;
536 unsigned char save_control, save_freq_select;
538 #ifdef CONFIG_MACH_DECSTATION
539 unsigned int real_yrs;
542 if (!capable(CAP_SYS_TIME))
545 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
546 sizeof(struct rtc_time)))
549 yrs = rtc_tm.tm_year + 1900;
550 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
551 day = rtc_tm.tm_mday;
552 hrs = rtc_tm.tm_hour;
559 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
561 if ((mon > 12) || (day == 0))
564 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
567 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
570 if ((yrs -= epoch) > 255) /* They are unsigned */
573 spin_lock_irq(&rtc_lock);
574 #ifdef CONFIG_MACH_DECSTATION
579 * We want to keep the year set to 73 until March
580 * for non-leap years, so that Feb, 29th is handled
583 if (!leap_yr && mon < 3) {
588 /* These limits and adjustments are independent of
589 * whether the chip is in binary mode or not.
592 spin_unlock_irq(&rtc_lock);
598 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
608 save_control = CMOS_READ(RTC_CONTROL);
609 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
610 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
611 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
613 #ifdef CONFIG_MACH_DECSTATION
614 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
616 CMOS_WRITE(yrs, RTC_YEAR);
617 CMOS_WRITE(mon, RTC_MONTH);
618 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
619 CMOS_WRITE(hrs, RTC_HOURS);
620 CMOS_WRITE(min, RTC_MINUTES);
621 CMOS_WRITE(sec, RTC_SECONDS);
623 CMOS_WRITE(save_control, RTC_CONTROL);
624 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
626 spin_unlock_irq(&rtc_lock);
630 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
632 return put_user(rtc_freq, (unsigned long __user *)arg);
634 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
638 unsigned long flags; /* can be called from isr via rtc_control() */
641 * The max we can do is 8192Hz.
643 if ((arg < 2) || (arg > 8192))
646 * We don't really want Joe User generating more
647 * than 64Hz of interrupts on a multi-user machine.
649 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
652 while (arg > (1<<tmp))
656 * Check that the input was really a power of 2.
661 spin_lock_irqsave(&rtc_lock, flags);
662 if (hpet_set_periodic_freq(arg)) {
663 spin_unlock_irqrestore(&rtc_lock, flags);
668 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
670 CMOS_WRITE(val, RTC_FREQ_SELECT);
671 spin_unlock_irqrestore(&rtc_lock, flags);
675 case RTC_EPOCH_READ: /* Read the epoch. */
677 return put_user (epoch, (unsigned long __user *)arg);
679 case RTC_EPOCH_SET: /* Set the epoch. */
682 * There were no RTC clocks before 1900.
687 if (!capable(CAP_SYS_TIME))
696 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
699 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
702 return rtc_do_ioctl(cmd, arg, 0);
706 * We enforce only one user at a time here with the open/close.
707 * Also clear the previous interrupt data on an open, and clean
708 * up things on a close.
711 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
712 * needed here. Or anywhere else in this driver. */
713 static int rtc_open(struct inode *inode, struct file *file)
715 spin_lock_irq (&rtc_lock);
717 if(rtc_status & RTC_IS_OPEN)
720 rtc_status |= RTC_IS_OPEN;
723 spin_unlock_irq (&rtc_lock);
727 spin_unlock_irq (&rtc_lock);
731 static int rtc_fasync (int fd, struct file *filp, int on)
734 return fasync_helper (fd, filp, on, &rtc_async_queue);
737 static int rtc_release(struct inode *inode, struct file *file)
742 if (rtc_has_irq == 0)
746 * Turn off all interrupts once the device is no longer
747 * in use, and clear the data.
750 spin_lock_irq(&rtc_lock);
751 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
752 tmp = CMOS_READ(RTC_CONTROL);
756 CMOS_WRITE(tmp, RTC_CONTROL);
757 CMOS_READ(RTC_INTR_FLAGS);
759 if (rtc_status & RTC_TIMER_ON) {
760 rtc_status &= ~RTC_TIMER_ON;
761 del_timer(&rtc_irq_timer);
763 spin_unlock_irq(&rtc_lock);
765 if (file->f_flags & FASYNC) {
766 rtc_fasync (-1, file, 0);
771 spin_lock_irq (&rtc_lock);
773 rtc_status &= ~RTC_IS_OPEN;
774 spin_unlock_irq (&rtc_lock);
779 /* Called without the kernel lock - fine */
780 static unsigned int rtc_poll(struct file *file, poll_table *wait)
784 if (rtc_has_irq == 0)
787 poll_wait(file, &rtc_wait, wait);
789 spin_lock_irq (&rtc_lock);
791 spin_unlock_irq (&rtc_lock);
794 return POLLIN | POLLRDNORM;
803 EXPORT_SYMBOL(rtc_register);
804 EXPORT_SYMBOL(rtc_unregister);
805 EXPORT_SYMBOL(rtc_control);
807 int rtc_register(rtc_task_t *task)
812 if (task == NULL || task->func == NULL)
814 spin_lock_irq(&rtc_lock);
815 if (rtc_status & RTC_IS_OPEN) {
816 spin_unlock_irq(&rtc_lock);
819 spin_lock(&rtc_task_lock);
821 spin_unlock(&rtc_task_lock);
822 spin_unlock_irq(&rtc_lock);
825 rtc_status |= RTC_IS_OPEN;
827 spin_unlock(&rtc_task_lock);
828 spin_unlock_irq(&rtc_lock);
833 int rtc_unregister(rtc_task_t *task)
840 spin_lock_irq(&rtc_lock);
841 spin_lock(&rtc_task_lock);
842 if (rtc_callback != task) {
843 spin_unlock(&rtc_task_lock);
844 spin_unlock_irq(&rtc_lock);
849 /* disable controls */
850 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
851 tmp = CMOS_READ(RTC_CONTROL);
855 CMOS_WRITE(tmp, RTC_CONTROL);
856 CMOS_READ(RTC_INTR_FLAGS);
858 if (rtc_status & RTC_TIMER_ON) {
859 rtc_status &= ~RTC_TIMER_ON;
860 del_timer(&rtc_irq_timer);
862 rtc_status &= ~RTC_IS_OPEN;
863 spin_unlock(&rtc_task_lock);
864 spin_unlock_irq(&rtc_lock);
869 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
875 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
877 spin_lock_irqsave(&rtc_task_lock, flags);
878 if (rtc_callback != task) {
879 spin_unlock_irqrestore(&rtc_task_lock, flags);
882 spin_unlock_irqrestore(&rtc_task_lock, flags);
883 return rtc_do_ioctl(cmd, arg, 1);
889 * The various file operations we support.
892 static const struct file_operations rtc_fops = {
893 .owner = THIS_MODULE,
901 .release = rtc_release,
902 .fasync = rtc_fasync,
905 static struct miscdevice rtc_dev = {
911 #ifdef CONFIG_PROC_FS
912 static const struct file_operations rtc_proc_fops = {
913 .owner = THIS_MODULE,
914 .open = rtc_proc_open,
917 .release = single_release,
921 static int __init rtc_init(void)
923 #ifdef CONFIG_PROC_FS
924 struct proc_dir_entry *ent;
926 #if defined(__alpha__) || defined(__mips__)
927 unsigned int year, ctrl;
931 struct linux_ebus *ebus;
932 struct linux_ebus_device *edev;
934 struct sparc_isa_bridge *isa_br;
935 struct sparc_isa_device *isa_dev;
940 irq_handler_t rtc_int_handler_ptr;
945 for_each_ebus(ebus) {
946 for_each_ebusdev(edev, ebus) {
947 if(strcmp(edev->prom_node->name, "rtc") == 0) {
948 rtc_port = edev->resource[0].start;
949 rtc_irq = edev->irqs[0];
955 for_each_isa(isa_br) {
956 for_each_isadev(isa_dev, isa_br) {
957 if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
958 rtc_port = isa_dev->resource.start;
959 rtc_irq = isa_dev->irq;
966 printk(KERN_ERR "rtc_init: no PC rtc found\n");
970 if (rtc_irq == PCI_IRQ_NONE) {
976 * XXX Interrupt pin #7 in Espresso is shared between RTC and
977 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
979 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
981 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
987 r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
989 r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
994 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
995 (long)(RTC_PORT(0)));
1000 if (is_hpet_enabled()) {
1001 rtc_int_handler_ptr = hpet_rtc_interrupt;
1003 rtc_int_handler_ptr = rtc_interrupt;
1006 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
1007 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1009 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1011 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1013 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1016 hpet_rtc_timer_init();
1020 #endif /* __sparc__ vs. others */
1022 if (misc_register(&rtc_dev)) {
1024 free_irq(RTC_IRQ, NULL);
1027 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1031 #ifdef CONFIG_PROC_FS
1032 ent = create_proc_entry("driver/rtc", 0, NULL);
1034 ent->proc_fops = &rtc_proc_fops;
1036 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1039 #if defined(__alpha__) || defined(__mips__)
1042 /* Each operating system on an Alpha uses its own epoch.
1043 Let's try to guess which one we are using now. */
1045 if (rtc_is_updating() != 0)
1048 spin_lock_irq(&rtc_lock);
1049 year = CMOS_READ(RTC_YEAR);
1050 ctrl = CMOS_READ(RTC_CONTROL);
1051 spin_unlock_irq(&rtc_lock);
1053 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1054 BCD_TO_BIN(year); /* This should never happen... */
1058 guess = "SRM (post-2000)";
1059 } else if (year >= 20 && year < 48) {
1061 guess = "ARC console";
1062 } else if (year >= 48 && year < 72) {
1064 guess = "Digital UNIX";
1065 #if defined(__mips__)
1066 } else if (year >= 72 && year < 74) {
1068 guess = "Digital DECstation";
1070 } else if (year >= 70) {
1072 guess = "Standard PC (1900)";
1076 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1079 if (rtc_has_irq == 0)
1082 init_timer(&rtc_irq_timer);
1083 rtc_irq_timer.function = rtc_dropped_irq;
1084 spin_lock_irq(&rtc_lock);
1086 if (!hpet_set_periodic_freq(rtc_freq)) {
1087 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1088 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1090 spin_unlock_irq(&rtc_lock);
1094 (void) init_sysctl();
1096 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1101 static void __exit rtc_exit (void)
1104 remove_proc_entry ("driver/rtc", NULL);
1105 misc_deregister(&rtc_dev);
1109 free_irq (rtc_irq, &rtc_port);
1112 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1114 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1117 free_irq (RTC_IRQ, NULL);
1119 #endif /* __sparc__ */
1122 module_init(rtc_init);
1123 module_exit(rtc_exit);
1127 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1128 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1129 * Since the interrupt handler doesn't get called, the IRQ status
1130 * byte doesn't get read, and the RTC stops generating interrupts.
1131 * A timer is set, and will call this function if/when that happens.
1132 * To get it out of this stalled state, we just read the status.
1133 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1134 * (You *really* shouldn't be trying to use a non-realtime system
1135 * for something that requires a steady > 1KHz signal anyways.)
1138 static void rtc_dropped_irq(unsigned long data)
1142 spin_lock_irq (&rtc_lock);
1144 if (hpet_rtc_dropped_irq()) {
1145 spin_unlock_irq(&rtc_lock);
1149 /* Just in case someone disabled the timer from behind our back... */
1150 if (rtc_status & RTC_TIMER_ON)
1151 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1153 rtc_irq_data += ((rtc_freq/HZ)<<8);
1154 rtc_irq_data &= ~0xff;
1155 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1159 spin_unlock_irq(&rtc_lock);
1161 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1163 /* Now we have new data */
1164 wake_up_interruptible(&rtc_wait);
1166 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1170 #ifdef CONFIG_PROC_FS
1172 * Info exported via "/proc/driver/rtc".
1175 static int rtc_proc_show(struct seq_file *seq, void *v)
1177 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1178 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1180 unsigned char batt, ctrl;
1183 spin_lock_irq(&rtc_lock);
1184 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1185 ctrl = CMOS_READ(RTC_CONTROL);
1187 spin_unlock_irq(&rtc_lock);
1190 rtc_get_rtc_time(&tm);
1193 * There is no way to tell if the luser has the RTC set for local
1194 * time or for Universal Standard Time (GMT). Probably local though.
1197 "rtc_time\t: %02d:%02d:%02d\n"
1198 "rtc_date\t: %04d-%02d-%02d\n"
1199 "rtc_epoch\t: %04lu\n",
1200 tm.tm_hour, tm.tm_min, tm.tm_sec,
1201 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1203 get_rtc_alm_time(&tm);
1206 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1207 * match any value for that particular field. Values that are
1208 * greater than a valid time, but less than 0xc0 shouldn't appear.
1210 seq_puts(seq, "alarm\t\t: ");
1211 if (tm.tm_hour <= 24)
1212 seq_printf(seq, "%02d:", tm.tm_hour);
1214 seq_puts(seq, "**:");
1216 if (tm.tm_min <= 59)
1217 seq_printf(seq, "%02d:", tm.tm_min);
1219 seq_puts(seq, "**:");
1221 if (tm.tm_sec <= 59)
1222 seq_printf(seq, "%02d\n", tm.tm_sec);
1224 seq_puts(seq, "**\n");
1227 "DST_enable\t: %s\n"
1230 "square_wave\t: %s\n"
1232 "update_IRQ\t: %s\n"
1233 "periodic_IRQ\t: %s\n"
1234 "periodic_freq\t: %ld\n"
1235 "batt_status\t: %s\n",
1244 batt ? "okay" : "dead");
1251 static int rtc_proc_open(struct inode *inode, struct file *file)
1253 return single_open(file, rtc_proc_show, NULL);
1257 void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1259 unsigned long uip_watchdog = jiffies, flags;
1261 #ifdef CONFIG_MACH_DECSTATION
1262 unsigned int real_year;
1266 * read RTC once any update in progress is done. The update
1267 * can take just over 2ms. We wait 20ms. There is no need to
1268 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1269 * If you need to know *exactly* when a second has started, enable
1270 * periodic update complete interrupts, (via ioctl) and then
1271 * immediately read /dev/rtc which will block until you get the IRQ.
1272 * Once the read clears, read the RTC time (again via ioctl). Easy.
1275 while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1279 * Only the values that we read from the RTC are set. We leave
1280 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1281 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1282 * only updated by the RTC when initially set to a non-zero value.
1284 spin_lock_irqsave(&rtc_lock, flags);
1285 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1286 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1287 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1288 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1289 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1290 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1291 /* Only set from 2.6.16 onwards */
1292 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1294 #ifdef CONFIG_MACH_DECSTATION
1295 real_year = CMOS_READ(RTC_DEC_YEAR);
1297 ctrl = CMOS_READ(RTC_CONTROL);
1298 spin_unlock_irqrestore(&rtc_lock, flags);
1300 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1302 BCD_TO_BIN(rtc_tm->tm_sec);
1303 BCD_TO_BIN(rtc_tm->tm_min);
1304 BCD_TO_BIN(rtc_tm->tm_hour);
1305 BCD_TO_BIN(rtc_tm->tm_mday);
1306 BCD_TO_BIN(rtc_tm->tm_mon);
1307 BCD_TO_BIN(rtc_tm->tm_year);
1308 BCD_TO_BIN(rtc_tm->tm_wday);
1311 #ifdef CONFIG_MACH_DECSTATION
1312 rtc_tm->tm_year += real_year - 72;
1316 * Account for differences between how the RTC uses the values
1317 * and how they are defined in a struct rtc_time;
1319 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1320 rtc_tm->tm_year += 100;
1325 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1330 * Only the values that we read from the RTC are set. That
1331 * means only tm_hour, tm_min, and tm_sec.
1333 spin_lock_irq(&rtc_lock);
1334 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1335 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1336 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1337 ctrl = CMOS_READ(RTC_CONTROL);
1338 spin_unlock_irq(&rtc_lock);
1340 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1342 BCD_TO_BIN(alm_tm->tm_sec);
1343 BCD_TO_BIN(alm_tm->tm_min);
1344 BCD_TO_BIN(alm_tm->tm_hour);
1350 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1351 * Rumour has it that if you frob the interrupt enable/disable
1352 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1353 * ensure you actually start getting interrupts. Probably for
1354 * compatibility with older/broken chipset RTC implementations.
1355 * We also clear out any old irq data after an ioctl() that
1356 * meddles with the interrupt enable/disable bits.
1359 static void mask_rtc_irq_bit_locked(unsigned char bit)
1363 if (hpet_mask_rtc_irq_bit(bit))
1365 val = CMOS_READ(RTC_CONTROL);
1367 CMOS_WRITE(val, RTC_CONTROL);
1368 CMOS_READ(RTC_INTR_FLAGS);
1373 static void set_rtc_irq_bit_locked(unsigned char bit)
1377 if (hpet_set_rtc_irq_bit(bit))
1379 val = CMOS_READ(RTC_CONTROL);
1381 CMOS_WRITE(val, RTC_CONTROL);
1382 CMOS_READ(RTC_INTR_FLAGS);
1388 MODULE_AUTHOR("Paul Gortmaker");
1389 MODULE_LICENSE("GPL");
1390 MODULE_ALIAS_MISCDEV(RTC_MINOR);