[CRYPTO] aead: Add authenc
[linux-2.6] / net / core / neighbour.c
1 /*
2  *      Generic address resolution entity
3  *
4  *      Authors:
5  *      Pedro Roque             <roque@di.fc.ul.pt>
6  *      Alexey Kuznetsov        <kuznet@ms2.inr.ac.ru>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Fixes:
14  *      Vitaly E. Lavrov        releasing NULL neighbor in neigh_add.
15  *      Harald Welte            Add neighbour cache statistics like rtstat
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK         0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70    Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72    - All the scans/updates to hash buckets MUST be made under this lock.
73    - NOTHING clever should be made under this lock: no callbacks
74      to protocol backends, no attempts to send something to network.
75      It will result in deadlocks, if backend/driver wants to use neighbour
76      cache.
77    - If the entry requires some non-trivial actions, increase
78      its reference count and release table lock.
79
80    Neighbour entries are protected:
81    - with reference count.
82    - with rwlock neigh->lock
83
84    Reference count prevents destruction.
85
86    neigh->lock mainly serializes ll address data and its validity state.
87    However, the same lock is used to protect another entry fields:
88     - timer
89     - resolution queue
90
91    Again, nothing clever shall be made under neigh->lock,
92    the most complicated procedure, which we allow is dev->hard_header.
93    It is supposed, that dev->hard_header is simplistic and does
94    not make callbacks to neighbour tables.
95
96    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97    list of neighbour tables. This list is used only in process context,
98  */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104         kfree_skb(skb);
105         return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110         if (neigh->parms->neigh_cleanup)
111                 neigh->parms->neigh_cleanup(neigh);
112
113         __neigh_notify(neigh, RTM_DELNEIGH, 0);
114         neigh_release(neigh);
115 }
116
117 /*
118  * It is random distribution in the interval (1/2)*base...(3/2)*base.
119  * It corresponds to default IPv6 settings and is not overridable,
120  * because it is really reasonable choice.
121  */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125         return (base ? (net_random() % base) + (base >> 1) : 0);
126 }
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131         int shrunk = 0;
132         int i;
133
134         NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
135
136         write_lock_bh(&tbl->lock);
137         for (i = 0; i <= tbl->hash_mask; i++) {
138                 struct neighbour *n, **np;
139
140                 np = &tbl->hash_buckets[i];
141                 while ((n = *np) != NULL) {
142                         /* Neighbour record may be discarded if:
143                          * - nobody refers to it.
144                          * - it is not permanent
145                          */
146                         write_lock(&n->lock);
147                         if (atomic_read(&n->refcnt) == 1 &&
148                             !(n->nud_state & NUD_PERMANENT)) {
149                                 *np     = n->next;
150                                 n->dead = 1;
151                                 shrunk  = 1;
152                                 write_unlock(&n->lock);
153                                 neigh_cleanup_and_release(n);
154                                 continue;
155                         }
156                         write_unlock(&n->lock);
157                         np = &n->next;
158                 }
159         }
160
161         tbl->last_flush = jiffies;
162
163         write_unlock_bh(&tbl->lock);
164
165         return shrunk;
166 }
167
168 static int neigh_del_timer(struct neighbour *n)
169 {
170         if ((n->nud_state & NUD_IN_TIMER) &&
171             del_timer(&n->timer)) {
172                 neigh_release(n);
173                 return 1;
174         }
175         return 0;
176 }
177
178 static void pneigh_queue_purge(struct sk_buff_head *list)
179 {
180         struct sk_buff *skb;
181
182         while ((skb = skb_dequeue(list)) != NULL) {
183                 dev_put(skb->dev);
184                 kfree_skb(skb);
185         }
186 }
187
188 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
189 {
190         int i;
191
192         for (i = 0; i <= tbl->hash_mask; i++) {
193                 struct neighbour *n, **np = &tbl->hash_buckets[i];
194
195                 while ((n = *np) != NULL) {
196                         if (dev && n->dev != dev) {
197                                 np = &n->next;
198                                 continue;
199                         }
200                         *np = n->next;
201                         write_lock(&n->lock);
202                         neigh_del_timer(n);
203                         n->dead = 1;
204
205                         if (atomic_read(&n->refcnt) != 1) {
206                                 /* The most unpleasant situation.
207                                    We must destroy neighbour entry,
208                                    but someone still uses it.
209
210                                    The destroy will be delayed until
211                                    the last user releases us, but
212                                    we must kill timers etc. and move
213                                    it to safe state.
214                                  */
215                                 skb_queue_purge(&n->arp_queue);
216                                 n->output = neigh_blackhole;
217                                 if (n->nud_state & NUD_VALID)
218                                         n->nud_state = NUD_NOARP;
219                                 else
220                                         n->nud_state = NUD_NONE;
221                                 NEIGH_PRINTK2("neigh %p is stray.\n", n);
222                         }
223                         write_unlock(&n->lock);
224                         neigh_cleanup_and_release(n);
225                 }
226         }
227 }
228
229 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
230 {
231         write_lock_bh(&tbl->lock);
232         neigh_flush_dev(tbl, dev);
233         write_unlock_bh(&tbl->lock);
234 }
235
236 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
237 {
238         write_lock_bh(&tbl->lock);
239         neigh_flush_dev(tbl, dev);
240         pneigh_ifdown(tbl, dev);
241         write_unlock_bh(&tbl->lock);
242
243         del_timer_sync(&tbl->proxy_timer);
244         pneigh_queue_purge(&tbl->proxy_queue);
245         return 0;
246 }
247
248 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
249 {
250         struct neighbour *n = NULL;
251         unsigned long now = jiffies;
252         int entries;
253
254         entries = atomic_inc_return(&tbl->entries) - 1;
255         if (entries >= tbl->gc_thresh3 ||
256             (entries >= tbl->gc_thresh2 &&
257              time_after(now, tbl->last_flush + 5 * HZ))) {
258                 if (!neigh_forced_gc(tbl) &&
259                     entries >= tbl->gc_thresh3)
260                         goto out_entries;
261         }
262
263         n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
264         if (!n)
265                 goto out_entries;
266
267         skb_queue_head_init(&n->arp_queue);
268         rwlock_init(&n->lock);
269         n->updated        = n->used = now;
270         n->nud_state      = NUD_NONE;
271         n->output         = neigh_blackhole;
272         n->parms          = neigh_parms_clone(&tbl->parms);
273         init_timer(&n->timer);
274         n->timer.function = neigh_timer_handler;
275         n->timer.data     = (unsigned long)n;
276
277         NEIGH_CACHE_STAT_INC(tbl, allocs);
278         n->tbl            = tbl;
279         atomic_set(&n->refcnt, 1);
280         n->dead           = 1;
281 out:
282         return n;
283
284 out_entries:
285         atomic_dec(&tbl->entries);
286         goto out;
287 }
288
289 static struct neighbour **neigh_hash_alloc(unsigned int entries)
290 {
291         unsigned long size = entries * sizeof(struct neighbour *);
292         struct neighbour **ret;
293
294         if (size <= PAGE_SIZE) {
295                 ret = kzalloc(size, GFP_ATOMIC);
296         } else {
297                 ret = (struct neighbour **)
298                       __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
299         }
300         return ret;
301 }
302
303 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
304 {
305         unsigned long size = entries * sizeof(struct neighbour *);
306
307         if (size <= PAGE_SIZE)
308                 kfree(hash);
309         else
310                 free_pages((unsigned long)hash, get_order(size));
311 }
312
313 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
314 {
315         struct neighbour **new_hash, **old_hash;
316         unsigned int i, new_hash_mask, old_entries;
317
318         NEIGH_CACHE_STAT_INC(tbl, hash_grows);
319
320         BUG_ON(!is_power_of_2(new_entries));
321         new_hash = neigh_hash_alloc(new_entries);
322         if (!new_hash)
323                 return;
324
325         old_entries = tbl->hash_mask + 1;
326         new_hash_mask = new_entries - 1;
327         old_hash = tbl->hash_buckets;
328
329         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
330         for (i = 0; i < old_entries; i++) {
331                 struct neighbour *n, *next;
332
333                 for (n = old_hash[i]; n; n = next) {
334                         unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
335
336                         hash_val &= new_hash_mask;
337                         next = n->next;
338
339                         n->next = new_hash[hash_val];
340                         new_hash[hash_val] = n;
341                 }
342         }
343         tbl->hash_buckets = new_hash;
344         tbl->hash_mask = new_hash_mask;
345
346         neigh_hash_free(old_hash, old_entries);
347 }
348
349 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
350                                struct net_device *dev)
351 {
352         struct neighbour *n;
353         int key_len = tbl->key_len;
354         u32 hash_val = tbl->hash(pkey, dev);
355
356         NEIGH_CACHE_STAT_INC(tbl, lookups);
357
358         read_lock_bh(&tbl->lock);
359         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
360                 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
361                         neigh_hold(n);
362                         NEIGH_CACHE_STAT_INC(tbl, hits);
363                         break;
364                 }
365         }
366         read_unlock_bh(&tbl->lock);
367         return n;
368 }
369
370 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
371 {
372         struct neighbour *n;
373         int key_len = tbl->key_len;
374         u32 hash_val = tbl->hash(pkey, NULL);
375
376         NEIGH_CACHE_STAT_INC(tbl, lookups);
377
378         read_lock_bh(&tbl->lock);
379         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
380                 if (!memcmp(n->primary_key, pkey, key_len)) {
381                         neigh_hold(n);
382                         NEIGH_CACHE_STAT_INC(tbl, hits);
383                         break;
384                 }
385         }
386         read_unlock_bh(&tbl->lock);
387         return n;
388 }
389
390 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
391                                struct net_device *dev)
392 {
393         u32 hash_val;
394         int key_len = tbl->key_len;
395         int error;
396         struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
397
398         if (!n) {
399                 rc = ERR_PTR(-ENOBUFS);
400                 goto out;
401         }
402
403         memcpy(n->primary_key, pkey, key_len);
404         n->dev = dev;
405         dev_hold(dev);
406
407         /* Protocol specific setup. */
408         if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
409                 rc = ERR_PTR(error);
410                 goto out_neigh_release;
411         }
412
413         /* Device specific setup. */
414         if (n->parms->neigh_setup &&
415             (error = n->parms->neigh_setup(n)) < 0) {
416                 rc = ERR_PTR(error);
417                 goto out_neigh_release;
418         }
419
420         n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
421
422         write_lock_bh(&tbl->lock);
423
424         if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
425                 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
426
427         hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
428
429         if (n->parms->dead) {
430                 rc = ERR_PTR(-EINVAL);
431                 goto out_tbl_unlock;
432         }
433
434         for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
435                 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
436                         neigh_hold(n1);
437                         rc = n1;
438                         goto out_tbl_unlock;
439                 }
440         }
441
442         n->next = tbl->hash_buckets[hash_val];
443         tbl->hash_buckets[hash_val] = n;
444         n->dead = 0;
445         neigh_hold(n);
446         write_unlock_bh(&tbl->lock);
447         NEIGH_PRINTK2("neigh %p is created.\n", n);
448         rc = n;
449 out:
450         return rc;
451 out_tbl_unlock:
452         write_unlock_bh(&tbl->lock);
453 out_neigh_release:
454         neigh_release(n);
455         goto out;
456 }
457
458 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
459                                     struct net_device *dev, int creat)
460 {
461         struct pneigh_entry *n;
462         int key_len = tbl->key_len;
463         u32 hash_val = *(u32 *)(pkey + key_len - 4);
464
465         hash_val ^= (hash_val >> 16);
466         hash_val ^= hash_val >> 8;
467         hash_val ^= hash_val >> 4;
468         hash_val &= PNEIGH_HASHMASK;
469
470         read_lock_bh(&tbl->lock);
471
472         for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
473                 if (!memcmp(n->key, pkey, key_len) &&
474                     (n->dev == dev || !n->dev)) {
475                         read_unlock_bh(&tbl->lock);
476                         goto out;
477                 }
478         }
479         read_unlock_bh(&tbl->lock);
480         n = NULL;
481         if (!creat)
482                 goto out;
483
484         n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
485         if (!n)
486                 goto out;
487
488         memcpy(n->key, pkey, key_len);
489         n->dev = dev;
490         if (dev)
491                 dev_hold(dev);
492
493         if (tbl->pconstructor && tbl->pconstructor(n)) {
494                 if (dev)
495                         dev_put(dev);
496                 kfree(n);
497                 n = NULL;
498                 goto out;
499         }
500
501         write_lock_bh(&tbl->lock);
502         n->next = tbl->phash_buckets[hash_val];
503         tbl->phash_buckets[hash_val] = n;
504         write_unlock_bh(&tbl->lock);
505 out:
506         return n;
507 }
508
509
510 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
511                   struct net_device *dev)
512 {
513         struct pneigh_entry *n, **np;
514         int key_len = tbl->key_len;
515         u32 hash_val = *(u32 *)(pkey + key_len - 4);
516
517         hash_val ^= (hash_val >> 16);
518         hash_val ^= hash_val >> 8;
519         hash_val ^= hash_val >> 4;
520         hash_val &= PNEIGH_HASHMASK;
521
522         write_lock_bh(&tbl->lock);
523         for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
524              np = &n->next) {
525                 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
526                         *np = n->next;
527                         write_unlock_bh(&tbl->lock);
528                         if (tbl->pdestructor)
529                                 tbl->pdestructor(n);
530                         if (n->dev)
531                                 dev_put(n->dev);
532                         kfree(n);
533                         return 0;
534                 }
535         }
536         write_unlock_bh(&tbl->lock);
537         return -ENOENT;
538 }
539
540 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
541 {
542         struct pneigh_entry *n, **np;
543         u32 h;
544
545         for (h = 0; h <= PNEIGH_HASHMASK; h++) {
546                 np = &tbl->phash_buckets[h];
547                 while ((n = *np) != NULL) {
548                         if (!dev || n->dev == dev) {
549                                 *np = n->next;
550                                 if (tbl->pdestructor)
551                                         tbl->pdestructor(n);
552                                 if (n->dev)
553                                         dev_put(n->dev);
554                                 kfree(n);
555                                 continue;
556                         }
557                         np = &n->next;
558                 }
559         }
560         return -ENOENT;
561 }
562
563
564 /*
565  *      neighbour must already be out of the table;
566  *
567  */
568 void neigh_destroy(struct neighbour *neigh)
569 {
570         struct hh_cache *hh;
571
572         NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
573
574         if (!neigh->dead) {
575                 printk(KERN_WARNING
576                        "Destroying alive neighbour %p\n", neigh);
577                 dump_stack();
578                 return;
579         }
580
581         if (neigh_del_timer(neigh))
582                 printk(KERN_WARNING "Impossible event.\n");
583
584         while ((hh = neigh->hh) != NULL) {
585                 neigh->hh = hh->hh_next;
586                 hh->hh_next = NULL;
587
588                 write_seqlock_bh(&hh->hh_lock);
589                 hh->hh_output = neigh_blackhole;
590                 write_sequnlock_bh(&hh->hh_lock);
591                 if (atomic_dec_and_test(&hh->hh_refcnt))
592                         kfree(hh);
593         }
594
595         skb_queue_purge(&neigh->arp_queue);
596
597         dev_put(neigh->dev);
598         neigh_parms_put(neigh->parms);
599
600         NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
601
602         atomic_dec(&neigh->tbl->entries);
603         kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
604 }
605
606 /* Neighbour state is suspicious;
607    disable fast path.
608
609    Called with write_locked neigh.
610  */
611 static void neigh_suspect(struct neighbour *neigh)
612 {
613         struct hh_cache *hh;
614
615         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
616
617         neigh->output = neigh->ops->output;
618
619         for (hh = neigh->hh; hh; hh = hh->hh_next)
620                 hh->hh_output = neigh->ops->output;
621 }
622
623 /* Neighbour state is OK;
624    enable fast path.
625
626    Called with write_locked neigh.
627  */
628 static void neigh_connect(struct neighbour *neigh)
629 {
630         struct hh_cache *hh;
631
632         NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
633
634         neigh->output = neigh->ops->connected_output;
635
636         for (hh = neigh->hh; hh; hh = hh->hh_next)
637                 hh->hh_output = neigh->ops->hh_output;
638 }
639
640 static void neigh_periodic_timer(unsigned long arg)
641 {
642         struct neigh_table *tbl = (struct neigh_table *)arg;
643         struct neighbour *n, **np;
644         unsigned long expire, now = jiffies;
645
646         NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
647
648         write_lock(&tbl->lock);
649
650         /*
651          *      periodically recompute ReachableTime from random function
652          */
653
654         if (time_after(now, tbl->last_rand + 300 * HZ)) {
655                 struct neigh_parms *p;
656                 tbl->last_rand = now;
657                 for (p = &tbl->parms; p; p = p->next)
658                         p->reachable_time =
659                                 neigh_rand_reach_time(p->base_reachable_time);
660         }
661
662         np = &tbl->hash_buckets[tbl->hash_chain_gc];
663         tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
664
665         while ((n = *np) != NULL) {
666                 unsigned int state;
667
668                 write_lock(&n->lock);
669
670                 state = n->nud_state;
671                 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
672                         write_unlock(&n->lock);
673                         goto next_elt;
674                 }
675
676                 if (time_before(n->used, n->confirmed))
677                         n->used = n->confirmed;
678
679                 if (atomic_read(&n->refcnt) == 1 &&
680                     (state == NUD_FAILED ||
681                      time_after(now, n->used + n->parms->gc_staletime))) {
682                         *np = n->next;
683                         n->dead = 1;
684                         write_unlock(&n->lock);
685                         neigh_cleanup_and_release(n);
686                         continue;
687                 }
688                 write_unlock(&n->lock);
689
690 next_elt:
691                 np = &n->next;
692         }
693
694         /* Cycle through all hash buckets every base_reachable_time/2 ticks.
695          * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
696          * base_reachable_time.
697          */
698         expire = tbl->parms.base_reachable_time >> 1;
699         expire /= (tbl->hash_mask + 1);
700         if (!expire)
701                 expire = 1;
702
703         if (expire>HZ)
704                 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
705         else
706                 mod_timer(&tbl->gc_timer, now + expire);
707
708         write_unlock(&tbl->lock);
709 }
710
711 static __inline__ int neigh_max_probes(struct neighbour *n)
712 {
713         struct neigh_parms *p = n->parms;
714         return (n->nud_state & NUD_PROBE ?
715                 p->ucast_probes :
716                 p->ucast_probes + p->app_probes + p->mcast_probes);
717 }
718
719 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
720 {
721         if (unlikely(mod_timer(&n->timer, when))) {
722                 printk("NEIGH: BUG, double timer add, state is %x\n",
723                        n->nud_state);
724                 dump_stack();
725         }
726 }
727
728 /* Called when a timer expires for a neighbour entry. */
729
730 static void neigh_timer_handler(unsigned long arg)
731 {
732         unsigned long now, next;
733         struct neighbour *neigh = (struct neighbour *)arg;
734         unsigned state;
735         int notify = 0;
736
737         write_lock(&neigh->lock);
738
739         state = neigh->nud_state;
740         now = jiffies;
741         next = now + HZ;
742
743         if (!(state & NUD_IN_TIMER)) {
744 #ifndef CONFIG_SMP
745                 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
746 #endif
747                 goto out;
748         }
749
750         if (state & NUD_REACHABLE) {
751                 if (time_before_eq(now,
752                                    neigh->confirmed + neigh->parms->reachable_time)) {
753                         NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
754                         next = neigh->confirmed + neigh->parms->reachable_time;
755                 } else if (time_before_eq(now,
756                                           neigh->used + neigh->parms->delay_probe_time)) {
757                         NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
758                         neigh->nud_state = NUD_DELAY;
759                         neigh->updated = jiffies;
760                         neigh_suspect(neigh);
761                         next = now + neigh->parms->delay_probe_time;
762                 } else {
763                         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
764                         neigh->nud_state = NUD_STALE;
765                         neigh->updated = jiffies;
766                         neigh_suspect(neigh);
767                         notify = 1;
768                 }
769         } else if (state & NUD_DELAY) {
770                 if (time_before_eq(now,
771                                    neigh->confirmed + neigh->parms->delay_probe_time)) {
772                         NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
773                         neigh->nud_state = NUD_REACHABLE;
774                         neigh->updated = jiffies;
775                         neigh_connect(neigh);
776                         notify = 1;
777                         next = neigh->confirmed + neigh->parms->reachable_time;
778                 } else {
779                         NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
780                         neigh->nud_state = NUD_PROBE;
781                         neigh->updated = jiffies;
782                         atomic_set(&neigh->probes, 0);
783                         next = now + neigh->parms->retrans_time;
784                 }
785         } else {
786                 /* NUD_PROBE|NUD_INCOMPLETE */
787                 next = now + neigh->parms->retrans_time;
788         }
789
790         if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
791             atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
792                 struct sk_buff *skb;
793
794                 neigh->nud_state = NUD_FAILED;
795                 neigh->updated = jiffies;
796                 notify = 1;
797                 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
798                 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
799
800                 /* It is very thin place. report_unreachable is very complicated
801                    routine. Particularly, it can hit the same neighbour entry!
802
803                    So that, we try to be accurate and avoid dead loop. --ANK
804                  */
805                 while (neigh->nud_state == NUD_FAILED &&
806                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
807                         write_unlock(&neigh->lock);
808                         neigh->ops->error_report(neigh, skb);
809                         write_lock(&neigh->lock);
810                 }
811                 skb_queue_purge(&neigh->arp_queue);
812         }
813
814         if (neigh->nud_state & NUD_IN_TIMER) {
815                 if (time_before(next, jiffies + HZ/2))
816                         next = jiffies + HZ/2;
817                 if (!mod_timer(&neigh->timer, next))
818                         neigh_hold(neigh);
819         }
820         if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
821                 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
822                 /* keep skb alive even if arp_queue overflows */
823                 if (skb)
824                         skb_get(skb);
825                 write_unlock(&neigh->lock);
826                 neigh->ops->solicit(neigh, skb);
827                 atomic_inc(&neigh->probes);
828                 if (skb)
829                         kfree_skb(skb);
830         } else {
831 out:
832                 write_unlock(&neigh->lock);
833         }
834
835         if (notify)
836                 neigh_update_notify(neigh);
837
838         neigh_release(neigh);
839 }
840
841 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
842 {
843         int rc;
844         unsigned long now;
845
846         write_lock_bh(&neigh->lock);
847
848         rc = 0;
849         if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
850                 goto out_unlock_bh;
851
852         now = jiffies;
853
854         if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
855                 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
856                         atomic_set(&neigh->probes, neigh->parms->ucast_probes);
857                         neigh->nud_state     = NUD_INCOMPLETE;
858                         neigh->updated = jiffies;
859                         neigh_hold(neigh);
860                         neigh_add_timer(neigh, now + 1);
861                 } else {
862                         neigh->nud_state = NUD_FAILED;
863                         neigh->updated = jiffies;
864                         write_unlock_bh(&neigh->lock);
865
866                         if (skb)
867                                 kfree_skb(skb);
868                         return 1;
869                 }
870         } else if (neigh->nud_state & NUD_STALE) {
871                 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
872                 neigh_hold(neigh);
873                 neigh->nud_state = NUD_DELAY;
874                 neigh->updated = jiffies;
875                 neigh_add_timer(neigh,
876                                 jiffies + neigh->parms->delay_probe_time);
877         }
878
879         if (neigh->nud_state == NUD_INCOMPLETE) {
880                 if (skb) {
881                         if (skb_queue_len(&neigh->arp_queue) >=
882                             neigh->parms->queue_len) {
883                                 struct sk_buff *buff;
884                                 buff = neigh->arp_queue.next;
885                                 __skb_unlink(buff, &neigh->arp_queue);
886                                 kfree_skb(buff);
887                         }
888                         __skb_queue_tail(&neigh->arp_queue, skb);
889                 }
890                 rc = 1;
891         }
892 out_unlock_bh:
893         write_unlock_bh(&neigh->lock);
894         return rc;
895 }
896
897 static void neigh_update_hhs(struct neighbour *neigh)
898 {
899         struct hh_cache *hh;
900         void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
901                 = neigh->dev->header_ops->cache_update;
902
903         if (update) {
904                 for (hh = neigh->hh; hh; hh = hh->hh_next) {
905                         write_seqlock_bh(&hh->hh_lock);
906                         update(hh, neigh->dev, neigh->ha);
907                         write_sequnlock_bh(&hh->hh_lock);
908                 }
909         }
910 }
911
912
913
914 /* Generic update routine.
915    -- lladdr is new lladdr or NULL, if it is not supplied.
916    -- new    is new state.
917    -- flags
918         NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
919                                 if it is different.
920         NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
921                                 lladdr instead of overriding it
922                                 if it is different.
923                                 It also allows to retain current state
924                                 if lladdr is unchanged.
925         NEIGH_UPDATE_F_ADMIN    means that the change is administrative.
926
927         NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
928                                 NTF_ROUTER flag.
929         NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
930                                 a router.
931
932    Caller MUST hold reference count on the entry.
933  */
934
935 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
936                  u32 flags)
937 {
938         u8 old;
939         int err;
940         int notify = 0;
941         struct net_device *dev;
942         int update_isrouter = 0;
943
944         write_lock_bh(&neigh->lock);
945
946         dev    = neigh->dev;
947         old    = neigh->nud_state;
948         err    = -EPERM;
949
950         if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
951             (old & (NUD_NOARP | NUD_PERMANENT)))
952                 goto out;
953
954         if (!(new & NUD_VALID)) {
955                 neigh_del_timer(neigh);
956                 if (old & NUD_CONNECTED)
957                         neigh_suspect(neigh);
958                 neigh->nud_state = new;
959                 err = 0;
960                 notify = old & NUD_VALID;
961                 goto out;
962         }
963
964         /* Compare new lladdr with cached one */
965         if (!dev->addr_len) {
966                 /* First case: device needs no address. */
967                 lladdr = neigh->ha;
968         } else if (lladdr) {
969                 /* The second case: if something is already cached
970                    and a new address is proposed:
971                    - compare new & old
972                    - if they are different, check override flag
973                  */
974                 if ((old & NUD_VALID) &&
975                     !memcmp(lladdr, neigh->ha, dev->addr_len))
976                         lladdr = neigh->ha;
977         } else {
978                 /* No address is supplied; if we know something,
979                    use it, otherwise discard the request.
980                  */
981                 err = -EINVAL;
982                 if (!(old & NUD_VALID))
983                         goto out;
984                 lladdr = neigh->ha;
985         }
986
987         if (new & NUD_CONNECTED)
988                 neigh->confirmed = jiffies;
989         neigh->updated = jiffies;
990
991         /* If entry was valid and address is not changed,
992            do not change entry state, if new one is STALE.
993          */
994         err = 0;
995         update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
996         if (old & NUD_VALID) {
997                 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
998                         update_isrouter = 0;
999                         if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1000                             (old & NUD_CONNECTED)) {
1001                                 lladdr = neigh->ha;
1002                                 new = NUD_STALE;
1003                         } else
1004                                 goto out;
1005                 } else {
1006                         if (lladdr == neigh->ha && new == NUD_STALE &&
1007                             ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1008                              (old & NUD_CONNECTED))
1009                             )
1010                                 new = old;
1011                 }
1012         }
1013
1014         if (new != old) {
1015                 neigh_del_timer(neigh);
1016                 if (new & NUD_IN_TIMER) {
1017                         neigh_hold(neigh);
1018                         neigh_add_timer(neigh, (jiffies +
1019                                                 ((new & NUD_REACHABLE) ?
1020                                                  neigh->parms->reachable_time :
1021                                                  0)));
1022                 }
1023                 neigh->nud_state = new;
1024         }
1025
1026         if (lladdr != neigh->ha) {
1027                 memcpy(&neigh->ha, lladdr, dev->addr_len);
1028                 neigh_update_hhs(neigh);
1029                 if (!(new & NUD_CONNECTED))
1030                         neigh->confirmed = jiffies -
1031                                       (neigh->parms->base_reachable_time << 1);
1032                 notify = 1;
1033         }
1034         if (new == old)
1035                 goto out;
1036         if (new & NUD_CONNECTED)
1037                 neigh_connect(neigh);
1038         else
1039                 neigh_suspect(neigh);
1040         if (!(old & NUD_VALID)) {
1041                 struct sk_buff *skb;
1042
1043                 /* Again: avoid dead loop if something went wrong */
1044
1045                 while (neigh->nud_state & NUD_VALID &&
1046                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1047                         struct neighbour *n1 = neigh;
1048                         write_unlock_bh(&neigh->lock);
1049                         /* On shaper/eql skb->dst->neighbour != neigh :( */
1050                         if (skb->dst && skb->dst->neighbour)
1051                                 n1 = skb->dst->neighbour;
1052                         n1->output(skb);
1053                         write_lock_bh(&neigh->lock);
1054                 }
1055                 skb_queue_purge(&neigh->arp_queue);
1056         }
1057 out:
1058         if (update_isrouter) {
1059                 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1060                         (neigh->flags | NTF_ROUTER) :
1061                         (neigh->flags & ~NTF_ROUTER);
1062         }
1063         write_unlock_bh(&neigh->lock);
1064
1065         if (notify)
1066                 neigh_update_notify(neigh);
1067
1068         return err;
1069 }
1070
1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1072                                  u8 *lladdr, void *saddr,
1073                                  struct net_device *dev)
1074 {
1075         struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1076                                                  lladdr || !dev->addr_len);
1077         if (neigh)
1078                 neigh_update(neigh, lladdr, NUD_STALE,
1079                              NEIGH_UPDATE_F_OVERRIDE);
1080         return neigh;
1081 }
1082
1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1084                           __be16 protocol)
1085 {
1086         struct hh_cache *hh;
1087         struct net_device *dev = dst->dev;
1088
1089         for (hh = n->hh; hh; hh = hh->hh_next)
1090                 if (hh->hh_type == protocol)
1091                         break;
1092
1093         if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1094                 seqlock_init(&hh->hh_lock);
1095                 hh->hh_type = protocol;
1096                 atomic_set(&hh->hh_refcnt, 0);
1097                 hh->hh_next = NULL;
1098
1099                 if (dev->header_ops->cache(n, hh)) {
1100                         kfree(hh);
1101                         hh = NULL;
1102                 } else {
1103                         atomic_inc(&hh->hh_refcnt);
1104                         hh->hh_next = n->hh;
1105                         n->hh       = hh;
1106                         if (n->nud_state & NUD_CONNECTED)
1107                                 hh->hh_output = n->ops->hh_output;
1108                         else
1109                                 hh->hh_output = n->ops->output;
1110                 }
1111         }
1112         if (hh) {
1113                 atomic_inc(&hh->hh_refcnt);
1114                 dst->hh = hh;
1115         }
1116 }
1117
1118 /* This function can be used in contexts, where only old dev_queue_xmit
1119    worked, f.e. if you want to override normal output path (eql, shaper),
1120    but resolution is not made yet.
1121  */
1122
1123 int neigh_compat_output(struct sk_buff *skb)
1124 {
1125         struct net_device *dev = skb->dev;
1126
1127         __skb_pull(skb, skb_network_offset(skb));
1128
1129         if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1130                             skb->len) < 0 &&
1131             dev->header_ops->rebuild(skb))
1132                 return 0;
1133
1134         return dev_queue_xmit(skb);
1135 }
1136
1137 /* Slow and careful. */
1138
1139 int neigh_resolve_output(struct sk_buff *skb)
1140 {
1141         struct dst_entry *dst = skb->dst;
1142         struct neighbour *neigh;
1143         int rc = 0;
1144
1145         if (!dst || !(neigh = dst->neighbour))
1146                 goto discard;
1147
1148         __skb_pull(skb, skb_network_offset(skb));
1149
1150         if (!neigh_event_send(neigh, skb)) {
1151                 int err;
1152                 struct net_device *dev = neigh->dev;
1153                 if (dev->header_ops->cache && !dst->hh) {
1154                         write_lock_bh(&neigh->lock);
1155                         if (!dst->hh)
1156                                 neigh_hh_init(neigh, dst, dst->ops->protocol);
1157                         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1158                                               neigh->ha, NULL, skb->len);
1159                         write_unlock_bh(&neigh->lock);
1160                 } else {
1161                         read_lock_bh(&neigh->lock);
1162                         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1163                                               neigh->ha, NULL, skb->len);
1164                         read_unlock_bh(&neigh->lock);
1165                 }
1166                 if (err >= 0)
1167                         rc = neigh->ops->queue_xmit(skb);
1168                 else
1169                         goto out_kfree_skb;
1170         }
1171 out:
1172         return rc;
1173 discard:
1174         NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1175                       dst, dst ? dst->neighbour : NULL);
1176 out_kfree_skb:
1177         rc = -EINVAL;
1178         kfree_skb(skb);
1179         goto out;
1180 }
1181
1182 /* As fast as possible without hh cache */
1183
1184 int neigh_connected_output(struct sk_buff *skb)
1185 {
1186         int err;
1187         struct dst_entry *dst = skb->dst;
1188         struct neighbour *neigh = dst->neighbour;
1189         struct net_device *dev = neigh->dev;
1190
1191         __skb_pull(skb, skb_network_offset(skb));
1192
1193         read_lock_bh(&neigh->lock);
1194         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1195                               neigh->ha, NULL, skb->len);
1196         read_unlock_bh(&neigh->lock);
1197         if (err >= 0)
1198                 err = neigh->ops->queue_xmit(skb);
1199         else {
1200                 err = -EINVAL;
1201                 kfree_skb(skb);
1202         }
1203         return err;
1204 }
1205
1206 static void neigh_proxy_process(unsigned long arg)
1207 {
1208         struct neigh_table *tbl = (struct neigh_table *)arg;
1209         long sched_next = 0;
1210         unsigned long now = jiffies;
1211         struct sk_buff *skb;
1212
1213         spin_lock(&tbl->proxy_queue.lock);
1214
1215         skb = tbl->proxy_queue.next;
1216
1217         while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1218                 struct sk_buff *back = skb;
1219                 long tdif = NEIGH_CB(back)->sched_next - now;
1220
1221                 skb = skb->next;
1222                 if (tdif <= 0) {
1223                         struct net_device *dev = back->dev;
1224                         __skb_unlink(back, &tbl->proxy_queue);
1225                         if (tbl->proxy_redo && netif_running(dev))
1226                                 tbl->proxy_redo(back);
1227                         else
1228                                 kfree_skb(back);
1229
1230                         dev_put(dev);
1231                 } else if (!sched_next || tdif < sched_next)
1232                         sched_next = tdif;
1233         }
1234         del_timer(&tbl->proxy_timer);
1235         if (sched_next)
1236                 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1237         spin_unlock(&tbl->proxy_queue.lock);
1238 }
1239
1240 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1241                     struct sk_buff *skb)
1242 {
1243         unsigned long now = jiffies;
1244         unsigned long sched_next = now + (net_random() % p->proxy_delay);
1245
1246         if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1247                 kfree_skb(skb);
1248                 return;
1249         }
1250
1251         NEIGH_CB(skb)->sched_next = sched_next;
1252         NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1253
1254         spin_lock(&tbl->proxy_queue.lock);
1255         if (del_timer(&tbl->proxy_timer)) {
1256                 if (time_before(tbl->proxy_timer.expires, sched_next))
1257                         sched_next = tbl->proxy_timer.expires;
1258         }
1259         dst_release(skb->dst);
1260         skb->dst = NULL;
1261         dev_hold(skb->dev);
1262         __skb_queue_tail(&tbl->proxy_queue, skb);
1263         mod_timer(&tbl->proxy_timer, sched_next);
1264         spin_unlock(&tbl->proxy_queue.lock);
1265 }
1266
1267
1268 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1269                                       struct neigh_table *tbl)
1270 {
1271         struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1272
1273         if (p) {
1274                 p->tbl            = tbl;
1275                 atomic_set(&p->refcnt, 1);
1276                 INIT_RCU_HEAD(&p->rcu_head);
1277                 p->reachable_time =
1278                                 neigh_rand_reach_time(p->base_reachable_time);
1279                 if (dev) {
1280                         if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1281                                 kfree(p);
1282                                 return NULL;
1283                         }
1284
1285                         dev_hold(dev);
1286                         p->dev = dev;
1287                 }
1288                 p->sysctl_table = NULL;
1289                 write_lock_bh(&tbl->lock);
1290                 p->next         = tbl->parms.next;
1291                 tbl->parms.next = p;
1292                 write_unlock_bh(&tbl->lock);
1293         }
1294         return p;
1295 }
1296
1297 static void neigh_rcu_free_parms(struct rcu_head *head)
1298 {
1299         struct neigh_parms *parms =
1300                 container_of(head, struct neigh_parms, rcu_head);
1301
1302         neigh_parms_put(parms);
1303 }
1304
1305 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1306 {
1307         struct neigh_parms **p;
1308
1309         if (!parms || parms == &tbl->parms)
1310                 return;
1311         write_lock_bh(&tbl->lock);
1312         for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1313                 if (*p == parms) {
1314                         *p = parms->next;
1315                         parms->dead = 1;
1316                         write_unlock_bh(&tbl->lock);
1317                         if (parms->dev)
1318                                 dev_put(parms->dev);
1319                         call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1320                         return;
1321                 }
1322         }
1323         write_unlock_bh(&tbl->lock);
1324         NEIGH_PRINTK1("neigh_parms_release: not found\n");
1325 }
1326
1327 void neigh_parms_destroy(struct neigh_parms *parms)
1328 {
1329         kfree(parms);
1330 }
1331
1332 static struct lock_class_key neigh_table_proxy_queue_class;
1333
1334 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1335 {
1336         unsigned long now = jiffies;
1337         unsigned long phsize;
1338
1339         atomic_set(&tbl->parms.refcnt, 1);
1340         INIT_RCU_HEAD(&tbl->parms.rcu_head);
1341         tbl->parms.reachable_time =
1342                           neigh_rand_reach_time(tbl->parms.base_reachable_time);
1343
1344         if (!tbl->kmem_cachep)
1345                 tbl->kmem_cachep =
1346                         kmem_cache_create(tbl->id, tbl->entry_size, 0,
1347                                           SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1348                                           NULL);
1349         tbl->stats = alloc_percpu(struct neigh_statistics);
1350         if (!tbl->stats)
1351                 panic("cannot create neighbour cache statistics");
1352
1353 #ifdef CONFIG_PROC_FS
1354         tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1355         if (!tbl->pde)
1356                 panic("cannot create neighbour proc dir entry");
1357         tbl->pde->proc_fops = &neigh_stat_seq_fops;
1358         tbl->pde->data = tbl;
1359 #endif
1360
1361         tbl->hash_mask = 1;
1362         tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1363
1364         phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1365         tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1366
1367         if (!tbl->hash_buckets || !tbl->phash_buckets)
1368                 panic("cannot allocate neighbour cache hashes");
1369
1370         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1371
1372         rwlock_init(&tbl->lock);
1373         init_timer(&tbl->gc_timer);
1374         tbl->gc_timer.data     = (unsigned long)tbl;
1375         tbl->gc_timer.function = neigh_periodic_timer;
1376         tbl->gc_timer.expires  = now + 1;
1377         add_timer(&tbl->gc_timer);
1378
1379         init_timer(&tbl->proxy_timer);
1380         tbl->proxy_timer.data     = (unsigned long)tbl;
1381         tbl->proxy_timer.function = neigh_proxy_process;
1382         skb_queue_head_init_class(&tbl->proxy_queue,
1383                         &neigh_table_proxy_queue_class);
1384
1385         tbl->last_flush = now;
1386         tbl->last_rand  = now + tbl->parms.reachable_time * 20;
1387 }
1388
1389 void neigh_table_init(struct neigh_table *tbl)
1390 {
1391         struct neigh_table *tmp;
1392
1393         neigh_table_init_no_netlink(tbl);
1394         write_lock(&neigh_tbl_lock);
1395         for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1396                 if (tmp->family == tbl->family)
1397                         break;
1398         }
1399         tbl->next       = neigh_tables;
1400         neigh_tables    = tbl;
1401         write_unlock(&neigh_tbl_lock);
1402
1403         if (unlikely(tmp)) {
1404                 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1405                        "family %d\n", tbl->family);
1406                 dump_stack();
1407         }
1408 }
1409
1410 int neigh_table_clear(struct neigh_table *tbl)
1411 {
1412         struct neigh_table **tp;
1413
1414         /* It is not clean... Fix it to unload IPv6 module safely */
1415         del_timer_sync(&tbl->gc_timer);
1416         del_timer_sync(&tbl->proxy_timer);
1417         pneigh_queue_purge(&tbl->proxy_queue);
1418         neigh_ifdown(tbl, NULL);
1419         if (atomic_read(&tbl->entries))
1420                 printk(KERN_CRIT "neighbour leakage\n");
1421         write_lock(&neigh_tbl_lock);
1422         for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1423                 if (*tp == tbl) {
1424                         *tp = tbl->next;
1425                         break;
1426                 }
1427         }
1428         write_unlock(&neigh_tbl_lock);
1429
1430         neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1431         tbl->hash_buckets = NULL;
1432
1433         kfree(tbl->phash_buckets);
1434         tbl->phash_buckets = NULL;
1435
1436         free_percpu(tbl->stats);
1437         tbl->stats = NULL;
1438
1439         return 0;
1440 }
1441
1442 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1443 {
1444         struct net *net = skb->sk->sk_net;
1445         struct ndmsg *ndm;
1446         struct nlattr *dst_attr;
1447         struct neigh_table *tbl;
1448         struct net_device *dev = NULL;
1449         int err = -EINVAL;
1450
1451         if (nlmsg_len(nlh) < sizeof(*ndm))
1452                 goto out;
1453
1454         dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1455         if (dst_attr == NULL)
1456                 goto out;
1457
1458         ndm = nlmsg_data(nlh);
1459         if (ndm->ndm_ifindex) {
1460                 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1461                 if (dev == NULL) {
1462                         err = -ENODEV;
1463                         goto out;
1464                 }
1465         }
1466
1467         read_lock(&neigh_tbl_lock);
1468         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1469                 struct neighbour *neigh;
1470
1471                 if (tbl->family != ndm->ndm_family)
1472                         continue;
1473                 read_unlock(&neigh_tbl_lock);
1474
1475                 if (nla_len(dst_attr) < tbl->key_len)
1476                         goto out_dev_put;
1477
1478                 if (ndm->ndm_flags & NTF_PROXY) {
1479                         err = pneigh_delete(tbl, nla_data(dst_attr), dev);
1480                         goto out_dev_put;
1481                 }
1482
1483                 if (dev == NULL)
1484                         goto out_dev_put;
1485
1486                 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1487                 if (neigh == NULL) {
1488                         err = -ENOENT;
1489                         goto out_dev_put;
1490                 }
1491
1492                 err = neigh_update(neigh, NULL, NUD_FAILED,
1493                                    NEIGH_UPDATE_F_OVERRIDE |
1494                                    NEIGH_UPDATE_F_ADMIN);
1495                 neigh_release(neigh);
1496                 goto out_dev_put;
1497         }
1498         read_unlock(&neigh_tbl_lock);
1499         err = -EAFNOSUPPORT;
1500
1501 out_dev_put:
1502         if (dev)
1503                 dev_put(dev);
1504 out:
1505         return err;
1506 }
1507
1508 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1509 {
1510         struct net *net = skb->sk->sk_net;
1511         struct ndmsg *ndm;
1512         struct nlattr *tb[NDA_MAX+1];
1513         struct neigh_table *tbl;
1514         struct net_device *dev = NULL;
1515         int err;
1516
1517         err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1518         if (err < 0)
1519                 goto out;
1520
1521         err = -EINVAL;
1522         if (tb[NDA_DST] == NULL)
1523                 goto out;
1524
1525         ndm = nlmsg_data(nlh);
1526         if (ndm->ndm_ifindex) {
1527                 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1528                 if (dev == NULL) {
1529                         err = -ENODEV;
1530                         goto out;
1531                 }
1532
1533                 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1534                         goto out_dev_put;
1535         }
1536
1537         read_lock(&neigh_tbl_lock);
1538         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1539                 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1540                 struct neighbour *neigh;
1541                 void *dst, *lladdr;
1542
1543                 if (tbl->family != ndm->ndm_family)
1544                         continue;
1545                 read_unlock(&neigh_tbl_lock);
1546
1547                 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1548                         goto out_dev_put;
1549                 dst = nla_data(tb[NDA_DST]);
1550                 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1551
1552                 if (ndm->ndm_flags & NTF_PROXY) {
1553                         struct pneigh_entry *pn;
1554
1555                         err = -ENOBUFS;
1556                         pn = pneigh_lookup(tbl, dst, dev, 1);
1557                         if (pn) {
1558                                 pn->flags = ndm->ndm_flags;
1559                                 err = 0;
1560                         }
1561                         goto out_dev_put;
1562                 }
1563
1564                 if (dev == NULL)
1565                         goto out_dev_put;
1566
1567                 neigh = neigh_lookup(tbl, dst, dev);
1568                 if (neigh == NULL) {
1569                         if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1570                                 err = -ENOENT;
1571                                 goto out_dev_put;
1572                         }
1573
1574                         neigh = __neigh_lookup_errno(tbl, dst, dev);
1575                         if (IS_ERR(neigh)) {
1576                                 err = PTR_ERR(neigh);
1577                                 goto out_dev_put;
1578                         }
1579                 } else {
1580                         if (nlh->nlmsg_flags & NLM_F_EXCL) {
1581                                 err = -EEXIST;
1582                                 neigh_release(neigh);
1583                                 goto out_dev_put;
1584                         }
1585
1586                         if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1587                                 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1588                 }
1589
1590                 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1591                 neigh_release(neigh);
1592                 goto out_dev_put;
1593         }
1594
1595         read_unlock(&neigh_tbl_lock);
1596         err = -EAFNOSUPPORT;
1597
1598 out_dev_put:
1599         if (dev)
1600                 dev_put(dev);
1601 out:
1602         return err;
1603 }
1604
1605 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1606 {
1607         struct nlattr *nest;
1608
1609         nest = nla_nest_start(skb, NDTA_PARMS);
1610         if (nest == NULL)
1611                 return -ENOBUFS;
1612
1613         if (parms->dev)
1614                 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1615
1616         NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1617         NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1618         NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1619         NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1620         NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1621         NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1622         NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1623         NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1624                       parms->base_reachable_time);
1625         NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1626         NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1627         NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1628         NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1629         NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1630         NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1631
1632         return nla_nest_end(skb, nest);
1633
1634 nla_put_failure:
1635         return nla_nest_cancel(skb, nest);
1636 }
1637
1638 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1639                               u32 pid, u32 seq, int type, int flags)
1640 {
1641         struct nlmsghdr *nlh;
1642         struct ndtmsg *ndtmsg;
1643
1644         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1645         if (nlh == NULL)
1646                 return -EMSGSIZE;
1647
1648         ndtmsg = nlmsg_data(nlh);
1649
1650         read_lock_bh(&tbl->lock);
1651         ndtmsg->ndtm_family = tbl->family;
1652         ndtmsg->ndtm_pad1   = 0;
1653         ndtmsg->ndtm_pad2   = 0;
1654
1655         NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1656         NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1657         NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1658         NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1659         NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1660
1661         {
1662                 unsigned long now = jiffies;
1663                 unsigned int flush_delta = now - tbl->last_flush;
1664                 unsigned int rand_delta = now - tbl->last_rand;
1665
1666                 struct ndt_config ndc = {
1667                         .ndtc_key_len           = tbl->key_len,
1668                         .ndtc_entry_size        = tbl->entry_size,
1669                         .ndtc_entries           = atomic_read(&tbl->entries),
1670                         .ndtc_last_flush        = jiffies_to_msecs(flush_delta),
1671                         .ndtc_last_rand         = jiffies_to_msecs(rand_delta),
1672                         .ndtc_hash_rnd          = tbl->hash_rnd,
1673                         .ndtc_hash_mask         = tbl->hash_mask,
1674                         .ndtc_hash_chain_gc     = tbl->hash_chain_gc,
1675                         .ndtc_proxy_qlen        = tbl->proxy_queue.qlen,
1676                 };
1677
1678                 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1679         }
1680
1681         {
1682                 int cpu;
1683                 struct ndt_stats ndst;
1684
1685                 memset(&ndst, 0, sizeof(ndst));
1686
1687                 for_each_possible_cpu(cpu) {
1688                         struct neigh_statistics *st;
1689
1690                         st = per_cpu_ptr(tbl->stats, cpu);
1691                         ndst.ndts_allocs                += st->allocs;
1692                         ndst.ndts_destroys              += st->destroys;
1693                         ndst.ndts_hash_grows            += st->hash_grows;
1694                         ndst.ndts_res_failed            += st->res_failed;
1695                         ndst.ndts_lookups               += st->lookups;
1696                         ndst.ndts_hits                  += st->hits;
1697                         ndst.ndts_rcv_probes_mcast      += st->rcv_probes_mcast;
1698                         ndst.ndts_rcv_probes_ucast      += st->rcv_probes_ucast;
1699                         ndst.ndts_periodic_gc_runs      += st->periodic_gc_runs;
1700                         ndst.ndts_forced_gc_runs        += st->forced_gc_runs;
1701                 }
1702
1703                 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1704         }
1705
1706         BUG_ON(tbl->parms.dev);
1707         if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1708                 goto nla_put_failure;
1709
1710         read_unlock_bh(&tbl->lock);
1711         return nlmsg_end(skb, nlh);
1712
1713 nla_put_failure:
1714         read_unlock_bh(&tbl->lock);
1715         nlmsg_cancel(skb, nlh);
1716         return -EMSGSIZE;
1717 }
1718
1719 static int neightbl_fill_param_info(struct sk_buff *skb,
1720                                     struct neigh_table *tbl,
1721                                     struct neigh_parms *parms,
1722                                     u32 pid, u32 seq, int type,
1723                                     unsigned int flags)
1724 {
1725         struct ndtmsg *ndtmsg;
1726         struct nlmsghdr *nlh;
1727
1728         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1729         if (nlh == NULL)
1730                 return -EMSGSIZE;
1731
1732         ndtmsg = nlmsg_data(nlh);
1733
1734         read_lock_bh(&tbl->lock);
1735         ndtmsg->ndtm_family = tbl->family;
1736         ndtmsg->ndtm_pad1   = 0;
1737         ndtmsg->ndtm_pad2   = 0;
1738
1739         if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1740             neightbl_fill_parms(skb, parms) < 0)
1741                 goto errout;
1742
1743         read_unlock_bh(&tbl->lock);
1744         return nlmsg_end(skb, nlh);
1745 errout:
1746         read_unlock_bh(&tbl->lock);
1747         nlmsg_cancel(skb, nlh);
1748         return -EMSGSIZE;
1749 }
1750
1751 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1752                                                       int ifindex)
1753 {
1754         struct neigh_parms *p;
1755
1756         for (p = &tbl->parms; p; p = p->next)
1757                 if ((p->dev && p->dev->ifindex == ifindex) ||
1758                     (!p->dev && !ifindex))
1759                         return p;
1760
1761         return NULL;
1762 }
1763
1764 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1765         [NDTA_NAME]             = { .type = NLA_STRING },
1766         [NDTA_THRESH1]          = { .type = NLA_U32 },
1767         [NDTA_THRESH2]          = { .type = NLA_U32 },
1768         [NDTA_THRESH3]          = { .type = NLA_U32 },
1769         [NDTA_GC_INTERVAL]      = { .type = NLA_U64 },
1770         [NDTA_PARMS]            = { .type = NLA_NESTED },
1771 };
1772
1773 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1774         [NDTPA_IFINDEX]                 = { .type = NLA_U32 },
1775         [NDTPA_QUEUE_LEN]               = { .type = NLA_U32 },
1776         [NDTPA_PROXY_QLEN]              = { .type = NLA_U32 },
1777         [NDTPA_APP_PROBES]              = { .type = NLA_U32 },
1778         [NDTPA_UCAST_PROBES]            = { .type = NLA_U32 },
1779         [NDTPA_MCAST_PROBES]            = { .type = NLA_U32 },
1780         [NDTPA_BASE_REACHABLE_TIME]     = { .type = NLA_U64 },
1781         [NDTPA_GC_STALETIME]            = { .type = NLA_U64 },
1782         [NDTPA_DELAY_PROBE_TIME]        = { .type = NLA_U64 },
1783         [NDTPA_RETRANS_TIME]            = { .type = NLA_U64 },
1784         [NDTPA_ANYCAST_DELAY]           = { .type = NLA_U64 },
1785         [NDTPA_PROXY_DELAY]             = { .type = NLA_U64 },
1786         [NDTPA_LOCKTIME]                = { .type = NLA_U64 },
1787 };
1788
1789 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1790 {
1791         struct neigh_table *tbl;
1792         struct ndtmsg *ndtmsg;
1793         struct nlattr *tb[NDTA_MAX+1];
1794         int err;
1795
1796         err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1797                           nl_neightbl_policy);
1798         if (err < 0)
1799                 goto errout;
1800
1801         if (tb[NDTA_NAME] == NULL) {
1802                 err = -EINVAL;
1803                 goto errout;
1804         }
1805
1806         ndtmsg = nlmsg_data(nlh);
1807         read_lock(&neigh_tbl_lock);
1808         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1809                 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1810                         continue;
1811
1812                 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1813                         break;
1814         }
1815
1816         if (tbl == NULL) {
1817                 err = -ENOENT;
1818                 goto errout_locked;
1819         }
1820
1821         /*
1822          * We acquire tbl->lock to be nice to the periodic timers and
1823          * make sure they always see a consistent set of values.
1824          */
1825         write_lock_bh(&tbl->lock);
1826
1827         if (tb[NDTA_PARMS]) {
1828                 struct nlattr *tbp[NDTPA_MAX+1];
1829                 struct neigh_parms *p;
1830                 int i, ifindex = 0;
1831
1832                 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1833                                        nl_ntbl_parm_policy);
1834                 if (err < 0)
1835                         goto errout_tbl_lock;
1836
1837                 if (tbp[NDTPA_IFINDEX])
1838                         ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1839
1840                 p = lookup_neigh_params(tbl, ifindex);
1841                 if (p == NULL) {
1842                         err = -ENOENT;
1843                         goto errout_tbl_lock;
1844                 }
1845
1846                 for (i = 1; i <= NDTPA_MAX; i++) {
1847                         if (tbp[i] == NULL)
1848                                 continue;
1849
1850                         switch (i) {
1851                         case NDTPA_QUEUE_LEN:
1852                                 p->queue_len = nla_get_u32(tbp[i]);
1853                                 break;
1854                         case NDTPA_PROXY_QLEN:
1855                                 p->proxy_qlen = nla_get_u32(tbp[i]);
1856                                 break;
1857                         case NDTPA_APP_PROBES:
1858                                 p->app_probes = nla_get_u32(tbp[i]);
1859                                 break;
1860                         case NDTPA_UCAST_PROBES:
1861                                 p->ucast_probes = nla_get_u32(tbp[i]);
1862                                 break;
1863                         case NDTPA_MCAST_PROBES:
1864                                 p->mcast_probes = nla_get_u32(tbp[i]);
1865                                 break;
1866                         case NDTPA_BASE_REACHABLE_TIME:
1867                                 p->base_reachable_time = nla_get_msecs(tbp[i]);
1868                                 break;
1869                         case NDTPA_GC_STALETIME:
1870                                 p->gc_staletime = nla_get_msecs(tbp[i]);
1871                                 break;
1872                         case NDTPA_DELAY_PROBE_TIME:
1873                                 p->delay_probe_time = nla_get_msecs(tbp[i]);
1874                                 break;
1875                         case NDTPA_RETRANS_TIME:
1876                                 p->retrans_time = nla_get_msecs(tbp[i]);
1877                                 break;
1878                         case NDTPA_ANYCAST_DELAY:
1879                                 p->anycast_delay = nla_get_msecs(tbp[i]);
1880                                 break;
1881                         case NDTPA_PROXY_DELAY:
1882                                 p->proxy_delay = nla_get_msecs(tbp[i]);
1883                                 break;
1884                         case NDTPA_LOCKTIME:
1885                                 p->locktime = nla_get_msecs(tbp[i]);
1886                                 break;
1887                         }
1888                 }
1889         }
1890
1891         if (tb[NDTA_THRESH1])
1892                 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1893
1894         if (tb[NDTA_THRESH2])
1895                 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1896
1897         if (tb[NDTA_THRESH3])
1898                 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1899
1900         if (tb[NDTA_GC_INTERVAL])
1901                 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1902
1903         err = 0;
1904
1905 errout_tbl_lock:
1906         write_unlock_bh(&tbl->lock);
1907 errout_locked:
1908         read_unlock(&neigh_tbl_lock);
1909 errout:
1910         return err;
1911 }
1912
1913 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1914 {
1915         int family, tidx, nidx = 0;
1916         int tbl_skip = cb->args[0];
1917         int neigh_skip = cb->args[1];
1918         struct neigh_table *tbl;
1919
1920         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1921
1922         read_lock(&neigh_tbl_lock);
1923         for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1924                 struct neigh_parms *p;
1925
1926                 if (tidx < tbl_skip || (family && tbl->family != family))
1927                         continue;
1928
1929                 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1930                                        cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1931                                        NLM_F_MULTI) <= 0)
1932                         break;
1933
1934                 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
1935                         if (nidx < neigh_skip)
1936                                 continue;
1937
1938                         if (neightbl_fill_param_info(skb, tbl, p,
1939                                                      NETLINK_CB(cb->skb).pid,
1940                                                      cb->nlh->nlmsg_seq,
1941                                                      RTM_NEWNEIGHTBL,
1942                                                      NLM_F_MULTI) <= 0)
1943                                 goto out;
1944                 }
1945
1946                 neigh_skip = 0;
1947         }
1948 out:
1949         read_unlock(&neigh_tbl_lock);
1950         cb->args[0] = tidx;
1951         cb->args[1] = nidx;
1952
1953         return skb->len;
1954 }
1955
1956 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1957                            u32 pid, u32 seq, int type, unsigned int flags)
1958 {
1959         unsigned long now = jiffies;
1960         struct nda_cacheinfo ci;
1961         struct nlmsghdr *nlh;
1962         struct ndmsg *ndm;
1963
1964         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1965         if (nlh == NULL)
1966                 return -EMSGSIZE;
1967
1968         ndm = nlmsg_data(nlh);
1969         ndm->ndm_family  = neigh->ops->family;
1970         ndm->ndm_pad1    = 0;
1971         ndm->ndm_pad2    = 0;
1972         ndm->ndm_flags   = neigh->flags;
1973         ndm->ndm_type    = neigh->type;
1974         ndm->ndm_ifindex = neigh->dev->ifindex;
1975
1976         NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1977
1978         read_lock_bh(&neigh->lock);
1979         ndm->ndm_state   = neigh->nud_state;
1980         if ((neigh->nud_state & NUD_VALID) &&
1981             nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
1982                 read_unlock_bh(&neigh->lock);
1983                 goto nla_put_failure;
1984         }
1985
1986         ci.ndm_used      = now - neigh->used;
1987         ci.ndm_confirmed = now - neigh->confirmed;
1988         ci.ndm_updated   = now - neigh->updated;
1989         ci.ndm_refcnt    = atomic_read(&neigh->refcnt) - 1;
1990         read_unlock_bh(&neigh->lock);
1991
1992         NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
1993         NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1994
1995         return nlmsg_end(skb, nlh);
1996
1997 nla_put_failure:
1998         nlmsg_cancel(skb, nlh);
1999         return -EMSGSIZE;
2000 }
2001
2002 static void neigh_update_notify(struct neighbour *neigh)
2003 {
2004         call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2005         __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2006 }
2007
2008 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2009                             struct netlink_callback *cb)
2010 {
2011         struct neighbour *n;
2012         int rc, h, s_h = cb->args[1];
2013         int idx, s_idx = idx = cb->args[2];
2014
2015         read_lock_bh(&tbl->lock);
2016         for (h = 0; h <= tbl->hash_mask; h++) {
2017                 if (h < s_h)
2018                         continue;
2019                 if (h > s_h)
2020                         s_idx = 0;
2021                 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
2022                         if (idx < s_idx)
2023                                 continue;
2024                         if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2025                                             cb->nlh->nlmsg_seq,
2026                                             RTM_NEWNEIGH,
2027                                             NLM_F_MULTI) <= 0) {
2028                                 read_unlock_bh(&tbl->lock);
2029                                 rc = -1;
2030                                 goto out;
2031                         }
2032                 }
2033         }
2034         read_unlock_bh(&tbl->lock);
2035         rc = skb->len;
2036 out:
2037         cb->args[1] = h;
2038         cb->args[2] = idx;
2039         return rc;
2040 }
2041
2042 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2043 {
2044         struct neigh_table *tbl;
2045         int t, family, s_t;
2046
2047         read_lock(&neigh_tbl_lock);
2048         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2049         s_t = cb->args[0];
2050
2051         for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2052                 if (t < s_t || (family && tbl->family != family))
2053                         continue;
2054                 if (t > s_t)
2055                         memset(&cb->args[1], 0, sizeof(cb->args) -
2056                                                 sizeof(cb->args[0]));
2057                 if (neigh_dump_table(tbl, skb, cb) < 0)
2058                         break;
2059         }
2060         read_unlock(&neigh_tbl_lock);
2061
2062         cb->args[0] = t;
2063         return skb->len;
2064 }
2065
2066 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2067 {
2068         int chain;
2069
2070         read_lock_bh(&tbl->lock);
2071         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2072                 struct neighbour *n;
2073
2074                 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2075                         cb(n, cookie);
2076         }
2077         read_unlock_bh(&tbl->lock);
2078 }
2079 EXPORT_SYMBOL(neigh_for_each);
2080
2081 /* The tbl->lock must be held as a writer and BH disabled. */
2082 void __neigh_for_each_release(struct neigh_table *tbl,
2083                               int (*cb)(struct neighbour *))
2084 {
2085         int chain;
2086
2087         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2088                 struct neighbour *n, **np;
2089
2090                 np = &tbl->hash_buckets[chain];
2091                 while ((n = *np) != NULL) {
2092                         int release;
2093
2094                         write_lock(&n->lock);
2095                         release = cb(n);
2096                         if (release) {
2097                                 *np = n->next;
2098                                 n->dead = 1;
2099                         } else
2100                                 np = &n->next;
2101                         write_unlock(&n->lock);
2102                         if (release)
2103                                 neigh_cleanup_and_release(n);
2104                 }
2105         }
2106 }
2107 EXPORT_SYMBOL(__neigh_for_each_release);
2108
2109 #ifdef CONFIG_PROC_FS
2110
2111 static struct neighbour *neigh_get_first(struct seq_file *seq)
2112 {
2113         struct neigh_seq_state *state = seq->private;
2114         struct neigh_table *tbl = state->tbl;
2115         struct neighbour *n = NULL;
2116         int bucket = state->bucket;
2117
2118         state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2119         for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2120                 n = tbl->hash_buckets[bucket];
2121
2122                 while (n) {
2123                         if (state->neigh_sub_iter) {
2124                                 loff_t fakep = 0;
2125                                 void *v;
2126
2127                                 v = state->neigh_sub_iter(state, n, &fakep);
2128                                 if (!v)
2129                                         goto next;
2130                         }
2131                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2132                                 break;
2133                         if (n->nud_state & ~NUD_NOARP)
2134                                 break;
2135                 next:
2136                         n = n->next;
2137                 }
2138
2139                 if (n)
2140                         break;
2141         }
2142         state->bucket = bucket;
2143
2144         return n;
2145 }
2146
2147 static struct neighbour *neigh_get_next(struct seq_file *seq,
2148                                         struct neighbour *n,
2149                                         loff_t *pos)
2150 {
2151         struct neigh_seq_state *state = seq->private;
2152         struct neigh_table *tbl = state->tbl;
2153
2154         if (state->neigh_sub_iter) {
2155                 void *v = state->neigh_sub_iter(state, n, pos);
2156                 if (v)
2157                         return n;
2158         }
2159         n = n->next;
2160
2161         while (1) {
2162                 while (n) {
2163                         if (state->neigh_sub_iter) {
2164                                 void *v = state->neigh_sub_iter(state, n, pos);
2165                                 if (v)
2166                                         return n;
2167                                 goto next;
2168                         }
2169                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2170                                 break;
2171
2172                         if (n->nud_state & ~NUD_NOARP)
2173                                 break;
2174                 next:
2175                         n = n->next;
2176                 }
2177
2178                 if (n)
2179                         break;
2180
2181                 if (++state->bucket > tbl->hash_mask)
2182                         break;
2183
2184                 n = tbl->hash_buckets[state->bucket];
2185         }
2186
2187         if (n && pos)
2188                 --(*pos);
2189         return n;
2190 }
2191
2192 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2193 {
2194         struct neighbour *n = neigh_get_first(seq);
2195
2196         if (n) {
2197                 while (*pos) {
2198                         n = neigh_get_next(seq, n, pos);
2199                         if (!n)
2200                                 break;
2201                 }
2202         }
2203         return *pos ? NULL : n;
2204 }
2205
2206 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2207 {
2208         struct neigh_seq_state *state = seq->private;
2209         struct neigh_table *tbl = state->tbl;
2210         struct pneigh_entry *pn = NULL;
2211         int bucket = state->bucket;
2212
2213         state->flags |= NEIGH_SEQ_IS_PNEIGH;
2214         for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2215                 pn = tbl->phash_buckets[bucket];
2216                 if (pn)
2217                         break;
2218         }
2219         state->bucket = bucket;
2220
2221         return pn;
2222 }
2223
2224 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2225                                             struct pneigh_entry *pn,
2226                                             loff_t *pos)
2227 {
2228         struct neigh_seq_state *state = seq->private;
2229         struct neigh_table *tbl = state->tbl;
2230
2231         pn = pn->next;
2232         while (!pn) {
2233                 if (++state->bucket > PNEIGH_HASHMASK)
2234                         break;
2235                 pn = tbl->phash_buckets[state->bucket];
2236                 if (pn)
2237                         break;
2238         }
2239
2240         if (pn && pos)
2241                 --(*pos);
2242
2243         return pn;
2244 }
2245
2246 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2247 {
2248         struct pneigh_entry *pn = pneigh_get_first(seq);
2249
2250         if (pn) {
2251                 while (*pos) {
2252                         pn = pneigh_get_next(seq, pn, pos);
2253                         if (!pn)
2254                                 break;
2255                 }
2256         }
2257         return *pos ? NULL : pn;
2258 }
2259
2260 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2261 {
2262         struct neigh_seq_state *state = seq->private;
2263         void *rc;
2264
2265         rc = neigh_get_idx(seq, pos);
2266         if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2267                 rc = pneigh_get_idx(seq, pos);
2268
2269         return rc;
2270 }
2271
2272 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2273 {
2274         struct neigh_seq_state *state = seq->private;
2275         loff_t pos_minus_one;
2276
2277         state->tbl = tbl;
2278         state->bucket = 0;
2279         state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2280
2281         read_lock_bh(&tbl->lock);
2282
2283         pos_minus_one = *pos - 1;
2284         return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2285 }
2286 EXPORT_SYMBOL(neigh_seq_start);
2287
2288 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2289 {
2290         struct neigh_seq_state *state;
2291         void *rc;
2292
2293         if (v == SEQ_START_TOKEN) {
2294                 rc = neigh_get_idx(seq, pos);
2295                 goto out;
2296         }
2297
2298         state = seq->private;
2299         if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2300                 rc = neigh_get_next(seq, v, NULL);
2301                 if (rc)
2302                         goto out;
2303                 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2304                         rc = pneigh_get_first(seq);
2305         } else {
2306                 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2307                 rc = pneigh_get_next(seq, v, NULL);
2308         }
2309 out:
2310         ++(*pos);
2311         return rc;
2312 }
2313 EXPORT_SYMBOL(neigh_seq_next);
2314
2315 void neigh_seq_stop(struct seq_file *seq, void *v)
2316 {
2317         struct neigh_seq_state *state = seq->private;
2318         struct neigh_table *tbl = state->tbl;
2319
2320         read_unlock_bh(&tbl->lock);
2321 }
2322 EXPORT_SYMBOL(neigh_seq_stop);
2323
2324 /* statistics via seq_file */
2325
2326 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2327 {
2328         struct proc_dir_entry *pde = seq->private;
2329         struct neigh_table *tbl = pde->data;
2330         int cpu;
2331
2332         if (*pos == 0)
2333                 return SEQ_START_TOKEN;
2334
2335         for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2336                 if (!cpu_possible(cpu))
2337                         continue;
2338                 *pos = cpu+1;
2339                 return per_cpu_ptr(tbl->stats, cpu);
2340         }
2341         return NULL;
2342 }
2343
2344 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2345 {
2346         struct proc_dir_entry *pde = seq->private;
2347         struct neigh_table *tbl = pde->data;
2348         int cpu;
2349
2350         for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2351                 if (!cpu_possible(cpu))
2352                         continue;
2353                 *pos = cpu+1;
2354                 return per_cpu_ptr(tbl->stats, cpu);
2355         }
2356         return NULL;
2357 }
2358
2359 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2360 {
2361
2362 }
2363
2364 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2365 {
2366         struct proc_dir_entry *pde = seq->private;
2367         struct neigh_table *tbl = pde->data;
2368         struct neigh_statistics *st = v;
2369
2370         if (v == SEQ_START_TOKEN) {
2371                 seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs\n");
2372                 return 0;
2373         }
2374
2375         seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2376                         "%08lx %08lx  %08lx %08lx\n",
2377                    atomic_read(&tbl->entries),
2378
2379                    st->allocs,
2380                    st->destroys,
2381                    st->hash_grows,
2382
2383                    st->lookups,
2384                    st->hits,
2385
2386                    st->res_failed,
2387
2388                    st->rcv_probes_mcast,
2389                    st->rcv_probes_ucast,
2390
2391                    st->periodic_gc_runs,
2392                    st->forced_gc_runs
2393                    );
2394
2395         return 0;
2396 }
2397
2398 static const struct seq_operations neigh_stat_seq_ops = {
2399         .start  = neigh_stat_seq_start,
2400         .next   = neigh_stat_seq_next,
2401         .stop   = neigh_stat_seq_stop,
2402         .show   = neigh_stat_seq_show,
2403 };
2404
2405 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2406 {
2407         int ret = seq_open(file, &neigh_stat_seq_ops);
2408
2409         if (!ret) {
2410                 struct seq_file *sf = file->private_data;
2411                 sf->private = PDE(inode);
2412         }
2413         return ret;
2414 };
2415
2416 static const struct file_operations neigh_stat_seq_fops = {
2417         .owner   = THIS_MODULE,
2418         .open    = neigh_stat_seq_open,
2419         .read    = seq_read,
2420         .llseek  = seq_lseek,
2421         .release = seq_release,
2422 };
2423
2424 #endif /* CONFIG_PROC_FS */
2425
2426 static inline size_t neigh_nlmsg_size(void)
2427 {
2428         return NLMSG_ALIGN(sizeof(struct ndmsg))
2429                + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2430                + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2431                + nla_total_size(sizeof(struct nda_cacheinfo))
2432                + nla_total_size(4); /* NDA_PROBES */
2433 }
2434
2435 static void __neigh_notify(struct neighbour *n, int type, int flags)
2436 {
2437         struct sk_buff *skb;
2438         int err = -ENOBUFS;
2439
2440         skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2441         if (skb == NULL)
2442                 goto errout;
2443
2444         err = neigh_fill_info(skb, n, 0, 0, type, flags);
2445         if (err < 0) {
2446                 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2447                 WARN_ON(err == -EMSGSIZE);
2448                 kfree_skb(skb);
2449                 goto errout;
2450         }
2451         err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2452 errout:
2453         if (err < 0)
2454                 rtnl_set_sk_err(RTNLGRP_NEIGH, err);
2455 }
2456
2457 #ifdef CONFIG_ARPD
2458 void neigh_app_ns(struct neighbour *n)
2459 {
2460         __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2461 }
2462 #endif /* CONFIG_ARPD */
2463
2464 #ifdef CONFIG_SYSCTL
2465
2466 static struct neigh_sysctl_table {
2467         struct ctl_table_header *sysctl_header;
2468         ctl_table               neigh_vars[__NET_NEIGH_MAX];
2469         ctl_table               neigh_dev[2];
2470         ctl_table               neigh_neigh_dir[2];
2471         ctl_table               neigh_proto_dir[2];
2472         ctl_table               neigh_root_dir[2];
2473 } neigh_sysctl_template __read_mostly = {
2474         .neigh_vars = {
2475                 {
2476                         .ctl_name       = NET_NEIGH_MCAST_SOLICIT,
2477                         .procname       = "mcast_solicit",
2478                         .maxlen         = sizeof(int),
2479                         .mode           = 0644,
2480                         .proc_handler   = &proc_dointvec,
2481                 },
2482                 {
2483                         .ctl_name       = NET_NEIGH_UCAST_SOLICIT,
2484                         .procname       = "ucast_solicit",
2485                         .maxlen         = sizeof(int),
2486                         .mode           = 0644,
2487                         .proc_handler   = &proc_dointvec,
2488                 },
2489                 {
2490                         .ctl_name       = NET_NEIGH_APP_SOLICIT,
2491                         .procname       = "app_solicit",
2492                         .maxlen         = sizeof(int),
2493                         .mode           = 0644,
2494                         .proc_handler   = &proc_dointvec,
2495                 },
2496                 {
2497                         .ctl_name       = NET_NEIGH_RETRANS_TIME,
2498                         .procname       = "retrans_time",
2499                         .maxlen         = sizeof(int),
2500                         .mode           = 0644,
2501                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2502                 },
2503                 {
2504                         .ctl_name       = NET_NEIGH_REACHABLE_TIME,
2505                         .procname       = "base_reachable_time",
2506                         .maxlen         = sizeof(int),
2507                         .mode           = 0644,
2508                         .proc_handler   = &proc_dointvec_jiffies,
2509                         .strategy       = &sysctl_jiffies,
2510                 },
2511                 {
2512                         .ctl_name       = NET_NEIGH_DELAY_PROBE_TIME,
2513                         .procname       = "delay_first_probe_time",
2514                         .maxlen         = sizeof(int),
2515                         .mode           = 0644,
2516                         .proc_handler   = &proc_dointvec_jiffies,
2517                         .strategy       = &sysctl_jiffies,
2518                 },
2519                 {
2520                         .ctl_name       = NET_NEIGH_GC_STALE_TIME,
2521                         .procname       = "gc_stale_time",
2522                         .maxlen         = sizeof(int),
2523                         .mode           = 0644,
2524                         .proc_handler   = &proc_dointvec_jiffies,
2525                         .strategy       = &sysctl_jiffies,
2526                 },
2527                 {
2528                         .ctl_name       = NET_NEIGH_UNRES_QLEN,
2529                         .procname       = "unres_qlen",
2530                         .maxlen         = sizeof(int),
2531                         .mode           = 0644,
2532                         .proc_handler   = &proc_dointvec,
2533                 },
2534                 {
2535                         .ctl_name       = NET_NEIGH_PROXY_QLEN,
2536                         .procname       = "proxy_qlen",
2537                         .maxlen         = sizeof(int),
2538                         .mode           = 0644,
2539                         .proc_handler   = &proc_dointvec,
2540                 },
2541                 {
2542                         .ctl_name       = NET_NEIGH_ANYCAST_DELAY,
2543                         .procname       = "anycast_delay",
2544                         .maxlen         = sizeof(int),
2545                         .mode           = 0644,
2546                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2547                 },
2548                 {
2549                         .ctl_name       = NET_NEIGH_PROXY_DELAY,
2550                         .procname       = "proxy_delay",
2551                         .maxlen         = sizeof(int),
2552                         .mode           = 0644,
2553                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2554                 },
2555                 {
2556                         .ctl_name       = NET_NEIGH_LOCKTIME,
2557                         .procname       = "locktime",
2558                         .maxlen         = sizeof(int),
2559                         .mode           = 0644,
2560                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2561                 },
2562                 {
2563                         .ctl_name       = NET_NEIGH_GC_INTERVAL,
2564                         .procname       = "gc_interval",
2565                         .maxlen         = sizeof(int),
2566                         .mode           = 0644,
2567                         .proc_handler   = &proc_dointvec_jiffies,
2568                         .strategy       = &sysctl_jiffies,
2569                 },
2570                 {
2571                         .ctl_name       = NET_NEIGH_GC_THRESH1,
2572                         .procname       = "gc_thresh1",
2573                         .maxlen         = sizeof(int),
2574                         .mode           = 0644,
2575                         .proc_handler   = &proc_dointvec,
2576                 },
2577                 {
2578                         .ctl_name       = NET_NEIGH_GC_THRESH2,
2579                         .procname       = "gc_thresh2",
2580                         .maxlen         = sizeof(int),
2581                         .mode           = 0644,
2582                         .proc_handler   = &proc_dointvec,
2583                 },
2584                 {
2585                         .ctl_name       = NET_NEIGH_GC_THRESH3,
2586                         .procname       = "gc_thresh3",
2587                         .maxlen         = sizeof(int),
2588                         .mode           = 0644,
2589                         .proc_handler   = &proc_dointvec,
2590                 },
2591                 {
2592                         .ctl_name       = NET_NEIGH_RETRANS_TIME_MS,
2593                         .procname       = "retrans_time_ms",
2594                         .maxlen         = sizeof(int),
2595                         .mode           = 0644,
2596                         .proc_handler   = &proc_dointvec_ms_jiffies,
2597                         .strategy       = &sysctl_ms_jiffies,
2598                 },
2599                 {
2600                         .ctl_name       = NET_NEIGH_REACHABLE_TIME_MS,
2601                         .procname       = "base_reachable_time_ms",
2602                         .maxlen         = sizeof(int),
2603                         .mode           = 0644,
2604                         .proc_handler   = &proc_dointvec_ms_jiffies,
2605                         .strategy       = &sysctl_ms_jiffies,
2606                 },
2607         },
2608         .neigh_dev = {
2609                 {
2610                         .ctl_name       = NET_PROTO_CONF_DEFAULT,
2611                         .procname       = "default",
2612                         .mode           = 0555,
2613                 },
2614         },
2615         .neigh_neigh_dir = {
2616                 {
2617                         .procname       = "neigh",
2618                         .mode           = 0555,
2619                 },
2620         },
2621         .neigh_proto_dir = {
2622                 {
2623                         .mode           = 0555,
2624                 },
2625         },
2626         .neigh_root_dir = {
2627                 {
2628                         .ctl_name       = CTL_NET,
2629                         .procname       = "net",
2630                         .mode           = 0555,
2631                 },
2632         },
2633 };
2634
2635 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2636                           int p_id, int pdev_id, char *p_name,
2637                           proc_handler *handler, ctl_handler *strategy)
2638 {
2639         struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template,
2640                                                sizeof(*t), GFP_KERNEL);
2641         const char *dev_name_source = NULL;
2642         char *dev_name = NULL;
2643         int err = 0;
2644
2645         if (!t)
2646                 return -ENOBUFS;
2647         t->neigh_vars[0].data  = &p->mcast_probes;
2648         t->neigh_vars[1].data  = &p->ucast_probes;
2649         t->neigh_vars[2].data  = &p->app_probes;
2650         t->neigh_vars[3].data  = &p->retrans_time;
2651         t->neigh_vars[4].data  = &p->base_reachable_time;
2652         t->neigh_vars[5].data  = &p->delay_probe_time;
2653         t->neigh_vars[6].data  = &p->gc_staletime;
2654         t->neigh_vars[7].data  = &p->queue_len;
2655         t->neigh_vars[8].data  = &p->proxy_qlen;
2656         t->neigh_vars[9].data  = &p->anycast_delay;
2657         t->neigh_vars[10].data = &p->proxy_delay;
2658         t->neigh_vars[11].data = &p->locktime;
2659
2660         if (dev) {
2661                 dev_name_source = dev->name;
2662                 t->neigh_dev[0].ctl_name = dev->ifindex;
2663                 t->neigh_vars[12].procname = NULL;
2664                 t->neigh_vars[13].procname = NULL;
2665                 t->neigh_vars[14].procname = NULL;
2666                 t->neigh_vars[15].procname = NULL;
2667         } else {
2668                 dev_name_source = t->neigh_dev[0].procname;
2669                 t->neigh_vars[12].data = (int *)(p + 1);
2670                 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2671                 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2672                 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2673         }
2674
2675         t->neigh_vars[16].data  = &p->retrans_time;
2676         t->neigh_vars[17].data  = &p->base_reachable_time;
2677
2678         if (handler || strategy) {
2679                 /* RetransTime */
2680                 t->neigh_vars[3].proc_handler = handler;
2681                 t->neigh_vars[3].strategy = strategy;
2682                 t->neigh_vars[3].extra1 = dev;
2683                 /* ReachableTime */
2684                 t->neigh_vars[4].proc_handler = handler;
2685                 t->neigh_vars[4].strategy = strategy;
2686                 t->neigh_vars[4].extra1 = dev;
2687                 /* RetransTime (in milliseconds)*/
2688                 t->neigh_vars[16].proc_handler = handler;
2689                 t->neigh_vars[16].strategy = strategy;
2690                 t->neigh_vars[16].extra1 = dev;
2691                 /* ReachableTime (in milliseconds) */
2692                 t->neigh_vars[17].proc_handler = handler;
2693                 t->neigh_vars[17].strategy = strategy;
2694                 t->neigh_vars[17].extra1 = dev;
2695         }
2696
2697         dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2698         if (!dev_name) {
2699                 err = -ENOBUFS;
2700                 goto free;
2701         }
2702
2703         t->neigh_dev[0].procname = dev_name;
2704
2705         t->neigh_neigh_dir[0].ctl_name = pdev_id;
2706
2707         t->neigh_proto_dir[0].procname = p_name;
2708         t->neigh_proto_dir[0].ctl_name = p_id;
2709
2710         t->neigh_dev[0].child          = t->neigh_vars;
2711         t->neigh_neigh_dir[0].child    = t->neigh_dev;
2712         t->neigh_proto_dir[0].child    = t->neigh_neigh_dir;
2713         t->neigh_root_dir[0].child     = t->neigh_proto_dir;
2714
2715         t->sysctl_header = register_sysctl_table(t->neigh_root_dir);
2716         if (!t->sysctl_header) {
2717                 err = -ENOBUFS;
2718                 goto free_procname;
2719         }
2720         p->sysctl_table = t;
2721         return 0;
2722
2723         /* error path */
2724  free_procname:
2725         kfree(dev_name);
2726  free:
2727         kfree(t);
2728
2729         return err;
2730 }
2731
2732 void neigh_sysctl_unregister(struct neigh_parms *p)
2733 {
2734         if (p->sysctl_table) {
2735                 struct neigh_sysctl_table *t = p->sysctl_table;
2736                 p->sysctl_table = NULL;
2737                 unregister_sysctl_table(t->sysctl_header);
2738                 kfree(t->neigh_dev[0].procname);
2739                 kfree(t);
2740         }
2741 }
2742
2743 #endif  /* CONFIG_SYSCTL */
2744
2745 static int __init neigh_init(void)
2746 {
2747         rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2748         rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2749         rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2750
2751         rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2752         rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2753
2754         return 0;
2755 }
2756
2757 subsys_initcall(neigh_init);
2758
2759 EXPORT_SYMBOL(__neigh_event_send);
2760 EXPORT_SYMBOL(neigh_changeaddr);
2761 EXPORT_SYMBOL(neigh_compat_output);
2762 EXPORT_SYMBOL(neigh_connected_output);
2763 EXPORT_SYMBOL(neigh_create);
2764 EXPORT_SYMBOL(neigh_destroy);
2765 EXPORT_SYMBOL(neigh_event_ns);
2766 EXPORT_SYMBOL(neigh_ifdown);
2767 EXPORT_SYMBOL(neigh_lookup);
2768 EXPORT_SYMBOL(neigh_lookup_nodev);
2769 EXPORT_SYMBOL(neigh_parms_alloc);
2770 EXPORT_SYMBOL(neigh_parms_release);
2771 EXPORT_SYMBOL(neigh_rand_reach_time);
2772 EXPORT_SYMBOL(neigh_resolve_output);
2773 EXPORT_SYMBOL(neigh_table_clear);
2774 EXPORT_SYMBOL(neigh_table_init);
2775 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2776 EXPORT_SYMBOL(neigh_update);
2777 EXPORT_SYMBOL(pneigh_enqueue);
2778 EXPORT_SYMBOL(pneigh_lookup);
2779
2780 #ifdef CONFIG_ARPD
2781 EXPORT_SYMBOL(neigh_app_ns);
2782 #endif
2783 #ifdef CONFIG_SYSCTL
2784 EXPORT_SYMBOL(neigh_sysctl_register);
2785 EXPORT_SYMBOL(neigh_sysctl_unregister);
2786 #endif