2 /******************************************************************************
4 * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
6 *****************************************************************************/
9 * Copyright (C) 2000 - 2008, Intel Corp.
10 * All rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
45 #include <acpi/acpi.h>
51 #define _COMPONENT ACPI_EXECUTER
52 ACPI_MODULE_NAME("exmisc")
54 /*******************************************************************************
56 * FUNCTION: acpi_ex_get_object_reference
58 * PARAMETERS: obj_desc - Create a reference to this object
59 * return_desc - Where to store the reference
60 * walk_state - Current state
64 * DESCRIPTION: Obtain and return a "reference" to the target object
65 * Common code for the ref_of_op and the cond_ref_of_op.
67 ******************************************************************************/
69 acpi_ex_get_object_reference(union acpi_operand_object *obj_desc,
70 union acpi_operand_object **return_desc,
71 struct acpi_walk_state *walk_state)
73 union acpi_operand_object *reference_obj;
74 union acpi_operand_object *referenced_obj;
76 ACPI_FUNCTION_TRACE_PTR(ex_get_object_reference, obj_desc);
80 switch (ACPI_GET_DESCRIPTOR_TYPE(obj_desc)) {
81 case ACPI_DESC_TYPE_OPERAND:
83 if (obj_desc->common.type != ACPI_TYPE_LOCAL_REFERENCE) {
84 return_ACPI_STATUS(AE_AML_OPERAND_TYPE);
88 * Must be a reference to a Local or Arg
90 switch (obj_desc->reference.class) {
91 case ACPI_REFCLASS_LOCAL:
92 case ACPI_REFCLASS_ARG:
93 case ACPI_REFCLASS_DEBUG:
95 /* The referenced object is the pseudo-node for the local/arg */
97 referenced_obj = obj_desc->reference.object;
102 ACPI_ERROR((AE_INFO, "Unknown Reference Class %2.2X",
103 obj_desc->reference.class));
104 return_ACPI_STATUS(AE_AML_INTERNAL);
108 case ACPI_DESC_TYPE_NAMED:
111 * A named reference that has already been resolved to a Node
113 referenced_obj = obj_desc;
118 ACPI_ERROR((AE_INFO, "Invalid descriptor type %X",
119 ACPI_GET_DESCRIPTOR_TYPE(obj_desc)));
120 return_ACPI_STATUS(AE_TYPE);
123 /* Create a new reference object */
126 acpi_ut_create_internal_object(ACPI_TYPE_LOCAL_REFERENCE);
127 if (!reference_obj) {
128 return_ACPI_STATUS(AE_NO_MEMORY);
131 reference_obj->reference.class = ACPI_REFCLASS_REFOF;
132 reference_obj->reference.object = referenced_obj;
133 *return_desc = reference_obj;
135 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
136 "Object %p Type [%s], returning Reference %p\n",
137 obj_desc, acpi_ut_get_object_type_name(obj_desc),
140 return_ACPI_STATUS(AE_OK);
143 /*******************************************************************************
145 * FUNCTION: acpi_ex_concat_template
147 * PARAMETERS: Operand0 - First source object
148 * Operand1 - Second source object
149 * actual_return_desc - Where to place the return object
150 * walk_state - Current walk state
154 * DESCRIPTION: Concatenate two resource templates
156 ******************************************************************************/
159 acpi_ex_concat_template(union acpi_operand_object *operand0,
160 union acpi_operand_object *operand1,
161 union acpi_operand_object **actual_return_desc,
162 struct acpi_walk_state *walk_state)
165 union acpi_operand_object *return_desc;
170 acpi_size new_length;
172 ACPI_FUNCTION_TRACE(ex_concat_template);
175 * Find the end_tag descriptor in each resource template.
176 * Note1: returned pointers point TO the end_tag, not past it.
177 * Note2: zero-length buffers are allowed; treated like one end_tag
180 /* Get the length of the first resource template */
182 status = acpi_ut_get_resource_end_tag(operand0, &end_tag);
183 if (ACPI_FAILURE(status)) {
184 return_ACPI_STATUS(status);
187 length0 = ACPI_PTR_DIFF(end_tag, operand0->buffer.pointer);
189 /* Get the length of the second resource template */
191 status = acpi_ut_get_resource_end_tag(operand1, &end_tag);
192 if (ACPI_FAILURE(status)) {
193 return_ACPI_STATUS(status);
196 length1 = ACPI_PTR_DIFF(end_tag, operand1->buffer.pointer);
198 /* Combine both lengths, minimum size will be 2 for end_tag */
200 new_length = length0 + length1 + sizeof(struct aml_resource_end_tag);
202 /* Create a new buffer object for the result (with one end_tag) */
204 return_desc = acpi_ut_create_buffer_object(new_length);
206 return_ACPI_STATUS(AE_NO_MEMORY);
210 * Copy the templates to the new buffer, 0 first, then 1 follows. One
211 * end_tag descriptor is copied from Operand1.
213 new_buf = return_desc->buffer.pointer;
214 ACPI_MEMCPY(new_buf, operand0->buffer.pointer, length0);
215 ACPI_MEMCPY(new_buf + length0, operand1->buffer.pointer, length1);
217 /* Insert end_tag and set the checksum to zero, means "ignore checksum" */
219 new_buf[new_length - 1] = 0;
220 new_buf[new_length - 2] = ACPI_RESOURCE_NAME_END_TAG | 1;
222 /* Return the completed resource template */
224 *actual_return_desc = return_desc;
225 return_ACPI_STATUS(AE_OK);
228 /*******************************************************************************
230 * FUNCTION: acpi_ex_do_concatenate
232 * PARAMETERS: Operand0 - First source object
233 * Operand1 - Second source object
234 * actual_return_desc - Where to place the return object
235 * walk_state - Current walk state
239 * DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
241 ******************************************************************************/
244 acpi_ex_do_concatenate(union acpi_operand_object *operand0,
245 union acpi_operand_object *operand1,
246 union acpi_operand_object **actual_return_desc,
247 struct acpi_walk_state *walk_state)
249 union acpi_operand_object *local_operand1 = operand1;
250 union acpi_operand_object *return_desc;
254 ACPI_FUNCTION_TRACE(ex_do_concatenate);
257 * Convert the second operand if necessary. The first operand
258 * determines the type of the second operand, (See the Data Types
259 * section of the ACPI specification.) Both object types are
260 * guaranteed to be either Integer/String/Buffer by the operand
261 * resolution mechanism.
263 switch (operand0->common.type) {
264 case ACPI_TYPE_INTEGER:
266 acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
269 case ACPI_TYPE_STRING:
270 status = acpi_ex_convert_to_string(operand1, &local_operand1,
271 ACPI_IMPLICIT_CONVERT_HEX);
274 case ACPI_TYPE_BUFFER:
275 status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
279 ACPI_ERROR((AE_INFO, "Invalid object type: %X",
280 operand0->common.type));
281 status = AE_AML_INTERNAL;
284 if (ACPI_FAILURE(status)) {
289 * Both operands are now known to be the same object type
290 * (Both are Integer, String, or Buffer), and we can now perform the
295 * There are three cases to handle:
297 * 1) Two Integers concatenated to produce a new Buffer
298 * 2) Two Strings concatenated to produce a new String
299 * 3) Two Buffers concatenated to produce a new Buffer
301 switch (operand0->common.type) {
302 case ACPI_TYPE_INTEGER:
304 /* Result of two Integers is a Buffer */
305 /* Need enough buffer space for two integers */
307 return_desc = acpi_ut_create_buffer_object((acpi_size)
309 (acpi_gbl_integer_byte_width));
311 status = AE_NO_MEMORY;
315 new_buf = (char *)return_desc->buffer.pointer;
317 /* Copy the first integer, LSB first */
319 ACPI_MEMCPY(new_buf, &operand0->integer.value,
320 acpi_gbl_integer_byte_width);
322 /* Copy the second integer (LSB first) after the first */
324 ACPI_MEMCPY(new_buf + acpi_gbl_integer_byte_width,
325 &local_operand1->integer.value,
326 acpi_gbl_integer_byte_width);
329 case ACPI_TYPE_STRING:
331 /* Result of two Strings is a String */
333 return_desc = acpi_ut_create_string_object(((acpi_size)
339 status = AE_NO_MEMORY;
343 new_buf = return_desc->string.pointer;
345 /* Concatenate the strings */
347 ACPI_STRCPY(new_buf, operand0->string.pointer);
348 ACPI_STRCPY(new_buf + operand0->string.length,
349 local_operand1->string.pointer);
352 case ACPI_TYPE_BUFFER:
354 /* Result of two Buffers is a Buffer */
356 return_desc = acpi_ut_create_buffer_object(((acpi_size)
362 status = AE_NO_MEMORY;
366 new_buf = (char *)return_desc->buffer.pointer;
368 /* Concatenate the buffers */
370 ACPI_MEMCPY(new_buf, operand0->buffer.pointer,
371 operand0->buffer.length);
372 ACPI_MEMCPY(new_buf + operand0->buffer.length,
373 local_operand1->buffer.pointer,
374 local_operand1->buffer.length);
379 /* Invalid object type, should not happen here */
381 ACPI_ERROR((AE_INFO, "Invalid object type: %X",
382 operand0->common.type));
383 status = AE_AML_INTERNAL;
387 *actual_return_desc = return_desc;
390 if (local_operand1 != operand1) {
391 acpi_ut_remove_reference(local_operand1);
393 return_ACPI_STATUS(status);
396 /*******************************************************************************
398 * FUNCTION: acpi_ex_do_math_op
400 * PARAMETERS: Opcode - AML opcode
401 * Integer0 - Integer operand #0
402 * Integer1 - Integer operand #1
404 * RETURN: Integer result of the operation
406 * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
407 * math functions here is to prevent a lot of pointer dereferencing
408 * to obtain the operands.
410 ******************************************************************************/
413 acpi_ex_do_math_op(u16 opcode, acpi_integer integer0, acpi_integer integer1)
416 ACPI_FUNCTION_ENTRY();
419 case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */
421 return (integer0 + integer1);
423 case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */
425 return (integer0 & integer1);
427 case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */
429 return (~(integer0 & integer1));
431 case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */
433 return (integer0 | integer1);
435 case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */
437 return (~(integer0 | integer1));
439 case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */
441 return (integer0 ^ integer1);
443 case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */
445 return (integer0 * integer1);
447 case AML_SHIFT_LEFT_OP: /* shift_left (Operand, shift_count, Result) */
450 * We need to check if the shiftcount is larger than the integer bit
451 * width since the behavior of this is not well-defined in the C language.
453 if (integer1 >= acpi_gbl_integer_bit_width) {
456 return (integer0 << integer1);
458 case AML_SHIFT_RIGHT_OP: /* shift_right (Operand, shift_count, Result) */
461 * We need to check if the shiftcount is larger than the integer bit
462 * width since the behavior of this is not well-defined in the C language.
464 if (integer1 >= acpi_gbl_integer_bit_width) {
467 return (integer0 >> integer1);
469 case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */
471 return (integer0 - integer1);
479 /*******************************************************************************
481 * FUNCTION: acpi_ex_do_logical_numeric_op
483 * PARAMETERS: Opcode - AML opcode
484 * Integer0 - Integer operand #0
485 * Integer1 - Integer operand #1
486 * logical_result - TRUE/FALSE result of the operation
490 * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
491 * operators (LAnd and LOr), both operands must be integers.
493 * Note: cleanest machine code seems to be produced by the code
494 * below, rather than using statements of the form:
495 * Result = (Integer0 && Integer1);
497 ******************************************************************************/
500 acpi_ex_do_logical_numeric_op(u16 opcode,
501 acpi_integer integer0,
502 acpi_integer integer1, u8 * logical_result)
504 acpi_status status = AE_OK;
505 u8 local_result = FALSE;
507 ACPI_FUNCTION_TRACE(ex_do_logical_numeric_op);
510 case AML_LAND_OP: /* LAnd (Integer0, Integer1) */
512 if (integer0 && integer1) {
517 case AML_LOR_OP: /* LOr (Integer0, Integer1) */
519 if (integer0 || integer1) {
525 status = AE_AML_INTERNAL;
529 /* Return the logical result and status */
531 *logical_result = local_result;
532 return_ACPI_STATUS(status);
535 /*******************************************************************************
537 * FUNCTION: acpi_ex_do_logical_op
539 * PARAMETERS: Opcode - AML opcode
540 * Operand0 - operand #0
541 * Operand1 - operand #1
542 * logical_result - TRUE/FALSE result of the operation
546 * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
547 * functions here is to prevent a lot of pointer dereferencing
548 * to obtain the operands and to simplify the generation of the
549 * logical value. For the Numeric operators (LAnd and LOr), both
550 * operands must be integers. For the other logical operators,
551 * operands can be any combination of Integer/String/Buffer. The
552 * first operand determines the type to which the second operand
555 * Note: cleanest machine code seems to be produced by the code
556 * below, rather than using statements of the form:
557 * Result = (Operand0 == Operand1);
559 ******************************************************************************/
562 acpi_ex_do_logical_op(u16 opcode,
563 union acpi_operand_object *operand0,
564 union acpi_operand_object *operand1, u8 * logical_result)
566 union acpi_operand_object *local_operand1 = operand1;
567 acpi_integer integer0;
568 acpi_integer integer1;
571 acpi_status status = AE_OK;
572 u8 local_result = FALSE;
575 ACPI_FUNCTION_TRACE(ex_do_logical_op);
578 * Convert the second operand if necessary. The first operand
579 * determines the type of the second operand, (See the Data Types
580 * section of the ACPI 3.0+ specification.) Both object types are
581 * guaranteed to be either Integer/String/Buffer by the operand
582 * resolution mechanism.
584 switch (operand0->common.type) {
585 case ACPI_TYPE_INTEGER:
587 acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
590 case ACPI_TYPE_STRING:
591 status = acpi_ex_convert_to_string(operand1, &local_operand1,
592 ACPI_IMPLICIT_CONVERT_HEX);
595 case ACPI_TYPE_BUFFER:
596 status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
600 status = AE_AML_INTERNAL;
604 if (ACPI_FAILURE(status)) {
609 * Two cases: 1) Both Integers, 2) Both Strings or Buffers
611 if (operand0->common.type == ACPI_TYPE_INTEGER) {
613 * 1) Both operands are of type integer
614 * Note: local_operand1 may have changed above
616 integer0 = operand0->integer.value;
617 integer1 = local_operand1->integer.value;
620 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
622 if (integer0 == integer1) {
627 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
629 if (integer0 > integer1) {
634 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
636 if (integer0 < integer1) {
642 status = AE_AML_INTERNAL;
647 * 2) Both operands are Strings or both are Buffers
648 * Note: Code below takes advantage of common Buffer/String
649 * object fields. local_operand1 may have changed above. Use
650 * memcmp to handle nulls in buffers.
652 length0 = operand0->buffer.length;
653 length1 = local_operand1->buffer.length;
655 /* Lexicographic compare: compare the data bytes */
657 compare = ACPI_MEMCMP(operand0->buffer.pointer,
658 local_operand1->buffer.pointer,
659 (length0 > length1) ? length1 : length0);
662 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
664 /* Length and all bytes must be equal */
666 if ((length0 == length1) && (compare == 0)) {
668 /* Length and all bytes match ==> TRUE */
674 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
678 goto cleanup; /* TRUE */
681 goto cleanup; /* FALSE */
684 /* Bytes match (to shortest length), compare lengths */
686 if (length0 > length1) {
691 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
694 goto cleanup; /* FALSE */
698 goto cleanup; /* TRUE */
701 /* Bytes match (to shortest length), compare lengths */
703 if (length0 < length1) {
709 status = AE_AML_INTERNAL;
716 /* New object was created if implicit conversion performed - delete */
718 if (local_operand1 != operand1) {
719 acpi_ut_remove_reference(local_operand1);
722 /* Return the logical result and status */
724 *logical_result = local_result;
725 return_ACPI_STATUS(status);