iwlwifi: introduce host commands callbacks
[linux-2.6] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29  * e1000_82576
30  */
31
32 #include <linux/types.h>
33 #include <linux/slab.h>
34
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32);
49 static s32  igb_reset_hw_82575(struct e1000_hw *);
50 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32  igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32  igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58                                                  u16 *);
59 static s32  igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32  igb_reset_init_script_82575(struct e1000_hw *);
63 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
64
65
66 struct e1000_dev_spec_82575 {
67         bool sgmii_active;
68 };
69
70 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
71 {
72         struct e1000_phy_info *phy = &hw->phy;
73         struct e1000_nvm_info *nvm = &hw->nvm;
74         struct e1000_mac_info *mac = &hw->mac;
75         struct e1000_dev_spec_82575 *dev_spec;
76         u32 eecd;
77         s32 ret_val;
78         u16 size;
79         u32 ctrl_ext = 0;
80
81         switch (hw->device_id) {
82         case E1000_DEV_ID_82575EB_COPPER:
83         case E1000_DEV_ID_82575EB_FIBER_SERDES:
84         case E1000_DEV_ID_82575GB_QUAD_COPPER:
85                 mac->type = e1000_82575;
86                 break;
87         default:
88                 return -E1000_ERR_MAC_INIT;
89                 break;
90         }
91
92         /* MAC initialization */
93         hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
94
95         /* Device-specific structure allocation */
96         hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
97
98         if (!hw->dev_spec)
99                 return -ENOMEM;
100
101         dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
102
103         /* Set media type */
104         /*
105          * The 82575 uses bits 22:23 for link mode. The mode can be changed
106          * based on the EEPROM. We cannot rely upon device ID. There
107          * is no distinguishable difference between fiber and internal
108          * SerDes mode on the 82575. There can be an external PHY attached
109          * on the SGMII interface. For this, we'll set sgmii_active to true.
110          */
111         phy->media_type = e1000_media_type_copper;
112         dev_spec->sgmii_active = false;
113
114         ctrl_ext = rd32(E1000_CTRL_EXT);
115         if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
116             E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
117                 hw->phy.media_type = e1000_media_type_internal_serdes;
118                 ctrl_ext |= E1000_CTRL_I2C_ENA;
119         } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
120                 dev_spec->sgmii_active = true;
121                 ctrl_ext |= E1000_CTRL_I2C_ENA;
122         } else {
123                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
124         }
125         wr32(E1000_CTRL_EXT, ctrl_ext);
126
127         /* Set mta register count */
128         mac->mta_reg_count = 128;
129         /* Set rar entry count */
130         mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
131         /* Set if part includes ASF firmware */
132         mac->asf_firmware_present = true;
133         /* Set if manageability features are enabled. */
134         mac->arc_subsystem_valid =
135                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
136                         ? true : false;
137
138         /* physical interface link setup */
139         mac->ops.setup_physical_interface =
140                 (hw->phy.media_type == e1000_media_type_copper)
141                         ? igb_setup_copper_link_82575
142                         : igb_setup_fiber_serdes_link_82575;
143
144         /* NVM initialization */
145         eecd = rd32(E1000_EECD);
146
147         nvm->opcode_bits        = 8;
148         nvm->delay_usec         = 1;
149         switch (nvm->override) {
150         case e1000_nvm_override_spi_large:
151                 nvm->page_size    = 32;
152                 nvm->address_bits = 16;
153                 break;
154         case e1000_nvm_override_spi_small:
155                 nvm->page_size    = 8;
156                 nvm->address_bits = 8;
157                 break;
158         default:
159                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161                 break;
162         }
163
164         nvm->type = e1000_nvm_eeprom_spi;
165
166         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
167                      E1000_EECD_SIZE_EX_SHIFT);
168
169         /*
170          * Added to a constant, "size" becomes the left-shift value
171          * for setting word_size.
172          */
173         size += NVM_WORD_SIZE_BASE_SHIFT;
174         nvm->word_size = 1 << size;
175
176         /* setup PHY parameters */
177         if (phy->media_type != e1000_media_type_copper) {
178                 phy->type = e1000_phy_none;
179                 return 0;
180         }
181
182         phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
183         phy->reset_delay_us      = 100;
184
185         /* PHY function pointers */
186         if (igb_sgmii_active_82575(hw)) {
187                 phy->ops.reset_phy          = igb_phy_hw_reset_sgmii_82575;
188                 phy->ops.read_phy_reg       = igb_read_phy_reg_sgmii_82575;
189                 phy->ops.write_phy_reg      = igb_write_phy_reg_sgmii_82575;
190         } else {
191                 phy->ops.reset_phy          = igb_phy_hw_reset;
192                 phy->ops.read_phy_reg       = igb_read_phy_reg_igp;
193                 phy->ops.write_phy_reg      = igb_write_phy_reg_igp;
194         }
195
196         /* Set phy->phy_addr and phy->id. */
197         ret_val = igb_get_phy_id_82575(hw);
198         if (ret_val)
199                 return ret_val;
200
201         /* Verify phy id and set remaining function pointers */
202         switch (phy->id) {
203         case M88E1111_I_PHY_ID:
204                 phy->type                   = e1000_phy_m88;
205                 phy->ops.get_phy_info       = igb_get_phy_info_m88;
206                 phy->ops.get_cable_length   = igb_get_cable_length_m88;
207                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
208                 break;
209         case IGP03E1000_E_PHY_ID:
210                 phy->type                   = e1000_phy_igp_3;
211                 phy->ops.get_phy_info       = igb_get_phy_info_igp;
212                 phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
213                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
214                 phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
215                 phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
216                 break;
217         default:
218                 return -E1000_ERR_PHY;
219         }
220
221         return 0;
222 }
223
224 /**
225  *  e1000_acquire_phy_82575 - Acquire rights to access PHY
226  *  @hw: pointer to the HW structure
227  *
228  *  Acquire access rights to the correct PHY.  This is a
229  *  function pointer entry point called by the api module.
230  **/
231 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
232 {
233         u16 mask;
234
235         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
236
237         return igb_acquire_swfw_sync_82575(hw, mask);
238 }
239
240 /**
241  *  e1000_release_phy_82575 - Release rights to access PHY
242  *  @hw: pointer to the HW structure
243  *
244  *  A wrapper to release access rights to the correct PHY.  This is a
245  *  function pointer entry point called by the api module.
246  **/
247 static void igb_release_phy_82575(struct e1000_hw *hw)
248 {
249         u16 mask;
250
251         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
252         igb_release_swfw_sync_82575(hw, mask);
253 }
254
255 /**
256  *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
257  *  @hw: pointer to the HW structure
258  *  @offset: register offset to be read
259  *  @data: pointer to the read data
260  *
261  *  Reads the PHY register at offset using the serial gigabit media independent
262  *  interface and stores the retrieved information in data.
263  **/
264 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
265                                           u16 *data)
266 {
267         struct e1000_phy_info *phy = &hw->phy;
268         u32 i, i2ccmd = 0;
269
270         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
271                 hw_dbg(hw, "PHY Address %u is out of range\n", offset);
272                 return -E1000_ERR_PARAM;
273         }
274
275         /*
276          * Set up Op-code, Phy Address, and register address in the I2CCMD
277          * register.  The MAC will take care of interfacing with the
278          * PHY to retrieve the desired data.
279          */
280         i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
281                   (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
282                   (E1000_I2CCMD_OPCODE_READ));
283
284         wr32(E1000_I2CCMD, i2ccmd);
285
286         /* Poll the ready bit to see if the I2C read completed */
287         for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
288                 udelay(50);
289                 i2ccmd = rd32(E1000_I2CCMD);
290                 if (i2ccmd & E1000_I2CCMD_READY)
291                         break;
292         }
293         if (!(i2ccmd & E1000_I2CCMD_READY)) {
294                 hw_dbg(hw, "I2CCMD Read did not complete\n");
295                 return -E1000_ERR_PHY;
296         }
297         if (i2ccmd & E1000_I2CCMD_ERROR) {
298                 hw_dbg(hw, "I2CCMD Error bit set\n");
299                 return -E1000_ERR_PHY;
300         }
301
302         /* Need to byte-swap the 16-bit value. */
303         *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
304
305         return 0;
306 }
307
308 /**
309  *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
310  *  @hw: pointer to the HW structure
311  *  @offset: register offset to write to
312  *  @data: data to write at register offset
313  *
314  *  Writes the data to PHY register at the offset using the serial gigabit
315  *  media independent interface.
316  **/
317 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
318                                            u16 data)
319 {
320         struct e1000_phy_info *phy = &hw->phy;
321         u32 i, i2ccmd = 0;
322         u16 phy_data_swapped;
323
324         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
325                 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
326                 return -E1000_ERR_PARAM;
327         }
328
329         /* Swap the data bytes for the I2C interface */
330         phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
331
332         /*
333          * Set up Op-code, Phy Address, and register address in the I2CCMD
334          * register.  The MAC will take care of interfacing with the
335          * PHY to retrieve the desired data.
336          */
337         i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
338                   (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
339                   E1000_I2CCMD_OPCODE_WRITE |
340                   phy_data_swapped);
341
342         wr32(E1000_I2CCMD, i2ccmd);
343
344         /* Poll the ready bit to see if the I2C read completed */
345         for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
346                 udelay(50);
347                 i2ccmd = rd32(E1000_I2CCMD);
348                 if (i2ccmd & E1000_I2CCMD_READY)
349                         break;
350         }
351         if (!(i2ccmd & E1000_I2CCMD_READY)) {
352                 hw_dbg(hw, "I2CCMD Write did not complete\n");
353                 return -E1000_ERR_PHY;
354         }
355         if (i2ccmd & E1000_I2CCMD_ERROR) {
356                 hw_dbg(hw, "I2CCMD Error bit set\n");
357                 return -E1000_ERR_PHY;
358         }
359
360         return 0;
361 }
362
363 /**
364  *  e1000_get_phy_id_82575 - Retreive PHY addr and id
365  *  @hw: pointer to the HW structure
366  *
367  *  Retreives the PHY address and ID for both PHY's which do and do not use
368  *  sgmi interface.
369  **/
370 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
371 {
372         struct e1000_phy_info *phy = &hw->phy;
373         s32  ret_val = 0;
374         u16 phy_id;
375
376         /*
377          * For SGMII PHYs, we try the list of possible addresses until
378          * we find one that works.  For non-SGMII PHYs
379          * (e.g. integrated copper PHYs), an address of 1 should
380          * work.  The result of this function should mean phy->phy_addr
381          * and phy->id are set correctly.
382          */
383         if (!(igb_sgmii_active_82575(hw))) {
384                 phy->addr = 1;
385                 ret_val = igb_get_phy_id(hw);
386                 goto out;
387         }
388
389         /*
390          * The address field in the I2CCMD register is 3 bits and 0 is invalid.
391          * Therefore, we need to test 1-7
392          */
393         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
394                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
395                 if (ret_val == 0) {
396                         hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n",
397                                   phy_id,
398                                   phy->addr);
399                         /*
400                          * At the time of this writing, The M88 part is
401                          * the only supported SGMII PHY product.
402                          */
403                         if (phy_id == M88_VENDOR)
404                                 break;
405                 } else {
406                         hw_dbg(hw, "PHY address %u was unreadable\n",
407                                   phy->addr);
408                 }
409         }
410
411         /* A valid PHY type couldn't be found. */
412         if (phy->addr == 8) {
413                 phy->addr = 0;
414                 ret_val = -E1000_ERR_PHY;
415                 goto out;
416         }
417
418         ret_val = igb_get_phy_id(hw);
419
420 out:
421         return ret_val;
422 }
423
424 /**
425  *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
426  *  @hw: pointer to the HW structure
427  *
428  *  Resets the PHY using the serial gigabit media independent interface.
429  **/
430 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
431 {
432         s32 ret_val;
433
434         /*
435          * This isn't a true "hard" reset, but is the only reset
436          * available to us at this time.
437          */
438
439         hw_dbg(hw, "Soft resetting SGMII attached PHY...\n");
440
441         /*
442          * SFP documentation requires the following to configure the SPF module
443          * to work on SGMII.  No further documentation is given.
444          */
445         ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
446         if (ret_val)
447                 goto out;
448
449         ret_val = igb_phy_sw_reset(hw);
450
451 out:
452         return ret_val;
453 }
454
455 /**
456  *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
457  *  @hw: pointer to the HW structure
458  *  @active: true to enable LPLU, false to disable
459  *
460  *  Sets the LPLU D0 state according to the active flag.  When
461  *  activating LPLU this function also disables smart speed
462  *  and vice versa.  LPLU will not be activated unless the
463  *  device autonegotiation advertisement meets standards of
464  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
465  *  This is a function pointer entry point only called by
466  *  PHY setup routines.
467  **/
468 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
469 {
470         struct e1000_phy_info *phy = &hw->phy;
471         s32 ret_val;
472         u16 data;
473
474         ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
475                                            &data);
476         if (ret_val)
477                 goto out;
478
479         if (active) {
480                 data |= IGP02E1000_PM_D0_LPLU;
481                 ret_val = hw->phy.ops.write_phy_reg(hw,
482                                               IGP02E1000_PHY_POWER_MGMT,
483                                               data);
484                 if (ret_val)
485                         goto out;
486
487                 /* When LPLU is enabled, we should disable SmartSpeed */
488                 ret_val = hw->phy.ops.read_phy_reg(hw,
489                                              IGP01E1000_PHY_PORT_CONFIG,
490                                              &data);
491                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
492                 ret_val = hw->phy.ops.write_phy_reg(hw,
493                                               IGP01E1000_PHY_PORT_CONFIG,
494                                               data);
495                 if (ret_val)
496                         goto out;
497         } else {
498                 data &= ~IGP02E1000_PM_D0_LPLU;
499                 ret_val = hw->phy.ops.write_phy_reg(hw,
500                                               IGP02E1000_PHY_POWER_MGMT,
501                                               data);
502                 /*
503                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
504                  * during Dx states where the power conservation is most
505                  * important.  During driver activity we should enable
506                  * SmartSpeed, so performance is maintained.
507                  */
508                 if (phy->smart_speed == e1000_smart_speed_on) {
509                         ret_val = hw->phy.ops.read_phy_reg(hw,
510                                                      IGP01E1000_PHY_PORT_CONFIG,
511                                                      &data);
512                         if (ret_val)
513                                 goto out;
514
515                         data |= IGP01E1000_PSCFR_SMART_SPEED;
516                         ret_val = hw->phy.ops.write_phy_reg(hw,
517                                                      IGP01E1000_PHY_PORT_CONFIG,
518                                                      data);
519                         if (ret_val)
520                                 goto out;
521                 } else if (phy->smart_speed == e1000_smart_speed_off) {
522                         ret_val = hw->phy.ops.read_phy_reg(hw,
523                                                      IGP01E1000_PHY_PORT_CONFIG,
524                                                      &data);
525                         if (ret_val)
526                                 goto out;
527
528                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
529                         ret_val = hw->phy.ops.write_phy_reg(hw,
530                                                      IGP01E1000_PHY_PORT_CONFIG,
531                                                      data);
532                         if (ret_val)
533                                 goto out;
534                 }
535         }
536
537 out:
538         return ret_val;
539 }
540
541 /**
542  *  e1000_acquire_nvm_82575 - Request for access to EEPROM
543  *  @hw: pointer to the HW structure
544  *
545  *  Acquire the necessary semaphores for exclussive access to the EEPROM.
546  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
547  *  Return successful if access grant bit set, else clear the request for
548  *  EEPROM access and return -E1000_ERR_NVM (-1).
549  **/
550 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
551 {
552         s32 ret_val;
553
554         ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
555         if (ret_val)
556                 goto out;
557
558         ret_val = igb_acquire_nvm(hw);
559
560         if (ret_val)
561                 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
562
563 out:
564         return ret_val;
565 }
566
567 /**
568  *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
569  *  @hw: pointer to the HW structure
570  *
571  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
572  *  then release the semaphores acquired.
573  **/
574 static void igb_release_nvm_82575(struct e1000_hw *hw)
575 {
576         igb_release_nvm(hw);
577         igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
578 }
579
580 /**
581  *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
582  *  @hw: pointer to the HW structure
583  *  @mask: specifies which semaphore to acquire
584  *
585  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
586  *  will also specify which port we're acquiring the lock for.
587  **/
588 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
589 {
590         u32 swfw_sync;
591         u32 swmask = mask;
592         u32 fwmask = mask << 16;
593         s32 ret_val = 0;
594         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
595
596         while (i < timeout) {
597                 if (igb_get_hw_semaphore(hw)) {
598                         ret_val = -E1000_ERR_SWFW_SYNC;
599                         goto out;
600                 }
601
602                 swfw_sync = rd32(E1000_SW_FW_SYNC);
603                 if (!(swfw_sync & (fwmask | swmask)))
604                         break;
605
606                 /*
607                  * Firmware currently using resource (fwmask)
608                  * or other software thread using resource (swmask)
609                  */
610                 igb_put_hw_semaphore(hw);
611                 mdelay(5);
612                 i++;
613         }
614
615         if (i == timeout) {
616                 hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n");
617                 ret_val = -E1000_ERR_SWFW_SYNC;
618                 goto out;
619         }
620
621         swfw_sync |= swmask;
622         wr32(E1000_SW_FW_SYNC, swfw_sync);
623
624         igb_put_hw_semaphore(hw);
625
626 out:
627         return ret_val;
628 }
629
630 /**
631  *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
632  *  @hw: pointer to the HW structure
633  *  @mask: specifies which semaphore to acquire
634  *
635  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
636  *  will also specify which port we're releasing the lock for.
637  **/
638 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
639 {
640         u32 swfw_sync;
641
642         while (igb_get_hw_semaphore(hw) != 0);
643         /* Empty */
644
645         swfw_sync = rd32(E1000_SW_FW_SYNC);
646         swfw_sync &= ~mask;
647         wr32(E1000_SW_FW_SYNC, swfw_sync);
648
649         igb_put_hw_semaphore(hw);
650 }
651
652 /**
653  *  e1000_get_cfg_done_82575 - Read config done bit
654  *  @hw: pointer to the HW structure
655  *
656  *  Read the management control register for the config done bit for
657  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
658  *  to read the config done bit, so an error is *ONLY* logged and returns
659  *  0.  If we were to return with error, EEPROM-less silicon
660  *  would not be able to be reset or change link.
661  **/
662 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
663 {
664         s32 timeout = PHY_CFG_TIMEOUT;
665         s32 ret_val = 0;
666         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
667
668         if (hw->bus.func == 1)
669                 mask = E1000_NVM_CFG_DONE_PORT_1;
670
671         while (timeout) {
672                 if (rd32(E1000_EEMNGCTL) & mask)
673                         break;
674                 msleep(1);
675                 timeout--;
676         }
677         if (!timeout)
678                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
679
680         /* If EEPROM is not marked present, init the PHY manually */
681         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
682             (hw->phy.type == e1000_phy_igp_3))
683                 igb_phy_init_script_igp3(hw);
684
685         return ret_val;
686 }
687
688 /**
689  *  e1000_check_for_link_82575 - Check for link
690  *  @hw: pointer to the HW structure
691  *
692  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
693  *  use the generic interface for determining link.
694  **/
695 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
696 {
697         s32 ret_val;
698         u16 speed, duplex;
699
700         /* SGMII link check is done through the PCS register. */
701         if ((hw->phy.media_type != e1000_media_type_copper) ||
702             (igb_sgmii_active_82575(hw)))
703                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
704                                                                &duplex);
705         else
706                 ret_val = igb_check_for_copper_link(hw);
707
708         return ret_val;
709 }
710
711 /**
712  *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713  *  @hw: pointer to the HW structure
714  *  @speed: stores the current speed
715  *  @duplex: stores the current duplex
716  *
717  *  Using the physical coding sub-layer (PCS), retreive the current speed and
718  *  duplex, then store the values in the pointers provided.
719  **/
720 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721                                                 u16 *duplex)
722 {
723         struct e1000_mac_info *mac = &hw->mac;
724         u32 pcs;
725
726         /* Set up defaults for the return values of this function */
727         mac->serdes_has_link = false;
728         *speed = 0;
729         *duplex = 0;
730
731         /*
732          * Read the PCS Status register for link state. For non-copper mode,
733          * the status register is not accurate. The PCS status register is
734          * used instead.
735          */
736         pcs = rd32(E1000_PCS_LSTAT);
737
738         /*
739          * The link up bit determines when link is up on autoneg. The sync ok
740          * gets set once both sides sync up and agree upon link. Stable link
741          * can be determined by checking for both link up and link sync ok
742          */
743         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744                 mac->serdes_has_link = true;
745
746                 /* Detect and store PCS speed */
747                 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748                         *speed = SPEED_1000;
749                 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750                         *speed = SPEED_100;
751                 } else {
752                         *speed = SPEED_10;
753                 }
754
755                 /* Detect and store PCS duplex */
756                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757                         *duplex = FULL_DUPLEX;
758                 } else {
759                         *duplex = HALF_DUPLEX;
760                 }
761         }
762
763         return 0;
764 }
765
766 /**
767  *  e1000_rar_set_82575 - Set receive address register
768  *  @hw: pointer to the HW structure
769  *  @addr: pointer to the receive address
770  *  @index: receive address array register
771  *
772  *  Sets the receive address array register at index to the address passed
773  *  in by addr.
774  **/
775 static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
776 {
777         if (index < E1000_RAR_ENTRIES_82575)
778                 igb_rar_set(hw, addr, index);
779
780         return;
781 }
782
783 /**
784  *  e1000_reset_hw_82575 - Reset hardware
785  *  @hw: pointer to the HW structure
786  *
787  *  This resets the hardware into a known state.  This is a
788  *  function pointer entry point called by the api module.
789  **/
790 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
791 {
792         u32 ctrl, icr;
793         s32 ret_val;
794
795         /*
796          * Prevent the PCI-E bus from sticking if there is no TLP connection
797          * on the last TLP read/write transaction when MAC is reset.
798          */
799         ret_val = igb_disable_pcie_master(hw);
800         if (ret_val)
801                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
802
803         hw_dbg(hw, "Masking off all interrupts\n");
804         wr32(E1000_IMC, 0xffffffff);
805
806         wr32(E1000_RCTL, 0);
807         wr32(E1000_TCTL, E1000_TCTL_PSP);
808         wrfl();
809
810         msleep(10);
811
812         ctrl = rd32(E1000_CTRL);
813
814         hw_dbg(hw, "Issuing a global reset to MAC\n");
815         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
816
817         ret_val = igb_get_auto_rd_done(hw);
818         if (ret_val) {
819                 /*
820                  * When auto config read does not complete, do not
821                  * return with an error. This can happen in situations
822                  * where there is no eeprom and prevents getting link.
823                  */
824                 hw_dbg(hw, "Auto Read Done did not complete\n");
825         }
826
827         /* If EEPROM is not present, run manual init scripts */
828         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
829                 igb_reset_init_script_82575(hw);
830
831         /* Clear any pending interrupt events. */
832         wr32(E1000_IMC, 0xffffffff);
833         icr = rd32(E1000_ICR);
834
835         igb_check_alt_mac_addr(hw);
836
837         return ret_val;
838 }
839
840 /**
841  *  e1000_init_hw_82575 - Initialize hardware
842  *  @hw: pointer to the HW structure
843  *
844  *  This inits the hardware readying it for operation.
845  **/
846 static s32 igb_init_hw_82575(struct e1000_hw *hw)
847 {
848         struct e1000_mac_info *mac = &hw->mac;
849         s32 ret_val;
850         u16 i, rar_count = mac->rar_entry_count;
851
852         /* Initialize identification LED */
853         ret_val = igb_id_led_init(hw);
854         if (ret_val) {
855                 hw_dbg(hw, "Error initializing identification LED\n");
856                 /* This is not fatal and we should not stop init due to this */
857         }
858
859         /* Disabling VLAN filtering */
860         hw_dbg(hw, "Initializing the IEEE VLAN\n");
861         igb_clear_vfta(hw);
862
863         /* Setup the receive address */
864         igb_init_rx_addrs(hw, rar_count);
865         /* Zero out the Multicast HASH table */
866         hw_dbg(hw, "Zeroing the MTA\n");
867         for (i = 0; i < mac->mta_reg_count; i++)
868                 array_wr32(E1000_MTA, i, 0);
869
870         /* Setup link and flow control */
871         ret_val = igb_setup_link(hw);
872
873         /*
874          * Clear all of the statistics registers (clear on read).  It is
875          * important that we do this after we have tried to establish link
876          * because the symbol error count will increment wildly if there
877          * is no link.
878          */
879         igb_clear_hw_cntrs_82575(hw);
880
881         return ret_val;
882 }
883
884 /**
885  *  e1000_setup_copper_link_82575 - Configure copper link settings
886  *  @hw: pointer to the HW structure
887  *
888  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
889  *  for link, once link is established calls to configure collision distance
890  *  and flow control are called.
891  **/
892 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
893 {
894         u32 ctrl, led_ctrl;
895         s32  ret_val;
896         bool link;
897
898         ctrl = rd32(E1000_CTRL);
899         ctrl |= E1000_CTRL_SLU;
900         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
901         wr32(E1000_CTRL, ctrl);
902
903         switch (hw->phy.type) {
904         case e1000_phy_m88:
905                 ret_val = igb_copper_link_setup_m88(hw);
906                 break;
907         case e1000_phy_igp_3:
908                 ret_val = igb_copper_link_setup_igp(hw);
909                 /* Setup activity LED */
910                 led_ctrl = rd32(E1000_LEDCTL);
911                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
912                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
913                 wr32(E1000_LEDCTL, led_ctrl);
914                 break;
915         default:
916                 ret_val = -E1000_ERR_PHY;
917                 break;
918         }
919
920         if (ret_val)
921                 goto out;
922
923         if (hw->mac.autoneg) {
924                 /*
925                  * Setup autoneg and flow control advertisement
926                  * and perform autonegotiation.
927                  */
928                 ret_val = igb_copper_link_autoneg(hw);
929                 if (ret_val)
930                         goto out;
931         } else {
932                 /*
933                  * PHY will be set to 10H, 10F, 100H or 100F
934                  * depending on user settings.
935                  */
936                 hw_dbg(hw, "Forcing Speed and Duplex\n");
937                 ret_val = igb_phy_force_speed_duplex(hw);
938                 if (ret_val) {
939                         hw_dbg(hw, "Error Forcing Speed and Duplex\n");
940                         goto out;
941                 }
942         }
943
944         ret_val = igb_configure_pcs_link_82575(hw);
945         if (ret_val)
946                 goto out;
947
948         /*
949          * Check link status. Wait up to 100 microseconds for link to become
950          * valid.
951          */
952         ret_val = igb_phy_has_link(hw,
953                                              COPPER_LINK_UP_LIMIT,
954                                              10,
955                                              &link);
956         if (ret_val)
957                 goto out;
958
959         if (link) {
960                 hw_dbg(hw, "Valid link established!!!\n");
961                 /* Config the MAC and PHY after link is up */
962                 igb_config_collision_dist(hw);
963                 ret_val = igb_config_fc_after_link_up(hw);
964         } else {
965                 hw_dbg(hw, "Unable to establish link!!!\n");
966         }
967
968 out:
969         return ret_val;
970 }
971
972 /**
973  *  e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
974  *  @hw: pointer to the HW structure
975  *
976  *  Configures speed and duplex for fiber and serdes links.
977  **/
978 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
979 {
980         u32 reg;
981
982         /*
983          * On the 82575, SerDes loopback mode persists until it is
984          * explicitly turned off or a power cycle is performed.  A read to
985          * the register does not indicate its status.  Therefore, we ensure
986          * loopback mode is disabled during initialization.
987          */
988         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
989
990         /* Force link up, set 1gb, set both sw defined pins */
991         reg = rd32(E1000_CTRL);
992         reg |= E1000_CTRL_SLU |
993                E1000_CTRL_SPD_1000 |
994                E1000_CTRL_FRCSPD |
995                E1000_CTRL_SWDPIN0 |
996                E1000_CTRL_SWDPIN1;
997         wr32(E1000_CTRL, reg);
998
999         /* Set switch control to serdes energy detect */
1000         reg = rd32(E1000_CONNSW);
1001         reg |= E1000_CONNSW_ENRGSRC;
1002         wr32(E1000_CONNSW, reg);
1003
1004         /*
1005          * New SerDes mode allows for forcing speed or autonegotiating speed
1006          * at 1gb. Autoneg should be default set by most drivers. This is the
1007          * mode that will be compatible with older link partners and switches.
1008          * However, both are supported by the hardware and some drivers/tools.
1009          */
1010         reg = rd32(E1000_PCS_LCTL);
1011
1012         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1013                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1014
1015         if (hw->mac.autoneg) {
1016                 /* Set PCS register for autoneg */
1017                 reg |= E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1018                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1019                        E1000_PCS_LCTL_AN_ENABLE |     /* Enable Autoneg */
1020                        E1000_PCS_LCTL_AN_RESTART;     /* Restart autoneg */
1021                 hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1022         } else {
1023                 /* Set PCS register for forced speed */
1024                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1025                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1026                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1027                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1028                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1029                 hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1030         }
1031         wr32(E1000_PCS_LCTL, reg);
1032
1033         return 0;
1034 }
1035
1036 /**
1037  *  e1000_configure_pcs_link_82575 - Configure PCS link
1038  *  @hw: pointer to the HW structure
1039  *
1040  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1041  *  only used on copper connections where the serialized gigabit media
1042  *  independent interface (sgmii) is being used.  Configures the link
1043  *  for auto-negotiation or forces speed/duplex.
1044  **/
1045 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1046 {
1047         struct e1000_mac_info *mac = &hw->mac;
1048         u32 reg = 0;
1049
1050         if (hw->phy.media_type != e1000_media_type_copper ||
1051             !(igb_sgmii_active_82575(hw)))
1052                 goto out;
1053
1054         /* For SGMII, we need to issue a PCS autoneg restart */
1055         reg = rd32(E1000_PCS_LCTL);
1056
1057         /* AN time out should be disabled for SGMII mode */
1058         reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1059
1060         if (mac->autoneg) {
1061                 /* Make sure forced speed and force link are not set */
1062                 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1063
1064                 /*
1065                  * The PHY should be setup prior to calling this function.
1066                  * All we need to do is restart autoneg and enable autoneg.
1067                  */
1068                 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1069         } else {
1070                 /* Set PCS regiseter for forced speed */
1071
1072                 /* Turn off bits for full duplex, speed, and autoneg */
1073                 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1074                          E1000_PCS_LCTL_FSV_100 |
1075                          E1000_PCS_LCTL_FDV_FULL |
1076                          E1000_PCS_LCTL_AN_ENABLE);
1077
1078                 /* Check for duplex first */
1079                 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1080                         reg |= E1000_PCS_LCTL_FDV_FULL;
1081
1082                 /* Now set speed */
1083                 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1084                         reg |= E1000_PCS_LCTL_FSV_100;
1085
1086                 /* Force speed and force link */
1087                 reg |= E1000_PCS_LCTL_FSD |
1088                        E1000_PCS_LCTL_FORCE_LINK |
1089                        E1000_PCS_LCTL_FLV_LINK_UP;
1090
1091                 hw_dbg(hw,
1092                        "Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1093                        reg);
1094         }
1095         wr32(E1000_PCS_LCTL, reg);
1096
1097 out:
1098         return 0;
1099 }
1100
1101 /**
1102  *  e1000_sgmii_active_82575 - Return sgmii state
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1106  *  which can be enabled for use in the embedded applications.  Simply
1107  *  return the current state of the sgmii interface.
1108  **/
1109 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1110 {
1111         struct e1000_dev_spec_82575 *dev_spec;
1112         bool ret_val;
1113
1114         if (hw->mac.type != e1000_82575) {
1115                 ret_val = false;
1116                 goto out;
1117         }
1118
1119         dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1120
1121         ret_val = dev_spec->sgmii_active;
1122
1123 out:
1124         return ret_val;
1125 }
1126
1127 /**
1128  *  e1000_reset_init_script_82575 - Inits HW defaults after reset
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Inits recommended HW defaults after a reset when there is no EEPROM
1132  *  detected. This is only for the 82575.
1133  **/
1134 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1135 {
1136         if (hw->mac.type == e1000_82575) {
1137                 hw_dbg(hw, "Running reset init script for 82575\n");
1138                 /* SerDes configuration via SERDESCTRL */
1139                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1140                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1141                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1142                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1143
1144                 /* CCM configuration via CCMCTL register */
1145                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1146                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1147
1148                 /* PCIe lanes configuration */
1149                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1150                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1151                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1152                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1153
1154                 /* PCIe PLL Configuration */
1155                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1156                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1157                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1158         }
1159
1160         return 0;
1161 }
1162
1163 /**
1164  *  e1000_read_mac_addr_82575 - Read device MAC address
1165  *  @hw: pointer to the HW structure
1166  **/
1167 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1168 {
1169         s32 ret_val = 0;
1170
1171         if (igb_check_alt_mac_addr(hw))
1172                 ret_val = igb_read_mac_addr(hw);
1173
1174         return ret_val;
1175 }
1176
1177 /**
1178  *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1179  *  @hw: pointer to the HW structure
1180  *
1181  *  Clears the hardware counters by reading the counter registers.
1182  **/
1183 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1184 {
1185         u32 temp;
1186
1187         igb_clear_hw_cntrs_base(hw);
1188
1189         temp = rd32(E1000_PRC64);
1190         temp = rd32(E1000_PRC127);
1191         temp = rd32(E1000_PRC255);
1192         temp = rd32(E1000_PRC511);
1193         temp = rd32(E1000_PRC1023);
1194         temp = rd32(E1000_PRC1522);
1195         temp = rd32(E1000_PTC64);
1196         temp = rd32(E1000_PTC127);
1197         temp = rd32(E1000_PTC255);
1198         temp = rd32(E1000_PTC511);
1199         temp = rd32(E1000_PTC1023);
1200         temp = rd32(E1000_PTC1522);
1201
1202         temp = rd32(E1000_ALGNERRC);
1203         temp = rd32(E1000_RXERRC);
1204         temp = rd32(E1000_TNCRS);
1205         temp = rd32(E1000_CEXTERR);
1206         temp = rd32(E1000_TSCTC);
1207         temp = rd32(E1000_TSCTFC);
1208
1209         temp = rd32(E1000_MGTPRC);
1210         temp = rd32(E1000_MGTPDC);
1211         temp = rd32(E1000_MGTPTC);
1212
1213         temp = rd32(E1000_IAC);
1214         temp = rd32(E1000_ICRXOC);
1215
1216         temp = rd32(E1000_ICRXPTC);
1217         temp = rd32(E1000_ICRXATC);
1218         temp = rd32(E1000_ICTXPTC);
1219         temp = rd32(E1000_ICTXATC);
1220         temp = rd32(E1000_ICTXQEC);
1221         temp = rd32(E1000_ICTXQMTC);
1222         temp = rd32(E1000_ICRXDMTC);
1223
1224         temp = rd32(E1000_CBTMPC);
1225         temp = rd32(E1000_HTDPMC);
1226         temp = rd32(E1000_CBRMPC);
1227         temp = rd32(E1000_RPTHC);
1228         temp = rd32(E1000_HGPTC);
1229         temp = rd32(E1000_HTCBDPC);
1230         temp = rd32(E1000_HGORCL);
1231         temp = rd32(E1000_HGORCH);
1232         temp = rd32(E1000_HGOTCL);
1233         temp = rd32(E1000_HGOTCH);
1234         temp = rd32(E1000_LENERRS);
1235
1236         /* This register should not be read in copper configurations */
1237         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1238                 temp = rd32(E1000_SCVPC);
1239 }
1240
1241 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1242         .reset_hw             = igb_reset_hw_82575,
1243         .init_hw              = igb_init_hw_82575,
1244         .check_for_link       = igb_check_for_link_82575,
1245         .rar_set              = igb_rar_set_82575,
1246         .read_mac_addr        = igb_read_mac_addr_82575,
1247         .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1248 };
1249
1250 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1251         .acquire_phy          = igb_acquire_phy_82575,
1252         .get_cfg_done         = igb_get_cfg_done_82575,
1253         .release_phy          = igb_release_phy_82575,
1254 };
1255
1256 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1257         .acquire_nvm          = igb_acquire_nvm_82575,
1258         .read_nvm             = igb_read_nvm_eerd,
1259         .release_nvm          = igb_release_nvm_82575,
1260         .write_nvm            = igb_write_nvm_spi,
1261 };
1262
1263 const struct e1000_info e1000_82575_info = {
1264         .get_invariants = igb_get_invariants_82575,
1265         .mac_ops = &e1000_mac_ops_82575,
1266         .phy_ops = &e1000_phy_ops_82575,
1267         .nvm_ops = &e1000_nvm_ops_82575,
1268 };
1269