leds: fix platform driver hotplug/coldplug
[linux-2.6] / drivers / net / e1000 / e1000_hw.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* e1000_hw.c
30  * Shared functions for accessing and configuring the MAC
31  */
32
33
34 #include "e1000_hw.h"
35
36 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
37 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
38 static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
39 static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
40 static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
41 static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
43 static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
44 static int32_t e1000_check_downshift(struct e1000_hw *hw);
45 static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
46 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
47 static void e1000_clear_vfta(struct e1000_hw *hw);
48 static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
49 static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
50 static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
51 static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
52 static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
53 static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
54 static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
55 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
56 static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
57 static int32_t e1000_get_software_flag(struct e1000_hw *hw);
58 static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
59 static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
60 static int32_t e1000_id_led_init(struct e1000_hw *hw);
61 static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
62 static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
63 static void e1000_init_rx_addrs(struct e1000_hw *hw);
64 static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
65 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
66 static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
67 static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
68 static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
69 static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
70 static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
71 static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
72 static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
73 static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
74 static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
75 static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
76 static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
77 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
78 static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
79 static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
80 static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
81 static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
82 static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
83 static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
84 static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
85 static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
86 static void e1000_release_software_flag(struct e1000_hw *hw);
87 static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
88 static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
89 static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
90 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
91 static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
92 static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
93 static int32_t e1000_set_phy_type(struct e1000_hw *hw);
94 static void e1000_phy_init_script(struct e1000_hw *hw);
95 static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
96 static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
97 static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
98 static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
99 static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
100 static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
101 static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
102 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
103                                      uint16_t count);
104 static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
105 static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
106 static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
107                                       uint16_t words, uint16_t *data);
108 static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
109                                             uint16_t offset, uint16_t words,
110                                             uint16_t *data);
111 static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
112 static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
113 static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
114 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
115                                     uint16_t count);
116 static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
117                                       uint16_t phy_data);
118 static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
119                                      uint16_t *phy_data);
120 static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
121 static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
122 static void e1000_release_eeprom(struct e1000_hw *hw);
123 static void e1000_standby_eeprom(struct e1000_hw *hw);
124 static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
125 static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
126 static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
127 static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
128 static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
129 static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
130                                                uint16_t duplex);
131 static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
132
133 /* IGP cable length table */
134 static const
135 uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
136     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
137       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
138       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
139       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
140       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
141       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
142       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
143       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
144
145 static const
146 uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
147     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
148       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
149       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
150       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
151       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
152       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
153       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
154       104, 109, 114, 118, 121, 124};
155
156 /******************************************************************************
157  * Set the phy type member in the hw struct.
158  *
159  * hw - Struct containing variables accessed by shared code
160  *****************************************************************************/
161 static int32_t
162 e1000_set_phy_type(struct e1000_hw *hw)
163 {
164     DEBUGFUNC("e1000_set_phy_type");
165
166     if (hw->mac_type == e1000_undefined)
167         return -E1000_ERR_PHY_TYPE;
168
169     switch (hw->phy_id) {
170     case M88E1000_E_PHY_ID:
171     case M88E1000_I_PHY_ID:
172     case M88E1011_I_PHY_ID:
173     case M88E1111_I_PHY_ID:
174         hw->phy_type = e1000_phy_m88;
175         break;
176     case IGP01E1000_I_PHY_ID:
177         if (hw->mac_type == e1000_82541 ||
178             hw->mac_type == e1000_82541_rev_2 ||
179             hw->mac_type == e1000_82547 ||
180             hw->mac_type == e1000_82547_rev_2) {
181             hw->phy_type = e1000_phy_igp;
182             break;
183         }
184     case IGP03E1000_E_PHY_ID:
185         hw->phy_type = e1000_phy_igp_3;
186         break;
187     case IFE_E_PHY_ID:
188     case IFE_PLUS_E_PHY_ID:
189     case IFE_C_E_PHY_ID:
190         hw->phy_type = e1000_phy_ife;
191         break;
192     case GG82563_E_PHY_ID:
193         if (hw->mac_type == e1000_80003es2lan) {
194             hw->phy_type = e1000_phy_gg82563;
195             break;
196         }
197         /* Fall Through */
198     default:
199         /* Should never have loaded on this device */
200         hw->phy_type = e1000_phy_undefined;
201         return -E1000_ERR_PHY_TYPE;
202     }
203
204     return E1000_SUCCESS;
205 }
206
207 /******************************************************************************
208  * IGP phy init script - initializes the GbE PHY
209  *
210  * hw - Struct containing variables accessed by shared code
211  *****************************************************************************/
212 static void
213 e1000_phy_init_script(struct e1000_hw *hw)
214 {
215     uint32_t ret_val;
216     uint16_t phy_saved_data;
217
218     DEBUGFUNC("e1000_phy_init_script");
219
220     if (hw->phy_init_script) {
221         msleep(20);
222
223         /* Save off the current value of register 0x2F5B to be restored at
224          * the end of this routine. */
225         ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
226
227         /* Disabled the PHY transmitter */
228         e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
229
230         msleep(20);
231
232         e1000_write_phy_reg(hw,0x0000,0x0140);
233
234         msleep(5);
235
236         switch (hw->mac_type) {
237         case e1000_82541:
238         case e1000_82547:
239             e1000_write_phy_reg(hw, 0x1F95, 0x0001);
240
241             e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
242
243             e1000_write_phy_reg(hw, 0x1F79, 0x0018);
244
245             e1000_write_phy_reg(hw, 0x1F30, 0x1600);
246
247             e1000_write_phy_reg(hw, 0x1F31, 0x0014);
248
249             e1000_write_phy_reg(hw, 0x1F32, 0x161C);
250
251             e1000_write_phy_reg(hw, 0x1F94, 0x0003);
252
253             e1000_write_phy_reg(hw, 0x1F96, 0x003F);
254
255             e1000_write_phy_reg(hw, 0x2010, 0x0008);
256             break;
257
258         case e1000_82541_rev_2:
259         case e1000_82547_rev_2:
260             e1000_write_phy_reg(hw, 0x1F73, 0x0099);
261             break;
262         default:
263             break;
264         }
265
266         e1000_write_phy_reg(hw, 0x0000, 0x3300);
267
268         msleep(20);
269
270         /* Now enable the transmitter */
271         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
272
273         if (hw->mac_type == e1000_82547) {
274             uint16_t fused, fine, coarse;
275
276             /* Move to analog registers page */
277             e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
278
279             if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
280                 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
281
282                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
283                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
284
285                 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
286                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
287                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
288                 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
289                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
290
291                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
292                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
293                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
294
295                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
296                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
297                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
298             }
299         }
300     }
301 }
302
303 /******************************************************************************
304  * Set the mac type member in the hw struct.
305  *
306  * hw - Struct containing variables accessed by shared code
307  *****************************************************************************/
308 int32_t
309 e1000_set_mac_type(struct e1000_hw *hw)
310 {
311         DEBUGFUNC("e1000_set_mac_type");
312
313         switch (hw->device_id) {
314         case E1000_DEV_ID_82542:
315                 switch (hw->revision_id) {
316                 case E1000_82542_2_0_REV_ID:
317                         hw->mac_type = e1000_82542_rev2_0;
318                         break;
319                 case E1000_82542_2_1_REV_ID:
320                         hw->mac_type = e1000_82542_rev2_1;
321                         break;
322                 default:
323                         /* Invalid 82542 revision ID */
324                         return -E1000_ERR_MAC_TYPE;
325                 }
326                 break;
327         case E1000_DEV_ID_82543GC_FIBER:
328         case E1000_DEV_ID_82543GC_COPPER:
329                 hw->mac_type = e1000_82543;
330                 break;
331         case E1000_DEV_ID_82544EI_COPPER:
332         case E1000_DEV_ID_82544EI_FIBER:
333         case E1000_DEV_ID_82544GC_COPPER:
334         case E1000_DEV_ID_82544GC_LOM:
335                 hw->mac_type = e1000_82544;
336                 break;
337         case E1000_DEV_ID_82540EM:
338         case E1000_DEV_ID_82540EM_LOM:
339         case E1000_DEV_ID_82540EP:
340         case E1000_DEV_ID_82540EP_LOM:
341         case E1000_DEV_ID_82540EP_LP:
342                 hw->mac_type = e1000_82540;
343                 break;
344         case E1000_DEV_ID_82545EM_COPPER:
345         case E1000_DEV_ID_82545EM_FIBER:
346                 hw->mac_type = e1000_82545;
347                 break;
348         case E1000_DEV_ID_82545GM_COPPER:
349         case E1000_DEV_ID_82545GM_FIBER:
350         case E1000_DEV_ID_82545GM_SERDES:
351                 hw->mac_type = e1000_82545_rev_3;
352                 break;
353         case E1000_DEV_ID_82546EB_COPPER:
354         case E1000_DEV_ID_82546EB_FIBER:
355         case E1000_DEV_ID_82546EB_QUAD_COPPER:
356                 hw->mac_type = e1000_82546;
357                 break;
358         case E1000_DEV_ID_82546GB_COPPER:
359         case E1000_DEV_ID_82546GB_FIBER:
360         case E1000_DEV_ID_82546GB_SERDES:
361         case E1000_DEV_ID_82546GB_PCIE:
362         case E1000_DEV_ID_82546GB_QUAD_COPPER:
363         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
364                 hw->mac_type = e1000_82546_rev_3;
365                 break;
366         case E1000_DEV_ID_82541EI:
367         case E1000_DEV_ID_82541EI_MOBILE:
368         case E1000_DEV_ID_82541ER_LOM:
369                 hw->mac_type = e1000_82541;
370                 break;
371         case E1000_DEV_ID_82541ER:
372         case E1000_DEV_ID_82541GI:
373         case E1000_DEV_ID_82541GI_LF:
374         case E1000_DEV_ID_82541GI_MOBILE:
375                 hw->mac_type = e1000_82541_rev_2;
376                 break;
377         case E1000_DEV_ID_82547EI:
378         case E1000_DEV_ID_82547EI_MOBILE:
379                 hw->mac_type = e1000_82547;
380                 break;
381         case E1000_DEV_ID_82547GI:
382                 hw->mac_type = e1000_82547_rev_2;
383                 break;
384         case E1000_DEV_ID_82571EB_COPPER:
385         case E1000_DEV_ID_82571EB_FIBER:
386         case E1000_DEV_ID_82571EB_SERDES:
387         case E1000_DEV_ID_82571EB_SERDES_DUAL:
388         case E1000_DEV_ID_82571EB_SERDES_QUAD:
389         case E1000_DEV_ID_82571EB_QUAD_COPPER:
390         case E1000_DEV_ID_82571PT_QUAD_COPPER:
391         case E1000_DEV_ID_82571EB_QUAD_FIBER:
392         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
393                 hw->mac_type = e1000_82571;
394                 break;
395         case E1000_DEV_ID_82572EI_COPPER:
396         case E1000_DEV_ID_82572EI_FIBER:
397         case E1000_DEV_ID_82572EI_SERDES:
398         case E1000_DEV_ID_82572EI:
399                 hw->mac_type = e1000_82572;
400                 break;
401         case E1000_DEV_ID_82573E:
402         case E1000_DEV_ID_82573E_IAMT:
403         case E1000_DEV_ID_82573L:
404                 hw->mac_type = e1000_82573;
405                 break;
406         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
407         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
408         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
409         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
410                 hw->mac_type = e1000_80003es2lan;
411                 break;
412         case E1000_DEV_ID_ICH8_IGP_M_AMT:
413         case E1000_DEV_ID_ICH8_IGP_AMT:
414         case E1000_DEV_ID_ICH8_IGP_C:
415         case E1000_DEV_ID_ICH8_IFE:
416         case E1000_DEV_ID_ICH8_IFE_GT:
417         case E1000_DEV_ID_ICH8_IFE_G:
418         case E1000_DEV_ID_ICH8_IGP_M:
419                 hw->mac_type = e1000_ich8lan;
420                 break;
421         default:
422                 /* Should never have loaded on this device */
423                 return -E1000_ERR_MAC_TYPE;
424         }
425
426         switch (hw->mac_type) {
427         case e1000_ich8lan:
428                 hw->swfwhw_semaphore_present = TRUE;
429                 hw->asf_firmware_present = TRUE;
430                 break;
431         case e1000_80003es2lan:
432                 hw->swfw_sync_present = TRUE;
433                 /* fall through */
434         case e1000_82571:
435         case e1000_82572:
436         case e1000_82573:
437                 hw->eeprom_semaphore_present = TRUE;
438                 /* fall through */
439         case e1000_82541:
440         case e1000_82547:
441         case e1000_82541_rev_2:
442         case e1000_82547_rev_2:
443                 hw->asf_firmware_present = TRUE;
444                 break;
445         default:
446                 break;
447         }
448
449         /* The 82543 chip does not count tx_carrier_errors properly in
450          * FD mode
451          */
452         if (hw->mac_type == e1000_82543)
453                 hw->bad_tx_carr_stats_fd = TRUE;
454
455         /* capable of receiving management packets to the host */
456         if (hw->mac_type >= e1000_82571)
457                 hw->has_manc2h = TRUE;
458
459         /* In rare occasions, ESB2 systems would end up started without
460          * the RX unit being turned on.
461          */
462         if (hw->mac_type == e1000_80003es2lan)
463                 hw->rx_needs_kicking = TRUE;
464
465         if (hw->mac_type > e1000_82544)
466                 hw->has_smbus = TRUE;
467
468         return E1000_SUCCESS;
469 }
470
471 /*****************************************************************************
472  * Set media type and TBI compatibility.
473  *
474  * hw - Struct containing variables accessed by shared code
475  * **************************************************************************/
476 void
477 e1000_set_media_type(struct e1000_hw *hw)
478 {
479     uint32_t status;
480
481     DEBUGFUNC("e1000_set_media_type");
482
483     if (hw->mac_type != e1000_82543) {
484         /* tbi_compatibility is only valid on 82543 */
485         hw->tbi_compatibility_en = FALSE;
486     }
487
488     switch (hw->device_id) {
489     case E1000_DEV_ID_82545GM_SERDES:
490     case E1000_DEV_ID_82546GB_SERDES:
491     case E1000_DEV_ID_82571EB_SERDES:
492     case E1000_DEV_ID_82571EB_SERDES_DUAL:
493     case E1000_DEV_ID_82571EB_SERDES_QUAD:
494     case E1000_DEV_ID_82572EI_SERDES:
495     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
496         hw->media_type = e1000_media_type_internal_serdes;
497         break;
498     default:
499         switch (hw->mac_type) {
500         case e1000_82542_rev2_0:
501         case e1000_82542_rev2_1:
502             hw->media_type = e1000_media_type_fiber;
503             break;
504         case e1000_ich8lan:
505         case e1000_82573:
506             /* The STATUS_TBIMODE bit is reserved or reused for the this
507              * device.
508              */
509             hw->media_type = e1000_media_type_copper;
510             break;
511         default:
512             status = E1000_READ_REG(hw, STATUS);
513             if (status & E1000_STATUS_TBIMODE) {
514                 hw->media_type = e1000_media_type_fiber;
515                 /* tbi_compatibility not valid on fiber */
516                 hw->tbi_compatibility_en = FALSE;
517             } else {
518                 hw->media_type = e1000_media_type_copper;
519             }
520             break;
521         }
522     }
523 }
524
525 /******************************************************************************
526  * Reset the transmit and receive units; mask and clear all interrupts.
527  *
528  * hw - Struct containing variables accessed by shared code
529  *****************************************************************************/
530 int32_t
531 e1000_reset_hw(struct e1000_hw *hw)
532 {
533     uint32_t ctrl;
534     uint32_t ctrl_ext;
535     uint32_t icr;
536     uint32_t manc;
537     uint32_t led_ctrl;
538     uint32_t timeout;
539     uint32_t extcnf_ctrl;
540     int32_t ret_val;
541
542     DEBUGFUNC("e1000_reset_hw");
543
544     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
545     if (hw->mac_type == e1000_82542_rev2_0) {
546         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
547         e1000_pci_clear_mwi(hw);
548     }
549
550     if (hw->bus_type == e1000_bus_type_pci_express) {
551         /* Prevent the PCI-E bus from sticking if there is no TLP connection
552          * on the last TLP read/write transaction when MAC is reset.
553          */
554         if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
555             DEBUGOUT("PCI-E Master disable polling has failed.\n");
556         }
557     }
558
559     /* Clear interrupt mask to stop board from generating interrupts */
560     DEBUGOUT("Masking off all interrupts\n");
561     E1000_WRITE_REG(hw, IMC, 0xffffffff);
562
563     /* Disable the Transmit and Receive units.  Then delay to allow
564      * any pending transactions to complete before we hit the MAC with
565      * the global reset.
566      */
567     E1000_WRITE_REG(hw, RCTL, 0);
568     E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
569     E1000_WRITE_FLUSH(hw);
570
571     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
572     hw->tbi_compatibility_on = FALSE;
573
574     /* Delay to allow any outstanding PCI transactions to complete before
575      * resetting the device
576      */
577     msleep(10);
578
579     ctrl = E1000_READ_REG(hw, CTRL);
580
581     /* Must reset the PHY before resetting the MAC */
582     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
583         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
584         msleep(5);
585     }
586
587     /* Must acquire the MDIO ownership before MAC reset.
588      * Ownership defaults to firmware after a reset. */
589     if (hw->mac_type == e1000_82573) {
590         timeout = 10;
591
592         extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
593         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
594
595         do {
596             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
597             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
598
599             if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
600                 break;
601             else
602                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
603
604             msleep(2);
605             timeout--;
606         } while (timeout);
607     }
608
609     /* Workaround for ICH8 bit corruption issue in FIFO memory */
610     if (hw->mac_type == e1000_ich8lan) {
611         /* Set Tx and Rx buffer allocation to 8k apiece. */
612         E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
613         /* Set Packet Buffer Size to 16k. */
614         E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
615     }
616
617     /* Issue a global reset to the MAC.  This will reset the chip's
618      * transmit, receive, DMA, and link units.  It will not effect
619      * the current PCI configuration.  The global reset bit is self-
620      * clearing, and should clear within a microsecond.
621      */
622     DEBUGOUT("Issuing a global reset to MAC\n");
623
624     switch (hw->mac_type) {
625         case e1000_82544:
626         case e1000_82540:
627         case e1000_82545:
628         case e1000_82546:
629         case e1000_82541:
630         case e1000_82541_rev_2:
631             /* These controllers can't ack the 64-bit write when issuing the
632              * reset, so use IO-mapping as a workaround to issue the reset */
633             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
634             break;
635         case e1000_82545_rev_3:
636         case e1000_82546_rev_3:
637             /* Reset is performed on a shadow of the control register */
638             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
639             break;
640         case e1000_ich8lan:
641             if (!hw->phy_reset_disable &&
642                 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
643                 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
644                  * at the same time to make sure the interface between
645                  * MAC and the external PHY is reset.
646                  */
647                 ctrl |= E1000_CTRL_PHY_RST;
648             }
649
650             e1000_get_software_flag(hw);
651             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
652             msleep(5);
653             break;
654         default:
655             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
656             break;
657     }
658
659     /* After MAC reset, force reload of EEPROM to restore power-on settings to
660      * device.  Later controllers reload the EEPROM automatically, so just wait
661      * for reload to complete.
662      */
663     switch (hw->mac_type) {
664         case e1000_82542_rev2_0:
665         case e1000_82542_rev2_1:
666         case e1000_82543:
667         case e1000_82544:
668             /* Wait for reset to complete */
669             udelay(10);
670             ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
671             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
672             E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
673             E1000_WRITE_FLUSH(hw);
674             /* Wait for EEPROM reload */
675             msleep(2);
676             break;
677         case e1000_82541:
678         case e1000_82541_rev_2:
679         case e1000_82547:
680         case e1000_82547_rev_2:
681             /* Wait for EEPROM reload */
682             msleep(20);
683             break;
684         case e1000_82573:
685             if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
686                 udelay(10);
687                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
688                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
689                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
690                 E1000_WRITE_FLUSH(hw);
691             }
692             /* fall through */
693         default:
694             /* Auto read done will delay 5ms or poll based on mac type */
695             ret_val = e1000_get_auto_rd_done(hw);
696             if (ret_val)
697                 return ret_val;
698             break;
699     }
700
701     /* Disable HW ARPs on ASF enabled adapters */
702     if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
703         manc = E1000_READ_REG(hw, MANC);
704         manc &= ~(E1000_MANC_ARP_EN);
705         E1000_WRITE_REG(hw, MANC, manc);
706     }
707
708     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
709         e1000_phy_init_script(hw);
710
711         /* Configure activity LED after PHY reset */
712         led_ctrl = E1000_READ_REG(hw, LEDCTL);
713         led_ctrl &= IGP_ACTIVITY_LED_MASK;
714         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
715         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
716     }
717
718     /* Clear interrupt mask to stop board from generating interrupts */
719     DEBUGOUT("Masking off all interrupts\n");
720     E1000_WRITE_REG(hw, IMC, 0xffffffff);
721
722     /* Clear any pending interrupt events. */
723     icr = E1000_READ_REG(hw, ICR);
724
725     /* If MWI was previously enabled, reenable it. */
726     if (hw->mac_type == e1000_82542_rev2_0) {
727         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
728             e1000_pci_set_mwi(hw);
729     }
730
731     if (hw->mac_type == e1000_ich8lan) {
732         uint32_t kab = E1000_READ_REG(hw, KABGTXD);
733         kab |= E1000_KABGTXD_BGSQLBIAS;
734         E1000_WRITE_REG(hw, KABGTXD, kab);
735     }
736
737     return E1000_SUCCESS;
738 }
739
740 /******************************************************************************
741  *
742  * Initialize a number of hardware-dependent bits
743  *
744  * hw: Struct containing variables accessed by shared code
745  *
746  * This function contains hardware limitation workarounds for PCI-E adapters
747  *
748  *****************************************************************************/
749 static void
750 e1000_initialize_hardware_bits(struct e1000_hw *hw)
751 {
752     if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
753         /* Settings common to all PCI-express silicon */
754         uint32_t reg_ctrl, reg_ctrl_ext;
755         uint32_t reg_tarc0, reg_tarc1;
756         uint32_t reg_tctl;
757         uint32_t reg_txdctl, reg_txdctl1;
758
759         /* link autonegotiation/sync workarounds */
760         reg_tarc0 = E1000_READ_REG(hw, TARC0);
761         reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
762
763         /* Enable not-done TX descriptor counting */
764         reg_txdctl = E1000_READ_REG(hw, TXDCTL);
765         reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
766         E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
767         reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
768         reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
769         E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
770
771         switch (hw->mac_type) {
772             case e1000_82571:
773             case e1000_82572:
774                 /* Clear PHY TX compatible mode bits */
775                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
776                 reg_tarc1 &= ~((1 << 30)|(1 << 29));
777
778                 /* link autonegotiation/sync workarounds */
779                 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
780
781                 /* TX ring control fixes */
782                 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
783
784                 /* Multiple read bit is reversed polarity */
785                 reg_tctl = E1000_READ_REG(hw, TCTL);
786                 if (reg_tctl & E1000_TCTL_MULR)
787                     reg_tarc1 &= ~(1 << 28);
788                 else
789                     reg_tarc1 |= (1 << 28);
790
791                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
792                 break;
793             case e1000_82573:
794                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
795                 reg_ctrl_ext &= ~(1 << 23);
796                 reg_ctrl_ext |= (1 << 22);
797
798                 /* TX byte count fix */
799                 reg_ctrl = E1000_READ_REG(hw, CTRL);
800                 reg_ctrl &= ~(1 << 29);
801
802                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
803                 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
804                 break;
805             case e1000_80003es2lan:
806                 /* improve small packet performace for fiber/serdes */
807                 if ((hw->media_type == e1000_media_type_fiber) ||
808                     (hw->media_type == e1000_media_type_internal_serdes)) {
809                     reg_tarc0 &= ~(1 << 20);
810                 }
811
812                 /* Multiple read bit is reversed polarity */
813                 reg_tctl = E1000_READ_REG(hw, TCTL);
814                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
815                 if (reg_tctl & E1000_TCTL_MULR)
816                     reg_tarc1 &= ~(1 << 28);
817                 else
818                     reg_tarc1 |= (1 << 28);
819
820                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
821                 break;
822             case e1000_ich8lan:
823                 /* Reduce concurrent DMA requests to 3 from 4 */
824                 if ((hw->revision_id < 3) ||
825                     ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
826                      (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
827                     reg_tarc0 |= ((1 << 29)|(1 << 28));
828
829                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
830                 reg_ctrl_ext |= (1 << 22);
831                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
832
833                 /* workaround TX hang with TSO=on */
834                 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
835
836                 /* Multiple read bit is reversed polarity */
837                 reg_tctl = E1000_READ_REG(hw, TCTL);
838                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
839                 if (reg_tctl & E1000_TCTL_MULR)
840                     reg_tarc1 &= ~(1 << 28);
841                 else
842                     reg_tarc1 |= (1 << 28);
843
844                 /* workaround TX hang with TSO=on */
845                 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
846
847                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
848                 break;
849             default:
850                 break;
851         }
852
853         E1000_WRITE_REG(hw, TARC0, reg_tarc0);
854     }
855 }
856
857 /******************************************************************************
858  * Performs basic configuration of the adapter.
859  *
860  * hw - Struct containing variables accessed by shared code
861  *
862  * Assumes that the controller has previously been reset and is in a
863  * post-reset uninitialized state. Initializes the receive address registers,
864  * multicast table, and VLAN filter table. Calls routines to setup link
865  * configuration and flow control settings. Clears all on-chip counters. Leaves
866  * the transmit and receive units disabled and uninitialized.
867  *****************************************************************************/
868 int32_t
869 e1000_init_hw(struct e1000_hw *hw)
870 {
871     uint32_t ctrl;
872     uint32_t i;
873     int32_t ret_val;
874     uint32_t mta_size;
875     uint32_t reg_data;
876     uint32_t ctrl_ext;
877
878     DEBUGFUNC("e1000_init_hw");
879
880     /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
881     if ((hw->mac_type == e1000_ich8lan) &&
882         ((hw->revision_id < 3) ||
883          ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
884           (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
885             reg_data = E1000_READ_REG(hw, STATUS);
886             reg_data &= ~0x80000000;
887             E1000_WRITE_REG(hw, STATUS, reg_data);
888     }
889
890     /* Initialize Identification LED */
891     ret_val = e1000_id_led_init(hw);
892     if (ret_val) {
893         DEBUGOUT("Error Initializing Identification LED\n");
894         return ret_val;
895     }
896
897     /* Set the media type and TBI compatibility */
898     e1000_set_media_type(hw);
899
900     /* Must be called after e1000_set_media_type because media_type is used */
901     e1000_initialize_hardware_bits(hw);
902
903     /* Disabling VLAN filtering. */
904     DEBUGOUT("Initializing the IEEE VLAN\n");
905     /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
906     if (hw->mac_type != e1000_ich8lan) {
907         if (hw->mac_type < e1000_82545_rev_3)
908             E1000_WRITE_REG(hw, VET, 0);
909         e1000_clear_vfta(hw);
910     }
911
912     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
913     if (hw->mac_type == e1000_82542_rev2_0) {
914         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
915         e1000_pci_clear_mwi(hw);
916         E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
917         E1000_WRITE_FLUSH(hw);
918         msleep(5);
919     }
920
921     /* Setup the receive address. This involves initializing all of the Receive
922      * Address Registers (RARs 0 - 15).
923      */
924     e1000_init_rx_addrs(hw);
925
926     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
927     if (hw->mac_type == e1000_82542_rev2_0) {
928         E1000_WRITE_REG(hw, RCTL, 0);
929         E1000_WRITE_FLUSH(hw);
930         msleep(1);
931         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
932             e1000_pci_set_mwi(hw);
933     }
934
935     /* Zero out the Multicast HASH table */
936     DEBUGOUT("Zeroing the MTA\n");
937     mta_size = E1000_MC_TBL_SIZE;
938     if (hw->mac_type == e1000_ich8lan)
939         mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
940     for (i = 0; i < mta_size; i++) {
941         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
942         /* use write flush to prevent Memory Write Block (MWB) from
943          * occuring when accessing our register space */
944         E1000_WRITE_FLUSH(hw);
945     }
946
947     /* Set the PCI priority bit correctly in the CTRL register.  This
948      * determines if the adapter gives priority to receives, or if it
949      * gives equal priority to transmits and receives.  Valid only on
950      * 82542 and 82543 silicon.
951      */
952     if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
953         ctrl = E1000_READ_REG(hw, CTRL);
954         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
955     }
956
957     switch (hw->mac_type) {
958     case e1000_82545_rev_3:
959     case e1000_82546_rev_3:
960         break;
961     default:
962         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
963         if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
964                 e1000_pcix_set_mmrbc(hw, 2048);
965         break;
966     }
967
968     /* More time needed for PHY to initialize */
969     if (hw->mac_type == e1000_ich8lan)
970         msleep(15);
971
972     /* Call a subroutine to configure the link and setup flow control. */
973     ret_val = e1000_setup_link(hw);
974
975     /* Set the transmit descriptor write-back policy */
976     if (hw->mac_type > e1000_82544) {
977         ctrl = E1000_READ_REG(hw, TXDCTL);
978         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
979         E1000_WRITE_REG(hw, TXDCTL, ctrl);
980     }
981
982     if (hw->mac_type == e1000_82573) {
983         e1000_enable_tx_pkt_filtering(hw);
984     }
985
986     switch (hw->mac_type) {
987     default:
988         break;
989     case e1000_80003es2lan:
990         /* Enable retransmit on late collisions */
991         reg_data = E1000_READ_REG(hw, TCTL);
992         reg_data |= E1000_TCTL_RTLC;
993         E1000_WRITE_REG(hw, TCTL, reg_data);
994
995         /* Configure Gigabit Carry Extend Padding */
996         reg_data = E1000_READ_REG(hw, TCTL_EXT);
997         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
998         reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
999         E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1000
1001         /* Configure Transmit Inter-Packet Gap */
1002         reg_data = E1000_READ_REG(hw, TIPG);
1003         reg_data &= ~E1000_TIPG_IPGT_MASK;
1004         reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1005         E1000_WRITE_REG(hw, TIPG, reg_data);
1006
1007         reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1008         reg_data &= ~0x00100000;
1009         E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1010         /* Fall through */
1011     case e1000_82571:
1012     case e1000_82572:
1013     case e1000_ich8lan:
1014         ctrl = E1000_READ_REG(hw, TXDCTL1);
1015         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1016         E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1017         break;
1018     }
1019
1020
1021     if (hw->mac_type == e1000_82573) {
1022         uint32_t gcr = E1000_READ_REG(hw, GCR);
1023         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1024         E1000_WRITE_REG(hw, GCR, gcr);
1025     }
1026
1027     /* Clear all of the statistics registers (clear on read).  It is
1028      * important that we do this after we have tried to establish link
1029      * because the symbol error count will increment wildly if there
1030      * is no link.
1031      */
1032     e1000_clear_hw_cntrs(hw);
1033
1034     /* ICH8 No-snoop bits are opposite polarity.
1035      * Set to snoop by default after reset. */
1036     if (hw->mac_type == e1000_ich8lan)
1037         e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1038
1039     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1040         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1041         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1042         /* Relaxed ordering must be disabled to avoid a parity
1043          * error crash in a PCI slot. */
1044         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1045         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1046     }
1047
1048     return ret_val;
1049 }
1050
1051 /******************************************************************************
1052  * Adjust SERDES output amplitude based on EEPROM setting.
1053  *
1054  * hw - Struct containing variables accessed by shared code.
1055  *****************************************************************************/
1056 static int32_t
1057 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1058 {
1059     uint16_t eeprom_data;
1060     int32_t  ret_val;
1061
1062     DEBUGFUNC("e1000_adjust_serdes_amplitude");
1063
1064     if (hw->media_type != e1000_media_type_internal_serdes)
1065         return E1000_SUCCESS;
1066
1067     switch (hw->mac_type) {
1068     case e1000_82545_rev_3:
1069     case e1000_82546_rev_3:
1070         break;
1071     default:
1072         return E1000_SUCCESS;
1073     }
1074
1075     ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1076     if (ret_val) {
1077         return ret_val;
1078     }
1079
1080     if (eeprom_data != EEPROM_RESERVED_WORD) {
1081         /* Adjust SERDES output amplitude only. */
1082         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1083         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
1084         if (ret_val)
1085             return ret_val;
1086     }
1087
1088     return E1000_SUCCESS;
1089 }
1090
1091 /******************************************************************************
1092  * Configures flow control and link settings.
1093  *
1094  * hw - Struct containing variables accessed by shared code
1095  *
1096  * Determines which flow control settings to use. Calls the apropriate media-
1097  * specific link configuration function. Configures the flow control settings.
1098  * Assuming the adapter has a valid link partner, a valid link should be
1099  * established. Assumes the hardware has previously been reset and the
1100  * transmitter and receiver are not enabled.
1101  *****************************************************************************/
1102 int32_t
1103 e1000_setup_link(struct e1000_hw *hw)
1104 {
1105     uint32_t ctrl_ext;
1106     int32_t ret_val;
1107     uint16_t eeprom_data;
1108
1109     DEBUGFUNC("e1000_setup_link");
1110
1111     /* In the case of the phy reset being blocked, we already have a link.
1112      * We do not have to set it up again. */
1113     if (e1000_check_phy_reset_block(hw))
1114         return E1000_SUCCESS;
1115
1116     /* Read and store word 0x0F of the EEPROM. This word contains bits
1117      * that determine the hardware's default PAUSE (flow control) mode,
1118      * a bit that determines whether the HW defaults to enabling or
1119      * disabling auto-negotiation, and the direction of the
1120      * SW defined pins. If there is no SW over-ride of the flow
1121      * control setting, then the variable hw->fc will
1122      * be initialized based on a value in the EEPROM.
1123      */
1124     if (hw->fc == E1000_FC_DEFAULT) {
1125         switch (hw->mac_type) {
1126         case e1000_ich8lan:
1127         case e1000_82573:
1128             hw->fc = E1000_FC_FULL;
1129             break;
1130         default:
1131             ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1132                                         1, &eeprom_data);
1133             if (ret_val) {
1134                 DEBUGOUT("EEPROM Read Error\n");
1135                 return -E1000_ERR_EEPROM;
1136             }
1137             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1138                 hw->fc = E1000_FC_NONE;
1139             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1140                     EEPROM_WORD0F_ASM_DIR)
1141                 hw->fc = E1000_FC_TX_PAUSE;
1142             else
1143                 hw->fc = E1000_FC_FULL;
1144             break;
1145         }
1146     }
1147
1148     /* We want to save off the original Flow Control configuration just
1149      * in case we get disconnected and then reconnected into a different
1150      * hub or switch with different Flow Control capabilities.
1151      */
1152     if (hw->mac_type == e1000_82542_rev2_0)
1153         hw->fc &= (~E1000_FC_TX_PAUSE);
1154
1155     if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1156         hw->fc &= (~E1000_FC_RX_PAUSE);
1157
1158     hw->original_fc = hw->fc;
1159
1160     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1161
1162     /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1163      * polarity value for the SW controlled pins, and setup the
1164      * Extended Device Control reg with that info.
1165      * This is needed because one of the SW controlled pins is used for
1166      * signal detection.  So this should be done before e1000_setup_pcs_link()
1167      * or e1000_phy_setup() is called.
1168      */
1169     if (hw->mac_type == e1000_82543) {
1170         ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1171                                     1, &eeprom_data);
1172         if (ret_val) {
1173             DEBUGOUT("EEPROM Read Error\n");
1174             return -E1000_ERR_EEPROM;
1175         }
1176         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1177                     SWDPIO__EXT_SHIFT);
1178         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1179     }
1180
1181     /* Call the necessary subroutine to configure the link. */
1182     ret_val = (hw->media_type == e1000_media_type_copper) ?
1183               e1000_setup_copper_link(hw) :
1184               e1000_setup_fiber_serdes_link(hw);
1185
1186     /* Initialize the flow control address, type, and PAUSE timer
1187      * registers to their default values.  This is done even if flow
1188      * control is disabled, because it does not hurt anything to
1189      * initialize these registers.
1190      */
1191     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1192
1193     /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1194     if (hw->mac_type != e1000_ich8lan) {
1195         E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1196         E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1197         E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1198     }
1199
1200     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1201
1202     /* Set the flow control receive threshold registers.  Normally,
1203      * these registers will be set to a default threshold that may be
1204      * adjusted later by the driver's runtime code.  However, if the
1205      * ability to transmit pause frames in not enabled, then these
1206      * registers will be set to 0.
1207      */
1208     if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1209         E1000_WRITE_REG(hw, FCRTL, 0);
1210         E1000_WRITE_REG(hw, FCRTH, 0);
1211     } else {
1212         /* We need to set up the Receive Threshold high and low water marks
1213          * as well as (optionally) enabling the transmission of XON frames.
1214          */
1215         if (hw->fc_send_xon) {
1216             E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1217             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1218         } else {
1219             E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1220             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1221         }
1222     }
1223     return ret_val;
1224 }
1225
1226 /******************************************************************************
1227  * Sets up link for a fiber based or serdes based adapter
1228  *
1229  * hw - Struct containing variables accessed by shared code
1230  *
1231  * Manipulates Physical Coding Sublayer functions in order to configure
1232  * link. Assumes the hardware has been previously reset and the transmitter
1233  * and receiver are not enabled.
1234  *****************************************************************************/
1235 static int32_t
1236 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1237 {
1238     uint32_t ctrl;
1239     uint32_t status;
1240     uint32_t txcw = 0;
1241     uint32_t i;
1242     uint32_t signal = 0;
1243     int32_t ret_val;
1244
1245     DEBUGFUNC("e1000_setup_fiber_serdes_link");
1246
1247     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1248      * until explicitly turned off or a power cycle is performed.  A read to
1249      * the register does not indicate its status.  Therefore, we ensure
1250      * loopback mode is disabled during initialization.
1251      */
1252     if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1253         E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1254
1255     /* On adapters with a MAC newer than 82544, SWDP 1 will be
1256      * set when the optics detect a signal. On older adapters, it will be
1257      * cleared when there is a signal.  This applies to fiber media only.
1258      * If we're on serdes media, adjust the output amplitude to value
1259      * set in the EEPROM.
1260      */
1261     ctrl = E1000_READ_REG(hw, CTRL);
1262     if (hw->media_type == e1000_media_type_fiber)
1263         signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1264
1265     ret_val = e1000_adjust_serdes_amplitude(hw);
1266     if (ret_val)
1267         return ret_val;
1268
1269     /* Take the link out of reset */
1270     ctrl &= ~(E1000_CTRL_LRST);
1271
1272     /* Adjust VCO speed to improve BER performance */
1273     ret_val = e1000_set_vco_speed(hw);
1274     if (ret_val)
1275         return ret_val;
1276
1277     e1000_config_collision_dist(hw);
1278
1279     /* Check for a software override of the flow control settings, and setup
1280      * the device accordingly.  If auto-negotiation is enabled, then software
1281      * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1282      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1283      * auto-negotiation is disabled, then software will have to manually
1284      * configure the two flow control enable bits in the CTRL register.
1285      *
1286      * The possible values of the "fc" parameter are:
1287      *      0:  Flow control is completely disabled
1288      *      1:  Rx flow control is enabled (we can receive pause frames, but
1289      *          not send pause frames).
1290      *      2:  Tx flow control is enabled (we can send pause frames but we do
1291      *          not support receiving pause frames).
1292      *      3:  Both Rx and TX flow control (symmetric) are enabled.
1293      */
1294     switch (hw->fc) {
1295     case E1000_FC_NONE:
1296         /* Flow control is completely disabled by a software over-ride. */
1297         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1298         break;
1299     case E1000_FC_RX_PAUSE:
1300         /* RX Flow control is enabled and TX Flow control is disabled by a
1301          * software over-ride. Since there really isn't a way to advertise
1302          * that we are capable of RX Pause ONLY, we will advertise that we
1303          * support both symmetric and asymmetric RX PAUSE. Later, we will
1304          *  disable the adapter's ability to send PAUSE frames.
1305          */
1306         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1307         break;
1308     case E1000_FC_TX_PAUSE:
1309         /* TX Flow control is enabled, and RX Flow control is disabled, by a
1310          * software over-ride.
1311          */
1312         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1313         break;
1314     case E1000_FC_FULL:
1315         /* Flow control (both RX and TX) is enabled by a software over-ride. */
1316         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1317         break;
1318     default:
1319         DEBUGOUT("Flow control param set incorrectly\n");
1320         return -E1000_ERR_CONFIG;
1321         break;
1322     }
1323
1324     /* Since auto-negotiation is enabled, take the link out of reset (the link
1325      * will be in reset, because we previously reset the chip). This will
1326      * restart auto-negotiation.  If auto-neogtiation is successful then the
1327      * link-up status bit will be set and the flow control enable bits (RFCE
1328      * and TFCE) will be set according to their negotiated value.
1329      */
1330     DEBUGOUT("Auto-negotiation enabled\n");
1331
1332     E1000_WRITE_REG(hw, TXCW, txcw);
1333     E1000_WRITE_REG(hw, CTRL, ctrl);
1334     E1000_WRITE_FLUSH(hw);
1335
1336     hw->txcw = txcw;
1337     msleep(1);
1338
1339     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1340      * indication in the Device Status Register.  Time-out if a link isn't
1341      * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1342      * less than 500 milliseconds even if the other end is doing it in SW).
1343      * For internal serdes, we just assume a signal is present, then poll.
1344      */
1345     if (hw->media_type == e1000_media_type_internal_serdes ||
1346        (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1347         DEBUGOUT("Looking for Link\n");
1348         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1349             msleep(10);
1350             status = E1000_READ_REG(hw, STATUS);
1351             if (status & E1000_STATUS_LU) break;
1352         }
1353         if (i == (LINK_UP_TIMEOUT / 10)) {
1354             DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1355             hw->autoneg_failed = 1;
1356             /* AutoNeg failed to achieve a link, so we'll call
1357              * e1000_check_for_link. This routine will force the link up if
1358              * we detect a signal. This will allow us to communicate with
1359              * non-autonegotiating link partners.
1360              */
1361             ret_val = e1000_check_for_link(hw);
1362             if (ret_val) {
1363                 DEBUGOUT("Error while checking for link\n");
1364                 return ret_val;
1365             }
1366             hw->autoneg_failed = 0;
1367         } else {
1368             hw->autoneg_failed = 0;
1369             DEBUGOUT("Valid Link Found\n");
1370         }
1371     } else {
1372         DEBUGOUT("No Signal Detected\n");
1373     }
1374     return E1000_SUCCESS;
1375 }
1376
1377 /******************************************************************************
1378 * Make sure we have a valid PHY and change PHY mode before link setup.
1379 *
1380 * hw - Struct containing variables accessed by shared code
1381 ******************************************************************************/
1382 static int32_t
1383 e1000_copper_link_preconfig(struct e1000_hw *hw)
1384 {
1385     uint32_t ctrl;
1386     int32_t ret_val;
1387     uint16_t phy_data;
1388
1389     DEBUGFUNC("e1000_copper_link_preconfig");
1390
1391     ctrl = E1000_READ_REG(hw, CTRL);
1392     /* With 82543, we need to force speed and duplex on the MAC equal to what
1393      * the PHY speed and duplex configuration is. In addition, we need to
1394      * perform a hardware reset on the PHY to take it out of reset.
1395      */
1396     if (hw->mac_type > e1000_82543) {
1397         ctrl |= E1000_CTRL_SLU;
1398         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1399         E1000_WRITE_REG(hw, CTRL, ctrl);
1400     } else {
1401         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1402         E1000_WRITE_REG(hw, CTRL, ctrl);
1403         ret_val = e1000_phy_hw_reset(hw);
1404         if (ret_val)
1405             return ret_val;
1406     }
1407
1408     /* Make sure we have a valid PHY */
1409     ret_val = e1000_detect_gig_phy(hw);
1410     if (ret_val) {
1411         DEBUGOUT("Error, did not detect valid phy.\n");
1412         return ret_val;
1413     }
1414     DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1415
1416     /* Set PHY to class A mode (if necessary) */
1417     ret_val = e1000_set_phy_mode(hw);
1418     if (ret_val)
1419         return ret_val;
1420
1421     if ((hw->mac_type == e1000_82545_rev_3) ||
1422        (hw->mac_type == e1000_82546_rev_3)) {
1423         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1424         phy_data |= 0x00000008;
1425         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1426     }
1427
1428     if (hw->mac_type <= e1000_82543 ||
1429         hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1430         hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1431         hw->phy_reset_disable = FALSE;
1432
1433    return E1000_SUCCESS;
1434 }
1435
1436
1437 /********************************************************************
1438 * Copper link setup for e1000_phy_igp series.
1439 *
1440 * hw - Struct containing variables accessed by shared code
1441 *********************************************************************/
1442 static int32_t
1443 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1444 {
1445     uint32_t led_ctrl;
1446     int32_t ret_val;
1447     uint16_t phy_data;
1448
1449     DEBUGFUNC("e1000_copper_link_igp_setup");
1450
1451     if (hw->phy_reset_disable)
1452         return E1000_SUCCESS;
1453
1454     ret_val = e1000_phy_reset(hw);
1455     if (ret_val) {
1456         DEBUGOUT("Error Resetting the PHY\n");
1457         return ret_val;
1458     }
1459
1460     /* Wait 15ms for MAC to configure PHY from eeprom settings */
1461     msleep(15);
1462     if (hw->mac_type != e1000_ich8lan) {
1463     /* Configure activity LED after PHY reset */
1464     led_ctrl = E1000_READ_REG(hw, LEDCTL);
1465     led_ctrl &= IGP_ACTIVITY_LED_MASK;
1466     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1467     E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1468     }
1469
1470     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1471     if (hw->phy_type == e1000_phy_igp) {
1472         /* disable lplu d3 during driver init */
1473         ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1474         if (ret_val) {
1475             DEBUGOUT("Error Disabling LPLU D3\n");
1476             return ret_val;
1477         }
1478     }
1479
1480     /* disable lplu d0 during driver init */
1481     ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1482     if (ret_val) {
1483         DEBUGOUT("Error Disabling LPLU D0\n");
1484         return ret_val;
1485     }
1486     /* Configure mdi-mdix settings */
1487     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1488     if (ret_val)
1489         return ret_val;
1490
1491     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1492         hw->dsp_config_state = e1000_dsp_config_disabled;
1493         /* Force MDI for earlier revs of the IGP PHY */
1494         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1495         hw->mdix = 1;
1496
1497     } else {
1498         hw->dsp_config_state = e1000_dsp_config_enabled;
1499         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1500
1501         switch (hw->mdix) {
1502         case 1:
1503             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1504             break;
1505         case 2:
1506             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1507             break;
1508         case 0:
1509         default:
1510             phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1511             break;
1512         }
1513     }
1514     ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1515     if (ret_val)
1516         return ret_val;
1517
1518     /* set auto-master slave resolution settings */
1519     if (hw->autoneg) {
1520         e1000_ms_type phy_ms_setting = hw->master_slave;
1521
1522         if (hw->ffe_config_state == e1000_ffe_config_active)
1523             hw->ffe_config_state = e1000_ffe_config_enabled;
1524
1525         if (hw->dsp_config_state == e1000_dsp_config_activated)
1526             hw->dsp_config_state = e1000_dsp_config_enabled;
1527
1528         /* when autonegotiation advertisment is only 1000Mbps then we
1529           * should disable SmartSpeed and enable Auto MasterSlave
1530           * resolution as hardware default. */
1531         if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1532             /* Disable SmartSpeed */
1533             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1534                                          &phy_data);
1535             if (ret_val)
1536                 return ret_val;
1537             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1539                                           phy_data);
1540             if (ret_val)
1541                 return ret_val;
1542             /* Set auto Master/Slave resolution process */
1543             ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1544             if (ret_val)
1545                 return ret_val;
1546             phy_data &= ~CR_1000T_MS_ENABLE;
1547             ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1548             if (ret_val)
1549                 return ret_val;
1550         }
1551
1552         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1553         if (ret_val)
1554             return ret_val;
1555
1556         /* load defaults for future use */
1557         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1558                                         ((phy_data & CR_1000T_MS_VALUE) ?
1559                                          e1000_ms_force_master :
1560                                          e1000_ms_force_slave) :
1561                                          e1000_ms_auto;
1562
1563         switch (phy_ms_setting) {
1564         case e1000_ms_force_master:
1565             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1566             break;
1567         case e1000_ms_force_slave:
1568             phy_data |= CR_1000T_MS_ENABLE;
1569             phy_data &= ~(CR_1000T_MS_VALUE);
1570             break;
1571         case e1000_ms_auto:
1572             phy_data &= ~CR_1000T_MS_ENABLE;
1573             default:
1574             break;
1575         }
1576         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1577         if (ret_val)
1578             return ret_val;
1579     }
1580
1581     return E1000_SUCCESS;
1582 }
1583
1584 /********************************************************************
1585 * Copper link setup for e1000_phy_gg82563 series.
1586 *
1587 * hw - Struct containing variables accessed by shared code
1588 *********************************************************************/
1589 static int32_t
1590 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1591 {
1592     int32_t ret_val;
1593     uint16_t phy_data;
1594     uint32_t reg_data;
1595
1596     DEBUGFUNC("e1000_copper_link_ggp_setup");
1597
1598     if (!hw->phy_reset_disable) {
1599
1600         /* Enable CRS on TX for half-duplex operation. */
1601         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1602                                      &phy_data);
1603         if (ret_val)
1604             return ret_val;
1605
1606         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1607         /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1608         phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1609
1610         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1611                                       phy_data);
1612         if (ret_val)
1613             return ret_val;
1614
1615         /* Options:
1616          *   MDI/MDI-X = 0 (default)
1617          *   0 - Auto for all speeds
1618          *   1 - MDI mode
1619          *   2 - MDI-X mode
1620          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1621          */
1622         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1623         if (ret_val)
1624             return ret_val;
1625
1626         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1627
1628         switch (hw->mdix) {
1629         case 1:
1630             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1631             break;
1632         case 2:
1633             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1634             break;
1635         case 0:
1636         default:
1637             phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1638             break;
1639         }
1640
1641         /* Options:
1642          *   disable_polarity_correction = 0 (default)
1643          *       Automatic Correction for Reversed Cable Polarity
1644          *   0 - Disabled
1645          *   1 - Enabled
1646          */
1647         phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1648         if (hw->disable_polarity_correction == 1)
1649             phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1650         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1651
1652         if (ret_val)
1653             return ret_val;
1654
1655         /* SW Reset the PHY so all changes take effect */
1656         ret_val = e1000_phy_reset(hw);
1657         if (ret_val) {
1658             DEBUGOUT("Error Resetting the PHY\n");
1659             return ret_val;
1660         }
1661     } /* phy_reset_disable */
1662
1663     if (hw->mac_type == e1000_80003es2lan) {
1664         /* Bypass RX and TX FIFO's */
1665         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1666                                        E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1667                                        E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1668         if (ret_val)
1669             return ret_val;
1670
1671         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1672         if (ret_val)
1673             return ret_val;
1674
1675         phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1676         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1677
1678         if (ret_val)
1679             return ret_val;
1680
1681         reg_data = E1000_READ_REG(hw, CTRL_EXT);
1682         reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1683         E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1684
1685         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1686                                           &phy_data);
1687         if (ret_val)
1688             return ret_val;
1689
1690         /* Do not init these registers when the HW is in IAMT mode, since the
1691          * firmware will have already initialized them.  We only initialize
1692          * them if the HW is not in IAMT mode.
1693          */
1694         if (e1000_check_mng_mode(hw) == FALSE) {
1695             /* Enable Electrical Idle on the PHY */
1696             phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1697             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1698                                           phy_data);
1699             if (ret_val)
1700                 return ret_val;
1701
1702             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1703                                          &phy_data);
1704             if (ret_val)
1705                 return ret_val;
1706
1707             phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1708             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1709                                           phy_data);
1710
1711             if (ret_val)
1712                 return ret_val;
1713         }
1714
1715         /* Workaround: Disable padding in Kumeran interface in the MAC
1716          * and in the PHY to avoid CRC errors.
1717          */
1718         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1719                                      &phy_data);
1720         if (ret_val)
1721             return ret_val;
1722         phy_data |= GG82563_ICR_DIS_PADDING;
1723         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1724                                       phy_data);
1725         if (ret_val)
1726             return ret_val;
1727     }
1728
1729     return E1000_SUCCESS;
1730 }
1731
1732 /********************************************************************
1733 * Copper link setup for e1000_phy_m88 series.
1734 *
1735 * hw - Struct containing variables accessed by shared code
1736 *********************************************************************/
1737 static int32_t
1738 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1739 {
1740     int32_t ret_val;
1741     uint16_t phy_data;
1742
1743     DEBUGFUNC("e1000_copper_link_mgp_setup");
1744
1745     if (hw->phy_reset_disable)
1746         return E1000_SUCCESS;
1747
1748     /* Enable CRS on TX. This must be set for half-duplex operation. */
1749     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1750     if (ret_val)
1751         return ret_val;
1752
1753     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1754
1755     /* Options:
1756      *   MDI/MDI-X = 0 (default)
1757      *   0 - Auto for all speeds
1758      *   1 - MDI mode
1759      *   2 - MDI-X mode
1760      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1761      */
1762     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1763
1764     switch (hw->mdix) {
1765     case 1:
1766         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1767         break;
1768     case 2:
1769         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1770         break;
1771     case 3:
1772         phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1773         break;
1774     case 0:
1775     default:
1776         phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1777         break;
1778     }
1779
1780     /* Options:
1781      *   disable_polarity_correction = 0 (default)
1782      *       Automatic Correction for Reversed Cable Polarity
1783      *   0 - Disabled
1784      *   1 - Enabled
1785      */
1786     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1787     if (hw->disable_polarity_correction == 1)
1788         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1789     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1790     if (ret_val)
1791         return ret_val;
1792
1793     if (hw->phy_revision < M88E1011_I_REV_4) {
1794         /* Force TX_CLK in the Extended PHY Specific Control Register
1795          * to 25MHz clock.
1796          */
1797         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1798         if (ret_val)
1799             return ret_val;
1800
1801         phy_data |= M88E1000_EPSCR_TX_CLK_25;
1802
1803         if ((hw->phy_revision == E1000_REVISION_2) &&
1804             (hw->phy_id == M88E1111_I_PHY_ID)) {
1805             /* Vidalia Phy, set the downshift counter to 5x */
1806             phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1807             phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1808             ret_val = e1000_write_phy_reg(hw,
1809                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1810             if (ret_val)
1811                 return ret_val;
1812         } else {
1813             /* Configure Master and Slave downshift values */
1814             phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1815                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1816             phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1817                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1818             ret_val = e1000_write_phy_reg(hw,
1819                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1820             if (ret_val)
1821                return ret_val;
1822         }
1823     }
1824
1825     /* SW Reset the PHY so all changes take effect */
1826     ret_val = e1000_phy_reset(hw);
1827     if (ret_val) {
1828         DEBUGOUT("Error Resetting the PHY\n");
1829         return ret_val;
1830     }
1831
1832    return E1000_SUCCESS;
1833 }
1834
1835 /********************************************************************
1836 * Setup auto-negotiation and flow control advertisements,
1837 * and then perform auto-negotiation.
1838 *
1839 * hw - Struct containing variables accessed by shared code
1840 *********************************************************************/
1841 static int32_t
1842 e1000_copper_link_autoneg(struct e1000_hw *hw)
1843 {
1844     int32_t ret_val;
1845     uint16_t phy_data;
1846
1847     DEBUGFUNC("e1000_copper_link_autoneg");
1848
1849     /* Perform some bounds checking on the hw->autoneg_advertised
1850      * parameter.  If this variable is zero, then set it to the default.
1851      */
1852     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1853
1854     /* If autoneg_advertised is zero, we assume it was not defaulted
1855      * by the calling code so we set to advertise full capability.
1856      */
1857     if (hw->autoneg_advertised == 0)
1858         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1859
1860     /* IFE phy only supports 10/100 */
1861     if (hw->phy_type == e1000_phy_ife)
1862         hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1863
1864     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1865     ret_val = e1000_phy_setup_autoneg(hw);
1866     if (ret_val) {
1867         DEBUGOUT("Error Setting up Auto-Negotiation\n");
1868         return ret_val;
1869     }
1870     DEBUGOUT("Restarting Auto-Neg\n");
1871
1872     /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1873      * the Auto Neg Restart bit in the PHY control register.
1874      */
1875     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1876     if (ret_val)
1877         return ret_val;
1878
1879     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1880     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1881     if (ret_val)
1882         return ret_val;
1883
1884     /* Does the user want to wait for Auto-Neg to complete here, or
1885      * check at a later time (for example, callback routine).
1886      */
1887     if (hw->wait_autoneg_complete) {
1888         ret_val = e1000_wait_autoneg(hw);
1889         if (ret_val) {
1890             DEBUGOUT("Error while waiting for autoneg to complete\n");
1891             return ret_val;
1892         }
1893     }
1894
1895     hw->get_link_status = TRUE;
1896
1897     return E1000_SUCCESS;
1898 }
1899
1900 /******************************************************************************
1901 * Config the MAC and the PHY after link is up.
1902 *   1) Set up the MAC to the current PHY speed/duplex
1903 *      if we are on 82543.  If we
1904 *      are on newer silicon, we only need to configure
1905 *      collision distance in the Transmit Control Register.
1906 *   2) Set up flow control on the MAC to that established with
1907 *      the link partner.
1908 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1909 *
1910 * hw - Struct containing variables accessed by shared code
1911 ******************************************************************************/
1912 static int32_t
1913 e1000_copper_link_postconfig(struct e1000_hw *hw)
1914 {
1915     int32_t ret_val;
1916     DEBUGFUNC("e1000_copper_link_postconfig");
1917
1918     if (hw->mac_type >= e1000_82544) {
1919         e1000_config_collision_dist(hw);
1920     } else {
1921         ret_val = e1000_config_mac_to_phy(hw);
1922         if (ret_val) {
1923             DEBUGOUT("Error configuring MAC to PHY settings\n");
1924             return ret_val;
1925         }
1926     }
1927     ret_val = e1000_config_fc_after_link_up(hw);
1928     if (ret_val) {
1929         DEBUGOUT("Error Configuring Flow Control\n");
1930         return ret_val;
1931     }
1932
1933     /* Config DSP to improve Giga link quality */
1934     if (hw->phy_type == e1000_phy_igp) {
1935         ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1936         if (ret_val) {
1937             DEBUGOUT("Error Configuring DSP after link up\n");
1938             return ret_val;
1939         }
1940     }
1941
1942     return E1000_SUCCESS;
1943 }
1944
1945 /******************************************************************************
1946 * Detects which PHY is present and setup the speed and duplex
1947 *
1948 * hw - Struct containing variables accessed by shared code
1949 ******************************************************************************/
1950 static int32_t
1951 e1000_setup_copper_link(struct e1000_hw *hw)
1952 {
1953     int32_t ret_val;
1954     uint16_t i;
1955     uint16_t phy_data;
1956     uint16_t reg_data;
1957
1958     DEBUGFUNC("e1000_setup_copper_link");
1959
1960     switch (hw->mac_type) {
1961     case e1000_80003es2lan:
1962     case e1000_ich8lan:
1963         /* Set the mac to wait the maximum time between each
1964          * iteration and increase the max iterations when
1965          * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1966         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1967         if (ret_val)
1968             return ret_val;
1969         ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1970         if (ret_val)
1971             return ret_val;
1972         reg_data |= 0x3F;
1973         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1974         if (ret_val)
1975             return ret_val;
1976     default:
1977         break;
1978     }
1979
1980     /* Check if it is a valid PHY and set PHY mode if necessary. */
1981     ret_val = e1000_copper_link_preconfig(hw);
1982     if (ret_val)
1983         return ret_val;
1984
1985     switch (hw->mac_type) {
1986     case e1000_80003es2lan:
1987         /* Kumeran registers are written-only */
1988         reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1989         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1990         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1991                                        reg_data);
1992         if (ret_val)
1993             return ret_val;
1994         break;
1995     default:
1996         break;
1997     }
1998
1999     if (hw->phy_type == e1000_phy_igp ||
2000         hw->phy_type == e1000_phy_igp_3 ||
2001         hw->phy_type == e1000_phy_igp_2) {
2002         ret_val = e1000_copper_link_igp_setup(hw);
2003         if (ret_val)
2004             return ret_val;
2005     } else if (hw->phy_type == e1000_phy_m88) {
2006         ret_val = e1000_copper_link_mgp_setup(hw);
2007         if (ret_val)
2008             return ret_val;
2009     } else if (hw->phy_type == e1000_phy_gg82563) {
2010         ret_val = e1000_copper_link_ggp_setup(hw);
2011         if (ret_val)
2012             return ret_val;
2013     }
2014
2015     if (hw->autoneg) {
2016         /* Setup autoneg and flow control advertisement
2017           * and perform autonegotiation */
2018         ret_val = e1000_copper_link_autoneg(hw);
2019         if (ret_val)
2020             return ret_val;
2021     } else {
2022         /* PHY will be set to 10H, 10F, 100H,or 100F
2023           * depending on value from forced_speed_duplex. */
2024         DEBUGOUT("Forcing speed and duplex\n");
2025         ret_val = e1000_phy_force_speed_duplex(hw);
2026         if (ret_val) {
2027             DEBUGOUT("Error Forcing Speed and Duplex\n");
2028             return ret_val;
2029         }
2030     }
2031
2032     /* Check link status. Wait up to 100 microseconds for link to become
2033      * valid.
2034      */
2035     for (i = 0; i < 10; i++) {
2036         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2037         if (ret_val)
2038             return ret_val;
2039         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2040         if (ret_val)
2041             return ret_val;
2042
2043         if (phy_data & MII_SR_LINK_STATUS) {
2044             /* Config the MAC and PHY after link is up */
2045             ret_val = e1000_copper_link_postconfig(hw);
2046             if (ret_val)
2047                 return ret_val;
2048
2049             DEBUGOUT("Valid link established!!!\n");
2050             return E1000_SUCCESS;
2051         }
2052         udelay(10);
2053     }
2054
2055     DEBUGOUT("Unable to establish link!!!\n");
2056     return E1000_SUCCESS;
2057 }
2058
2059 /******************************************************************************
2060 * Configure the MAC-to-PHY interface for 10/100Mbps
2061 *
2062 * hw - Struct containing variables accessed by shared code
2063 ******************************************************************************/
2064 static int32_t
2065 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
2066 {
2067     int32_t ret_val = E1000_SUCCESS;
2068     uint32_t tipg;
2069     uint16_t reg_data;
2070
2071     DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2072
2073     reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2074     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2075                                    reg_data);
2076     if (ret_val)
2077         return ret_val;
2078
2079     /* Configure Transmit Inter-Packet Gap */
2080     tipg = E1000_READ_REG(hw, TIPG);
2081     tipg &= ~E1000_TIPG_IPGT_MASK;
2082     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2083     E1000_WRITE_REG(hw, TIPG, tipg);
2084
2085     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2086
2087     if (ret_val)
2088         return ret_val;
2089
2090     if (duplex == HALF_DUPLEX)
2091         reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2092     else
2093         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2094
2095     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2096
2097     return ret_val;
2098 }
2099
2100 static int32_t
2101 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2102 {
2103     int32_t ret_val = E1000_SUCCESS;
2104     uint16_t reg_data;
2105     uint32_t tipg;
2106
2107     DEBUGFUNC("e1000_configure_kmrn_for_1000");
2108
2109     reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2110     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2111                                    reg_data);
2112     if (ret_val)
2113         return ret_val;
2114
2115     /* Configure Transmit Inter-Packet Gap */
2116     tipg = E1000_READ_REG(hw, TIPG);
2117     tipg &= ~E1000_TIPG_IPGT_MASK;
2118     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2119     E1000_WRITE_REG(hw, TIPG, tipg);
2120
2121     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2122
2123     if (ret_val)
2124         return ret_val;
2125
2126     reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2127     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2128
2129     return ret_val;
2130 }
2131
2132 /******************************************************************************
2133 * Configures PHY autoneg and flow control advertisement settings
2134 *
2135 * hw - Struct containing variables accessed by shared code
2136 ******************************************************************************/
2137 int32_t
2138 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2139 {
2140     int32_t ret_val;
2141     uint16_t mii_autoneg_adv_reg;
2142     uint16_t mii_1000t_ctrl_reg;
2143
2144     DEBUGFUNC("e1000_phy_setup_autoneg");
2145
2146     /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2147     ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2148     if (ret_val)
2149         return ret_val;
2150
2151     if (hw->phy_type != e1000_phy_ife) {
2152         /* Read the MII 1000Base-T Control Register (Address 9). */
2153         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2154         if (ret_val)
2155             return ret_val;
2156     } else
2157         mii_1000t_ctrl_reg=0;
2158
2159     /* Need to parse both autoneg_advertised and fc and set up
2160      * the appropriate PHY registers.  First we will parse for
2161      * autoneg_advertised software override.  Since we can advertise
2162      * a plethora of combinations, we need to check each bit
2163      * individually.
2164      */
2165
2166     /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2167      * Advertisement Register (Address 4) and the 1000 mb speed bits in
2168      * the  1000Base-T Control Register (Address 9).
2169      */
2170     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2171     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2172
2173     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2174
2175     /* Do we want to advertise 10 Mb Half Duplex? */
2176     if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2177         DEBUGOUT("Advertise 10mb Half duplex\n");
2178         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2179     }
2180
2181     /* Do we want to advertise 10 Mb Full Duplex? */
2182     if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2183         DEBUGOUT("Advertise 10mb Full duplex\n");
2184         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2185     }
2186
2187     /* Do we want to advertise 100 Mb Half Duplex? */
2188     if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2189         DEBUGOUT("Advertise 100mb Half duplex\n");
2190         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2191     }
2192
2193     /* Do we want to advertise 100 Mb Full Duplex? */
2194     if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2195         DEBUGOUT("Advertise 100mb Full duplex\n");
2196         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2197     }
2198
2199     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2200     if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2201         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2202     }
2203
2204     /* Do we want to advertise 1000 Mb Full Duplex? */
2205     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2206         DEBUGOUT("Advertise 1000mb Full duplex\n");
2207         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2208         if (hw->phy_type == e1000_phy_ife) {
2209             DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2210         }
2211     }
2212
2213     /* Check for a software override of the flow control settings, and
2214      * setup the PHY advertisement registers accordingly.  If
2215      * auto-negotiation is enabled, then software will have to set the
2216      * "PAUSE" bits to the correct value in the Auto-Negotiation
2217      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2218      *
2219      * The possible values of the "fc" parameter are:
2220      *      0:  Flow control is completely disabled
2221      *      1:  Rx flow control is enabled (we can receive pause frames
2222      *          but not send pause frames).
2223      *      2:  Tx flow control is enabled (we can send pause frames
2224      *          but we do not support receiving pause frames).
2225      *      3:  Both Rx and TX flow control (symmetric) are enabled.
2226      *  other:  No software override.  The flow control configuration
2227      *          in the EEPROM is used.
2228      */
2229     switch (hw->fc) {
2230     case E1000_FC_NONE: /* 0 */
2231         /* Flow control (RX & TX) is completely disabled by a
2232          * software over-ride.
2233          */
2234         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2235         break;
2236     case E1000_FC_RX_PAUSE: /* 1 */
2237         /* RX Flow control is enabled, and TX Flow control is
2238          * disabled, by a software over-ride.
2239          */
2240         /* Since there really isn't a way to advertise that we are
2241          * capable of RX Pause ONLY, we will advertise that we
2242          * support both symmetric and asymmetric RX PAUSE.  Later
2243          * (in e1000_config_fc_after_link_up) we will disable the
2244          *hw's ability to send PAUSE frames.
2245          */
2246         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2247         break;
2248     case E1000_FC_TX_PAUSE: /* 2 */
2249         /* TX Flow control is enabled, and RX Flow control is
2250          * disabled, by a software over-ride.
2251          */
2252         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2253         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2254         break;
2255     case E1000_FC_FULL: /* 3 */
2256         /* Flow control (both RX and TX) is enabled by a software
2257          * over-ride.
2258          */
2259         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2260         break;
2261     default:
2262         DEBUGOUT("Flow control param set incorrectly\n");
2263         return -E1000_ERR_CONFIG;
2264     }
2265
2266     ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2267     if (ret_val)
2268         return ret_val;
2269
2270     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2271
2272     if (hw->phy_type != e1000_phy_ife) {
2273         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2274         if (ret_val)
2275             return ret_val;
2276     }
2277
2278     return E1000_SUCCESS;
2279 }
2280
2281 /******************************************************************************
2282 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2283 *
2284 * hw - Struct containing variables accessed by shared code
2285 ******************************************************************************/
2286 static int32_t
2287 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2288 {
2289     uint32_t ctrl;
2290     int32_t ret_val;
2291     uint16_t mii_ctrl_reg;
2292     uint16_t mii_status_reg;
2293     uint16_t phy_data;
2294     uint16_t i;
2295
2296     DEBUGFUNC("e1000_phy_force_speed_duplex");
2297
2298     /* Turn off Flow control if we are forcing speed and duplex. */
2299     hw->fc = E1000_FC_NONE;
2300
2301     DEBUGOUT1("hw->fc = %d\n", hw->fc);
2302
2303     /* Read the Device Control Register. */
2304     ctrl = E1000_READ_REG(hw, CTRL);
2305
2306     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2307     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2308     ctrl &= ~(DEVICE_SPEED_MASK);
2309
2310     /* Clear the Auto Speed Detect Enable bit. */
2311     ctrl &= ~E1000_CTRL_ASDE;
2312
2313     /* Read the MII Control Register. */
2314     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2315     if (ret_val)
2316         return ret_val;
2317
2318     /* We need to disable autoneg in order to force link and duplex. */
2319
2320     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2321
2322     /* Are we forcing Full or Half Duplex? */
2323     if (hw->forced_speed_duplex == e1000_100_full ||
2324         hw->forced_speed_duplex == e1000_10_full) {
2325         /* We want to force full duplex so we SET the full duplex bits in the
2326          * Device and MII Control Registers.
2327          */
2328         ctrl |= E1000_CTRL_FD;
2329         mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2330         DEBUGOUT("Full Duplex\n");
2331     } else {
2332         /* We want to force half duplex so we CLEAR the full duplex bits in
2333          * the Device and MII Control Registers.
2334          */
2335         ctrl &= ~E1000_CTRL_FD;
2336         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2337         DEBUGOUT("Half Duplex\n");
2338     }
2339
2340     /* Are we forcing 100Mbps??? */
2341     if (hw->forced_speed_duplex == e1000_100_full ||
2342        hw->forced_speed_duplex == e1000_100_half) {
2343         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2344         ctrl |= E1000_CTRL_SPD_100;
2345         mii_ctrl_reg |= MII_CR_SPEED_100;
2346         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2347         DEBUGOUT("Forcing 100mb ");
2348     } else {
2349         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2350         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2351         mii_ctrl_reg |= MII_CR_SPEED_10;
2352         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2353         DEBUGOUT("Forcing 10mb ");
2354     }
2355
2356     e1000_config_collision_dist(hw);
2357
2358     /* Write the configured values back to the Device Control Reg. */
2359     E1000_WRITE_REG(hw, CTRL, ctrl);
2360
2361     if ((hw->phy_type == e1000_phy_m88) ||
2362         (hw->phy_type == e1000_phy_gg82563)) {
2363         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2364         if (ret_val)
2365             return ret_val;
2366
2367         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2368          * forced whenever speed are duplex are forced.
2369          */
2370         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2371         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2372         if (ret_val)
2373             return ret_val;
2374
2375         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2376
2377         /* Need to reset the PHY or these changes will be ignored */
2378         mii_ctrl_reg |= MII_CR_RESET;
2379
2380     /* Disable MDI-X support for 10/100 */
2381     } else if (hw->phy_type == e1000_phy_ife) {
2382         ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2383         if (ret_val)
2384             return ret_val;
2385
2386         phy_data &= ~IFE_PMC_AUTO_MDIX;
2387         phy_data &= ~IFE_PMC_FORCE_MDIX;
2388
2389         ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2390         if (ret_val)
2391             return ret_val;
2392
2393     } else {
2394         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
2395          * forced whenever speed or duplex are forced.
2396          */
2397         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2398         if (ret_val)
2399             return ret_val;
2400
2401         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2402         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2403
2404         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2405         if (ret_val)
2406             return ret_val;
2407     }
2408
2409     /* Write back the modified PHY MII control register. */
2410     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2411     if (ret_val)
2412         return ret_val;
2413
2414     udelay(1);
2415
2416     /* The wait_autoneg_complete flag may be a little misleading here.
2417      * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2418      * But we do want to delay for a period while forcing only so we
2419      * don't generate false No Link messages.  So we will wait here
2420      * only if the user has set wait_autoneg_complete to 1, which is
2421      * the default.
2422      */
2423     if (hw->wait_autoneg_complete) {
2424         /* We will wait for autoneg to complete. */
2425         DEBUGOUT("Waiting for forced speed/duplex link.\n");
2426         mii_status_reg = 0;
2427
2428         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2429         for (i = PHY_FORCE_TIME; i > 0; i--) {
2430             /* Read the MII Status Register and wait for Auto-Neg Complete bit
2431              * to be set.
2432              */
2433             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2434             if (ret_val)
2435                 return ret_val;
2436
2437             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2438             if (ret_val)
2439                 return ret_val;
2440
2441             if (mii_status_reg & MII_SR_LINK_STATUS) break;
2442             msleep(100);
2443         }
2444         if ((i == 0) &&
2445            ((hw->phy_type == e1000_phy_m88) ||
2446             (hw->phy_type == e1000_phy_gg82563))) {
2447             /* We didn't get link.  Reset the DSP and wait again for link. */
2448             ret_val = e1000_phy_reset_dsp(hw);
2449             if (ret_val) {
2450                 DEBUGOUT("Error Resetting PHY DSP\n");
2451                 return ret_val;
2452             }
2453         }
2454         /* This loop will early-out if the link condition has been met.  */
2455         for (i = PHY_FORCE_TIME; i > 0; i--) {
2456             if (mii_status_reg & MII_SR_LINK_STATUS) break;
2457             msleep(100);
2458             /* Read the MII Status Register and wait for Auto-Neg Complete bit
2459              * to be set.
2460              */
2461             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2462             if (ret_val)
2463                 return ret_val;
2464
2465             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2466             if (ret_val)
2467                 return ret_val;
2468         }
2469     }
2470
2471     if (hw->phy_type == e1000_phy_m88) {
2472         /* Because we reset the PHY above, we need to re-force TX_CLK in the
2473          * Extended PHY Specific Control Register to 25MHz clock.  This value
2474          * defaults back to a 2.5MHz clock when the PHY is reset.
2475          */
2476         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2477         if (ret_val)
2478             return ret_val;
2479
2480         phy_data |= M88E1000_EPSCR_TX_CLK_25;
2481         ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2482         if (ret_val)
2483             return ret_val;
2484
2485         /* In addition, because of the s/w reset above, we need to enable CRS on
2486          * TX.  This must be set for both full and half duplex operation.
2487          */
2488         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2489         if (ret_val)
2490             return ret_val;
2491
2492         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2493         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2494         if (ret_val)
2495             return ret_val;
2496
2497         if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2498             (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2499              hw->forced_speed_duplex == e1000_10_half)) {
2500             ret_val = e1000_polarity_reversal_workaround(hw);
2501             if (ret_val)
2502                 return ret_val;
2503         }
2504     } else if (hw->phy_type == e1000_phy_gg82563) {
2505         /* The TX_CLK of the Extended PHY Specific Control Register defaults
2506          * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
2507          * we're not in a forced 10/duplex configuration. */
2508         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2509         if (ret_val)
2510             return ret_val;
2511
2512         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2513         if ((hw->forced_speed_duplex == e1000_10_full) ||
2514             (hw->forced_speed_duplex == e1000_10_half))
2515             phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2516         else
2517             phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2518
2519         /* Also due to the reset, we need to enable CRS on Tx. */
2520         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2521
2522         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2523         if (ret_val)
2524             return ret_val;
2525     }
2526     return E1000_SUCCESS;
2527 }
2528
2529 /******************************************************************************
2530 * Sets the collision distance in the Transmit Control register
2531 *
2532 * hw - Struct containing variables accessed by shared code
2533 *
2534 * Link should have been established previously. Reads the speed and duplex
2535 * information from the Device Status register.
2536 ******************************************************************************/
2537 void
2538 e1000_config_collision_dist(struct e1000_hw *hw)
2539 {
2540     uint32_t tctl, coll_dist;
2541
2542     DEBUGFUNC("e1000_config_collision_dist");
2543
2544     if (hw->mac_type < e1000_82543)
2545         coll_dist = E1000_COLLISION_DISTANCE_82542;
2546     else
2547         coll_dist = E1000_COLLISION_DISTANCE;
2548
2549     tctl = E1000_READ_REG(hw, TCTL);
2550
2551     tctl &= ~E1000_TCTL_COLD;
2552     tctl |= coll_dist << E1000_COLD_SHIFT;
2553
2554     E1000_WRITE_REG(hw, TCTL, tctl);
2555     E1000_WRITE_FLUSH(hw);
2556 }
2557
2558 /******************************************************************************
2559 * Sets MAC speed and duplex settings to reflect the those in the PHY
2560 *
2561 * hw - Struct containing variables accessed by shared code
2562 * mii_reg - data to write to the MII control register
2563 *
2564 * The contents of the PHY register containing the needed information need to
2565 * be passed in.
2566 ******************************************************************************/
2567 static int32_t
2568 e1000_config_mac_to_phy(struct e1000_hw *hw)
2569 {
2570     uint32_t ctrl;
2571     int32_t ret_val;
2572     uint16_t phy_data;
2573
2574     DEBUGFUNC("e1000_config_mac_to_phy");
2575
2576     /* 82544 or newer MAC, Auto Speed Detection takes care of
2577     * MAC speed/duplex configuration.*/
2578     if (hw->mac_type >= e1000_82544)
2579         return E1000_SUCCESS;
2580
2581     /* Read the Device Control Register and set the bits to Force Speed
2582      * and Duplex.
2583      */
2584     ctrl = E1000_READ_REG(hw, CTRL);
2585     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2586     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2587
2588     /* Set up duplex in the Device Control and Transmit Control
2589      * registers depending on negotiated values.
2590      */
2591     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2592     if (ret_val)
2593         return ret_val;
2594
2595     if (phy_data & M88E1000_PSSR_DPLX)
2596         ctrl |= E1000_CTRL_FD;
2597     else
2598         ctrl &= ~E1000_CTRL_FD;
2599
2600     e1000_config_collision_dist(hw);
2601
2602     /* Set up speed in the Device Control register depending on
2603      * negotiated values.
2604      */
2605     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2606         ctrl |= E1000_CTRL_SPD_1000;
2607     else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2608         ctrl |= E1000_CTRL_SPD_100;
2609
2610     /* Write the configured values back to the Device Control Reg. */
2611     E1000_WRITE_REG(hw, CTRL, ctrl);
2612     return E1000_SUCCESS;
2613 }
2614
2615 /******************************************************************************
2616  * Forces the MAC's flow control settings.
2617  *
2618  * hw - Struct containing variables accessed by shared code
2619  *
2620  * Sets the TFCE and RFCE bits in the device control register to reflect
2621  * the adapter settings. TFCE and RFCE need to be explicitly set by
2622  * software when a Copper PHY is used because autonegotiation is managed
2623  * by the PHY rather than the MAC. Software must also configure these
2624  * bits when link is forced on a fiber connection.
2625  *****************************************************************************/
2626 int32_t
2627 e1000_force_mac_fc(struct e1000_hw *hw)
2628 {
2629     uint32_t ctrl;
2630
2631     DEBUGFUNC("e1000_force_mac_fc");
2632
2633     /* Get the current configuration of the Device Control Register */
2634     ctrl = E1000_READ_REG(hw, CTRL);
2635
2636     /* Because we didn't get link via the internal auto-negotiation
2637      * mechanism (we either forced link or we got link via PHY
2638      * auto-neg), we have to manually enable/disable transmit an
2639      * receive flow control.
2640      *
2641      * The "Case" statement below enables/disable flow control
2642      * according to the "hw->fc" parameter.
2643      *
2644      * The possible values of the "fc" parameter are:
2645      *      0:  Flow control is completely disabled
2646      *      1:  Rx flow control is enabled (we can receive pause
2647      *          frames but not send pause frames).
2648      *      2:  Tx flow control is enabled (we can send pause frames
2649      *          frames but we do not receive pause frames).
2650      *      3:  Both Rx and TX flow control (symmetric) is enabled.
2651      *  other:  No other values should be possible at this point.
2652      */
2653
2654     switch (hw->fc) {
2655     case E1000_FC_NONE:
2656         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2657         break;
2658     case E1000_FC_RX_PAUSE:
2659         ctrl &= (~E1000_CTRL_TFCE);
2660         ctrl |= E1000_CTRL_RFCE;
2661         break;
2662     case E1000_FC_TX_PAUSE:
2663         ctrl &= (~E1000_CTRL_RFCE);
2664         ctrl |= E1000_CTRL_TFCE;
2665         break;
2666     case E1000_FC_FULL:
2667         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2668         break;
2669     default:
2670         DEBUGOUT("Flow control param set incorrectly\n");
2671         return -E1000_ERR_CONFIG;
2672     }
2673
2674     /* Disable TX Flow Control for 82542 (rev 2.0) */
2675     if (hw->mac_type == e1000_82542_rev2_0)
2676         ctrl &= (~E1000_CTRL_TFCE);
2677
2678     E1000_WRITE_REG(hw, CTRL, ctrl);
2679     return E1000_SUCCESS;
2680 }
2681
2682 /******************************************************************************
2683  * Configures flow control settings after link is established
2684  *
2685  * hw - Struct containing variables accessed by shared code
2686  *
2687  * Should be called immediately after a valid link has been established.
2688  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2689  * and autonegotiation is enabled, the MAC flow control settings will be set
2690  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2691  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2692  *****************************************************************************/
2693 static int32_t
2694 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2695 {
2696     int32_t ret_val;
2697     uint16_t mii_status_reg;
2698     uint16_t mii_nway_adv_reg;
2699     uint16_t mii_nway_lp_ability_reg;
2700     uint16_t speed;
2701     uint16_t duplex;
2702
2703     DEBUGFUNC("e1000_config_fc_after_link_up");
2704
2705     /* Check for the case where we have fiber media and auto-neg failed
2706      * so we had to force link.  In this case, we need to force the
2707      * configuration of the MAC to match the "fc" parameter.
2708      */
2709     if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2710         ((hw->media_type == e1000_media_type_internal_serdes) &&
2711          (hw->autoneg_failed)) ||
2712         ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2713         ret_val = e1000_force_mac_fc(hw);
2714         if (ret_val) {
2715             DEBUGOUT("Error forcing flow control settings\n");
2716             return ret_val;
2717         }
2718     }
2719
2720     /* Check for the case where we have copper media and auto-neg is
2721      * enabled.  In this case, we need to check and see if Auto-Neg
2722      * has completed, and if so, how the PHY and link partner has
2723      * flow control configured.
2724      */
2725     if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2726         /* Read the MII Status Register and check to see if AutoNeg
2727          * has completed.  We read this twice because this reg has
2728          * some "sticky" (latched) bits.
2729          */
2730         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2731         if (ret_val)
2732             return ret_val;
2733         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2734         if (ret_val)
2735             return ret_val;
2736
2737         if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2738             /* The AutoNeg process has completed, so we now need to
2739              * read both the Auto Negotiation Advertisement Register
2740              * (Address 4) and the Auto_Negotiation Base Page Ability
2741              * Register (Address 5) to determine how flow control was
2742              * negotiated.
2743              */
2744             ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2745                                          &mii_nway_adv_reg);
2746             if (ret_val)
2747                 return ret_val;
2748             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2749                                          &mii_nway_lp_ability_reg);
2750             if (ret_val)
2751                 return ret_val;
2752
2753             /* Two bits in the Auto Negotiation Advertisement Register
2754              * (Address 4) and two bits in the Auto Negotiation Base
2755              * Page Ability Register (Address 5) determine flow control
2756              * for both the PHY and the link partner.  The following
2757              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2758              * 1999, describes these PAUSE resolution bits and how flow
2759              * control is determined based upon these settings.
2760              * NOTE:  DC = Don't Care
2761              *
2762              *   LOCAL DEVICE  |   LINK PARTNER
2763              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2764              *-------|---------|-------|---------|--------------------
2765              *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2766              *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2767              *   0   |    1    |   1   |    0    | E1000_FC_NONE
2768              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2769              *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2770              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2771              *   1   |    1    |   0   |    0    | E1000_FC_NONE
2772              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2773              *
2774              */
2775             /* Are both PAUSE bits set to 1?  If so, this implies
2776              * Symmetric Flow Control is enabled at both ends.  The
2777              * ASM_DIR bits are irrelevant per the spec.
2778              *
2779              * For Symmetric Flow Control:
2780              *
2781              *   LOCAL DEVICE  |   LINK PARTNER
2782              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2783              *-------|---------|-------|---------|--------------------
2784              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2785              *
2786              */
2787             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2788                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2789                 /* Now we need to check if the user selected RX ONLY
2790                  * of pause frames.  In this case, we had to advertise
2791                  * FULL flow control because we could not advertise RX
2792                  * ONLY. Hence, we must now check to see if we need to
2793                  * turn OFF  the TRANSMISSION of PAUSE frames.
2794                  */
2795                 if (hw->original_fc == E1000_FC_FULL) {
2796                     hw->fc = E1000_FC_FULL;
2797                     DEBUGOUT("Flow Control = FULL.\n");
2798                 } else {
2799                     hw->fc = E1000_FC_RX_PAUSE;
2800                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2801                 }
2802             }
2803             /* For receiving PAUSE frames ONLY.
2804              *
2805              *   LOCAL DEVICE  |   LINK PARTNER
2806              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2807              *-------|---------|-------|---------|--------------------
2808              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2809              *
2810              */
2811             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2812                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2813                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2814                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2815                 hw->fc = E1000_FC_TX_PAUSE;
2816                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2817             }
2818             /* For transmitting PAUSE frames ONLY.
2819              *
2820              *   LOCAL DEVICE  |   LINK PARTNER
2821              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2822              *-------|---------|-------|---------|--------------------
2823              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2824              *
2825              */
2826             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2827                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2828                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2829                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2830                 hw->fc = E1000_FC_RX_PAUSE;
2831                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2832             }
2833             /* Per the IEEE spec, at this point flow control should be
2834              * disabled.  However, we want to consider that we could
2835              * be connected to a legacy switch that doesn't advertise
2836              * desired flow control, but can be forced on the link
2837              * partner.  So if we advertised no flow control, that is
2838              * what we will resolve to.  If we advertised some kind of
2839              * receive capability (Rx Pause Only or Full Flow Control)
2840              * and the link partner advertised none, we will configure
2841              * ourselves to enable Rx Flow Control only.  We can do
2842              * this safely for two reasons:  If the link partner really
2843              * didn't want flow control enabled, and we enable Rx, no
2844              * harm done since we won't be receiving any PAUSE frames
2845              * anyway.  If the intent on the link partner was to have
2846              * flow control enabled, then by us enabling RX only, we
2847              * can at least receive pause frames and process them.
2848              * This is a good idea because in most cases, since we are
2849              * predominantly a server NIC, more times than not we will
2850              * be asked to delay transmission of packets than asking
2851              * our link partner to pause transmission of frames.
2852              */
2853             else if ((hw->original_fc == E1000_FC_NONE ||
2854                       hw->original_fc == E1000_FC_TX_PAUSE) ||
2855                       hw->fc_strict_ieee) {
2856                 hw->fc = E1000_FC_NONE;
2857                 DEBUGOUT("Flow Control = NONE.\n");
2858             } else {
2859                 hw->fc = E1000_FC_RX_PAUSE;
2860                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2861             }
2862
2863             /* Now we need to do one last check...  If we auto-
2864              * negotiated to HALF DUPLEX, flow control should not be
2865              * enabled per IEEE 802.3 spec.
2866              */
2867             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2868             if (ret_val) {
2869                 DEBUGOUT("Error getting link speed and duplex\n");
2870                 return ret_val;
2871             }
2872
2873             if (duplex == HALF_DUPLEX)
2874                 hw->fc = E1000_FC_NONE;
2875
2876             /* Now we call a subroutine to actually force the MAC
2877              * controller to use the correct flow control settings.
2878              */
2879             ret_val = e1000_force_mac_fc(hw);
2880             if (ret_val) {
2881                 DEBUGOUT("Error forcing flow control settings\n");
2882                 return ret_val;
2883             }
2884         } else {
2885             DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2886         }
2887     }
2888     return E1000_SUCCESS;
2889 }
2890
2891 /******************************************************************************
2892  * Checks to see if the link status of the hardware has changed.
2893  *
2894  * hw - Struct containing variables accessed by shared code
2895  *
2896  * Called by any function that needs to check the link status of the adapter.
2897  *****************************************************************************/
2898 int32_t
2899 e1000_check_for_link(struct e1000_hw *hw)
2900 {
2901     uint32_t rxcw = 0;
2902     uint32_t ctrl;
2903     uint32_t status;
2904     uint32_t rctl;
2905     uint32_t icr;
2906     uint32_t signal = 0;
2907     int32_t ret_val;
2908     uint16_t phy_data;
2909
2910     DEBUGFUNC("e1000_check_for_link");
2911
2912     ctrl = E1000_READ_REG(hw, CTRL);
2913     status = E1000_READ_REG(hw, STATUS);
2914
2915     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2916      * set when the optics detect a signal. On older adapters, it will be
2917      * cleared when there is a signal.  This applies to fiber media only.
2918      */
2919     if ((hw->media_type == e1000_media_type_fiber) ||
2920         (hw->media_type == e1000_media_type_internal_serdes)) {
2921         rxcw = E1000_READ_REG(hw, RXCW);
2922
2923         if (hw->media_type == e1000_media_type_fiber) {
2924             signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2925             if (status & E1000_STATUS_LU)
2926                 hw->get_link_status = FALSE;
2927         }
2928     }
2929
2930     /* If we have a copper PHY then we only want to go out to the PHY
2931      * registers to see if Auto-Neg has completed and/or if our link
2932      * status has changed.  The get_link_status flag will be set if we
2933      * receive a Link Status Change interrupt or we have Rx Sequence
2934      * Errors.
2935      */
2936     if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2937         /* First we want to see if the MII Status Register reports
2938          * link.  If so, then we want to get the current speed/duplex
2939          * of the PHY.
2940          * Read the register twice since the link bit is sticky.
2941          */
2942         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2943         if (ret_val)
2944             return ret_val;
2945         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2946         if (ret_val)
2947             return ret_val;
2948
2949         if (phy_data & MII_SR_LINK_STATUS) {
2950             hw->get_link_status = FALSE;
2951             /* Check if there was DownShift, must be checked immediately after
2952              * link-up */
2953             e1000_check_downshift(hw);
2954
2955             /* If we are on 82544 or 82543 silicon and speed/duplex
2956              * are forced to 10H or 10F, then we will implement the polarity
2957              * reversal workaround.  We disable interrupts first, and upon
2958              * returning, place the devices interrupt state to its previous
2959              * value except for the link status change interrupt which will
2960              * happen due to the execution of this workaround.
2961              */
2962
2963             if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2964                 (!hw->autoneg) &&
2965                 (hw->forced_speed_duplex == e1000_10_full ||
2966                  hw->forced_speed_duplex == e1000_10_half)) {
2967                 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2968                 ret_val = e1000_polarity_reversal_workaround(hw);
2969                 icr = E1000_READ_REG(hw, ICR);
2970                 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2971                 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2972             }
2973
2974         } else {
2975             /* No link detected */
2976             e1000_config_dsp_after_link_change(hw, FALSE);
2977             return 0;
2978         }
2979
2980         /* If we are forcing speed/duplex, then we simply return since
2981          * we have already determined whether we have link or not.
2982          */
2983         if (!hw->autoneg) return -E1000_ERR_CONFIG;
2984
2985         /* optimize the dsp settings for the igp phy */
2986         e1000_config_dsp_after_link_change(hw, TRUE);
2987
2988         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2989          * have Si on board that is 82544 or newer, Auto
2990          * Speed Detection takes care of MAC speed/duplex
2991          * configuration.  So we only need to configure Collision
2992          * Distance in the MAC.  Otherwise, we need to force
2993          * speed/duplex on the MAC to the current PHY speed/duplex
2994          * settings.
2995          */
2996         if (hw->mac_type >= e1000_82544)
2997             e1000_config_collision_dist(hw);
2998         else {
2999             ret_val = e1000_config_mac_to_phy(hw);
3000             if (ret_val) {
3001                 DEBUGOUT("Error configuring MAC to PHY settings\n");
3002                 return ret_val;
3003             }
3004         }
3005
3006         /* Configure Flow Control now that Auto-Neg has completed. First, we
3007          * need to restore the desired flow control settings because we may
3008          * have had to re-autoneg with a different link partner.
3009          */
3010         ret_val = e1000_config_fc_after_link_up(hw);
3011         if (ret_val) {
3012             DEBUGOUT("Error configuring flow control\n");
3013             return ret_val;
3014         }
3015
3016         /* At this point we know that we are on copper and we have
3017          * auto-negotiated link.  These are conditions for checking the link
3018          * partner capability register.  We use the link speed to determine if
3019          * TBI compatibility needs to be turned on or off.  If the link is not
3020          * at gigabit speed, then TBI compatibility is not needed.  If we are
3021          * at gigabit speed, we turn on TBI compatibility.
3022          */
3023         if (hw->tbi_compatibility_en) {
3024             uint16_t speed, duplex;
3025             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3026             if (ret_val) {
3027                 DEBUGOUT("Error getting link speed and duplex\n");
3028                 return ret_val;
3029             }
3030             if (speed != SPEED_1000) {
3031                 /* If link speed is not set to gigabit speed, we do not need
3032                  * to enable TBI compatibility.
3033                  */
3034                 if (hw->tbi_compatibility_on) {
3035                     /* If we previously were in the mode, turn it off. */
3036                     rctl = E1000_READ_REG(hw, RCTL);
3037                     rctl &= ~E1000_RCTL_SBP;
3038                     E1000_WRITE_REG(hw, RCTL, rctl);
3039                     hw->tbi_compatibility_on = FALSE;
3040                 }
3041             } else {
3042                 /* If TBI compatibility is was previously off, turn it on. For
3043                  * compatibility with a TBI link partner, we will store bad
3044                  * packets. Some frames have an additional byte on the end and
3045                  * will look like CRC errors to to the hardware.
3046                  */
3047                 if (!hw->tbi_compatibility_on) {
3048                     hw->tbi_compatibility_on = TRUE;
3049                     rctl = E1000_READ_REG(hw, RCTL);
3050                     rctl |= E1000_RCTL_SBP;
3051                     E1000_WRITE_REG(hw, RCTL, rctl);
3052                 }
3053             }
3054         }
3055     }
3056     /* If we don't have link (auto-negotiation failed or link partner cannot
3057      * auto-negotiate), the cable is plugged in (we have signal), and our
3058      * link partner is not trying to auto-negotiate with us (we are receiving
3059      * idles or data), we need to force link up. We also need to give
3060      * auto-negotiation time to complete, in case the cable was just plugged
3061      * in. The autoneg_failed flag does this.
3062      */
3063     else if ((((hw->media_type == e1000_media_type_fiber) &&
3064               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
3065               (hw->media_type == e1000_media_type_internal_serdes)) &&
3066               (!(status & E1000_STATUS_LU)) &&
3067               (!(rxcw & E1000_RXCW_C))) {
3068         if (hw->autoneg_failed == 0) {
3069             hw->autoneg_failed = 1;
3070             return 0;
3071         }
3072         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3073
3074         /* Disable auto-negotiation in the TXCW register */
3075         E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3076
3077         /* Force link-up and also force full-duplex. */
3078         ctrl = E1000_READ_REG(hw, CTRL);
3079         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3080         E1000_WRITE_REG(hw, CTRL, ctrl);
3081
3082         /* Configure Flow Control after forcing link up. */
3083         ret_val = e1000_config_fc_after_link_up(hw);
3084         if (ret_val) {
3085             DEBUGOUT("Error configuring flow control\n");
3086             return ret_val;
3087         }
3088     }
3089     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3090      * auto-negotiation in the TXCW register and disable forced link in the
3091      * Device Control register in an attempt to auto-negotiate with our link
3092      * partner.
3093      */
3094     else if (((hw->media_type == e1000_media_type_fiber) ||
3095               (hw->media_type == e1000_media_type_internal_serdes)) &&
3096               (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3097         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3098         E1000_WRITE_REG(hw, TXCW, hw->txcw);
3099         E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3100
3101         hw->serdes_link_down = FALSE;
3102     }
3103     /* If we force link for non-auto-negotiation switch, check link status
3104      * based on MAC synchronization for internal serdes media type.
3105      */
3106     else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3107              !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3108         /* SYNCH bit and IV bit are sticky. */
3109         udelay(10);
3110         if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3111             if (!(rxcw & E1000_RXCW_IV)) {
3112                 hw->serdes_link_down = FALSE;
3113                 DEBUGOUT("SERDES: Link is up.\n");
3114             }
3115         } else {
3116             hw->serdes_link_down = TRUE;
3117             DEBUGOUT("SERDES: Link is down.\n");
3118         }
3119     }
3120     if ((hw->media_type == e1000_media_type_internal_serdes) &&
3121         (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3122         hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3123     }
3124     return E1000_SUCCESS;
3125 }
3126
3127 /******************************************************************************
3128  * Detects the current speed and duplex settings of the hardware.
3129  *
3130  * hw - Struct containing variables accessed by shared code
3131  * speed - Speed of the connection
3132  * duplex - Duplex setting of the connection
3133  *****************************************************************************/
3134 int32_t
3135 e1000_get_speed_and_duplex(struct e1000_hw *hw,
3136                            uint16_t *speed,
3137                            uint16_t *duplex)
3138 {
3139     uint32_t status;
3140     int32_t ret_val;
3141     uint16_t phy_data;
3142
3143     DEBUGFUNC("e1000_get_speed_and_duplex");
3144
3145     if (hw->mac_type >= e1000_82543) {
3146         status = E1000_READ_REG(hw, STATUS);
3147         if (status & E1000_STATUS_SPEED_1000) {
3148             *speed = SPEED_1000;
3149             DEBUGOUT("1000 Mbs, ");
3150         } else if (status & E1000_STATUS_SPEED_100) {
3151             *speed = SPEED_100;
3152             DEBUGOUT("100 Mbs, ");
3153         } else {
3154             *speed = SPEED_10;
3155             DEBUGOUT("10 Mbs, ");
3156         }
3157
3158         if (status & E1000_STATUS_FD) {
3159             *duplex = FULL_DUPLEX;
3160             DEBUGOUT("Full Duplex\n");
3161         } else {
3162             *duplex = HALF_DUPLEX;
3163             DEBUGOUT(" Half Duplex\n");
3164         }
3165     } else {
3166         DEBUGOUT("1000 Mbs, Full Duplex\n");
3167         *speed = SPEED_1000;
3168         *duplex = FULL_DUPLEX;
3169     }
3170
3171     /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3172      * if it is operating at half duplex.  Here we set the duplex settings to
3173      * match the duplex in the link partner's capabilities.
3174      */
3175     if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3176         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3177         if (ret_val)
3178             return ret_val;
3179
3180         if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3181             *duplex = HALF_DUPLEX;
3182         else {
3183             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3184             if (ret_val)
3185                 return ret_val;
3186             if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3187                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3188                 *duplex = HALF_DUPLEX;
3189         }
3190     }
3191
3192     if ((hw->mac_type == e1000_80003es2lan) &&
3193         (hw->media_type == e1000_media_type_copper)) {
3194         if (*speed == SPEED_1000)
3195             ret_val = e1000_configure_kmrn_for_1000(hw);
3196         else
3197             ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3198         if (ret_val)
3199             return ret_val;
3200     }
3201
3202     if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3203         ret_val = e1000_kumeran_lock_loss_workaround(hw);
3204         if (ret_val)
3205             return ret_val;
3206     }
3207
3208     return E1000_SUCCESS;
3209 }
3210
3211 /******************************************************************************
3212 * Blocks until autoneg completes or times out (~4.5 seconds)
3213 *
3214 * hw - Struct containing variables accessed by shared code
3215 ******************************************************************************/
3216 static int32_t
3217 e1000_wait_autoneg(struct e1000_hw *hw)
3218 {
3219     int32_t ret_val;
3220     uint16_t i;
3221     uint16_t phy_data;
3222
3223     DEBUGFUNC("e1000_wait_autoneg");
3224     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3225
3226     /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3227     for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3228         /* Read the MII Status Register and wait for Auto-Neg
3229          * Complete bit to be set.
3230          */
3231         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3232         if (ret_val)
3233             return ret_val;
3234         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3235         if (ret_val)
3236             return ret_val;
3237         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3238             return E1000_SUCCESS;
3239         }
3240         msleep(100);
3241     }
3242     return E1000_SUCCESS;
3243 }
3244
3245 /******************************************************************************
3246 * Raises the Management Data Clock
3247 *
3248 * hw - Struct containing variables accessed by shared code
3249 * ctrl - Device control register's current value
3250 ******************************************************************************/
3251 static void
3252 e1000_raise_mdi_clk(struct e1000_hw *hw,
3253                     uint32_t *ctrl)
3254 {
3255     /* Raise the clock input to the Management Data Clock (by setting the MDC
3256      * bit), and then delay 10 microseconds.
3257      */
3258     E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3259     E1000_WRITE_FLUSH(hw);
3260     udelay(10);
3261 }
3262
3263 /******************************************************************************
3264 * Lowers the Management Data Clock
3265 *
3266 * hw - Struct containing variables accessed by shared code
3267 * ctrl - Device control register's current value
3268 ******************************************************************************/
3269 static void
3270 e1000_lower_mdi_clk(struct e1000_hw *hw,
3271                     uint32_t *ctrl)
3272 {
3273     /* Lower the clock input to the Management Data Clock (by clearing the MDC
3274      * bit), and then delay 10 microseconds.
3275      */
3276     E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3277     E1000_WRITE_FLUSH(hw);
3278     udelay(10);
3279 }
3280
3281 /******************************************************************************
3282 * Shifts data bits out to the PHY
3283 *
3284 * hw - Struct containing variables accessed by shared code
3285 * data - Data to send out to the PHY
3286 * count - Number of bits to shift out
3287 *
3288 * Bits are shifted out in MSB to LSB order.
3289 ******************************************************************************/
3290 static void
3291 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3292                          uint32_t data,
3293                          uint16_t count)
3294 {
3295     uint32_t ctrl;
3296     uint32_t mask;
3297
3298     /* We need to shift "count" number of bits out to the PHY. So, the value
3299      * in the "data" parameter will be shifted out to the PHY one bit at a
3300      * time. In order to do this, "data" must be broken down into bits.
3301      */
3302     mask = 0x01;
3303     mask <<= (count - 1);
3304
3305     ctrl = E1000_READ_REG(hw, CTRL);
3306
3307     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3308     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3309
3310     while (mask) {
3311         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3312          * then raising and lowering the Management Data Clock. A "0" is
3313          * shifted out to the PHY by setting the MDIO bit to "0" and then
3314          * raising and lowering the clock.
3315          */
3316         if (data & mask)
3317             ctrl |= E1000_CTRL_MDIO;
3318         else
3319             ctrl &= ~E1000_CTRL_MDIO;
3320
3321         E1000_WRITE_REG(hw, CTRL, ctrl);
3322         E1000_WRITE_FLUSH(hw);
3323
3324         udelay(10);
3325
3326         e1000_raise_mdi_clk(hw, &ctrl);
3327         e1000_lower_mdi_clk(hw, &ctrl);
3328
3329         mask = mask >> 1;
3330     }
3331 }
3332
3333 /******************************************************************************
3334 * Shifts data bits in from the PHY
3335 *
3336 * hw - Struct containing variables accessed by shared code
3337 *
3338 * Bits are shifted in in MSB to LSB order.
3339 ******************************************************************************/
3340 static uint16_t
3341 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3342 {
3343     uint32_t ctrl;
3344     uint16_t data = 0;
3345     uint8_t i;
3346
3347     /* In order to read a register from the PHY, we need to shift in a total
3348      * of 18 bits from the PHY. The first two bit (turnaround) times are used
3349      * to avoid contention on the MDIO pin when a read operation is performed.
3350      * These two bits are ignored by us and thrown away. Bits are "shifted in"
3351      * by raising the input to the Management Data Clock (setting the MDC bit),
3352      * and then reading the value of the MDIO bit.
3353      */
3354     ctrl = E1000_READ_REG(hw, CTRL);
3355
3356     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3357     ctrl &= ~E1000_CTRL_MDIO_DIR;
3358     ctrl &= ~E1000_CTRL_MDIO;
3359
3360     E1000_WRITE_REG(hw, CTRL, ctrl);
3361     E1000_WRITE_FLUSH(hw);
3362
3363     /* Raise and Lower the clock before reading in the data. This accounts for
3364      * the turnaround bits. The first clock occurred when we clocked out the
3365      * last bit of the Register Address.
3366      */
3367     e1000_raise_mdi_clk(hw, &ctrl);
3368     e1000_lower_mdi_clk(hw, &ctrl);
3369
3370     for (data = 0, i = 0; i < 16; i++) {
3371         data = data << 1;
3372         e1000_raise_mdi_clk(hw, &ctrl);
3373         ctrl = E1000_READ_REG(hw, CTRL);
3374         /* Check to see if we shifted in a "1". */
3375         if (ctrl & E1000_CTRL_MDIO)
3376             data |= 1;
3377         e1000_lower_mdi_clk(hw, &ctrl);
3378     }
3379
3380     e1000_raise_mdi_clk(hw, &ctrl);
3381     e1000_lower_mdi_clk(hw, &ctrl);
3382
3383     return data;
3384 }
3385
3386 static int32_t
3387 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3388 {
3389     uint32_t swfw_sync = 0;
3390     uint32_t swmask = mask;
3391     uint32_t fwmask = mask << 16;
3392     int32_t timeout = 200;
3393
3394     DEBUGFUNC("e1000_swfw_sync_acquire");
3395
3396     if (hw->swfwhw_semaphore_present)
3397         return e1000_get_software_flag(hw);
3398
3399     if (!hw->swfw_sync_present)
3400         return e1000_get_hw_eeprom_semaphore(hw);
3401
3402     while (timeout) {
3403             if (e1000_get_hw_eeprom_semaphore(hw))
3404                 return -E1000_ERR_SWFW_SYNC;
3405
3406             swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3407             if (!(swfw_sync & (fwmask | swmask))) {
3408                 break;
3409             }
3410
3411             /* firmware currently using resource (fwmask) */
3412             /* or other software thread currently using resource (swmask) */
3413             e1000_put_hw_eeprom_semaphore(hw);
3414             mdelay(5);
3415             timeout--;
3416     }
3417
3418     if (!timeout) {
3419         DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3420         return -E1000_ERR_SWFW_SYNC;
3421     }
3422
3423     swfw_sync |= swmask;
3424     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3425
3426     e1000_put_hw_eeprom_semaphore(hw);
3427     return E1000_SUCCESS;
3428 }
3429
3430 static void
3431 e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3432 {
3433     uint32_t swfw_sync;
3434     uint32_t swmask = mask;
3435
3436     DEBUGFUNC("e1000_swfw_sync_release");
3437
3438     if (hw->swfwhw_semaphore_present) {
3439         e1000_release_software_flag(hw);
3440         return;
3441     }
3442
3443     if (!hw->swfw_sync_present) {
3444         e1000_put_hw_eeprom_semaphore(hw);
3445         return;
3446     }
3447
3448     /* if (e1000_get_hw_eeprom_semaphore(hw))
3449      *    return -E1000_ERR_SWFW_SYNC; */
3450     while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3451         /* empty */
3452
3453     swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3454     swfw_sync &= ~swmask;
3455     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3456
3457     e1000_put_hw_eeprom_semaphore(hw);
3458 }
3459
3460 /*****************************************************************************
3461 * Reads the value from a PHY register, if the value is on a specific non zero
3462 * page, sets the page first.
3463 * hw - Struct containing variables accessed by shared code
3464 * reg_addr - address of the PHY register to read
3465 ******************************************************************************/
3466 int32_t
3467 e1000_read_phy_reg(struct e1000_hw *hw,
3468                    uint32_t reg_addr,
3469                    uint16_t *phy_data)
3470 {
3471     uint32_t ret_val;
3472     uint16_t swfw;
3473
3474     DEBUGFUNC("e1000_read_phy_reg");
3475
3476     if ((hw->mac_type == e1000_80003es2lan) &&
3477         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3478         swfw = E1000_SWFW_PHY1_SM;
3479     } else {
3480         swfw = E1000_SWFW_PHY0_SM;
3481     }
3482     if (e1000_swfw_sync_acquire(hw, swfw))
3483         return -E1000_ERR_SWFW_SYNC;
3484
3485     if ((hw->phy_type == e1000_phy_igp ||
3486         hw->phy_type == e1000_phy_igp_3 ||
3487         hw->phy_type == e1000_phy_igp_2) &&
3488        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3489         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3490                                          (uint16_t)reg_addr);
3491         if (ret_val) {
3492             e1000_swfw_sync_release(hw, swfw);
3493             return ret_val;
3494         }
3495     } else if (hw->phy_type == e1000_phy_gg82563) {
3496         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3497             (hw->mac_type == e1000_80003es2lan)) {
3498             /* Select Configuration Page */
3499             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3500                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3501                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3502             } else {
3503                 /* Use Alternative Page Select register to access
3504                  * registers 30 and 31
3505                  */
3506                 ret_val = e1000_write_phy_reg_ex(hw,
3507                                                  GG82563_PHY_PAGE_SELECT_ALT,
3508                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3509             }
3510
3511             if (ret_val) {
3512                 e1000_swfw_sync_release(hw, swfw);
3513                 return ret_val;
3514             }
3515         }
3516     }
3517
3518     ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3519                                     phy_data);
3520
3521     e1000_swfw_sync_release(hw, swfw);
3522     return ret_val;
3523 }
3524
3525 static int32_t
3526 e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3527                       uint16_t *phy_data)
3528 {
3529     uint32_t i;
3530     uint32_t mdic = 0;
3531     const uint32_t phy_addr = 1;
3532
3533     DEBUGFUNC("e1000_read_phy_reg_ex");
3534
3535     if (reg_addr > MAX_PHY_REG_ADDRESS) {
3536         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3537         return -E1000_ERR_PARAM;
3538     }
3539
3540     if (hw->mac_type > e1000_82543) {
3541         /* Set up Op-code, Phy Address, and register address in the MDI
3542          * Control register.  The MAC will take care of interfacing with the
3543          * PHY to retrieve the desired data.
3544          */
3545         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3546                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3547                 (E1000_MDIC_OP_READ));
3548
3549         E1000_WRITE_REG(hw, MDIC, mdic);
3550
3551         /* Poll the ready bit to see if the MDI read completed */
3552         for (i = 0; i < 64; i++) {
3553             udelay(50);
3554             mdic = E1000_READ_REG(hw, MDIC);
3555             if (mdic & E1000_MDIC_READY) break;
3556         }
3557         if (!(mdic & E1000_MDIC_READY)) {
3558             DEBUGOUT("MDI Read did not complete\n");
3559             return -E1000_ERR_PHY;
3560         }
3561         if (mdic & E1000_MDIC_ERROR) {
3562             DEBUGOUT("MDI Error\n");
3563             return -E1000_ERR_PHY;
3564         }
3565         *phy_data = (uint16_t) mdic;
3566     } else {
3567         /* We must first send a preamble through the MDIO pin to signal the
3568          * beginning of an MII instruction.  This is done by sending 32
3569          * consecutive "1" bits.
3570          */
3571         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3572
3573         /* Now combine the next few fields that are required for a read
3574          * operation.  We use this method instead of calling the
3575          * e1000_shift_out_mdi_bits routine five different times. The format of
3576          * a MII read instruction consists of a shift out of 14 bits and is
3577          * defined as follows:
3578          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3579          * followed by a shift in of 18 bits.  This first two bits shifted in
3580          * are TurnAround bits used to avoid contention on the MDIO pin when a
3581          * READ operation is performed.  These two bits are thrown away
3582          * followed by a shift in of 16 bits which contains the desired data.
3583          */
3584         mdic = ((reg_addr) | (phy_addr << 5) |
3585                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3586
3587         e1000_shift_out_mdi_bits(hw, mdic, 14);
3588
3589         /* Now that we've shifted out the read command to the MII, we need to
3590          * "shift in" the 16-bit value (18 total bits) of the requested PHY
3591          * register address.
3592          */
3593         *phy_data = e1000_shift_in_mdi_bits(hw);
3594     }
3595     return E1000_SUCCESS;
3596 }
3597
3598 /******************************************************************************
3599 * Writes a value to a PHY register
3600 *
3601 * hw - Struct containing variables accessed by shared code
3602 * reg_addr - address of the PHY register to write
3603 * data - data to write to the PHY
3604 ******************************************************************************/
3605 int32_t
3606 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
3607                     uint16_t phy_data)
3608 {
3609     uint32_t ret_val;
3610     uint16_t swfw;
3611
3612     DEBUGFUNC("e1000_write_phy_reg");
3613
3614     if ((hw->mac_type == e1000_80003es2lan) &&
3615         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3616         swfw = E1000_SWFW_PHY1_SM;
3617     } else {
3618         swfw = E1000_SWFW_PHY0_SM;
3619     }
3620     if (e1000_swfw_sync_acquire(hw, swfw))
3621         return -E1000_ERR_SWFW_SYNC;
3622
3623     if ((hw->phy_type == e1000_phy_igp ||
3624         hw->phy_type == e1000_phy_igp_3 ||
3625         hw->phy_type == e1000_phy_igp_2) &&
3626        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3627         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3628                                          (uint16_t)reg_addr);
3629         if (ret_val) {
3630             e1000_swfw_sync_release(hw, swfw);
3631             return ret_val;
3632         }
3633     } else if (hw->phy_type == e1000_phy_gg82563) {
3634         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3635             (hw->mac_type == e1000_80003es2lan)) {
3636             /* Select Configuration Page */
3637             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3638                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3639                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3640             } else {
3641                 /* Use Alternative Page Select register to access
3642                  * registers 30 and 31
3643                  */
3644                 ret_val = e1000_write_phy_reg_ex(hw,
3645                                                  GG82563_PHY_PAGE_SELECT_ALT,
3646                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3647             }
3648
3649             if (ret_val) {
3650                 e1000_swfw_sync_release(hw, swfw);
3651                 return ret_val;
3652             }
3653         }
3654     }
3655
3656     ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3657                                      phy_data);
3658
3659     e1000_swfw_sync_release(hw, swfw);
3660     return ret_val;
3661 }
3662
3663 static int32_t
3664 e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3665                        uint16_t phy_data)
3666 {
3667     uint32_t i;
3668     uint32_t mdic = 0;
3669     const uint32_t phy_addr = 1;
3670
3671     DEBUGFUNC("e1000_write_phy_reg_ex");
3672
3673     if (reg_addr > MAX_PHY_REG_ADDRESS) {
3674         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3675         return -E1000_ERR_PARAM;
3676     }
3677
3678     if (hw->mac_type > e1000_82543) {
3679         /* Set up Op-code, Phy Address, register address, and data intended
3680          * for the PHY register in the MDI Control register.  The MAC will take
3681          * care of interfacing with the PHY to send the desired data.
3682          */
3683         mdic = (((uint32_t) phy_data) |
3684                 (reg_addr << E1000_MDIC_REG_SHIFT) |
3685                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3686                 (E1000_MDIC_OP_WRITE));
3687
3688         E1000_WRITE_REG(hw, MDIC, mdic);
3689
3690         /* Poll the ready bit to see if the MDI read completed */
3691         for (i = 0; i < 641; i++) {
3692             udelay(5);
3693             mdic = E1000_READ_REG(hw, MDIC);
3694             if (mdic & E1000_MDIC_READY) break;
3695         }
3696         if (!(mdic & E1000_MDIC_READY)) {
3697             DEBUGOUT("MDI Write did not complete\n");
3698             return -E1000_ERR_PHY;
3699         }
3700     } else {
3701         /* We'll need to use the SW defined pins to shift the write command
3702          * out to the PHY. We first send a preamble to the PHY to signal the
3703          * beginning of the MII instruction.  This is done by sending 32
3704          * consecutive "1" bits.
3705          */
3706         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3707
3708         /* Now combine the remaining required fields that will indicate a
3709          * write operation. We use this method instead of calling the
3710          * e1000_shift_out_mdi_bits routine for each field in the command. The
3711          * format of a MII write instruction is as follows:
3712          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3713          */
3714         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3715                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3716         mdic <<= 16;
3717         mdic |= (uint32_t) phy_data;
3718
3719         e1000_shift_out_mdi_bits(hw, mdic, 32);
3720     }
3721
3722     return E1000_SUCCESS;
3723 }
3724
3725 static int32_t
3726 e1000_read_kmrn_reg(struct e1000_hw *hw,
3727                     uint32_t reg_addr,
3728                     uint16_t *data)
3729 {
3730     uint32_t reg_val;
3731     uint16_t swfw;
3732     DEBUGFUNC("e1000_read_kmrn_reg");
3733
3734     if ((hw->mac_type == e1000_80003es2lan) &&
3735         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3736         swfw = E1000_SWFW_PHY1_SM;
3737     } else {
3738         swfw = E1000_SWFW_PHY0_SM;
3739     }
3740     if (e1000_swfw_sync_acquire(hw, swfw))
3741         return -E1000_ERR_SWFW_SYNC;
3742
3743     /* Write register address */
3744     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3745               E1000_KUMCTRLSTA_OFFSET) |
3746               E1000_KUMCTRLSTA_REN;
3747     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3748     udelay(2);
3749
3750     /* Read the data returned */
3751     reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3752     *data = (uint16_t)reg_val;
3753
3754     e1000_swfw_sync_release(hw, swfw);
3755     return E1000_SUCCESS;
3756 }
3757
3758 static int32_t
3759 e1000_write_kmrn_reg(struct e1000_hw *hw,
3760                      uint32_t reg_addr,
3761                      uint16_t data)
3762 {
3763     uint32_t reg_val;
3764     uint16_t swfw;
3765     DEBUGFUNC("e1000_write_kmrn_reg");
3766
3767     if ((hw->mac_type == e1000_80003es2lan) &&
3768         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3769         swfw = E1000_SWFW_PHY1_SM;
3770     } else {
3771         swfw = E1000_SWFW_PHY0_SM;
3772     }
3773     if (e1000_swfw_sync_acquire(hw, swfw))
3774         return -E1000_ERR_SWFW_SYNC;
3775
3776     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3777               E1000_KUMCTRLSTA_OFFSET) | data;
3778     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3779     udelay(2);
3780
3781     e1000_swfw_sync_release(hw, swfw);
3782     return E1000_SUCCESS;
3783 }
3784
3785 /******************************************************************************
3786 * Returns the PHY to the power-on reset state
3787 *
3788 * hw - Struct containing variables accessed by shared code
3789 ******************************************************************************/
3790 int32_t
3791 e1000_phy_hw_reset(struct e1000_hw *hw)
3792 {
3793     uint32_t ctrl, ctrl_ext;
3794     uint32_t led_ctrl;
3795     int32_t ret_val;
3796     uint16_t swfw;
3797
3798     DEBUGFUNC("e1000_phy_hw_reset");
3799
3800     /* In the case of the phy reset being blocked, it's not an error, we
3801      * simply return success without performing the reset. */
3802     ret_val = e1000_check_phy_reset_block(hw);
3803     if (ret_val)
3804         return E1000_SUCCESS;
3805
3806     DEBUGOUT("Resetting Phy...\n");
3807
3808     if (hw->mac_type > e1000_82543) {
3809         if ((hw->mac_type == e1000_80003es2lan) &&
3810             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3811             swfw = E1000_SWFW_PHY1_SM;
3812         } else {
3813             swfw = E1000_SWFW_PHY0_SM;
3814         }
3815         if (e1000_swfw_sync_acquire(hw, swfw)) {
3816             DEBUGOUT("Unable to acquire swfw sync\n");
3817             return -E1000_ERR_SWFW_SYNC;
3818         }
3819         /* Read the device control register and assert the E1000_CTRL_PHY_RST
3820          * bit. Then, take it out of reset.
3821          * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3822          * and deassert.  For e1000_82571 hardware and later, we instead delay
3823          * for 50us between and 10ms after the deassertion.
3824          */
3825         ctrl = E1000_READ_REG(hw, CTRL);
3826         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3827         E1000_WRITE_FLUSH(hw);
3828
3829         if (hw->mac_type < e1000_82571)
3830             msleep(10);
3831         else
3832             udelay(100);
3833
3834         E1000_WRITE_REG(hw, CTRL, ctrl);
3835         E1000_WRITE_FLUSH(hw);
3836
3837         if (hw->mac_type >= e1000_82571)
3838             mdelay(10);
3839
3840         e1000_swfw_sync_release(hw, swfw);
3841     } else {
3842         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3843          * bit to put the PHY into reset. Then, take it out of reset.
3844          */
3845         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3846         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3847         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3848         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3849         E1000_WRITE_FLUSH(hw);
3850         msleep(10);
3851         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3852         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3853         E1000_WRITE_FLUSH(hw);
3854     }
3855     udelay(150);
3856
3857     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3858         /* Configure activity LED after PHY reset */
3859         led_ctrl = E1000_READ_REG(hw, LEDCTL);
3860         led_ctrl &= IGP_ACTIVITY_LED_MASK;
3861         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3862         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3863     }
3864
3865     /* Wait for FW to finish PHY configuration. */
3866     ret_val = e1000_get_phy_cfg_done(hw);
3867     if (ret_val != E1000_SUCCESS)
3868         return ret_val;
3869     e1000_release_software_semaphore(hw);
3870
3871     if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3872         ret_val = e1000_init_lcd_from_nvm(hw);
3873
3874     return ret_val;
3875 }
3876
3877 /******************************************************************************
3878 * Resets the PHY
3879 *
3880 * hw - Struct containing variables accessed by shared code
3881 *
3882 * Sets bit 15 of the MII Control register
3883 ******************************************************************************/
3884 int32_t
3885 e1000_phy_reset(struct e1000_hw *hw)
3886 {
3887     int32_t ret_val;
3888     uint16_t phy_data;
3889
3890     DEBUGFUNC("e1000_phy_reset");
3891
3892     /* In the case of the phy reset being blocked, it's not an error, we
3893      * simply return success without performing the reset. */
3894     ret_val = e1000_check_phy_reset_block(hw);
3895     if (ret_val)
3896         return E1000_SUCCESS;
3897
3898     switch (hw->phy_type) {
3899     case e1000_phy_igp:
3900     case e1000_phy_igp_2:
3901     case e1000_phy_igp_3:
3902     case e1000_phy_ife:
3903         ret_val = e1000_phy_hw_reset(hw);
3904         if (ret_val)
3905             return ret_val;
3906         break;
3907     default:
3908         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3909         if (ret_val)
3910             return ret_val;
3911
3912         phy_data |= MII_CR_RESET;
3913         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3914         if (ret_val)
3915             return ret_val;
3916
3917         udelay(1);
3918         break;
3919     }
3920
3921     if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3922         e1000_phy_init_script(hw);
3923
3924     return E1000_SUCCESS;
3925 }
3926
3927 /******************************************************************************
3928 * Work-around for 82566 power-down: on D3 entry-
3929 * 1) disable gigabit link
3930 * 2) write VR power-down enable
3931 * 3) read it back
3932 * if successful continue, else issue LCD reset and repeat
3933 *
3934 * hw - struct containing variables accessed by shared code
3935 ******************************************************************************/
3936 void
3937 e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3938 {
3939     int32_t reg;
3940     uint16_t phy_data;
3941     int32_t retry = 0;
3942
3943     DEBUGFUNC("e1000_phy_powerdown_workaround");
3944
3945     if (hw->phy_type != e1000_phy_igp_3)
3946         return;
3947
3948     do {
3949         /* Disable link */
3950         reg = E1000_READ_REG(hw, PHY_CTRL);
3951         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3952                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3953
3954         /* Write VR power-down enable - bits 9:8 should be 10b */
3955         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3956         phy_data |= (1 << 9);
3957         phy_data &= ~(1 << 8);
3958         e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
3959
3960         /* Read it back and test */
3961         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3962         if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
3963             break;
3964
3965         /* Issue PHY reset and repeat at most one more time */
3966         reg = E1000_READ_REG(hw, CTRL);
3967         E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3968         retry++;
3969     } while (retry);
3970
3971     return;
3972
3973 }
3974
3975 /******************************************************************************
3976 * Work-around for 82566 Kumeran PCS lock loss:
3977 * On link status change (i.e. PCI reset, speed change) and link is up and
3978 * speed is gigabit-
3979 * 0) if workaround is optionally disabled do nothing
3980 * 1) wait 1ms for Kumeran link to come up
3981 * 2) check Kumeran Diagnostic register PCS lock loss bit
3982 * 3) if not set the link is locked (all is good), otherwise...
3983 * 4) reset the PHY
3984 * 5) repeat up to 10 times
3985 * Note: this is only called for IGP3 copper when speed is 1gb.
3986 *
3987 * hw - struct containing variables accessed by shared code
3988 ******************************************************************************/
3989 static int32_t
3990 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3991 {
3992     int32_t ret_val;
3993     int32_t reg;
3994     int32_t cnt;
3995     uint16_t phy_data;
3996
3997     if (hw->kmrn_lock_loss_workaround_disabled)
3998         return E1000_SUCCESS;
3999
4000     /* Make sure link is up before proceeding.  If not just return.
4001      * Attempting this while link is negotiating fouled up link
4002      * stability */
4003     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4004     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4005
4006     if (phy_data & MII_SR_LINK_STATUS) {
4007         for (cnt = 0; cnt < 10; cnt++) {
4008             /* read once to clear */
4009             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4010             if (ret_val)
4011                 return ret_val;
4012             /* and again to get new status */
4013             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4014             if (ret_val)
4015                 return ret_val;
4016
4017             /* check for PCS lock */
4018             if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4019                 return E1000_SUCCESS;
4020
4021             /* Issue PHY reset */
4022             e1000_phy_hw_reset(hw);
4023             mdelay(5);
4024         }
4025         /* Disable GigE link negotiation */
4026         reg = E1000_READ_REG(hw, PHY_CTRL);
4027         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
4028                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4029
4030         /* unable to acquire PCS lock */
4031         return E1000_ERR_PHY;
4032     }
4033
4034     return E1000_SUCCESS;
4035 }
4036
4037 /******************************************************************************
4038 * Probes the expected PHY address for known PHY IDs
4039 *
4040 * hw - Struct containing variables accessed by shared code
4041 ******************************************************************************/
4042 static int32_t
4043 e1000_detect_gig_phy(struct e1000_hw *hw)
4044 {
4045     int32_t phy_init_status, ret_val;
4046     uint16_t phy_id_high, phy_id_low;
4047     boolean_t match = FALSE;
4048
4049     DEBUGFUNC("e1000_detect_gig_phy");
4050
4051     if (hw->phy_id != 0)
4052         return E1000_SUCCESS;
4053
4054     /* The 82571 firmware may still be configuring the PHY.  In this
4055      * case, we cannot access the PHY until the configuration is done.  So
4056      * we explicitly set the PHY values. */
4057     if (hw->mac_type == e1000_82571 ||
4058         hw->mac_type == e1000_82572) {
4059         hw->phy_id = IGP01E1000_I_PHY_ID;
4060         hw->phy_type = e1000_phy_igp_2;
4061         return E1000_SUCCESS;
4062     }
4063
4064     /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4065      * around that forces PHY page 0 to be set or the reads fail.  The rest of
4066      * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4067      * So for ESB-2 we need to have this set so our reads won't fail.  If the
4068      * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4069      * this out as well. */
4070     if (hw->mac_type == e1000_80003es2lan)
4071         hw->phy_type = e1000_phy_gg82563;
4072
4073     /* Read the PHY ID Registers to identify which PHY is onboard. */
4074     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4075     if (ret_val)
4076         return ret_val;
4077
4078     hw->phy_id = (uint32_t) (phy_id_high << 16);
4079     udelay(20);
4080     ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4081     if (ret_val)
4082         return ret_val;
4083
4084     hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4085     hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4086
4087     switch (hw->mac_type) {
4088     case e1000_82543:
4089         if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
4090         break;
4091     case e1000_82544:
4092         if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
4093         break;
4094     case e1000_82540:
4095     case e1000_82545:
4096     case e1000_82545_rev_3:
4097     case e1000_82546:
4098     case e1000_82546_rev_3:
4099         if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
4100         break;
4101     case e1000_82541:
4102     case e1000_82541_rev_2:
4103     case e1000_82547:
4104     case e1000_82547_rev_2:
4105         if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
4106         break;
4107     case e1000_82573:
4108         if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
4109         break;
4110     case e1000_80003es2lan:
4111         if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4112         break;
4113     case e1000_ich8lan:
4114         if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4115         if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4116         if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4117         if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4118         break;
4119     default:
4120         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4121         return -E1000_ERR_CONFIG;
4122     }
4123     phy_init_status = e1000_set_phy_type(hw);
4124
4125     if ((match) && (phy_init_status == E1000_SUCCESS)) {
4126         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4127         return E1000_SUCCESS;
4128     }
4129     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4130     return -E1000_ERR_PHY;
4131 }
4132
4133 /******************************************************************************
4134 * Resets the PHY's DSP
4135 *
4136 * hw - Struct containing variables accessed by shared code
4137 ******************************************************************************/
4138 static int32_t
4139 e1000_phy_reset_dsp(struct e1000_hw *hw)
4140 {
4141     int32_t ret_val;
4142     DEBUGFUNC("e1000_phy_reset_dsp");
4143
4144     do {
4145         if (hw->phy_type != e1000_phy_gg82563) {
4146             ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4147             if (ret_val) break;
4148         }
4149         ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4150         if (ret_val) break;
4151         ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4152         if (ret_val) break;
4153         ret_val = E1000_SUCCESS;
4154     } while (0);
4155
4156     return ret_val;
4157 }
4158
4159 /******************************************************************************
4160 * Get PHY information from various PHY registers for igp PHY only.
4161 *
4162 * hw - Struct containing variables accessed by shared code
4163 * phy_info - PHY information structure
4164 ******************************************************************************/
4165 static int32_t
4166 e1000_phy_igp_get_info(struct e1000_hw *hw,
4167                        struct e1000_phy_info *phy_info)
4168 {
4169     int32_t ret_val;
4170     uint16_t phy_data, min_length, max_length, average;
4171     e1000_rev_polarity polarity;
4172
4173     DEBUGFUNC("e1000_phy_igp_get_info");
4174
4175     /* The downshift status is checked only once, after link is established,
4176      * and it stored in the hw->speed_downgraded parameter. */
4177     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4178
4179     /* IGP01E1000 does not need to support it. */
4180     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4181
4182     /* IGP01E1000 always correct polarity reversal */
4183     phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4184
4185     /* Check polarity status */
4186     ret_val = e1000_check_polarity(hw, &polarity);
4187     if (ret_val)
4188         return ret_val;
4189
4190     phy_info->cable_polarity = polarity;
4191
4192     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4193     if (ret_val)
4194         return ret_val;
4195
4196     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4197                           IGP01E1000_PSSR_MDIX_SHIFT);
4198
4199     if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4200        IGP01E1000_PSSR_SPEED_1000MBPS) {
4201         /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4202         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4203         if (ret_val)
4204             return ret_val;
4205
4206         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4207                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4208                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4209         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4210                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4211                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4212
4213         /* Get cable length */
4214         ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4215         if (ret_val)
4216             return ret_val;
4217
4218         /* Translate to old method */
4219         average = (max_length + min_length) / 2;
4220
4221         if (average <= e1000_igp_cable_length_50)
4222             phy_info->cable_length = e1000_cable_length_50;
4223         else if (average <= e1000_igp_cable_length_80)
4224             phy_info->cable_length = e1000_cable_length_50_80;
4225         else if (average <= e1000_igp_cable_length_110)
4226             phy_info->cable_length = e1000_cable_length_80_110;
4227         else if (average <= e1000_igp_cable_length_140)
4228             phy_info->cable_length = e1000_cable_length_110_140;
4229         else
4230             phy_info->cable_length = e1000_cable_length_140;
4231     }
4232
4233     return E1000_SUCCESS;
4234 }
4235
4236 /******************************************************************************
4237 * Get PHY information from various PHY registers for ife PHY only.
4238 *
4239 * hw - Struct containing variables accessed by shared code
4240 * phy_info - PHY information structure
4241 ******************************************************************************/
4242 static int32_t
4243 e1000_phy_ife_get_info(struct e1000_hw *hw,
4244                        struct e1000_phy_info *phy_info)
4245 {
4246     int32_t ret_val;
4247     uint16_t phy_data;
4248     e1000_rev_polarity polarity;
4249
4250     DEBUGFUNC("e1000_phy_ife_get_info");
4251
4252     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4253     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4254
4255     ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4256     if (ret_val)
4257         return ret_val;
4258     phy_info->polarity_correction =
4259                         ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4260                         IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4261                         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4262
4263     if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4264         ret_val = e1000_check_polarity(hw, &polarity);
4265         if (ret_val)
4266             return ret_val;
4267     } else {
4268         /* Polarity is forced. */
4269         polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4270                      IFE_PSC_FORCE_POLARITY_SHIFT) ?
4271                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
4272     }
4273     phy_info->cable_polarity = polarity;
4274
4275     ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4276     if (ret_val)
4277         return ret_val;
4278
4279     phy_info->mdix_mode = (e1000_auto_x_mode)
4280                      ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4281                      IFE_PMC_MDIX_MODE_SHIFT);
4282
4283     return E1000_SUCCESS;
4284 }
4285
4286 /******************************************************************************
4287 * Get PHY information from various PHY registers fot m88 PHY only.
4288 *
4289 * hw - Struct containing variables accessed by shared code
4290 * phy_info - PHY information structure
4291 ******************************************************************************/
4292 static int32_t
4293 e1000_phy_m88_get_info(struct e1000_hw *hw,
4294                        struct e1000_phy_info *phy_info)
4295 {
4296     int32_t ret_val;
4297     uint16_t phy_data;
4298     e1000_rev_polarity polarity;
4299
4300     DEBUGFUNC("e1000_phy_m88_get_info");
4301
4302     /* The downshift status is checked only once, after link is established,
4303      * and it stored in the hw->speed_downgraded parameter. */
4304     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4305
4306     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4307     if (ret_val)
4308         return ret_val;
4309
4310     phy_info->extended_10bt_distance =
4311         ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4312         M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4313         e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4314
4315     phy_info->polarity_correction =
4316         ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4317         M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4318         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4319
4320     /* Check polarity status */
4321     ret_val = e1000_check_polarity(hw, &polarity);
4322     if (ret_val)
4323         return ret_val;
4324     phy_info->cable_polarity = polarity;
4325
4326     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4327     if (ret_val)
4328         return ret_val;
4329
4330     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4331                           M88E1000_PSSR_MDIX_SHIFT);
4332
4333     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4334         /* Cable Length Estimation and Local/Remote Receiver Information
4335          * are only valid at 1000 Mbps.
4336          */
4337         if (hw->phy_type != e1000_phy_gg82563) {
4338             phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4339                                       M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4340         } else {
4341             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4342                                          &phy_data);
4343             if (ret_val)
4344                 return ret_val;
4345
4346             phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4347         }
4348
4349         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4350         if (ret_val)
4351             return ret_val;
4352
4353         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4354                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4355                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4356         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4357                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4358                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4359
4360     }
4361
4362     return E1000_SUCCESS;
4363 }
4364
4365 /******************************************************************************
4366 * Get PHY information from various PHY registers
4367 *
4368 * hw - Struct containing variables accessed by shared code
4369 * phy_info - PHY information structure
4370 ******************************************************************************/
4371 int32_t
4372 e1000_phy_get_info(struct e1000_hw *hw,
4373                    struct e1000_phy_info *phy_info)
4374 {
4375     int32_t ret_val;
4376     uint16_t phy_data;
4377
4378     DEBUGFUNC("e1000_phy_get_info");
4379
4380     phy_info->cable_length = e1000_cable_length_undefined;
4381     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4382     phy_info->cable_polarity = e1000_rev_polarity_undefined;
4383     phy_info->downshift = e1000_downshift_undefined;
4384     phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4385     phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4386     phy_info->local_rx = e1000_1000t_rx_status_undefined;
4387     phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4388
4389     if (hw->media_type != e1000_media_type_copper) {
4390         DEBUGOUT("PHY info is only valid for copper media\n");
4391         return -E1000_ERR_CONFIG;
4392     }
4393
4394     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4395     if (ret_val)
4396         return ret_val;
4397
4398     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4399     if (ret_val)
4400         return ret_val;
4401
4402     if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4403         DEBUGOUT("PHY info is only valid if link is up\n");
4404         return -E1000_ERR_CONFIG;
4405     }
4406
4407     if (hw->phy_type == e1000_phy_igp ||
4408         hw->phy_type == e1000_phy_igp_3 ||
4409         hw->phy_type == e1000_phy_igp_2)
4410         return e1000_phy_igp_get_info(hw, phy_info);
4411     else if (hw->phy_type == e1000_phy_ife)
4412         return e1000_phy_ife_get_info(hw, phy_info);
4413     else
4414         return e1000_phy_m88_get_info(hw, phy_info);
4415 }
4416
4417 int32_t
4418 e1000_validate_mdi_setting(struct e1000_hw *hw)
4419 {
4420     DEBUGFUNC("e1000_validate_mdi_settings");
4421
4422     if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4423         DEBUGOUT("Invalid MDI setting detected\n");
4424         hw->mdix = 1;
4425         return -E1000_ERR_CONFIG;
4426     }
4427     return E1000_SUCCESS;
4428 }
4429
4430
4431 /******************************************************************************
4432  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
4433  * is configured.  Additionally, if this is ICH8, the flash controller GbE
4434  * registers must be mapped, or this will crash.
4435  *
4436  * hw - Struct containing variables accessed by shared code
4437  *****************************************************************************/
4438 int32_t
4439 e1000_init_eeprom_params(struct e1000_hw *hw)
4440 {
4441     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4442     uint32_t eecd = E1000_READ_REG(hw, EECD);
4443     int32_t ret_val = E1000_SUCCESS;
4444     uint16_t eeprom_size;
4445
4446     DEBUGFUNC("e1000_init_eeprom_params");
4447
4448     switch (hw->mac_type) {
4449     case e1000_82542_rev2_0:
4450     case e1000_82542_rev2_1:
4451     case e1000_82543:
4452     case e1000_82544:
4453         eeprom->type = e1000_eeprom_microwire;
4454         eeprom->word_size = 64;
4455         eeprom->opcode_bits = 3;
4456         eeprom->address_bits = 6;
4457         eeprom->delay_usec = 50;
4458         eeprom->use_eerd = FALSE;
4459         eeprom->use_eewr = FALSE;
4460         break;
4461     case e1000_82540:
4462     case e1000_82545:
4463     case e1000_82545_rev_3:
4464     case e1000_82546:
4465     case e1000_82546_rev_3:
4466         eeprom->type = e1000_eeprom_microwire;
4467         eeprom->opcode_bits = 3;
4468         eeprom->delay_usec = 50;
4469         if (eecd & E1000_EECD_SIZE) {
4470             eeprom->word_size = 256;
4471             eeprom->address_bits = 8;
4472         } else {
4473             eeprom->word_size = 64;
4474             eeprom->address_bits = 6;
4475         }
4476         eeprom->use_eerd = FALSE;
4477         eeprom->use_eewr = FALSE;
4478         break;
4479     case e1000_82541:
4480     case e1000_82541_rev_2:
4481     case e1000_82547:
4482     case e1000_82547_rev_2:
4483         if (eecd & E1000_EECD_TYPE) {
4484             eeprom->type = e1000_eeprom_spi;
4485             eeprom->opcode_bits = 8;
4486             eeprom->delay_usec = 1;
4487             if (eecd & E1000_EECD_ADDR_BITS) {
4488                 eeprom->page_size = 32;
4489                 eeprom->address_bits = 16;
4490             } else {
4491                 eeprom->page_size = 8;
4492                 eeprom->address_bits = 8;
4493             }
4494         } else {
4495             eeprom->type = e1000_eeprom_microwire;
4496             eeprom->opcode_bits = 3;
4497             eeprom->delay_usec = 50;
4498             if (eecd & E1000_EECD_ADDR_BITS) {
4499                 eeprom->word_size = 256;
4500                 eeprom->address_bits = 8;
4501             } else {
4502                 eeprom->word_size = 64;
4503                 eeprom->address_bits = 6;
4504             }
4505         }
4506         eeprom->use_eerd = FALSE;
4507         eeprom->use_eewr = FALSE;
4508         break;
4509     case e1000_82571:
4510     case e1000_82572:
4511         eeprom->type = e1000_eeprom_spi;
4512         eeprom->opcode_bits = 8;
4513         eeprom->delay_usec = 1;
4514         if (eecd & E1000_EECD_ADDR_BITS) {
4515             eeprom->page_size = 32;
4516             eeprom->address_bits = 16;
4517         } else {
4518             eeprom->page_size = 8;
4519             eeprom->address_bits = 8;
4520         }
4521         eeprom->use_eerd = FALSE;
4522         eeprom->use_eewr = FALSE;
4523         break;
4524     case e1000_82573:
4525         eeprom->type = e1000_eeprom_spi;
4526         eeprom->opcode_bits = 8;
4527         eeprom->delay_usec = 1;
4528         if (eecd & E1000_EECD_ADDR_BITS) {
4529             eeprom->page_size = 32;
4530             eeprom->address_bits = 16;
4531         } else {
4532             eeprom->page_size = 8;
4533             eeprom->address_bits = 8;
4534         }
4535         eeprom->use_eerd = TRUE;
4536         eeprom->use_eewr = TRUE;
4537         if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4538             eeprom->type = e1000_eeprom_flash;
4539             eeprom->word_size = 2048;
4540
4541             /* Ensure that the Autonomous FLASH update bit is cleared due to
4542              * Flash update issue on parts which use a FLASH for NVM. */
4543             eecd &= ~E1000_EECD_AUPDEN;
4544             E1000_WRITE_REG(hw, EECD, eecd);
4545         }
4546         break;
4547     case e1000_80003es2lan:
4548         eeprom->type = e1000_eeprom_spi;
4549         eeprom->opcode_bits = 8;
4550         eeprom->delay_usec = 1;
4551         if (eecd & E1000_EECD_ADDR_BITS) {
4552             eeprom->page_size = 32;
4553             eeprom->address_bits = 16;
4554         } else {
4555             eeprom->page_size = 8;
4556             eeprom->address_bits = 8;
4557         }
4558         eeprom->use_eerd = TRUE;
4559         eeprom->use_eewr = FALSE;
4560         break;
4561     case e1000_ich8lan:
4562         {
4563         int32_t  i = 0;
4564         uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
4565
4566         eeprom->type = e1000_eeprom_ich8;
4567         eeprom->use_eerd = FALSE;
4568         eeprom->use_eewr = FALSE;
4569         eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4570
4571         /* Zero the shadow RAM structure. But don't load it from NVM
4572          * so as to save time for driver init */
4573         if (hw->eeprom_shadow_ram != NULL) {
4574             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4575                 hw->eeprom_shadow_ram[i].modified = FALSE;
4576                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4577             }
4578         }
4579
4580         hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
4581                               ICH_FLASH_SECTOR_SIZE;
4582
4583         hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
4584         hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
4585
4586         hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
4587
4588         hw->flash_bank_size /= 2 * sizeof(uint16_t);
4589
4590         break;
4591         }
4592     default:
4593         break;
4594     }
4595
4596     if (eeprom->type == e1000_eeprom_spi) {
4597         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4598          * 32KB (incremented by powers of 2).
4599          */
4600         if (hw->mac_type <= e1000_82547_rev_2) {
4601             /* Set to default value for initial eeprom read. */
4602             eeprom->word_size = 64;
4603             ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4604             if (ret_val)
4605                 return ret_val;
4606             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4607             /* 256B eeprom size was not supported in earlier hardware, so we
4608              * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4609              * is never the result used in the shifting logic below. */
4610             if (eeprom_size)
4611                 eeprom_size++;
4612         } else {
4613             eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4614                           E1000_EECD_SIZE_EX_SHIFT);
4615         }
4616
4617         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4618     }
4619     return ret_val;
4620 }
4621
4622 /******************************************************************************
4623  * Raises the EEPROM's clock input.
4624  *
4625  * hw - Struct containing variables accessed by shared code
4626  * eecd - EECD's current value
4627  *****************************************************************************/
4628 static void
4629 e1000_raise_ee_clk(struct e1000_hw *hw,
4630                    uint32_t *eecd)
4631 {
4632     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4633      * wait <delay> microseconds.
4634      */
4635     *eecd = *eecd | E1000_EECD_SK;
4636     E1000_WRITE_REG(hw, EECD, *eecd);
4637     E1000_WRITE_FLUSH(hw);
4638     udelay(hw->eeprom.delay_usec);
4639 }
4640
4641 /******************************************************************************
4642  * Lowers the EEPROM's clock input.
4643  *
4644  * hw - Struct containing variables accessed by shared code
4645  * eecd - EECD's current value
4646  *****************************************************************************/
4647 static void
4648 e1000_lower_ee_clk(struct e1000_hw *hw,
4649                    uint32_t *eecd)
4650 {
4651     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4652      * wait 50 microseconds.
4653      */
4654     *eecd = *eecd & ~E1000_EECD_SK;
4655     E1000_WRITE_REG(hw, EECD, *eecd);
4656     E1000_WRITE_FLUSH(hw);
4657     udelay(hw->eeprom.delay_usec);
4658 }
4659
4660 /******************************************************************************
4661  * Shift data bits out to the EEPROM.
4662  *
4663  * hw - Struct containing variables accessed by shared code
4664  * data - data to send to the EEPROM
4665  * count - number of bits to shift out
4666  *****************************************************************************/
4667 static void
4668 e1000_shift_out_ee_bits(struct e1000_hw *hw,
4669                         uint16_t data,
4670                         uint16_t count)
4671 {
4672     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4673     uint32_t eecd;
4674     uint32_t mask;
4675
4676     /* We need to shift "count" bits out to the EEPROM. So, value in the
4677      * "data" parameter will be shifted out to the EEPROM one bit at a time.
4678      * In order to do this, "data" must be broken down into bits.
4679      */
4680     mask = 0x01 << (count - 1);
4681     eecd = E1000_READ_REG(hw, EECD);
4682     if (eeprom->type == e1000_eeprom_microwire) {
4683         eecd &= ~E1000_EECD_DO;
4684     } else if (eeprom->type == e1000_eeprom_spi) {
4685         eecd |= E1000_EECD_DO;
4686     }
4687     do {
4688         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4689          * and then raising and then lowering the clock (the SK bit controls
4690          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
4691          * by setting "DI" to "0" and then raising and then lowering the clock.
4692          */
4693         eecd &= ~E1000_EECD_DI;
4694
4695         if (data & mask)
4696             eecd |= E1000_EECD_DI;
4697
4698         E1000_WRITE_REG(hw, EECD, eecd);
4699         E1000_WRITE_FLUSH(hw);
4700
4701         udelay(eeprom->delay_usec);
4702
4703         e1000_raise_ee_clk(hw, &eecd);
4704         e1000_lower_ee_clk(hw, &eecd);
4705
4706         mask = mask >> 1;
4707
4708     } while (mask);
4709
4710     /* We leave the "DI" bit set to "0" when we leave this routine. */
4711     eecd &= ~E1000_EECD_DI;
4712     E1000_WRITE_REG(hw, EECD, eecd);
4713 }
4714
4715 /******************************************************************************
4716  * Shift data bits in from the EEPROM
4717  *
4718  * hw - Struct containing variables accessed by shared code
4719  *****************************************************************************/
4720 static uint16_t
4721 e1000_shift_in_ee_bits(struct e1000_hw *hw,
4722                        uint16_t count)
4723 {
4724     uint32_t eecd;
4725     uint32_t i;
4726     uint16_t data;
4727
4728     /* In order to read a register from the EEPROM, we need to shift 'count'
4729      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4730      * input to the EEPROM (setting the SK bit), and then reading the value of
4731      * the "DO" bit.  During this "shifting in" process the "DI" bit should
4732      * always be clear.
4733      */
4734
4735     eecd = E1000_READ_REG(hw, EECD);
4736
4737     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4738     data = 0;
4739
4740     for (i = 0; i < count; i++) {
4741         data = data << 1;
4742         e1000_raise_ee_clk(hw, &eecd);
4743
4744         eecd = E1000_READ_REG(hw, EECD);
4745
4746         eecd &= ~(E1000_EECD_DI);
4747         if (eecd & E1000_EECD_DO)
4748             data |= 1;
4749
4750         e1000_lower_ee_clk(hw, &eecd);
4751     }
4752
4753     return data;
4754 }
4755
4756 /******************************************************************************
4757  * Prepares EEPROM for access
4758  *
4759  * hw - Struct containing variables accessed by shared code
4760  *
4761  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4762  * function should be called before issuing a command to the EEPROM.
4763  *****************************************************************************/
4764 static int32_t
4765 e1000_acquire_eeprom(struct e1000_hw *hw)
4766 {
4767     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4768     uint32_t eecd, i=0;
4769
4770     DEBUGFUNC("e1000_acquire_eeprom");
4771
4772     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4773         return -E1000_ERR_SWFW_SYNC;
4774     eecd = E1000_READ_REG(hw, EECD);
4775
4776     if (hw->mac_type != e1000_82573) {
4777         /* Request EEPROM Access */
4778         if (hw->mac_type > e1000_82544) {
4779             eecd |= E1000_EECD_REQ;
4780             E1000_WRITE_REG(hw, EECD, eecd);
4781             eecd = E1000_READ_REG(hw, EECD);
4782             while ((!(eecd & E1000_EECD_GNT)) &&
4783                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4784                 i++;
4785                 udelay(5);
4786                 eecd = E1000_READ_REG(hw, EECD);
4787             }
4788             if (!(eecd & E1000_EECD_GNT)) {
4789                 eecd &= ~E1000_EECD_REQ;
4790                 E1000_WRITE_REG(hw, EECD, eecd);
4791                 DEBUGOUT("Could not acquire EEPROM grant\n");
4792                 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4793                 return -E1000_ERR_EEPROM;
4794             }
4795         }
4796     }
4797
4798     /* Setup EEPROM for Read/Write */
4799
4800     if (eeprom->type == e1000_eeprom_microwire) {
4801         /* Clear SK and DI */
4802         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4803         E1000_WRITE_REG(hw, EECD, eecd);
4804
4805         /* Set CS */
4806         eecd |= E1000_EECD_CS;
4807         E1000_WRITE_REG(hw, EECD, eecd);
4808     } else if (eeprom->type == e1000_eeprom_spi) {
4809         /* Clear SK and CS */
4810         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4811         E1000_WRITE_REG(hw, EECD, eecd);
4812         udelay(1);
4813     }
4814
4815     return E1000_SUCCESS;
4816 }
4817
4818 /******************************************************************************
4819  * Returns EEPROM to a "standby" state
4820  *
4821  * hw - Struct containing variables accessed by shared code
4822  *****************************************************************************/
4823 static void
4824 e1000_standby_eeprom(struct e1000_hw *hw)
4825 {
4826     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4827     uint32_t eecd;
4828
4829     eecd = E1000_READ_REG(hw, EECD);
4830
4831     if (eeprom->type == e1000_eeprom_microwire) {
4832         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4833         E1000_WRITE_REG(hw, EECD, eecd);
4834         E1000_WRITE_FLUSH(hw);
4835         udelay(eeprom->delay_usec);
4836
4837         /* Clock high */
4838         eecd |= E1000_EECD_SK;
4839         E1000_WRITE_REG(hw, EECD, eecd);
4840         E1000_WRITE_FLUSH(hw);
4841         udelay(eeprom->delay_usec);
4842
4843         /* Select EEPROM */
4844         eecd |= E1000_EECD_CS;
4845         E1000_WRITE_REG(hw, EECD, eecd);
4846         E1000_WRITE_FLUSH(hw);
4847         udelay(eeprom->delay_usec);
4848
4849         /* Clock low */
4850         eecd &= ~E1000_EECD_SK;
4851         E1000_WRITE_REG(hw, EECD, eecd);
4852         E1000_WRITE_FLUSH(hw);
4853         udelay(eeprom->delay_usec);
4854     } else if (eeprom->type == e1000_eeprom_spi) {
4855         /* Toggle CS to flush commands */
4856         eecd |= E1000_EECD_CS;
4857         E1000_WRITE_REG(hw, EECD, eecd);
4858         E1000_WRITE_FLUSH(hw);
4859         udelay(eeprom->delay_usec);
4860         eecd &= ~E1000_EECD_CS;
4861         E1000_WRITE_REG(hw, EECD, eecd);
4862         E1000_WRITE_FLUSH(hw);
4863         udelay(eeprom->delay_usec);
4864     }
4865 }
4866
4867 /******************************************************************************
4868  * Terminates a command by inverting the EEPROM's chip select pin
4869  *
4870  * hw - Struct containing variables accessed by shared code
4871  *****************************************************************************/
4872 static void
4873 e1000_release_eeprom(struct e1000_hw *hw)
4874 {
4875     uint32_t eecd;
4876
4877     DEBUGFUNC("e1000_release_eeprom");
4878
4879     eecd = E1000_READ_REG(hw, EECD);
4880
4881     if (hw->eeprom.type == e1000_eeprom_spi) {
4882         eecd |= E1000_EECD_CS;  /* Pull CS high */
4883         eecd &= ~E1000_EECD_SK; /* Lower SCK */
4884
4885         E1000_WRITE_REG(hw, EECD, eecd);
4886
4887         udelay(hw->eeprom.delay_usec);
4888     } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4889         /* cleanup eeprom */
4890
4891         /* CS on Microwire is active-high */
4892         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4893
4894         E1000_WRITE_REG(hw, EECD, eecd);
4895
4896         /* Rising edge of clock */
4897         eecd |= E1000_EECD_SK;
4898         E1000_WRITE_REG(hw, EECD, eecd);
4899         E1000_WRITE_FLUSH(hw);
4900         udelay(hw->eeprom.delay_usec);
4901
4902         /* Falling edge of clock */
4903         eecd &= ~E1000_EECD_SK;
4904         E1000_WRITE_REG(hw, EECD, eecd);
4905         E1000_WRITE_FLUSH(hw);
4906         udelay(hw->eeprom.delay_usec);
4907     }
4908
4909     /* Stop requesting EEPROM access */
4910     if (hw->mac_type > e1000_82544) {
4911         eecd &= ~E1000_EECD_REQ;
4912         E1000_WRITE_REG(hw, EECD, eecd);
4913     }
4914
4915     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4916 }
4917
4918 /******************************************************************************
4919  * Reads a 16 bit word from the EEPROM.
4920  *
4921  * hw - Struct containing variables accessed by shared code
4922  *****************************************************************************/
4923 static int32_t
4924 e1000_spi_eeprom_ready(struct e1000_hw *hw)
4925 {
4926     uint16_t retry_count = 0;
4927     uint8_t spi_stat_reg;
4928
4929     DEBUGFUNC("e1000_spi_eeprom_ready");
4930
4931     /* Read "Status Register" repeatedly until the LSB is cleared.  The
4932      * EEPROM will signal that the command has been completed by clearing
4933      * bit 0 of the internal status register.  If it's not cleared within
4934      * 5 milliseconds, then error out.
4935      */
4936     retry_count = 0;
4937     do {
4938         e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4939                                 hw->eeprom.opcode_bits);
4940         spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4941         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4942             break;
4943
4944         udelay(5);
4945         retry_count += 5;
4946
4947         e1000_standby_eeprom(hw);
4948     } while (retry_count < EEPROM_MAX_RETRY_SPI);
4949
4950     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4951      * only 0-5mSec on 5V devices)
4952      */
4953     if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4954         DEBUGOUT("SPI EEPROM Status error\n");
4955         return -E1000_ERR_EEPROM;
4956     }
4957
4958     return E1000_SUCCESS;
4959 }
4960
4961 /******************************************************************************
4962  * Reads a 16 bit word from the EEPROM.
4963  *
4964  * hw - Struct containing variables accessed by shared code
4965  * offset - offset of  word in the EEPROM to read
4966  * data - word read from the EEPROM
4967  * words - number of words to read
4968  *****************************************************************************/
4969 int32_t
4970 e1000_read_eeprom(struct e1000_hw *hw,
4971                   uint16_t offset,
4972                   uint16_t words,
4973                   uint16_t *data)
4974 {
4975     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4976     uint32_t i = 0;
4977
4978     DEBUGFUNC("e1000_read_eeprom");
4979
4980     /* If eeprom is not yet detected, do so now */
4981     if (eeprom->word_size == 0)
4982         e1000_init_eeprom_params(hw);
4983
4984     /* A check for invalid values:  offset too large, too many words, and not
4985      * enough words.
4986      */
4987     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4988        (words == 0)) {
4989         DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
4990         return -E1000_ERR_EEPROM;
4991     }
4992
4993     /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4994      * directly. In this case, we need to acquire the EEPROM so that
4995      * FW or other port software does not interrupt.
4996      */
4997     if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4998         hw->eeprom.use_eerd == FALSE) {
4999         /* Prepare the EEPROM for bit-bang reading */
5000         if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5001             return -E1000_ERR_EEPROM;
5002     }
5003
5004     /* Eerd register EEPROM access requires no eeprom aquire/release */
5005     if (eeprom->use_eerd == TRUE)
5006         return e1000_read_eeprom_eerd(hw, offset, words, data);
5007
5008     /* ICH EEPROM access is done via the ICH flash controller */
5009     if (eeprom->type == e1000_eeprom_ich8)
5010         return e1000_read_eeprom_ich8(hw, offset, words, data);
5011
5012     /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
5013      * acquired the EEPROM at this point, so any returns should relase it */
5014     if (eeprom->type == e1000_eeprom_spi) {
5015         uint16_t word_in;
5016         uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
5017
5018         if (e1000_spi_eeprom_ready(hw)) {
5019             e1000_release_eeprom(hw);
5020             return -E1000_ERR_EEPROM;
5021         }
5022
5023         e1000_standby_eeprom(hw);
5024
5025         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5026         if ((eeprom->address_bits == 8) && (offset >= 128))
5027             read_opcode |= EEPROM_A8_OPCODE_SPI;
5028
5029         /* Send the READ command (opcode + addr)  */
5030         e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
5031         e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
5032
5033         /* Read the data.  The address of the eeprom internally increments with
5034          * each byte (spi) being read, saving on the overhead of eeprom setup
5035          * and tear-down.  The address counter will roll over if reading beyond
5036          * the size of the eeprom, thus allowing the entire memory to be read
5037          * starting from any offset. */
5038         for (i = 0; i < words; i++) {
5039             word_in = e1000_shift_in_ee_bits(hw, 16);
5040             data[i] = (word_in >> 8) | (word_in << 8);
5041         }
5042     } else if (eeprom->type == e1000_eeprom_microwire) {
5043         for (i = 0; i < words; i++) {
5044             /* Send the READ command (opcode + addr)  */
5045             e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
5046                                     eeprom->opcode_bits);
5047             e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
5048                                     eeprom->address_bits);
5049
5050             /* Read the data.  For microwire, each word requires the overhead
5051              * of eeprom setup and tear-down. */
5052             data[i] = e1000_shift_in_ee_bits(hw, 16);
5053             e1000_standby_eeprom(hw);
5054         }
5055     }
5056
5057     /* End this read operation */
5058     e1000_release_eeprom(hw);
5059
5060     return E1000_SUCCESS;
5061 }
5062
5063 /******************************************************************************
5064  * Reads a 16 bit word from the EEPROM using the EERD register.
5065  *
5066  * hw - Struct containing variables accessed by shared code
5067  * offset - offset of  word in the EEPROM to read
5068  * data - word read from the EEPROM
5069  * words - number of words to read
5070  *****************************************************************************/
5071 static int32_t
5072 e1000_read_eeprom_eerd(struct e1000_hw *hw,
5073                   uint16_t offset,
5074                   uint16_t words,
5075                   uint16_t *data)
5076 {
5077     uint32_t i, eerd = 0;
5078     int32_t error = 0;
5079
5080     for (i = 0; i < words; i++) {
5081         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5082                          E1000_EEPROM_RW_REG_START;
5083
5084         E1000_WRITE_REG(hw, EERD, eerd);
5085         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
5086
5087         if (error) {
5088             break;
5089         }
5090         data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
5091
5092     }
5093
5094     return error;
5095 }
5096
5097 /******************************************************************************
5098  * Writes a 16 bit word from the EEPROM using the EEWR register.
5099  *
5100  * hw - Struct containing variables accessed by shared code
5101  * offset - offset of  word in the EEPROM to read
5102  * data - word read from the EEPROM
5103  * words - number of words to read
5104  *****************************************************************************/
5105 static int32_t
5106 e1000_write_eeprom_eewr(struct e1000_hw *hw,
5107                    uint16_t offset,
5108                    uint16_t words,
5109                    uint16_t *data)
5110 {
5111     uint32_t    register_value = 0;
5112     uint32_t    i              = 0;
5113     int32_t     error          = 0;
5114
5115     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5116         return -E1000_ERR_SWFW_SYNC;
5117
5118     for (i = 0; i < words; i++) {
5119         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5120                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5121                          E1000_EEPROM_RW_REG_START;
5122
5123         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5124         if (error) {
5125             break;
5126         }
5127
5128         E1000_WRITE_REG(hw, EEWR, register_value);
5129
5130         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5131
5132         if (error) {
5133             break;
5134         }
5135     }
5136
5137     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5138     return error;
5139 }
5140
5141 /******************************************************************************
5142  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5143  *
5144  * hw - Struct containing variables accessed by shared code
5145  *****************************************************************************/
5146 static int32_t
5147 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5148 {
5149     uint32_t attempts = 100000;
5150     uint32_t i, reg = 0;
5151     int32_t done = E1000_ERR_EEPROM;
5152
5153     for (i = 0; i < attempts; i++) {
5154         if (eerd == E1000_EEPROM_POLL_READ)
5155             reg = E1000_READ_REG(hw, EERD);
5156         else
5157             reg = E1000_READ_REG(hw, EEWR);
5158
5159         if (reg & E1000_EEPROM_RW_REG_DONE) {
5160             done = E1000_SUCCESS;
5161             break;
5162         }
5163         udelay(5);
5164     }
5165
5166     return done;
5167 }
5168
5169 /***************************************************************************
5170 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
5171 *
5172 * hw - Struct containing variables accessed by shared code
5173 ****************************************************************************/
5174 static boolean_t
5175 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5176 {
5177     uint32_t eecd = 0;
5178
5179     DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5180
5181     if (hw->mac_type == e1000_ich8lan)
5182         return FALSE;
5183
5184     if (hw->mac_type == e1000_82573) {
5185         eecd = E1000_READ_REG(hw, EECD);
5186
5187         /* Isolate bits 15 & 16 */
5188         eecd = ((eecd >> 15) & 0x03);
5189
5190         /* If both bits are set, device is Flash type */
5191         if (eecd == 0x03) {
5192             return FALSE;
5193         }
5194     }
5195     return TRUE;
5196 }
5197
5198 /******************************************************************************
5199  * Verifies that the EEPROM has a valid checksum
5200  *
5201  * hw - Struct containing variables accessed by shared code
5202  *
5203  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5204  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5205  * valid.
5206  *****************************************************************************/
5207 int32_t
5208 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5209 {
5210     uint16_t checksum = 0;
5211     uint16_t i, eeprom_data;
5212
5213     DEBUGFUNC("e1000_validate_eeprom_checksum");
5214
5215     if ((hw->mac_type == e1000_82573) &&
5216         (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5217         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
5218          * 10h-12h.  Checksum may need to be fixed. */
5219         e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5220         if ((eeprom_data & 0x10) == 0) {
5221             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
5222              * has already been fixed.  If the checksum is still wrong and this
5223              * bit is a 1, we need to return bad checksum.  Otherwise, we need
5224              * to set this bit to a 1 and update the checksum. */
5225             e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5226             if ((eeprom_data & 0x8000) == 0) {
5227                 eeprom_data |= 0x8000;
5228                 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5229                 e1000_update_eeprom_checksum(hw);
5230             }
5231         }
5232     }
5233
5234     if (hw->mac_type == e1000_ich8lan) {
5235         /* Drivers must allocate the shadow ram structure for the
5236          * EEPROM checksum to be updated.  Otherwise, this bit as well
5237          * as the checksum must both be set correctly for this
5238          * validation to pass.
5239          */
5240         e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5241         if ((eeprom_data & 0x40) == 0) {
5242             eeprom_data |= 0x40;
5243             e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5244             e1000_update_eeprom_checksum(hw);
5245         }
5246     }
5247
5248     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5249         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5250             DEBUGOUT("EEPROM Read Error\n");
5251             return -E1000_ERR_EEPROM;
5252         }
5253         checksum += eeprom_data;
5254     }
5255
5256     if (checksum == (uint16_t) EEPROM_SUM)
5257         return E1000_SUCCESS;
5258     else {
5259         DEBUGOUT("EEPROM Checksum Invalid\n");
5260         return -E1000_ERR_EEPROM;
5261     }
5262 }
5263
5264 /******************************************************************************
5265  * Calculates the EEPROM checksum and writes it to the EEPROM
5266  *
5267  * hw - Struct containing variables accessed by shared code
5268  *
5269  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5270  * Writes the difference to word offset 63 of the EEPROM.
5271  *****************************************************************************/
5272 int32_t
5273 e1000_update_eeprom_checksum(struct e1000_hw *hw)
5274 {
5275     uint32_t ctrl_ext;
5276     uint16_t checksum = 0;
5277     uint16_t i, eeprom_data;
5278
5279     DEBUGFUNC("e1000_update_eeprom_checksum");
5280
5281     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5282         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5283             DEBUGOUT("EEPROM Read Error\n");
5284             return -E1000_ERR_EEPROM;
5285         }
5286         checksum += eeprom_data;
5287     }
5288     checksum = (uint16_t) EEPROM_SUM - checksum;
5289     if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5290         DEBUGOUT("EEPROM Write Error\n");
5291         return -E1000_ERR_EEPROM;
5292     } else if (hw->eeprom.type == e1000_eeprom_flash) {
5293         e1000_commit_shadow_ram(hw);
5294     } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5295         e1000_commit_shadow_ram(hw);
5296         /* Reload the EEPROM, or else modifications will not appear
5297          * until after next adapter reset. */
5298         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5299         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5300         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5301         msleep(10);
5302     }
5303     return E1000_SUCCESS;
5304 }
5305
5306 /******************************************************************************
5307  * Parent function for writing words to the different EEPROM types.
5308  *
5309  * hw - Struct containing variables accessed by shared code
5310  * offset - offset within the EEPROM to be written to
5311  * words - number of words to write
5312  * data - 16 bit word to be written to the EEPROM
5313  *
5314  * If e1000_update_eeprom_checksum is not called after this function, the
5315  * EEPROM will most likely contain an invalid checksum.
5316  *****************************************************************************/
5317 int32_t
5318 e1000_write_eeprom(struct e1000_hw *hw,
5319                    uint16_t offset,
5320                    uint16_t words,
5321                    uint16_t *data)
5322 {
5323     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5324     int32_t status = 0;
5325
5326     DEBUGFUNC("e1000_write_eeprom");
5327
5328     /* If eeprom is not yet detected, do so now */
5329     if (eeprom->word_size == 0)
5330         e1000_init_eeprom_params(hw);
5331
5332     /* A check for invalid values:  offset too large, too many words, and not
5333      * enough words.
5334      */
5335     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5336        (words == 0)) {
5337         DEBUGOUT("\"words\" parameter out of bounds\n");
5338         return -E1000_ERR_EEPROM;
5339     }
5340
5341     /* 82573 writes only through eewr */
5342     if (eeprom->use_eewr == TRUE)
5343         return e1000_write_eeprom_eewr(hw, offset, words, data);
5344
5345     if (eeprom->type == e1000_eeprom_ich8)
5346         return e1000_write_eeprom_ich8(hw, offset, words, data);
5347
5348     /* Prepare the EEPROM for writing  */
5349     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5350         return -E1000_ERR_EEPROM;
5351
5352     if (eeprom->type == e1000_eeprom_microwire) {
5353         status = e1000_write_eeprom_microwire(hw, offset, words, data);
5354     } else {
5355         status = e1000_write_eeprom_spi(hw, offset, words, data);
5356         msleep(10);
5357     }
5358
5359     /* Done with writing */
5360     e1000_release_eeprom(hw);
5361
5362     return status;
5363 }
5364
5365 /******************************************************************************
5366  * Writes a 16 bit word to a given offset in an SPI EEPROM.
5367  *
5368  * hw - Struct containing variables accessed by shared code
5369  * offset - offset within the EEPROM to be written to
5370  * words - number of words to write
5371  * data - pointer to array of 8 bit words to be written to the EEPROM
5372  *
5373  *****************************************************************************/
5374 static int32_t
5375 e1000_write_eeprom_spi(struct e1000_hw *hw,
5376                        uint16_t offset,
5377                        uint16_t words,
5378                        uint16_t *data)
5379 {
5380     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5381     uint16_t widx = 0;
5382
5383     DEBUGFUNC("e1000_write_eeprom_spi");
5384
5385     while (widx < words) {
5386         uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5387
5388         if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5389
5390         e1000_standby_eeprom(hw);
5391
5392         /*  Send the WRITE ENABLE command (8 bit opcode )  */
5393         e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5394                                     eeprom->opcode_bits);
5395
5396         e1000_standby_eeprom(hw);
5397
5398         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5399         if ((eeprom->address_bits == 8) && (offset >= 128))
5400             write_opcode |= EEPROM_A8_OPCODE_SPI;
5401
5402         /* Send the Write command (8-bit opcode + addr) */
5403         e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5404
5405         e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5406                                 eeprom->address_bits);
5407
5408         /* Send the data */
5409
5410         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5411         while (widx < words) {
5412             uint16_t word_out = data[widx];
5413             word_out = (word_out >> 8) | (word_out << 8);
5414             e1000_shift_out_ee_bits(hw, word_out, 16);
5415             widx++;
5416
5417             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5418              * operation, while the smaller eeproms are capable of an 8-byte
5419              * PAGE WRITE operation.  Break the inner loop to pass new address
5420              */
5421             if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5422                 e1000_standby_eeprom(hw);
5423                 break;
5424             }
5425         }
5426     }
5427
5428     return E1000_SUCCESS;
5429 }
5430
5431 /******************************************************************************
5432  * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5433  *
5434  * hw - Struct containing variables accessed by shared code
5435  * offset - offset within the EEPROM to be written to
5436  * words - number of words to write
5437  * data - pointer to array of 16 bit words to be written to the EEPROM
5438  *
5439  *****************************************************************************/
5440 static int32_t
5441 e1000_write_eeprom_microwire(struct e1000_hw *hw,
5442                              uint16_t offset,
5443                              uint16_t words,
5444                              uint16_t *data)
5445 {
5446     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5447     uint32_t eecd;
5448     uint16_t words_written = 0;
5449     uint16_t i = 0;
5450
5451     DEBUGFUNC("e1000_write_eeprom_microwire");
5452
5453     /* Send the write enable command to the EEPROM (3-bit opcode plus
5454      * 6/8-bit dummy address beginning with 11).  It's less work to include
5455      * the 11 of the dummy address as part of the opcode than it is to shift
5456      * it over the correct number of bits for the address.  This puts the
5457      * EEPROM into write/erase mode.
5458      */
5459     e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5460                             (uint16_t)(eeprom->opcode_bits + 2));
5461
5462     e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5463
5464     /* Prepare the EEPROM */
5465     e1000_standby_eeprom(hw);
5466
5467     while (words_written < words) {
5468         /* Send the Write command (3-bit opcode + addr) */
5469         e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5470                                 eeprom->opcode_bits);
5471
5472         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5473                                 eeprom->address_bits);
5474
5475         /* Send the data */
5476         e1000_shift_out_ee_bits(hw, data[words_written], 16);
5477
5478         /* Toggle the CS line.  This in effect tells the EEPROM to execute
5479          * the previous command.
5480          */
5481         e1000_standby_eeprom(hw);
5482
5483         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
5484          * signal that the command has been completed by raising the DO signal.
5485          * If DO does not go high in 10 milliseconds, then error out.
5486          */
5487         for (i = 0; i < 200; i++) {
5488             eecd = E1000_READ_REG(hw, EECD);
5489             if (eecd & E1000_EECD_DO) break;
5490             udelay(50);
5491         }
5492         if (i == 200) {
5493             DEBUGOUT("EEPROM Write did not complete\n");
5494             return -E1000_ERR_EEPROM;
5495         }
5496
5497         /* Recover from write */
5498         e1000_standby_eeprom(hw);
5499
5500         words_written++;
5501     }
5502
5503     /* Send the write disable command to the EEPROM (3-bit opcode plus
5504      * 6/8-bit dummy address beginning with 10).  It's less work to include
5505      * the 10 of the dummy address as part of the opcode than it is to shift
5506      * it over the correct number of bits for the address.  This takes the
5507      * EEPROM out of write/erase mode.
5508      */
5509     e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5510                             (uint16_t)(eeprom->opcode_bits + 2));
5511
5512     e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5513
5514     return E1000_SUCCESS;
5515 }
5516
5517 /******************************************************************************
5518  * Flushes the cached eeprom to NVM. This is done by saving the modified values
5519  * in the eeprom cache and the non modified values in the currently active bank
5520  * to the new bank.
5521  *
5522  * hw - Struct containing variables accessed by shared code
5523  * offset - offset of  word in the EEPROM to read
5524  * data - word read from the EEPROM
5525  * words - number of words to read
5526  *****************************************************************************/
5527 static int32_t
5528 e1000_commit_shadow_ram(struct e1000_hw *hw)
5529 {
5530     uint32_t attempts = 100000;
5531     uint32_t eecd = 0;
5532     uint32_t flop = 0;
5533     uint32_t i = 0;
5534     int32_t error = E1000_SUCCESS;
5535     uint32_t old_bank_offset = 0;
5536     uint32_t new_bank_offset = 0;
5537     uint8_t low_byte = 0;
5538     uint8_t high_byte = 0;
5539     boolean_t sector_write_failed = FALSE;
5540
5541     if (hw->mac_type == e1000_82573) {
5542         /* The flop register will be used to determine if flash type is STM */
5543         flop = E1000_READ_REG(hw, FLOP);
5544         for (i=0; i < attempts; i++) {
5545             eecd = E1000_READ_REG(hw, EECD);
5546             if ((eecd & E1000_EECD_FLUPD) == 0) {
5547                 break;
5548             }
5549             udelay(5);
5550         }
5551
5552         if (i == attempts) {
5553             return -E1000_ERR_EEPROM;
5554         }
5555
5556         /* If STM opcode located in bits 15:8 of flop, reset firmware */
5557         if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5558             E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5559         }
5560
5561         /* Perform the flash update */
5562         E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5563
5564         for (i=0; i < attempts; i++) {
5565             eecd = E1000_READ_REG(hw, EECD);
5566             if ((eecd & E1000_EECD_FLUPD) == 0) {
5567                 break;
5568             }
5569             udelay(5);
5570         }
5571
5572         if (i == attempts) {
5573             return -E1000_ERR_EEPROM;
5574         }
5575     }
5576
5577     if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5578         /* We're writing to the opposite bank so if we're on bank 1,
5579          * write to bank 0 etc.  We also need to erase the segment that
5580          * is going to be written */
5581         if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5582             new_bank_offset = hw->flash_bank_size * 2;
5583             old_bank_offset = 0;
5584             e1000_erase_ich8_4k_segment(hw, 1);
5585         } else {
5586             old_bank_offset = hw->flash_bank_size * 2;
5587             new_bank_offset = 0;
5588             e1000_erase_ich8_4k_segment(hw, 0);
5589         }
5590
5591         sector_write_failed = FALSE;
5592         /* Loop for every byte in the shadow RAM,
5593          * which is in units of words. */
5594         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5595             /* Determine whether to write the value stored
5596              * in the other NVM bank or a modified value stored
5597              * in the shadow RAM */
5598             if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5599                 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5600                 udelay(100);
5601                 error = e1000_verify_write_ich8_byte(hw,
5602                             (i << 1) + new_bank_offset, low_byte);
5603
5604                 if (error != E1000_SUCCESS)
5605                     sector_write_failed = TRUE;
5606                 else {
5607                     high_byte =
5608                         (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5609                     udelay(100);
5610                 }
5611             } else {
5612                 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5613                                      &low_byte);
5614                 udelay(100);
5615                 error = e1000_verify_write_ich8_byte(hw,
5616                             (i << 1) + new_bank_offset, low_byte);
5617
5618                 if (error != E1000_SUCCESS)
5619                     sector_write_failed = TRUE;
5620                 else {
5621                     e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5622                                          &high_byte);
5623                     udelay(100);
5624                 }
5625             }
5626
5627             /* If the write of the low byte was successful, go ahread and
5628              * write the high byte while checking to make sure that if it
5629              * is the signature byte, then it is handled properly */
5630             if (sector_write_failed == FALSE) {
5631                 /* If the word is 0x13, then make sure the signature bits
5632                  * (15:14) are 11b until the commit has completed.
5633                  * This will allow us to write 10b which indicates the
5634                  * signature is valid.  We want to do this after the write
5635                  * has completed so that we don't mark the segment valid
5636                  * while the write is still in progress */
5637                 if (i == E1000_ICH_NVM_SIG_WORD)
5638                     high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
5639
5640                 error = e1000_verify_write_ich8_byte(hw,
5641                             (i << 1) + new_bank_offset + 1, high_byte);
5642                 if (error != E1000_SUCCESS)
5643                     sector_write_failed = TRUE;
5644
5645             } else {
5646                 /* If the write failed then break from the loop and
5647                  * return an error */
5648                 break;
5649             }
5650         }
5651
5652         /* Don't bother writing the segment valid bits if sector
5653          * programming failed. */
5654         if (sector_write_failed == FALSE) {
5655             /* Finally validate the new segment by setting bit 15:14
5656              * to 10b in word 0x13 , this can be done without an
5657              * erase as well since these bits are 11 to start with
5658              * and we need to change bit 14 to 0b */
5659             e1000_read_ich8_byte(hw,
5660                                  E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5661                                  &high_byte);
5662             high_byte &= 0xBF;
5663             error = e1000_verify_write_ich8_byte(hw,
5664                         E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5665             /* And invalidate the previously valid segment by setting
5666              * its signature word (0x13) high_byte to 0b. This can be
5667              * done without an erase because flash erase sets all bits
5668              * to 1's. We can write 1's to 0's without an erase */
5669             if (error == E1000_SUCCESS) {
5670                 error = e1000_verify_write_ich8_byte(hw,
5671                             E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
5672             }
5673
5674             /* Clear the now not used entry in the cache */
5675             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5676                 hw->eeprom_shadow_ram[i].modified = FALSE;
5677                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5678             }
5679         }
5680     }
5681
5682     return error;
5683 }
5684
5685 /******************************************************************************
5686  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5687  * second function of dual function devices
5688  *
5689  * hw - Struct containing variables accessed by shared code
5690  *****************************************************************************/
5691 int32_t
5692 e1000_read_mac_addr(struct e1000_hw * hw)
5693 {
5694     uint16_t offset;
5695     uint16_t eeprom_data, i;
5696
5697     DEBUGFUNC("e1000_read_mac_addr");
5698
5699     for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5700         offset = i >> 1;
5701         if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5702             DEBUGOUT("EEPROM Read Error\n");
5703             return -E1000_ERR_EEPROM;
5704         }
5705         hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5706         hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5707     }
5708
5709     switch (hw->mac_type) {
5710     default:
5711         break;
5712     case e1000_82546:
5713     case e1000_82546_rev_3:
5714     case e1000_82571:
5715     case e1000_80003es2lan:
5716         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
5717             hw->perm_mac_addr[5] ^= 0x01;
5718         break;
5719     }
5720
5721     for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5722         hw->mac_addr[i] = hw->perm_mac_addr[i];
5723     return E1000_SUCCESS;
5724 }
5725
5726 /******************************************************************************
5727  * Initializes receive address filters.
5728  *
5729  * hw - Struct containing variables accessed by shared code
5730  *
5731  * Places the MAC address in receive address register 0 and clears the rest
5732  * of the receive addresss registers. Clears the multicast table. Assumes
5733  * the receiver is in reset when the routine is called.
5734  *****************************************************************************/
5735 static void
5736 e1000_init_rx_addrs(struct e1000_hw *hw)
5737 {
5738     uint32_t i;
5739     uint32_t rar_num;
5740
5741     DEBUGFUNC("e1000_init_rx_addrs");
5742
5743     /* Setup the receive address. */
5744     DEBUGOUT("Programming MAC Address into RAR[0]\n");
5745
5746     e1000_rar_set(hw, hw->mac_addr, 0);
5747
5748     rar_num = E1000_RAR_ENTRIES;
5749
5750     /* Reserve a spot for the Locally Administered Address to work around
5751      * an 82571 issue in which a reset on one port will reload the MAC on
5752      * the other port. */
5753     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5754         rar_num -= 1;
5755     if (hw->mac_type == e1000_ich8lan)
5756         rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5757
5758     /* Zero out the other 15 receive addresses. */
5759     DEBUGOUT("Clearing RAR[1-15]\n");
5760     for (i = 1; i < rar_num; i++) {
5761         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5762         E1000_WRITE_FLUSH(hw);
5763         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5764         E1000_WRITE_FLUSH(hw);
5765     }
5766 }
5767
5768 /******************************************************************************
5769  * Hashes an address to determine its location in the multicast table
5770  *
5771  * hw - Struct containing variables accessed by shared code
5772  * mc_addr - the multicast address to hash
5773  *****************************************************************************/
5774 uint32_t
5775 e1000_hash_mc_addr(struct e1000_hw *hw,
5776                    uint8_t *mc_addr)
5777 {
5778     uint32_t hash_value = 0;
5779
5780     /* The portion of the address that is used for the hash table is
5781      * determined by the mc_filter_type setting.
5782      */
5783     switch (hw->mc_filter_type) {
5784     /* [0] [1] [2] [3] [4] [5]
5785      * 01  AA  00  12  34  56
5786      * LSB                 MSB
5787      */
5788     case 0:
5789         if (hw->mac_type == e1000_ich8lan) {
5790             /* [47:38] i.e. 0x158 for above example address */
5791             hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5792         } else {
5793             /* [47:36] i.e. 0x563 for above example address */
5794             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5795         }
5796         break;
5797     case 1:
5798         if (hw->mac_type == e1000_ich8lan) {
5799             /* [46:37] i.e. 0x2B1 for above example address */
5800             hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5801         } else {
5802             /* [46:35] i.e. 0xAC6 for above example address */
5803             hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5804         }
5805         break;
5806     case 2:
5807         if (hw->mac_type == e1000_ich8lan) {
5808             /*[45:36] i.e. 0x163 for above example address */
5809             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5810         } else {
5811             /* [45:34] i.e. 0x5D8 for above example address */
5812             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5813         }
5814         break;
5815     case 3:
5816         if (hw->mac_type == e1000_ich8lan) {
5817             /* [43:34] i.e. 0x18D for above example address */
5818             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5819         } else {
5820             /* [43:32] i.e. 0x634 for above example address */
5821             hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5822         }
5823         break;
5824     }
5825
5826     hash_value &= 0xFFF;
5827     if (hw->mac_type == e1000_ich8lan)
5828         hash_value &= 0x3FF;
5829
5830     return hash_value;
5831 }
5832
5833 /******************************************************************************
5834  * Sets the bit in the multicast table corresponding to the hash value.
5835  *
5836  * hw - Struct containing variables accessed by shared code
5837  * hash_value - Multicast address hash value
5838  *****************************************************************************/
5839 void
5840 e1000_mta_set(struct e1000_hw *hw,
5841               uint32_t hash_value)
5842 {
5843     uint32_t hash_bit, hash_reg;
5844     uint32_t mta;
5845     uint32_t temp;
5846
5847     /* The MTA is a register array of 128 32-bit registers.
5848      * It is treated like an array of 4096 bits.  We want to set
5849      * bit BitArray[hash_value]. So we figure out what register
5850      * the bit is in, read it, OR in the new bit, then write
5851      * back the new value.  The register is determined by the
5852      * upper 7 bits of the hash value and the bit within that
5853      * register are determined by the lower 5 bits of the value.
5854      */
5855     hash_reg = (hash_value >> 5) & 0x7F;
5856     if (hw->mac_type == e1000_ich8lan)
5857         hash_reg &= 0x1F;
5858
5859     hash_bit = hash_value & 0x1F;
5860
5861     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5862
5863     mta |= (1 << hash_bit);
5864
5865     /* If we are on an 82544 and we are trying to write an odd offset
5866      * in the MTA, save off the previous entry before writing and
5867      * restore the old value after writing.
5868      */
5869     if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5870         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5871         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5872         E1000_WRITE_FLUSH(hw);
5873         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5874         E1000_WRITE_FLUSH(hw);
5875     } else {
5876         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5877         E1000_WRITE_FLUSH(hw);
5878     }
5879 }
5880
5881 /******************************************************************************
5882  * Puts an ethernet address into a receive address register.
5883  *
5884  * hw - Struct containing variables accessed by shared code
5885  * addr - Address to put into receive address register
5886  * index - Receive address register to write
5887  *****************************************************************************/
5888 void
5889 e1000_rar_set(struct e1000_hw *hw,
5890               uint8_t *addr,
5891               uint32_t index)
5892 {
5893     uint32_t rar_low, rar_high;
5894
5895     /* HW expects these in little endian so we reverse the byte order
5896      * from network order (big endian) to little endian
5897      */
5898     rar_low = ((uint32_t) addr[0] |
5899                ((uint32_t) addr[1] << 8) |
5900                ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5901     rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
5902
5903     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5904      * unit hang.
5905      *
5906      * Description:
5907      * If there are any Rx frames queued up or otherwise present in the HW
5908      * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5909      * hang.  To work around this issue, we have to disable receives and
5910      * flush out all Rx frames before we enable RSS. To do so, we modify we
5911      * redirect all Rx traffic to manageability and then reset the HW.
5912      * This flushes away Rx frames, and (since the redirections to
5913      * manageability persists across resets) keeps new ones from coming in
5914      * while we work.  Then, we clear the Address Valid AV bit for all MAC
5915      * addresses and undo the re-direction to manageability.
5916      * Now, frames are coming in again, but the MAC won't accept them, so
5917      * far so good.  We now proceed to initialize RSS (if necessary) and
5918      * configure the Rx unit.  Last, we re-enable the AV bits and continue
5919      * on our merry way.
5920      */
5921     switch (hw->mac_type) {
5922     case e1000_82571:
5923     case e1000_82572:
5924     case e1000_80003es2lan:
5925         if (hw->leave_av_bit_off == TRUE)
5926             break;
5927     default:
5928         /* Indicate to hardware the Address is Valid. */
5929         rar_high |= E1000_RAH_AV;
5930         break;
5931     }
5932
5933     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5934     E1000_WRITE_FLUSH(hw);
5935     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5936     E1000_WRITE_FLUSH(hw);
5937 }
5938
5939 /******************************************************************************
5940  * Writes a value to the specified offset in the VLAN filter table.
5941  *
5942  * hw - Struct containing variables accessed by shared code
5943  * offset - Offset in VLAN filer table to write
5944  * value - Value to write into VLAN filter table
5945  *****************************************************************************/
5946 void
5947 e1000_write_vfta(struct e1000_hw *hw,
5948                  uint32_t offset,
5949                  uint32_t value)
5950 {
5951     uint32_t temp;
5952
5953     if (hw->mac_type == e1000_ich8lan)
5954         return;
5955
5956     if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5957         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5958         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5959         E1000_WRITE_FLUSH(hw);
5960         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5961         E1000_WRITE_FLUSH(hw);
5962     } else {
5963         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5964         E1000_WRITE_FLUSH(hw);
5965     }
5966 }
5967
5968 /******************************************************************************
5969  * Clears the VLAN filer table
5970  *
5971  * hw - Struct containing variables accessed by shared code
5972  *****************************************************************************/
5973 static void
5974 e1000_clear_vfta(struct e1000_hw *hw)
5975 {
5976     uint32_t offset;
5977     uint32_t vfta_value = 0;
5978     uint32_t vfta_offset = 0;
5979     uint32_t vfta_bit_in_reg = 0;
5980
5981     if (hw->mac_type == e1000_ich8lan)
5982         return;
5983
5984     if (hw->mac_type == e1000_82573) {
5985         if (hw->mng_cookie.vlan_id != 0) {
5986             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5987              * ID.  The following operations determine which 32b entry
5988              * (i.e. offset) into the array we want to set the VLAN ID
5989              * (i.e. bit) of the manageability unit. */
5990             vfta_offset = (hw->mng_cookie.vlan_id >>
5991                            E1000_VFTA_ENTRY_SHIFT) &
5992                           E1000_VFTA_ENTRY_MASK;
5993             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5994                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5995         }
5996     }
5997     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5998         /* If the offset we want to clear is the same offset of the
5999          * manageability VLAN ID, then clear all bits except that of the
6000          * manageability unit */
6001         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
6002         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
6003         E1000_WRITE_FLUSH(hw);
6004     }
6005 }
6006
6007 static int32_t
6008 e1000_id_led_init(struct e1000_hw * hw)
6009 {
6010     uint32_t ledctl;
6011     const uint32_t ledctl_mask = 0x000000FF;
6012     const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
6013     const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
6014     uint16_t eeprom_data, i, temp;
6015     const uint16_t led_mask = 0x0F;
6016
6017     DEBUGFUNC("e1000_id_led_init");
6018
6019     if (hw->mac_type < e1000_82540) {
6020         /* Nothing to do */
6021         return E1000_SUCCESS;
6022     }
6023
6024     ledctl = E1000_READ_REG(hw, LEDCTL);
6025     hw->ledctl_default = ledctl;
6026     hw->ledctl_mode1 = hw->ledctl_default;
6027     hw->ledctl_mode2 = hw->ledctl_default;
6028
6029     if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
6030         DEBUGOUT("EEPROM Read Error\n");
6031         return -E1000_ERR_EEPROM;
6032     }
6033
6034     if ((hw->mac_type == e1000_82573) &&
6035         (eeprom_data == ID_LED_RESERVED_82573))
6036         eeprom_data = ID_LED_DEFAULT_82573;
6037     else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6038             (eeprom_data == ID_LED_RESERVED_FFFF)) {
6039         if (hw->mac_type == e1000_ich8lan)
6040             eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6041         else
6042             eeprom_data = ID_LED_DEFAULT;
6043     }
6044
6045     for (i = 0; i < 4; i++) {
6046         temp = (eeprom_data >> (i << 2)) & led_mask;
6047         switch (temp) {
6048         case ID_LED_ON1_DEF2:
6049         case ID_LED_ON1_ON2:
6050         case ID_LED_ON1_OFF2:
6051             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6052             hw->ledctl_mode1 |= ledctl_on << (i << 3);
6053             break;
6054         case ID_LED_OFF1_DEF2:
6055         case ID_LED_OFF1_ON2:
6056         case ID_LED_OFF1_OFF2:
6057             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6058             hw->ledctl_mode1 |= ledctl_off << (i << 3);
6059             break;
6060         default:
6061             /* Do nothing */
6062             break;
6063         }
6064         switch (temp) {
6065         case ID_LED_DEF1_ON2:
6066         case ID_LED_ON1_ON2:
6067         case ID_LED_OFF1_ON2:
6068             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6069             hw->ledctl_mode2 |= ledctl_on << (i << 3);
6070             break;
6071         case ID_LED_DEF1_OFF2:
6072         case ID_LED_ON1_OFF2:
6073         case ID_LED_OFF1_OFF2:
6074             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6075             hw->ledctl_mode2 |= ledctl_off << (i << 3);
6076             break;
6077         default:
6078             /* Do nothing */
6079             break;
6080         }
6081     }
6082     return E1000_SUCCESS;
6083 }
6084
6085 /******************************************************************************
6086  * Prepares SW controlable LED for use and saves the current state of the LED.
6087  *
6088  * hw - Struct containing variables accessed by shared code
6089  *****************************************************************************/
6090 int32_t
6091 e1000_setup_led(struct e1000_hw *hw)
6092 {
6093     uint32_t ledctl;
6094     int32_t ret_val = E1000_SUCCESS;
6095
6096     DEBUGFUNC("e1000_setup_led");
6097
6098     switch (hw->mac_type) {
6099     case e1000_82542_rev2_0:
6100     case e1000_82542_rev2_1:
6101     case e1000_82543:
6102     case e1000_82544:
6103         /* No setup necessary */
6104         break;
6105     case e1000_82541:
6106     case e1000_82547:
6107     case e1000_82541_rev_2:
6108     case e1000_82547_rev_2:
6109         /* Turn off PHY Smart Power Down (if enabled) */
6110         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6111                                      &hw->phy_spd_default);
6112         if (ret_val)
6113             return ret_val;
6114         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6115                                       (uint16_t)(hw->phy_spd_default &
6116                                       ~IGP01E1000_GMII_SPD));
6117         if (ret_val)
6118             return ret_val;
6119         /* Fall Through */
6120     default:
6121         if (hw->media_type == e1000_media_type_fiber) {
6122             ledctl = E1000_READ_REG(hw, LEDCTL);
6123             /* Save current LEDCTL settings */
6124             hw->ledctl_default = ledctl;
6125             /* Turn off LED0 */
6126             ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6127                         E1000_LEDCTL_LED0_BLINK |
6128                         E1000_LEDCTL_LED0_MODE_MASK);
6129             ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6130                        E1000_LEDCTL_LED0_MODE_SHIFT);
6131             E1000_WRITE_REG(hw, LEDCTL, ledctl);
6132         } else if (hw->media_type == e1000_media_type_copper)
6133             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6134         break;
6135     }
6136
6137     return E1000_SUCCESS;
6138 }
6139
6140
6141 /******************************************************************************
6142  * Used on 82571 and later Si that has LED blink bits.
6143  * Callers must use their own timer and should have already called
6144  * e1000_id_led_init()
6145  * Call e1000_cleanup led() to stop blinking
6146  *
6147  * hw - Struct containing variables accessed by shared code
6148  *****************************************************************************/
6149 int32_t
6150 e1000_blink_led_start(struct e1000_hw *hw)
6151 {
6152     int16_t  i;
6153     uint32_t ledctl_blink = 0;
6154
6155     DEBUGFUNC("e1000_id_led_blink_on");
6156
6157     if (hw->mac_type < e1000_82571) {
6158         /* Nothing to do */
6159         return E1000_SUCCESS;
6160     }
6161     if (hw->media_type == e1000_media_type_fiber) {
6162         /* always blink LED0 for PCI-E fiber */
6163         ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6164                      (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6165     } else {
6166         /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6167         ledctl_blink = hw->ledctl_mode2;
6168         for (i=0; i < 4; i++)
6169             if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6170                 E1000_LEDCTL_MODE_LED_ON)
6171                 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6172     }
6173
6174     E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6175
6176     return E1000_SUCCESS;
6177 }
6178
6179 /******************************************************************************
6180  * Restores the saved state of the SW controlable LED.
6181  *
6182  * hw - Struct containing variables accessed by shared code
6183  *****************************************************************************/
6184 int32_t
6185 e1000_cleanup_led(struct e1000_hw *hw)
6186 {
6187     int32_t ret_val = E1000_SUCCESS;
6188
6189     DEBUGFUNC("e1000_cleanup_led");
6190
6191     switch (hw->mac_type) {
6192     case e1000_82542_rev2_0:
6193     case e1000_82542_rev2_1:
6194     case e1000_82543:
6195     case e1000_82544:
6196         /* No cleanup necessary */
6197         break;
6198     case e1000_82541:
6199     case e1000_82547:
6200     case e1000_82541_rev_2:
6201     case e1000_82547_rev_2:
6202         /* Turn on PHY Smart Power Down (if previously enabled) */
6203         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6204                                       hw->phy_spd_default);
6205         if (ret_val)
6206             return ret_val;
6207         /* Fall Through */
6208     default:
6209         if (hw->phy_type == e1000_phy_ife) {
6210             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6211             break;
6212         }
6213         /* Restore LEDCTL settings */
6214         E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6215         break;
6216     }
6217
6218     return E1000_SUCCESS;
6219 }
6220
6221 /******************************************************************************
6222  * Turns on the software controllable LED
6223  *
6224  * hw - Struct containing variables accessed by shared code
6225  *****************************************************************************/
6226 int32_t
6227 e1000_led_on(struct e1000_hw *hw)
6228 {
6229     uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6230
6231     DEBUGFUNC("e1000_led_on");
6232
6233     switch (hw->mac_type) {
6234     case e1000_82542_rev2_0:
6235     case e1000_82542_rev2_1:
6236     case e1000_82543:
6237         /* Set SW Defineable Pin 0 to turn on the LED */
6238         ctrl |= E1000_CTRL_SWDPIN0;
6239         ctrl |= E1000_CTRL_SWDPIO0;
6240         break;
6241     case e1000_82544:
6242         if (hw->media_type == e1000_media_type_fiber) {
6243             /* Set SW Defineable Pin 0 to turn on the LED */
6244             ctrl |= E1000_CTRL_SWDPIN0;
6245             ctrl |= E1000_CTRL_SWDPIO0;
6246         } else {
6247             /* Clear SW Defineable Pin 0 to turn on the LED */
6248             ctrl &= ~E1000_CTRL_SWDPIN0;
6249             ctrl |= E1000_CTRL_SWDPIO0;
6250         }
6251         break;
6252     default:
6253         if (hw->media_type == e1000_media_type_fiber) {
6254             /* Clear SW Defineable Pin 0 to turn on the LED */
6255             ctrl &= ~E1000_CTRL_SWDPIN0;
6256             ctrl |= E1000_CTRL_SWDPIO0;
6257         } else if (hw->phy_type == e1000_phy_ife) {
6258             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6259                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6260         } else if (hw->media_type == e1000_media_type_copper) {
6261             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6262             return E1000_SUCCESS;
6263         }
6264         break;
6265     }
6266
6267     E1000_WRITE_REG(hw, CTRL, ctrl);
6268
6269     return E1000_SUCCESS;
6270 }
6271
6272 /******************************************************************************
6273  * Turns off the software controllable LED
6274  *
6275  * hw - Struct containing variables accessed by shared code
6276  *****************************************************************************/
6277 int32_t
6278 e1000_led_off(struct e1000_hw *hw)
6279 {
6280     uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6281
6282     DEBUGFUNC("e1000_led_off");
6283
6284     switch (hw->mac_type) {
6285     case e1000_82542_rev2_0:
6286     case e1000_82542_rev2_1:
6287     case e1000_82543:
6288         /* Clear SW Defineable Pin 0 to turn off the LED */
6289         ctrl &= ~E1000_CTRL_SWDPIN0;
6290         ctrl |= E1000_CTRL_SWDPIO0;
6291         break;
6292     case e1000_82544:
6293         if (hw->media_type == e1000_media_type_fiber) {
6294             /* Clear SW Defineable Pin 0 to turn off the LED */
6295             ctrl &= ~E1000_CTRL_SWDPIN0;
6296             ctrl |= E1000_CTRL_SWDPIO0;
6297         } else {
6298             /* Set SW Defineable Pin 0 to turn off the LED */
6299             ctrl |= E1000_CTRL_SWDPIN0;
6300             ctrl |= E1000_CTRL_SWDPIO0;
6301         }
6302         break;
6303     default:
6304         if (hw->media_type == e1000_media_type_fiber) {
6305             /* Set SW Defineable Pin 0 to turn off the LED */
6306             ctrl |= E1000_CTRL_SWDPIN0;
6307             ctrl |= E1000_CTRL_SWDPIO0;
6308         } else if (hw->phy_type == e1000_phy_ife) {
6309             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6310                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6311         } else if (hw->media_type == e1000_media_type_copper) {
6312             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6313             return E1000_SUCCESS;
6314         }
6315         break;
6316     }
6317
6318     E1000_WRITE_REG(hw, CTRL, ctrl);
6319
6320     return E1000_SUCCESS;
6321 }
6322
6323 /******************************************************************************
6324  * Clears all hardware statistics counters.
6325  *
6326  * hw - Struct containing variables accessed by shared code
6327  *****************************************************************************/
6328 static void
6329 e1000_clear_hw_cntrs(struct e1000_hw *hw)
6330 {
6331     volatile uint32_t temp;
6332
6333     temp = E1000_READ_REG(hw, CRCERRS);
6334     temp = E1000_READ_REG(hw, SYMERRS);
6335     temp = E1000_READ_REG(hw, MPC);
6336     temp = E1000_READ_REG(hw, SCC);
6337     temp = E1000_READ_REG(hw, ECOL);
6338     temp = E1000_READ_REG(hw, MCC);
6339     temp = E1000_READ_REG(hw, LATECOL);
6340     temp = E1000_READ_REG(hw, COLC);
6341     temp = E1000_READ_REG(hw, DC);
6342     temp = E1000_READ_REG(hw, SEC);
6343     temp = E1000_READ_REG(hw, RLEC);
6344     temp = E1000_READ_REG(hw, XONRXC);
6345     temp = E1000_READ_REG(hw, XONTXC);
6346     temp = E1000_READ_REG(hw, XOFFRXC);
6347     temp = E1000_READ_REG(hw, XOFFTXC);
6348     temp = E1000_READ_REG(hw, FCRUC);
6349
6350     if (hw->mac_type != e1000_ich8lan) {
6351     temp = E1000_READ_REG(hw, PRC64);
6352     temp = E1000_READ_REG(hw, PRC127);
6353     temp = E1000_READ_REG(hw, PRC255);
6354     temp = E1000_READ_REG(hw, PRC511);
6355     temp = E1000_READ_REG(hw, PRC1023);
6356     temp = E1000_READ_REG(hw, PRC1522);
6357     }
6358
6359     temp = E1000_READ_REG(hw, GPRC);
6360     temp = E1000_READ_REG(hw, BPRC);
6361     temp = E1000_READ_REG(hw, MPRC);
6362     temp = E1000_READ_REG(hw, GPTC);
6363     temp = E1000_READ_REG(hw, GORCL);
6364     temp = E1000_READ_REG(hw, GORCH);
6365     temp = E1000_READ_REG(hw, GOTCL);
6366     temp = E1000_READ_REG(hw, GOTCH);
6367     temp = E1000_READ_REG(hw, RNBC);
6368     temp = E1000_READ_REG(hw, RUC);
6369     temp = E1000_READ_REG(hw, RFC);
6370     temp = E1000_READ_REG(hw, ROC);
6371     temp = E1000_READ_REG(hw, RJC);
6372     temp = E1000_READ_REG(hw, TORL);
6373     temp = E1000_READ_REG(hw, TORH);
6374     temp = E1000_READ_REG(hw, TOTL);
6375     temp = E1000_READ_REG(hw, TOTH);
6376     temp = E1000_READ_REG(hw, TPR);
6377     temp = E1000_READ_REG(hw, TPT);
6378
6379     if (hw->mac_type != e1000_ich8lan) {
6380     temp = E1000_READ_REG(hw, PTC64);
6381     temp = E1000_READ_REG(hw, PTC127);
6382     temp = E1000_READ_REG(hw, PTC255);
6383     temp = E1000_READ_REG(hw, PTC511);
6384     temp = E1000_READ_REG(hw, PTC1023);
6385     temp = E1000_READ_REG(hw, PTC1522);
6386     }
6387
6388     temp = E1000_READ_REG(hw, MPTC);
6389     temp = E1000_READ_REG(hw, BPTC);
6390
6391     if (hw->mac_type < e1000_82543) return;
6392
6393     temp = E1000_READ_REG(hw, ALGNERRC);
6394     temp = E1000_READ_REG(hw, RXERRC);
6395     temp = E1000_READ_REG(hw, TNCRS);
6396     temp = E1000_READ_REG(hw, CEXTERR);
6397     temp = E1000_READ_REG(hw, TSCTC);
6398     temp = E1000_READ_REG(hw, TSCTFC);
6399
6400     if (hw->mac_type <= e1000_82544) return;
6401
6402     temp = E1000_READ_REG(hw, MGTPRC);
6403     temp = E1000_READ_REG(hw, MGTPDC);
6404     temp = E1000_READ_REG(hw, MGTPTC);
6405
6406     if (hw->mac_type <= e1000_82547_rev_2) return;
6407
6408     temp = E1000_READ_REG(hw, IAC);
6409     temp = E1000_READ_REG(hw, ICRXOC);
6410
6411     if (hw->mac_type == e1000_ich8lan) return;
6412
6413     temp = E1000_READ_REG(hw, ICRXPTC);
6414     temp = E1000_READ_REG(hw, ICRXATC);
6415     temp = E1000_READ_REG(hw, ICTXPTC);
6416     temp = E1000_READ_REG(hw, ICTXATC);
6417     temp = E1000_READ_REG(hw, ICTXQEC);
6418     temp = E1000_READ_REG(hw, ICTXQMTC);
6419     temp = E1000_READ_REG(hw, ICRXDMTC);
6420 }
6421
6422 /******************************************************************************
6423  * Resets Adaptive IFS to its default state.
6424  *
6425  * hw - Struct containing variables accessed by shared code
6426  *
6427  * Call this after e1000_init_hw. You may override the IFS defaults by setting
6428  * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6429  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6430  * before calling this function.
6431  *****************************************************************************/
6432 void
6433 e1000_reset_adaptive(struct e1000_hw *hw)
6434 {
6435     DEBUGFUNC("e1000_reset_adaptive");
6436
6437     if (hw->adaptive_ifs) {
6438         if (!hw->ifs_params_forced) {
6439             hw->current_ifs_val = 0;
6440             hw->ifs_min_val = IFS_MIN;
6441             hw->ifs_max_val = IFS_MAX;
6442             hw->ifs_step_size = IFS_STEP;
6443             hw->ifs_ratio = IFS_RATIO;
6444         }
6445         hw->in_ifs_mode = FALSE;
6446         E1000_WRITE_REG(hw, AIT, 0);
6447     } else {
6448         DEBUGOUT("Not in Adaptive IFS mode!\n");
6449     }
6450 }
6451
6452 /******************************************************************************
6453  * Called during the callback/watchdog routine to update IFS value based on
6454  * the ratio of transmits to collisions.
6455  *
6456  * hw - Struct containing variables accessed by shared code
6457  * tx_packets - Number of transmits since last callback
6458  * total_collisions - Number of collisions since last callback
6459  *****************************************************************************/
6460 void
6461 e1000_update_adaptive(struct e1000_hw *hw)
6462 {
6463     DEBUGFUNC("e1000_update_adaptive");
6464
6465     if (hw->adaptive_ifs) {
6466         if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6467             if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6468                 hw->in_ifs_mode = TRUE;
6469                 if (hw->current_ifs_val < hw->ifs_max_val) {
6470                     if (hw->current_ifs_val == 0)
6471                         hw->current_ifs_val = hw->ifs_min_val;
6472                     else
6473                         hw->current_ifs_val += hw->ifs_step_size;
6474                     E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6475                 }
6476             }
6477         } else {
6478             if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6479                 hw->current_ifs_val = 0;
6480                 hw->in_ifs_mode = FALSE;
6481                 E1000_WRITE_REG(hw, AIT, 0);
6482             }
6483         }
6484     } else {
6485         DEBUGOUT("Not in Adaptive IFS mode!\n");
6486     }
6487 }
6488
6489 /******************************************************************************
6490  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6491  *
6492  * hw - Struct containing variables accessed by shared code
6493  * frame_len - The length of the frame in question
6494  * mac_addr - The Ethernet destination address of the frame in question
6495  *****************************************************************************/
6496 void
6497 e1000_tbi_adjust_stats(struct e1000_hw *hw,
6498                        struct e1000_hw_stats *stats,
6499                        uint32_t frame_len,
6500                        uint8_t *mac_addr)
6501 {
6502     uint64_t carry_bit;
6503
6504     /* First adjust the frame length. */
6505     frame_len--;
6506     /* We need to adjust the statistics counters, since the hardware
6507      * counters overcount this packet as a CRC error and undercount
6508      * the packet as a good packet
6509      */
6510     /* This packet should not be counted as a CRC error.    */
6511     stats->crcerrs--;
6512     /* This packet does count as a Good Packet Received.    */
6513     stats->gprc++;
6514
6515     /* Adjust the Good Octets received counters             */
6516     carry_bit = 0x80000000 & stats->gorcl;
6517     stats->gorcl += frame_len;
6518     /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6519      * Received Count) was one before the addition,
6520      * AND it is zero after, then we lost the carry out,
6521      * need to add one to Gorch (Good Octets Received Count High).
6522      * This could be simplified if all environments supported
6523      * 64-bit integers.
6524      */
6525     if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6526         stats->gorch++;
6527     /* Is this a broadcast or multicast?  Check broadcast first,
6528      * since the test for a multicast frame will test positive on
6529      * a broadcast frame.
6530      */
6531     if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
6532         /* Broadcast packet */
6533         stats->bprc++;
6534     else if (*mac_addr & 0x01)
6535         /* Multicast packet */
6536         stats->mprc++;
6537
6538     if (frame_len == hw->max_frame_size) {
6539         /* In this case, the hardware has overcounted the number of
6540          * oversize frames.
6541          */
6542         if (stats->roc > 0)
6543             stats->roc--;
6544     }
6545
6546     /* Adjust the bin counters when the extra byte put the frame in the
6547      * wrong bin. Remember that the frame_len was adjusted above.
6548      */
6549     if (frame_len == 64) {
6550         stats->prc64++;
6551         stats->prc127--;
6552     } else if (frame_len == 127) {
6553         stats->prc127++;
6554         stats->prc255--;
6555     } else if (frame_len == 255) {
6556         stats->prc255++;
6557         stats->prc511--;
6558     } else if (frame_len == 511) {
6559         stats->prc511++;
6560         stats->prc1023--;
6561     } else if (frame_len == 1023) {
6562         stats->prc1023++;
6563         stats->prc1522--;
6564     } else if (frame_len == 1522) {
6565         stats->prc1522++;
6566     }
6567 }
6568
6569 /******************************************************************************
6570  * Gets the current PCI bus type, speed, and width of the hardware
6571  *
6572  * hw - Struct containing variables accessed by shared code
6573  *****************************************************************************/
6574 void
6575 e1000_get_bus_info(struct e1000_hw *hw)
6576 {
6577     int32_t ret_val;
6578     uint16_t pci_ex_link_status;
6579     uint32_t status;
6580
6581     switch (hw->mac_type) {
6582     case e1000_82542_rev2_0:
6583     case e1000_82542_rev2_1:
6584         hw->bus_type = e1000_bus_type_pci;
6585         hw->bus_speed = e1000_bus_speed_unknown;
6586         hw->bus_width = e1000_bus_width_unknown;
6587         break;
6588     case e1000_82571:
6589     case e1000_82572:
6590     case e1000_82573:
6591     case e1000_80003es2lan:
6592         hw->bus_type = e1000_bus_type_pci_express;
6593         hw->bus_speed = e1000_bus_speed_2500;
6594         ret_val = e1000_read_pcie_cap_reg(hw,
6595                                       PCI_EX_LINK_STATUS,
6596                                       &pci_ex_link_status);
6597         if (ret_val)
6598             hw->bus_width = e1000_bus_width_unknown;
6599         else
6600             hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6601                           PCI_EX_LINK_WIDTH_SHIFT;
6602         break;
6603     case e1000_ich8lan:
6604         hw->bus_type = e1000_bus_type_pci_express;
6605         hw->bus_speed = e1000_bus_speed_2500;
6606         hw->bus_width = e1000_bus_width_pciex_1;
6607         break;
6608     default:
6609         status = E1000_READ_REG(hw, STATUS);
6610         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6611                        e1000_bus_type_pcix : e1000_bus_type_pci;
6612
6613         if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6614             hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6615                             e1000_bus_speed_66 : e1000_bus_speed_120;
6616         } else if (hw->bus_type == e1000_bus_type_pci) {
6617             hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6618                             e1000_bus_speed_66 : e1000_bus_speed_33;
6619         } else {
6620             switch (status & E1000_STATUS_PCIX_SPEED) {
6621             case E1000_STATUS_PCIX_SPEED_66:
6622                 hw->bus_speed = e1000_bus_speed_66;
6623                 break;
6624             case E1000_STATUS_PCIX_SPEED_100:
6625                 hw->bus_speed = e1000_bus_speed_100;
6626                 break;
6627             case E1000_STATUS_PCIX_SPEED_133:
6628                 hw->bus_speed = e1000_bus_speed_133;
6629                 break;
6630             default:
6631                 hw->bus_speed = e1000_bus_speed_reserved;
6632                 break;
6633             }
6634         }
6635         hw->bus_width = (status & E1000_STATUS_BUS64) ?
6636                         e1000_bus_width_64 : e1000_bus_width_32;
6637         break;
6638     }
6639 }
6640
6641 /******************************************************************************
6642  * Writes a value to one of the devices registers using port I/O (as opposed to
6643  * memory mapped I/O). Only 82544 and newer devices support port I/O.
6644  *
6645  * hw - Struct containing variables accessed by shared code
6646  * offset - offset to write to
6647  * value - value to write
6648  *****************************************************************************/
6649 static void
6650 e1000_write_reg_io(struct e1000_hw *hw,
6651                    uint32_t offset,
6652                    uint32_t value)
6653 {
6654     unsigned long io_addr = hw->io_base;
6655     unsigned long io_data = hw->io_base + 4;
6656
6657     e1000_io_write(hw, io_addr, offset);
6658     e1000_io_write(hw, io_data, value);
6659 }
6660
6661 /******************************************************************************
6662  * Estimates the cable length.
6663  *
6664  * hw - Struct containing variables accessed by shared code
6665  * min_length - The estimated minimum length
6666  * max_length - The estimated maximum length
6667  *
6668  * returns: - E1000_ERR_XXX
6669  *            E1000_SUCCESS
6670  *
6671  * This function always returns a ranged length (minimum & maximum).
6672  * So for M88 phy's, this function interprets the one value returned from the
6673  * register to the minimum and maximum range.
6674  * For IGP phy's, the function calculates the range by the AGC registers.
6675  *****************************************************************************/
6676 static int32_t
6677 e1000_get_cable_length(struct e1000_hw *hw,
6678                        uint16_t *min_length,
6679                        uint16_t *max_length)
6680 {
6681     int32_t ret_val;
6682     uint16_t agc_value = 0;
6683     uint16_t i, phy_data;
6684     uint16_t cable_length;
6685
6686     DEBUGFUNC("e1000_get_cable_length");
6687
6688     *min_length = *max_length = 0;
6689
6690     /* Use old method for Phy older than IGP */
6691     if (hw->phy_type == e1000_phy_m88) {
6692
6693         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6694                                      &phy_data);
6695         if (ret_val)
6696             return ret_val;
6697         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6698                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6699
6700         /* Convert the enum value to ranged values */
6701         switch (cable_length) {
6702         case e1000_cable_length_50:
6703             *min_length = 0;
6704             *max_length = e1000_igp_cable_length_50;
6705             break;
6706         case e1000_cable_length_50_80:
6707             *min_length = e1000_igp_cable_length_50;
6708             *max_length = e1000_igp_cable_length_80;
6709             break;
6710         case e1000_cable_length_80_110:
6711             *min_length = e1000_igp_cable_length_80;
6712             *max_length = e1000_igp_cable_length_110;
6713             break;
6714         case e1000_cable_length_110_140:
6715             *min_length = e1000_igp_cable_length_110;
6716             *max_length = e1000_igp_cable_length_140;
6717             break;
6718         case e1000_cable_length_140:
6719             *min_length = e1000_igp_cable_length_140;
6720             *max_length = e1000_igp_cable_length_170;
6721             break;
6722         default:
6723             return -E1000_ERR_PHY;
6724             break;
6725         }
6726     } else if (hw->phy_type == e1000_phy_gg82563) {
6727         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6728                                      &phy_data);
6729         if (ret_val)
6730             return ret_val;
6731         cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6732
6733         switch (cable_length) {
6734         case e1000_gg_cable_length_60:
6735             *min_length = 0;
6736             *max_length = e1000_igp_cable_length_60;
6737             break;
6738         case e1000_gg_cable_length_60_115:
6739             *min_length = e1000_igp_cable_length_60;
6740             *max_length = e1000_igp_cable_length_115;
6741             break;
6742         case e1000_gg_cable_length_115_150:
6743             *min_length = e1000_igp_cable_length_115;
6744             *max_length = e1000_igp_cable_length_150;
6745             break;
6746         case e1000_gg_cable_length_150:
6747             *min_length = e1000_igp_cable_length_150;
6748             *max_length = e1000_igp_cable_length_180;
6749             break;
6750         default:
6751             return -E1000_ERR_PHY;
6752             break;
6753         }
6754     } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6755         uint16_t cur_agc_value;
6756         uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6757         uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6758                                                          {IGP01E1000_PHY_AGC_A,
6759                                                           IGP01E1000_PHY_AGC_B,
6760                                                           IGP01E1000_PHY_AGC_C,
6761                                                           IGP01E1000_PHY_AGC_D};
6762         /* Read the AGC registers for all channels */
6763         for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6764
6765             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6766             if (ret_val)
6767                 return ret_val;
6768
6769             cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6770
6771             /* Value bound check. */
6772             if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6773                 (cur_agc_value == 0))
6774                 return -E1000_ERR_PHY;
6775
6776             agc_value += cur_agc_value;
6777
6778             /* Update minimal AGC value. */
6779             if (min_agc_value > cur_agc_value)
6780                 min_agc_value = cur_agc_value;
6781         }
6782
6783         /* Remove the minimal AGC result for length < 50m */
6784         if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6785             agc_value -= min_agc_value;
6786
6787             /* Get the average length of the remaining 3 channels */
6788             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6789         } else {
6790             /* Get the average length of all the 4 channels. */
6791             agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6792         }
6793
6794         /* Set the range of the calculated length. */
6795         *min_length = ((e1000_igp_cable_length_table[agc_value] -
6796                        IGP01E1000_AGC_RANGE) > 0) ?
6797                        (e1000_igp_cable_length_table[agc_value] -
6798                        IGP01E1000_AGC_RANGE) : 0;
6799         *max_length = e1000_igp_cable_length_table[agc_value] +
6800                       IGP01E1000_AGC_RANGE;
6801     } else if (hw->phy_type == e1000_phy_igp_2 ||
6802                hw->phy_type == e1000_phy_igp_3) {
6803         uint16_t cur_agc_index, max_agc_index = 0;
6804         uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6805         uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6806                                                          {IGP02E1000_PHY_AGC_A,
6807                                                           IGP02E1000_PHY_AGC_B,
6808                                                           IGP02E1000_PHY_AGC_C,
6809                                                           IGP02E1000_PHY_AGC_D};
6810         /* Read the AGC registers for all channels */
6811         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6812             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6813             if (ret_val)
6814                 return ret_val;
6815
6816             /* Getting bits 15:9, which represent the combination of course and
6817              * fine gain values.  The result is a number that can be put into
6818              * the lookup table to obtain the approximate cable length. */
6819             cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6820                             IGP02E1000_AGC_LENGTH_MASK;
6821
6822             /* Array index bound check. */
6823             if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6824                 (cur_agc_index == 0))
6825                 return -E1000_ERR_PHY;
6826
6827             /* Remove min & max AGC values from calculation. */
6828             if (e1000_igp_2_cable_length_table[min_agc_index] >
6829                 e1000_igp_2_cable_length_table[cur_agc_index])
6830                 min_agc_index = cur_agc_index;
6831             if (e1000_igp_2_cable_length_table[max_agc_index] <
6832                 e1000_igp_2_cable_length_table[cur_agc_index])
6833                 max_agc_index = cur_agc_index;
6834
6835             agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6836         }
6837
6838         agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6839                       e1000_igp_2_cable_length_table[max_agc_index]);
6840         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6841
6842         /* Calculate cable length with the error range of +/- 10 meters. */
6843         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6844                        (agc_value - IGP02E1000_AGC_RANGE) : 0;
6845         *max_length = agc_value + IGP02E1000_AGC_RANGE;
6846     }
6847
6848     return E1000_SUCCESS;
6849 }
6850
6851 /******************************************************************************
6852  * Check the cable polarity
6853  *
6854  * hw - Struct containing variables accessed by shared code
6855  * polarity - output parameter : 0 - Polarity is not reversed
6856  *                               1 - Polarity is reversed.
6857  *
6858  * returns: - E1000_ERR_XXX
6859  *            E1000_SUCCESS
6860  *
6861  * For phy's older then IGP, this function simply reads the polarity bit in the
6862  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
6863  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
6864  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
6865  * IGP01E1000_PHY_PCS_INIT_REG.
6866  *****************************************************************************/
6867 static int32_t
6868 e1000_check_polarity(struct e1000_hw *hw,
6869                      e1000_rev_polarity *polarity)
6870 {
6871     int32_t ret_val;
6872     uint16_t phy_data;
6873
6874     DEBUGFUNC("e1000_check_polarity");
6875
6876     if ((hw->phy_type == e1000_phy_m88) ||
6877         (hw->phy_type == e1000_phy_gg82563)) {
6878         /* return the Polarity bit in the Status register. */
6879         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6880                                      &phy_data);
6881         if (ret_val)
6882             return ret_val;
6883         *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6884                      M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6885                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6886
6887     } else if (hw->phy_type == e1000_phy_igp ||
6888               hw->phy_type == e1000_phy_igp_3 ||
6889               hw->phy_type == e1000_phy_igp_2) {
6890         /* Read the Status register to check the speed */
6891         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6892                                      &phy_data);
6893         if (ret_val)
6894             return ret_val;
6895
6896         /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6897          * find the polarity status */
6898         if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6899            IGP01E1000_PSSR_SPEED_1000MBPS) {
6900
6901             /* Read the GIG initialization PCS register (0x00B4) */
6902             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6903                                          &phy_data);
6904             if (ret_val)
6905                 return ret_val;
6906
6907             /* Check the polarity bits */
6908             *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6909                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6910         } else {
6911             /* For 10 Mbps, read the polarity bit in the status register. (for
6912              * 100 Mbps this bit is always 0) */
6913             *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6914                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6915         }
6916     } else if (hw->phy_type == e1000_phy_ife) {
6917         ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6918                                      &phy_data);
6919         if (ret_val)
6920             return ret_val;
6921         *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6922                      IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6923                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6924     }
6925     return E1000_SUCCESS;
6926 }
6927
6928 /******************************************************************************
6929  * Check if Downshift occured
6930  *
6931  * hw - Struct containing variables accessed by shared code
6932  * downshift - output parameter : 0 - No Downshift ocured.
6933  *                                1 - Downshift ocured.
6934  *
6935  * returns: - E1000_ERR_XXX
6936  *            E1000_SUCCESS
6937  *
6938  * For phy's older then IGP, this function reads the Downshift bit in the Phy
6939  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
6940  * Link Health register.  In IGP this bit is latched high, so the driver must
6941  * read it immediately after link is established.
6942  *****************************************************************************/
6943 static int32_t
6944 e1000_check_downshift(struct e1000_hw *hw)
6945 {
6946     int32_t ret_val;
6947     uint16_t phy_data;
6948
6949     DEBUGFUNC("e1000_check_downshift");
6950
6951     if (hw->phy_type == e1000_phy_igp ||
6952         hw->phy_type == e1000_phy_igp_3 ||
6953         hw->phy_type == e1000_phy_igp_2) {
6954         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6955                                      &phy_data);
6956         if (ret_val)
6957             return ret_val;
6958
6959         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6960     } else if ((hw->phy_type == e1000_phy_m88) ||
6961                (hw->phy_type == e1000_phy_gg82563)) {
6962         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6963                                      &phy_data);
6964         if (ret_val)
6965             return ret_val;
6966
6967         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6968                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
6969     } else if (hw->phy_type == e1000_phy_ife) {
6970         /* e1000_phy_ife supports 10/100 speed only */
6971         hw->speed_downgraded = FALSE;
6972     }
6973
6974     return E1000_SUCCESS;
6975 }
6976
6977 /*****************************************************************************
6978  *
6979  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6980  * gigabit link is achieved to improve link quality.
6981  *
6982  * hw: Struct containing variables accessed by shared code
6983  *
6984  * returns: - E1000_ERR_PHY if fail to read/write the PHY
6985  *            E1000_SUCCESS at any other case.
6986  *
6987  ****************************************************************************/
6988
6989 static int32_t
6990 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6991                                    boolean_t link_up)
6992 {
6993     int32_t ret_val;
6994     uint16_t phy_data, phy_saved_data, speed, duplex, i;
6995     uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6996                                         {IGP01E1000_PHY_AGC_PARAM_A,
6997                                         IGP01E1000_PHY_AGC_PARAM_B,
6998                                         IGP01E1000_PHY_AGC_PARAM_C,
6999                                         IGP01E1000_PHY_AGC_PARAM_D};
7000     uint16_t min_length, max_length;
7001
7002     DEBUGFUNC("e1000_config_dsp_after_link_change");
7003
7004     if (hw->phy_type != e1000_phy_igp)
7005         return E1000_SUCCESS;
7006
7007     if (link_up) {
7008         ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
7009         if (ret_val) {
7010             DEBUGOUT("Error getting link speed and duplex\n");
7011             return ret_val;
7012         }
7013
7014         if (speed == SPEED_1000) {
7015
7016             ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7017             if (ret_val)
7018                 return ret_val;
7019
7020             if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
7021                 min_length >= e1000_igp_cable_length_50) {
7022
7023                 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7024                     ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7025                                                  &phy_data);
7026                     if (ret_val)
7027                         return ret_val;
7028
7029                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7030
7031                     ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7032                                                   phy_data);
7033                     if (ret_val)
7034                         return ret_val;
7035                 }
7036                 hw->dsp_config_state = e1000_dsp_config_activated;
7037             }
7038
7039             if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
7040                (min_length < e1000_igp_cable_length_50)) {
7041
7042                 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7043                 uint32_t idle_errs = 0;
7044
7045                 /* clear previous idle error counts */
7046                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7047                                              &phy_data);
7048                 if (ret_val)
7049                     return ret_val;
7050
7051                 for (i = 0; i < ffe_idle_err_timeout; i++) {
7052                     udelay(1000);
7053                     ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7054                                                  &phy_data);
7055                     if (ret_val)
7056                         return ret_val;
7057
7058                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7059                     if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
7060                         hw->ffe_config_state = e1000_ffe_config_active;
7061
7062                         ret_val = e1000_write_phy_reg(hw,
7063                                     IGP01E1000_PHY_DSP_FFE,
7064                                     IGP01E1000_PHY_DSP_FFE_CM_CP);
7065                         if (ret_val)
7066                             return ret_val;
7067                         break;
7068                     }
7069
7070                     if (idle_errs)
7071                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7072                 }
7073             }
7074         }
7075     } else {
7076         if (hw->dsp_config_state == e1000_dsp_config_activated) {
7077             /* Save off the current value of register 0x2F5B to be restored at
7078              * the end of the routines. */
7079             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7080
7081             if (ret_val)
7082                 return ret_val;
7083
7084             /* Disable the PHY transmitter */
7085             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7086
7087             if (ret_val)
7088                 return ret_val;
7089
7090             mdelay(20);
7091
7092             ret_val = e1000_write_phy_reg(hw, 0x0000,
7093                                           IGP01E1000_IEEE_FORCE_GIGA);
7094             if (ret_val)
7095                 return ret_val;
7096             for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7097                 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7098                 if (ret_val)
7099                     return ret_val;
7100
7101                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7102                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7103
7104                 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7105                 if (ret_val)
7106                     return ret_val;
7107             }
7108
7109             ret_val = e1000_write_phy_reg(hw, 0x0000,
7110                                           IGP01E1000_IEEE_RESTART_AUTONEG);
7111             if (ret_val)
7112                 return ret_val;
7113
7114             mdelay(20);
7115
7116             /* Now enable the transmitter */
7117             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7118
7119             if (ret_val)
7120                 return ret_val;
7121
7122             hw->dsp_config_state = e1000_dsp_config_enabled;
7123         }
7124
7125         if (hw->ffe_config_state == e1000_ffe_config_active) {
7126             /* Save off the current value of register 0x2F5B to be restored at
7127              * the end of the routines. */
7128             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7129
7130             if (ret_val)
7131                 return ret_val;
7132
7133             /* Disable the PHY transmitter */
7134             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7135
7136             if (ret_val)
7137                 return ret_val;
7138
7139             mdelay(20);
7140
7141             ret_val = e1000_write_phy_reg(hw, 0x0000,
7142                                           IGP01E1000_IEEE_FORCE_GIGA);
7143             if (ret_val)
7144                 return ret_val;
7145             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7146                                           IGP01E1000_PHY_DSP_FFE_DEFAULT);
7147             if (ret_val)
7148                 return ret_val;
7149
7150             ret_val = e1000_write_phy_reg(hw, 0x0000,
7151                                           IGP01E1000_IEEE_RESTART_AUTONEG);
7152             if (ret_val)
7153                 return ret_val;
7154
7155             mdelay(20);
7156
7157             /* Now enable the transmitter */
7158             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7159
7160             if (ret_val)
7161                 return ret_val;
7162
7163             hw->ffe_config_state = e1000_ffe_config_enabled;
7164         }
7165     }
7166     return E1000_SUCCESS;
7167 }
7168
7169 /*****************************************************************************
7170  * Set PHY to class A mode
7171  * Assumes the following operations will follow to enable the new class mode.
7172  *  1. Do a PHY soft reset
7173  *  2. Restart auto-negotiation or force link.
7174  *
7175  * hw - Struct containing variables accessed by shared code
7176  ****************************************************************************/
7177 static int32_t
7178 e1000_set_phy_mode(struct e1000_hw *hw)
7179 {
7180     int32_t ret_val;
7181     uint16_t eeprom_data;
7182
7183     DEBUGFUNC("e1000_set_phy_mode");
7184
7185     if ((hw->mac_type == e1000_82545_rev_3) &&
7186         (hw->media_type == e1000_media_type_copper)) {
7187         ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7188         if (ret_val) {
7189             return ret_val;
7190         }
7191
7192         if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7193             (eeprom_data & EEPROM_PHY_CLASS_A)) {
7194             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7195             if (ret_val)
7196                 return ret_val;
7197             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7198             if (ret_val)
7199                 return ret_val;
7200
7201             hw->phy_reset_disable = FALSE;
7202         }
7203     }
7204
7205     return E1000_SUCCESS;
7206 }
7207
7208 /*****************************************************************************
7209  *
7210  * This function sets the lplu state according to the active flag.  When
7211  * activating lplu this function also disables smart speed and vise versa.
7212  * lplu will not be activated unless the device autonegotiation advertisment
7213  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7214  * hw: Struct containing variables accessed by shared code
7215  * active - true to enable lplu false to disable lplu.
7216  *
7217  * returns: - E1000_ERR_PHY if fail to read/write the PHY
7218  *            E1000_SUCCESS at any other case.
7219  *
7220  ****************************************************************************/
7221
7222 static int32_t
7223 e1000_set_d3_lplu_state(struct e1000_hw *hw,
7224                         boolean_t active)
7225 {
7226     uint32_t phy_ctrl = 0;
7227     int32_t ret_val;
7228     uint16_t phy_data;
7229     DEBUGFUNC("e1000_set_d3_lplu_state");
7230
7231     if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7232         && hw->phy_type != e1000_phy_igp_3)
7233         return E1000_SUCCESS;
7234
7235     /* During driver activity LPLU should not be used or it will attain link
7236      * from the lowest speeds starting from 10Mbps. The capability is used for
7237      * Dx transitions and states */
7238     if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7239         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7240         if (ret_val)
7241             return ret_val;
7242     } else if (hw->mac_type == e1000_ich8lan) {
7243         /* MAC writes into PHY register based on the state transition
7244          * and start auto-negotiation. SW driver can overwrite the settings
7245          * in CSR PHY power control E1000_PHY_CTRL register. */
7246         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7247     } else {
7248         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7249         if (ret_val)
7250             return ret_val;
7251     }
7252
7253     if (!active) {
7254         if (hw->mac_type == e1000_82541_rev_2 ||
7255             hw->mac_type == e1000_82547_rev_2) {
7256             phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7257             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7258             if (ret_val)
7259                 return ret_val;
7260         } else {
7261             if (hw->mac_type == e1000_ich8lan) {
7262                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7263                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7264             } else {
7265                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7266                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7267                                               phy_data);
7268                 if (ret_val)
7269                     return ret_val;
7270             }
7271         }
7272
7273         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7274          * Dx states where the power conservation is most important.  During
7275          * driver activity we should enable SmartSpeed, so performance is
7276          * maintained. */
7277         if (hw->smart_speed == e1000_smart_speed_on) {
7278             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7279                                          &phy_data);
7280             if (ret_val)
7281                 return ret_val;
7282
7283             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7284             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7285                                           phy_data);
7286             if (ret_val)
7287                 return ret_val;
7288         } else if (hw->smart_speed == e1000_smart_speed_off) {
7289             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7290                                          &phy_data);
7291             if (ret_val)
7292                 return ret_val;
7293
7294             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7295             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7296                                           phy_data);
7297             if (ret_val)
7298                 return ret_val;
7299         }
7300
7301     } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7302                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7303                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7304
7305         if (hw->mac_type == e1000_82541_rev_2 ||
7306             hw->mac_type == e1000_82547_rev_2) {
7307             phy_data |= IGP01E1000_GMII_FLEX_SPD;
7308             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7309             if (ret_val)
7310                 return ret_val;
7311         } else {
7312             if (hw->mac_type == e1000_ich8lan) {
7313                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7314                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7315             } else {
7316                 phy_data |= IGP02E1000_PM_D3_LPLU;
7317                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7318                                               phy_data);
7319                 if (ret_val)
7320                     return ret_val;
7321             }
7322         }
7323
7324         /* When LPLU is enabled we should disable SmartSpeed */
7325         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7326         if (ret_val)
7327             return ret_val;
7328
7329         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7330         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7331         if (ret_val)
7332             return ret_val;
7333
7334     }
7335     return E1000_SUCCESS;
7336 }
7337
7338 /*****************************************************************************
7339  *
7340  * This function sets the lplu d0 state according to the active flag.  When
7341  * activating lplu this function also disables smart speed and vise versa.
7342  * lplu will not be activated unless the device autonegotiation advertisment
7343  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7344  * hw: Struct containing variables accessed by shared code
7345  * active - true to enable lplu false to disable lplu.
7346  *
7347  * returns: - E1000_ERR_PHY if fail to read/write the PHY
7348  *            E1000_SUCCESS at any other case.
7349  *
7350  ****************************************************************************/
7351
7352 static int32_t
7353 e1000_set_d0_lplu_state(struct e1000_hw *hw,
7354                         boolean_t active)
7355 {
7356     uint32_t phy_ctrl = 0;
7357     int32_t ret_val;
7358     uint16_t phy_data;
7359     DEBUGFUNC("e1000_set_d0_lplu_state");
7360
7361     if (hw->mac_type <= e1000_82547_rev_2)
7362         return E1000_SUCCESS;
7363
7364     if (hw->mac_type == e1000_ich8lan) {
7365         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7366     } else {
7367         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7368         if (ret_val)
7369             return ret_val;
7370     }
7371
7372     if (!active) {
7373         if (hw->mac_type == e1000_ich8lan) {
7374             phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7375             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7376         } else {
7377             phy_data &= ~IGP02E1000_PM_D0_LPLU;
7378             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7379             if (ret_val)
7380                 return ret_val;
7381         }
7382
7383         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7384          * Dx states where the power conservation is most important.  During
7385          * driver activity we should enable SmartSpeed, so performance is
7386          * maintained. */
7387         if (hw->smart_speed == e1000_smart_speed_on) {
7388             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7389                                          &phy_data);
7390             if (ret_val)
7391                 return ret_val;
7392
7393             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7394             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7395                                           phy_data);
7396             if (ret_val)
7397                 return ret_val;
7398         } else if (hw->smart_speed == e1000_smart_speed_off) {
7399             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7400                                          &phy_data);
7401             if (ret_val)
7402                 return ret_val;
7403
7404             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7405             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7406                                           phy_data);
7407             if (ret_val)
7408                 return ret_val;
7409         }
7410
7411
7412     } else {
7413
7414         if (hw->mac_type == e1000_ich8lan) {
7415             phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7416             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7417         } else {
7418             phy_data |= IGP02E1000_PM_D0_LPLU;
7419             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7420             if (ret_val)
7421                 return ret_val;
7422         }
7423
7424         /* When LPLU is enabled we should disable SmartSpeed */
7425         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7426         if (ret_val)
7427             return ret_val;
7428
7429         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7430         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7431         if (ret_val)
7432             return ret_val;
7433
7434     }
7435     return E1000_SUCCESS;
7436 }
7437
7438 /******************************************************************************
7439  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7440  *
7441  * hw - Struct containing variables accessed by shared code
7442  *****************************************************************************/
7443 static int32_t
7444 e1000_set_vco_speed(struct e1000_hw *hw)
7445 {
7446     int32_t  ret_val;
7447     uint16_t default_page = 0;
7448     uint16_t phy_data;
7449
7450     DEBUGFUNC("e1000_set_vco_speed");
7451
7452     switch (hw->mac_type) {
7453     case e1000_82545_rev_3:
7454     case e1000_82546_rev_3:
7455        break;
7456     default:
7457         return E1000_SUCCESS;
7458     }
7459
7460     /* Set PHY register 30, page 5, bit 8 to 0 */
7461
7462     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7463     if (ret_val)
7464         return ret_val;
7465
7466     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7467     if (ret_val)
7468         return ret_val;
7469
7470     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7471     if (ret_val)
7472         return ret_val;
7473
7474     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7475     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7476     if (ret_val)
7477         return ret_val;
7478
7479     /* Set PHY register 30, page 4, bit 11 to 1 */
7480
7481     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7482     if (ret_val)
7483         return ret_val;
7484
7485     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7486     if (ret_val)
7487         return ret_val;
7488
7489     phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7490     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7491     if (ret_val)
7492         return ret_val;
7493
7494     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7495     if (ret_val)
7496         return ret_val;
7497
7498     return E1000_SUCCESS;
7499 }
7500
7501
7502 /*****************************************************************************
7503  * This function reads the cookie from ARC ram.
7504  *
7505  * returns: - E1000_SUCCESS .
7506  ****************************************************************************/
7507 static int32_t
7508 e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7509 {
7510     uint8_t i;
7511     uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7512     uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7513
7514     length = (length >> 2);
7515     offset = (offset >> 2);
7516
7517     for (i = 0; i < length; i++) {
7518         *((uint32_t *) buffer + i) =
7519             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7520     }
7521     return E1000_SUCCESS;
7522 }
7523
7524
7525 /*****************************************************************************
7526  * This function checks whether the HOST IF is enabled for command operaton
7527  * and also checks whether the previous command is completed.
7528  * It busy waits in case of previous command is not completed.
7529  *
7530  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7531  *            timeout
7532  *          - E1000_SUCCESS for success.
7533  ****************************************************************************/
7534 static int32_t
7535 e1000_mng_enable_host_if(struct e1000_hw * hw)
7536 {
7537     uint32_t hicr;
7538     uint8_t i;
7539
7540     /* Check that the host interface is enabled. */
7541     hicr = E1000_READ_REG(hw, HICR);
7542     if ((hicr & E1000_HICR_EN) == 0) {
7543         DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7544         return -E1000_ERR_HOST_INTERFACE_COMMAND;
7545     }
7546     /* check the previous command is completed */
7547     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7548         hicr = E1000_READ_REG(hw, HICR);
7549         if (!(hicr & E1000_HICR_C))
7550             break;
7551         mdelay(1);
7552     }
7553
7554     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7555         DEBUGOUT("Previous command timeout failed .\n");
7556         return -E1000_ERR_HOST_INTERFACE_COMMAND;
7557     }
7558     return E1000_SUCCESS;
7559 }
7560
7561 /*****************************************************************************
7562  * This function writes the buffer content at the offset given on the host if.
7563  * It also does alignment considerations to do the writes in most efficient way.
7564  * Also fills up the sum of the buffer in *buffer parameter.
7565  *
7566  * returns  - E1000_SUCCESS for success.
7567  ****************************************************************************/
7568 static int32_t
7569 e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7570                         uint16_t length, uint16_t offset, uint8_t *sum)
7571 {
7572     uint8_t *tmp;
7573     uint8_t *bufptr = buffer;
7574     uint32_t data = 0;
7575     uint16_t remaining, i, j, prev_bytes;
7576
7577     /* sum = only sum of the data and it is not checksum */
7578
7579     if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7580         return -E1000_ERR_PARAM;
7581     }
7582
7583     tmp = (uint8_t *)&data;
7584     prev_bytes = offset & 0x3;
7585     offset &= 0xFFFC;
7586     offset >>= 2;
7587
7588     if (prev_bytes) {
7589         data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7590         for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7591             *(tmp + j) = *bufptr++;
7592             *sum += *(tmp + j);
7593         }
7594         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7595         length -= j - prev_bytes;
7596         offset++;
7597     }
7598
7599     remaining = length & 0x3;
7600     length -= remaining;
7601
7602     /* Calculate length in DWORDs */
7603     length >>= 2;
7604
7605     /* The device driver writes the relevant command block into the
7606      * ram area. */
7607     for (i = 0; i < length; i++) {
7608         for (j = 0; j < sizeof(uint32_t); j++) {
7609             *(tmp + j) = *bufptr++;
7610             *sum += *(tmp + j);
7611         }
7612
7613         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7614     }
7615     if (remaining) {
7616         for (j = 0; j < sizeof(uint32_t); j++) {
7617             if (j < remaining)
7618                 *(tmp + j) = *bufptr++;
7619             else
7620                 *(tmp + j) = 0;
7621
7622             *sum += *(tmp + j);
7623         }
7624         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7625     }
7626
7627     return E1000_SUCCESS;
7628 }
7629
7630
7631 /*****************************************************************************
7632  * This function writes the command header after does the checksum calculation.
7633  *
7634  * returns  - E1000_SUCCESS for success.
7635  ****************************************************************************/
7636 static int32_t
7637 e1000_mng_write_cmd_header(struct e1000_hw * hw,
7638                            struct e1000_host_mng_command_header * hdr)
7639 {
7640     uint16_t i;
7641     uint8_t sum;
7642     uint8_t *buffer;
7643
7644     /* Write the whole command header structure which includes sum of
7645      * the buffer */
7646
7647     uint16_t length = sizeof(struct e1000_host_mng_command_header);
7648
7649     sum = hdr->checksum;
7650     hdr->checksum = 0;
7651
7652     buffer = (uint8_t *) hdr;
7653     i = length;
7654     while (i--)
7655         sum += buffer[i];
7656
7657     hdr->checksum = 0 - sum;
7658
7659     length >>= 2;
7660     /* The device driver writes the relevant command block into the ram area. */
7661     for (i = 0; i < length; i++) {
7662         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7663         E1000_WRITE_FLUSH(hw);
7664     }
7665
7666     return E1000_SUCCESS;
7667 }
7668
7669
7670 /*****************************************************************************
7671  * This function indicates to ARC that a new command is pending which completes
7672  * one write operation by the driver.
7673  *
7674  * returns  - E1000_SUCCESS for success.
7675  ****************************************************************************/
7676 static int32_t
7677 e1000_mng_write_commit(struct e1000_hw * hw)
7678 {
7679     uint32_t hicr;
7680
7681     hicr = E1000_READ_REG(hw, HICR);
7682     /* Setting this bit tells the ARC that a new command is pending. */
7683     E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7684
7685     return E1000_SUCCESS;
7686 }
7687
7688
7689 /*****************************************************************************
7690  * This function checks the mode of the firmware.
7691  *
7692  * returns  - TRUE when the mode is IAMT or FALSE.
7693  ****************************************************************************/
7694 boolean_t
7695 e1000_check_mng_mode(struct e1000_hw *hw)
7696 {
7697     uint32_t fwsm;
7698
7699     fwsm = E1000_READ_REG(hw, FWSM);
7700
7701     if (hw->mac_type == e1000_ich8lan) {
7702         if ((fwsm & E1000_FWSM_MODE_MASK) ==
7703             (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7704             return TRUE;
7705     } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7706                (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7707         return TRUE;
7708
7709     return FALSE;
7710 }
7711
7712
7713 /*****************************************************************************
7714  * This function writes the dhcp info .
7715  ****************************************************************************/
7716 int32_t
7717 e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7718                           uint16_t length)
7719 {
7720     int32_t ret_val;
7721     struct e1000_host_mng_command_header hdr;
7722
7723     hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7724     hdr.command_length = length;
7725     hdr.reserved1 = 0;
7726     hdr.reserved2 = 0;
7727     hdr.checksum = 0;
7728
7729     ret_val = e1000_mng_enable_host_if(hw);
7730     if (ret_val == E1000_SUCCESS) {
7731         ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7732                                           &(hdr.checksum));
7733         if (ret_val == E1000_SUCCESS) {
7734             ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7735             if (ret_val == E1000_SUCCESS)
7736                 ret_val = e1000_mng_write_commit(hw);
7737         }
7738     }
7739     return ret_val;
7740 }
7741
7742
7743 /*****************************************************************************
7744  * This function calculates the checksum.
7745  *
7746  * returns  - checksum of buffer contents.
7747  ****************************************************************************/
7748 static uint8_t
7749 e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7750 {
7751     uint8_t sum = 0;
7752     uint32_t i;
7753
7754     if (!buffer)
7755         return 0;
7756
7757     for (i=0; i < length; i++)
7758         sum += buffer[i];
7759
7760     return (uint8_t) (0 - sum);
7761 }
7762
7763 /*****************************************************************************
7764  * This function checks whether tx pkt filtering needs to be enabled or not.
7765  *
7766  * returns  - TRUE for packet filtering or FALSE.
7767  ****************************************************************************/
7768 boolean_t
7769 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7770 {
7771     /* called in init as well as watchdog timer functions */
7772
7773     int32_t ret_val, checksum;
7774     boolean_t tx_filter = FALSE;
7775     struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7776     uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7777
7778     if (e1000_check_mng_mode(hw)) {
7779         ret_val = e1000_mng_enable_host_if(hw);
7780         if (ret_val == E1000_SUCCESS) {
7781             ret_val = e1000_host_if_read_cookie(hw, buffer);
7782             if (ret_val == E1000_SUCCESS) {
7783                 checksum = hdr->checksum;
7784                 hdr->checksum = 0;
7785                 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7786                     checksum == e1000_calculate_mng_checksum((char *)buffer,
7787                                                E1000_MNG_DHCP_COOKIE_LENGTH)) {
7788                     if (hdr->status &
7789                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7790                         tx_filter = TRUE;
7791                 } else
7792                     tx_filter = TRUE;
7793             } else
7794                 tx_filter = TRUE;
7795         }
7796     }
7797
7798     hw->tx_pkt_filtering = tx_filter;
7799     return tx_filter;
7800 }
7801
7802 /******************************************************************************
7803  * Verifies the hardware needs to allow ARPs to be processed by the host
7804  *
7805  * hw - Struct containing variables accessed by shared code
7806  *
7807  * returns: - TRUE/FALSE
7808  *
7809  *****************************************************************************/
7810 uint32_t
7811 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7812 {
7813     uint32_t manc;
7814     uint32_t fwsm, factps;
7815
7816     if (hw->asf_firmware_present) {
7817         manc = E1000_READ_REG(hw, MANC);
7818
7819         if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7820             !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7821             return FALSE;
7822         if (e1000_arc_subsystem_valid(hw) == TRUE) {
7823             fwsm = E1000_READ_REG(hw, FWSM);
7824             factps = E1000_READ_REG(hw, FACTPS);
7825
7826             if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
7827                    e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
7828                 return TRUE;
7829         } else
7830             if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7831                 return TRUE;
7832     }
7833     return FALSE;
7834 }
7835
7836 static int32_t
7837 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7838 {
7839     int32_t ret_val;
7840     uint16_t mii_status_reg;
7841     uint16_t i;
7842
7843     /* Polarity reversal workaround for forced 10F/10H links. */
7844
7845     /* Disable the transmitter on the PHY */
7846
7847     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7848     if (ret_val)
7849         return ret_val;
7850     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7851     if (ret_val)
7852         return ret_val;
7853
7854     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7855     if (ret_val)
7856         return ret_val;
7857
7858     /* This loop will early-out if the NO link condition has been met. */
7859     for (i = PHY_FORCE_TIME; i > 0; i--) {
7860         /* Read the MII Status Register and wait for Link Status bit
7861          * to be clear.
7862          */
7863
7864         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7865         if (ret_val)
7866             return ret_val;
7867
7868         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7869         if (ret_val)
7870             return ret_val;
7871
7872         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7873         mdelay(100);
7874     }
7875
7876     /* Recommended delay time after link has been lost */
7877     mdelay(1000);
7878
7879     /* Now we will re-enable th transmitter on the PHY */
7880
7881     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7882     if (ret_val)
7883         return ret_val;
7884     mdelay(50);
7885     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7886     if (ret_val)
7887         return ret_val;
7888     mdelay(50);
7889     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7890     if (ret_val)
7891         return ret_val;
7892     mdelay(50);
7893     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7894     if (ret_val)
7895         return ret_val;
7896
7897     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7898     if (ret_val)
7899         return ret_val;
7900
7901     /* This loop will early-out if the link condition has been met. */
7902     for (i = PHY_FORCE_TIME; i > 0; i--) {
7903         /* Read the MII Status Register and wait for Link Status bit
7904          * to be set.
7905          */
7906
7907         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7908         if (ret_val)
7909             return ret_val;
7910
7911         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7912         if (ret_val)
7913             return ret_val;
7914
7915         if (mii_status_reg & MII_SR_LINK_STATUS) break;
7916         mdelay(100);
7917     }
7918     return E1000_SUCCESS;
7919 }
7920
7921 /***************************************************************************
7922  *
7923  * Disables PCI-Express master access.
7924  *
7925  * hw: Struct containing variables accessed by shared code
7926  *
7927  * returns: - none.
7928  *
7929  ***************************************************************************/
7930 static void
7931 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7932 {
7933     uint32_t ctrl;
7934
7935     DEBUGFUNC("e1000_set_pci_express_master_disable");
7936
7937     if (hw->bus_type != e1000_bus_type_pci_express)
7938         return;
7939
7940     ctrl = E1000_READ_REG(hw, CTRL);
7941     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7942     E1000_WRITE_REG(hw, CTRL, ctrl);
7943 }
7944
7945 /*******************************************************************************
7946  *
7947  * Disables PCI-Express master access and verifies there are no pending requests
7948  *
7949  * hw: Struct containing variables accessed by shared code
7950  *
7951  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7952  *            caused the master requests to be disabled.
7953  *            E1000_SUCCESS master requests disabled.
7954  *
7955  ******************************************************************************/
7956 int32_t
7957 e1000_disable_pciex_master(struct e1000_hw *hw)
7958 {
7959     int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
7960
7961     DEBUGFUNC("e1000_disable_pciex_master");
7962
7963     if (hw->bus_type != e1000_bus_type_pci_express)
7964         return E1000_SUCCESS;
7965
7966     e1000_set_pci_express_master_disable(hw);
7967
7968     while (timeout) {
7969         if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7970             break;
7971         else
7972             udelay(100);
7973         timeout--;
7974     }
7975
7976     if (!timeout) {
7977         DEBUGOUT("Master requests are pending.\n");
7978         return -E1000_ERR_MASTER_REQUESTS_PENDING;
7979     }
7980
7981     return E1000_SUCCESS;
7982 }
7983
7984 /*******************************************************************************
7985  *
7986  * Check for EEPROM Auto Read bit done.
7987  *
7988  * hw: Struct containing variables accessed by shared code
7989  *
7990  * returns: - E1000_ERR_RESET if fail to reset MAC
7991  *            E1000_SUCCESS at any other case.
7992  *
7993  ******************************************************************************/
7994 static int32_t
7995 e1000_get_auto_rd_done(struct e1000_hw *hw)
7996 {
7997     int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7998
7999     DEBUGFUNC("e1000_get_auto_rd_done");
8000
8001     switch (hw->mac_type) {
8002     default:
8003         msleep(5);
8004         break;
8005     case e1000_82571:
8006     case e1000_82572:
8007     case e1000_82573:
8008     case e1000_80003es2lan:
8009     case e1000_ich8lan:
8010         while (timeout) {
8011             if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8012                 break;
8013             else msleep(1);
8014             timeout--;
8015         }
8016
8017         if (!timeout) {
8018             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8019             return -E1000_ERR_RESET;
8020         }
8021         break;
8022     }
8023
8024     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8025      * Need to wait for PHY configuration completion before accessing NVM
8026      * and PHY. */
8027     if (hw->mac_type == e1000_82573)
8028         msleep(25);
8029
8030     return E1000_SUCCESS;
8031 }
8032
8033 /***************************************************************************
8034  * Checks if the PHY configuration is done
8035  *
8036  * hw: Struct containing variables accessed by shared code
8037  *
8038  * returns: - E1000_ERR_RESET if fail to reset MAC
8039  *            E1000_SUCCESS at any other case.
8040  *
8041  ***************************************************************************/
8042 static int32_t
8043 e1000_get_phy_cfg_done(struct e1000_hw *hw)
8044 {
8045     int32_t timeout = PHY_CFG_TIMEOUT;
8046     uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8047
8048     DEBUGFUNC("e1000_get_phy_cfg_done");
8049
8050     switch (hw->mac_type) {
8051     default:
8052         mdelay(10);
8053         break;
8054     case e1000_80003es2lan:
8055         /* Separate *_CFG_DONE_* bit for each port */
8056         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8057             cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8058         /* Fall Through */
8059     case e1000_82571:
8060     case e1000_82572:
8061         while (timeout) {
8062             if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8063                 break;
8064             else
8065                 msleep(1);
8066             timeout--;
8067         }
8068         if (!timeout) {
8069             DEBUGOUT("MNG configuration cycle has not completed.\n");
8070             return -E1000_ERR_RESET;
8071         }
8072         break;
8073     }
8074
8075     return E1000_SUCCESS;
8076 }
8077
8078 /***************************************************************************
8079  *
8080  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8081  * adapter or Eeprom access.
8082  *
8083  * hw: Struct containing variables accessed by shared code
8084  *
8085  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8086  *            E1000_SUCCESS at any other case.
8087  *
8088  ***************************************************************************/
8089 static int32_t
8090 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8091 {
8092     int32_t timeout;
8093     uint32_t swsm;
8094
8095     DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8096
8097     if (!hw->eeprom_semaphore_present)
8098         return E1000_SUCCESS;
8099
8100     if (hw->mac_type == e1000_80003es2lan) {
8101         /* Get the SW semaphore. */
8102         if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8103             return -E1000_ERR_EEPROM;
8104     }
8105
8106     /* Get the FW semaphore. */
8107     timeout = hw->eeprom.word_size + 1;
8108     while (timeout) {
8109         swsm = E1000_READ_REG(hw, SWSM);
8110         swsm |= E1000_SWSM_SWESMBI;
8111         E1000_WRITE_REG(hw, SWSM, swsm);
8112         /* if we managed to set the bit we got the semaphore. */
8113         swsm = E1000_READ_REG(hw, SWSM);
8114         if (swsm & E1000_SWSM_SWESMBI)
8115             break;
8116
8117         udelay(50);
8118         timeout--;
8119     }
8120
8121     if (!timeout) {
8122         /* Release semaphores */
8123         e1000_put_hw_eeprom_semaphore(hw);
8124         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8125         return -E1000_ERR_EEPROM;
8126     }
8127
8128     return E1000_SUCCESS;
8129 }
8130
8131 /***************************************************************************
8132  * This function clears HW semaphore bits.
8133  *
8134  * hw: Struct containing variables accessed by shared code
8135  *
8136  * returns: - None.
8137  *
8138  ***************************************************************************/
8139 static void
8140 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8141 {
8142     uint32_t swsm;
8143
8144     DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8145
8146     if (!hw->eeprom_semaphore_present)
8147         return;
8148
8149     swsm = E1000_READ_REG(hw, SWSM);
8150     if (hw->mac_type == e1000_80003es2lan) {
8151         /* Release both semaphores. */
8152         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8153     } else
8154         swsm &= ~(E1000_SWSM_SWESMBI);
8155     E1000_WRITE_REG(hw, SWSM, swsm);
8156 }
8157
8158 /***************************************************************************
8159  *
8160  * Obtaining software semaphore bit (SMBI) before resetting PHY.
8161  *
8162  * hw: Struct containing variables accessed by shared code
8163  *
8164  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8165  *            E1000_SUCCESS at any other case.
8166  *
8167  ***************************************************************************/
8168 static int32_t
8169 e1000_get_software_semaphore(struct e1000_hw *hw)
8170 {
8171     int32_t timeout = hw->eeprom.word_size + 1;
8172     uint32_t swsm;
8173
8174     DEBUGFUNC("e1000_get_software_semaphore");
8175
8176     if (hw->mac_type != e1000_80003es2lan) {
8177         return E1000_SUCCESS;
8178     }
8179
8180     while (timeout) {
8181         swsm = E1000_READ_REG(hw, SWSM);
8182         /* If SMBI bit cleared, it is now set and we hold the semaphore */
8183         if (!(swsm & E1000_SWSM_SMBI))
8184             break;
8185         mdelay(1);
8186         timeout--;
8187     }
8188
8189     if (!timeout) {
8190         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8191         return -E1000_ERR_RESET;
8192     }
8193
8194     return E1000_SUCCESS;
8195 }
8196
8197 /***************************************************************************
8198  *
8199  * Release semaphore bit (SMBI).
8200  *
8201  * hw: Struct containing variables accessed by shared code
8202  *
8203  ***************************************************************************/
8204 static void
8205 e1000_release_software_semaphore(struct e1000_hw *hw)
8206 {
8207     uint32_t swsm;
8208
8209     DEBUGFUNC("e1000_release_software_semaphore");
8210
8211     if (hw->mac_type != e1000_80003es2lan) {
8212         return;
8213     }
8214
8215     swsm = E1000_READ_REG(hw, SWSM);
8216     /* Release the SW semaphores.*/
8217     swsm &= ~E1000_SWSM_SMBI;
8218     E1000_WRITE_REG(hw, SWSM, swsm);
8219 }
8220
8221 /******************************************************************************
8222  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8223  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
8224  * the caller to figure out how to deal with it.
8225  *
8226  * hw - Struct containing variables accessed by shared code
8227  *
8228  * returns: - E1000_BLK_PHY_RESET
8229  *            E1000_SUCCESS
8230  *
8231  *****************************************************************************/
8232 int32_t
8233 e1000_check_phy_reset_block(struct e1000_hw *hw)
8234 {
8235     uint32_t manc = 0;
8236     uint32_t fwsm = 0;
8237
8238     if (hw->mac_type == e1000_ich8lan) {
8239         fwsm = E1000_READ_REG(hw, FWSM);
8240         return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8241                                             : E1000_BLK_PHY_RESET;
8242     }
8243
8244     if (hw->mac_type > e1000_82547_rev_2)
8245         manc = E1000_READ_REG(hw, MANC);
8246     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8247         E1000_BLK_PHY_RESET : E1000_SUCCESS;
8248 }
8249
8250 static uint8_t
8251 e1000_arc_subsystem_valid(struct e1000_hw *hw)
8252 {
8253     uint32_t fwsm;
8254
8255     /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8256      * may not be provided a DMA clock when no manageability features are
8257      * enabled.  We do not want to perform any reads/writes to these registers
8258      * if this is the case.  We read FWSM to determine the manageability mode.
8259      */
8260     switch (hw->mac_type) {
8261     case e1000_82571:
8262     case e1000_82572:
8263     case e1000_82573:
8264     case e1000_80003es2lan:
8265         fwsm = E1000_READ_REG(hw, FWSM);
8266         if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8267             return TRUE;
8268         break;
8269     case e1000_ich8lan:
8270         return TRUE;
8271     default:
8272         break;
8273     }
8274     return FALSE;
8275 }
8276
8277
8278 /******************************************************************************
8279  * Configure PCI-Ex no-snoop
8280  *
8281  * hw - Struct containing variables accessed by shared code.
8282  * no_snoop - Bitmap of no-snoop events.
8283  *
8284  * returns: E1000_SUCCESS
8285  *
8286  *****************************************************************************/
8287 static int32_t
8288 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8289 {
8290     uint32_t gcr_reg = 0;
8291
8292     DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8293
8294     if (hw->bus_type == e1000_bus_type_unknown)
8295         e1000_get_bus_info(hw);
8296
8297     if (hw->bus_type != e1000_bus_type_pci_express)
8298         return E1000_SUCCESS;
8299
8300     if (no_snoop) {
8301         gcr_reg = E1000_READ_REG(hw, GCR);
8302         gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8303         gcr_reg |= no_snoop;
8304         E1000_WRITE_REG(hw, GCR, gcr_reg);
8305     }
8306     if (hw->mac_type == e1000_ich8lan) {
8307         uint32_t ctrl_ext;
8308
8309         E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8310
8311         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8312         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8313         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8314     }
8315
8316     return E1000_SUCCESS;
8317 }
8318
8319 /***************************************************************************
8320  *
8321  * Get software semaphore FLAG bit (SWFLAG).
8322  * SWFLAG is used to synchronize the access to all shared resource between
8323  * SW, FW and HW.
8324  *
8325  * hw: Struct containing variables accessed by shared code
8326  *
8327  ***************************************************************************/
8328 static int32_t
8329 e1000_get_software_flag(struct e1000_hw *hw)
8330 {
8331     int32_t timeout = PHY_CFG_TIMEOUT;
8332     uint32_t extcnf_ctrl;
8333
8334     DEBUGFUNC("e1000_get_software_flag");
8335
8336     if (hw->mac_type == e1000_ich8lan) {
8337         while (timeout) {
8338             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8339             extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8340             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8341
8342             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8343             if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8344                 break;
8345             mdelay(1);
8346             timeout--;
8347         }
8348
8349         if (!timeout) {
8350             DEBUGOUT("FW or HW locks the resource too long.\n");
8351             return -E1000_ERR_CONFIG;
8352         }
8353     }
8354
8355     return E1000_SUCCESS;
8356 }
8357
8358 /***************************************************************************
8359  *
8360  * Release software semaphore FLAG bit (SWFLAG).
8361  * SWFLAG is used to synchronize the access to all shared resource between
8362  * SW, FW and HW.
8363  *
8364  * hw: Struct containing variables accessed by shared code
8365  *
8366  ***************************************************************************/
8367 static void
8368 e1000_release_software_flag(struct e1000_hw *hw)
8369 {
8370     uint32_t extcnf_ctrl;
8371
8372     DEBUGFUNC("e1000_release_software_flag");
8373
8374     if (hw->mac_type == e1000_ich8lan) {
8375         extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8376         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8377         E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8378     }
8379
8380     return;
8381 }
8382
8383 /******************************************************************************
8384  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8385  * register.
8386  *
8387  * hw - Struct containing variables accessed by shared code
8388  * offset - offset of word in the EEPROM to read
8389  * data - word read from the EEPROM
8390  * words - number of words to read
8391  *****************************************************************************/
8392 static int32_t
8393 e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8394                        uint16_t *data)
8395 {
8396     int32_t  error = E1000_SUCCESS;
8397     uint32_t flash_bank = 0;
8398     uint32_t act_offset = 0;
8399     uint32_t bank_offset = 0;
8400     uint16_t word = 0;
8401     uint16_t i = 0;
8402
8403     /* We need to know which is the valid flash bank.  In the event
8404      * that we didn't allocate eeprom_shadow_ram, we may not be
8405      * managing flash_bank.  So it cannot be trusted and needs
8406      * to be updated with each read.
8407      */
8408     /* Value of bit 22 corresponds to the flash bank we're on. */
8409     flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8410
8411     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8412     bank_offset = flash_bank * (hw->flash_bank_size * 2);
8413
8414     error = e1000_get_software_flag(hw);
8415     if (error != E1000_SUCCESS)
8416         return error;
8417
8418     for (i = 0; i < words; i++) {
8419         if (hw->eeprom_shadow_ram != NULL &&
8420             hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8421             data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8422         } else {
8423             /* The NVM part needs a byte offset, hence * 2 */
8424             act_offset = bank_offset + ((offset + i) * 2);
8425             error = e1000_read_ich8_word(hw, act_offset, &word);
8426             if (error != E1000_SUCCESS)
8427                 break;
8428             data[i] = word;
8429         }
8430     }
8431
8432     e1000_release_software_flag(hw);
8433
8434     return error;
8435 }
8436
8437 /******************************************************************************
8438  * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8439  * register.  Actually, writes are written to the shadow ram cache in the hw
8440  * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
8441  * the NVM, which occurs when the NVM checksum is updated.
8442  *
8443  * hw - Struct containing variables accessed by shared code
8444  * offset - offset of word in the EEPROM to write
8445  * words - number of words to write
8446  * data - words to write to the EEPROM
8447  *****************************************************************************/
8448 static int32_t
8449 e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8450                         uint16_t *data)
8451 {
8452     uint32_t i = 0;
8453     int32_t error = E1000_SUCCESS;
8454
8455     error = e1000_get_software_flag(hw);
8456     if (error != E1000_SUCCESS)
8457         return error;
8458
8459     /* A driver can write to the NVM only if it has eeprom_shadow_ram
8460      * allocated.  Subsequent reads to the modified words are read from
8461      * this cached structure as well.  Writes will only go into this
8462      * cached structure unless it's followed by a call to
8463      * e1000_update_eeprom_checksum() where it will commit the changes
8464      * and clear the "modified" field.
8465      */
8466     if (hw->eeprom_shadow_ram != NULL) {
8467         for (i = 0; i < words; i++) {
8468             if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8469                 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8470                 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8471             } else {
8472                 error = -E1000_ERR_EEPROM;
8473                 break;
8474             }
8475         }
8476     } else {
8477         /* Drivers have the option to not allocate eeprom_shadow_ram as long
8478          * as they don't perform any NVM writes.  An attempt in doing so
8479          * will result in this error.
8480          */
8481         error = -E1000_ERR_EEPROM;
8482     }
8483
8484     e1000_release_software_flag(hw);
8485
8486     return error;
8487 }
8488
8489 /******************************************************************************
8490  * This function does initial flash setup so that a new read/write/erase cycle
8491  * can be started.
8492  *
8493  * hw - The pointer to the hw structure
8494  ****************************************************************************/
8495 static int32_t
8496 e1000_ich8_cycle_init(struct e1000_hw *hw)
8497 {
8498     union ich8_hws_flash_status hsfsts;
8499     int32_t error = E1000_ERR_EEPROM;
8500     int32_t i     = 0;
8501
8502     DEBUGFUNC("e1000_ich8_cycle_init");
8503
8504     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8505
8506     /* May be check the Flash Des Valid bit in Hw status */
8507     if (hsfsts.hsf_status.fldesvalid == 0) {
8508         DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
8509         return error;
8510     }
8511
8512     /* Clear FCERR in Hw status by writing 1 */
8513     /* Clear DAEL in Hw status by writing a 1 */
8514     hsfsts.hsf_status.flcerr = 1;
8515     hsfsts.hsf_status.dael = 1;
8516
8517     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8518
8519     /* Either we should have a hardware SPI cycle in progress bit to check
8520      * against, in order to start a new cycle or FDONE bit should be changed
8521      * in the hardware so that it is 1 after harware reset, which can then be
8522      * used as an indication whether a cycle is in progress or has been
8523      * completed .. we should also have some software semaphore mechanism to
8524      * guard FDONE or the cycle in progress bit so that two threads access to
8525      * those bits can be sequentiallized or a way so that 2 threads dont
8526      * start the cycle at the same time */
8527
8528     if (hsfsts.hsf_status.flcinprog == 0) {
8529         /* There is no cycle running at present, so we can start a cycle */
8530         /* Begin by setting Flash Cycle Done. */
8531         hsfsts.hsf_status.flcdone = 1;
8532         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8533         error = E1000_SUCCESS;
8534     } else {
8535         /* otherwise poll for sometime so the current cycle has a chance
8536          * to end before giving up. */
8537         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
8538             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8539             if (hsfsts.hsf_status.flcinprog == 0) {
8540                 error = E1000_SUCCESS;
8541                 break;
8542             }
8543             udelay(1);
8544         }
8545         if (error == E1000_SUCCESS) {
8546             /* Successful in waiting for previous cycle to timeout,
8547              * now set the Flash Cycle Done. */
8548             hsfsts.hsf_status.flcdone = 1;
8549             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8550         } else {
8551             DEBUGOUT("Flash controller busy, cannot get access");
8552         }
8553     }
8554     return error;
8555 }
8556
8557 /******************************************************************************
8558  * This function starts a flash cycle and waits for its completion
8559  *
8560  * hw - The pointer to the hw structure
8561  ****************************************************************************/
8562 static int32_t
8563 e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8564 {
8565     union ich8_hws_flash_ctrl hsflctl;
8566     union ich8_hws_flash_status hsfsts;
8567     int32_t error = E1000_ERR_EEPROM;
8568     uint32_t i = 0;
8569
8570     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8571     hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8572     hsflctl.hsf_ctrl.flcgo = 1;
8573     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8574
8575     /* wait till FDONE bit is set to 1 */
8576     do {
8577         hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8578         if (hsfsts.hsf_status.flcdone == 1)
8579             break;
8580         udelay(1);
8581         i++;
8582     } while (i < timeout);
8583     if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8584         error = E1000_SUCCESS;
8585     }
8586     return error;
8587 }
8588
8589 /******************************************************************************
8590  * Reads a byte or word from the NVM using the ICH8 flash access registers.
8591  *
8592  * hw - The pointer to the hw structure
8593  * index - The index of the byte or word to read.
8594  * size - Size of data to read, 1=byte 2=word
8595  * data - Pointer to the word to store the value read.
8596  *****************************************************************************/
8597 static int32_t
8598 e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8599                      uint32_t size, uint16_t* data)
8600 {
8601     union ich8_hws_flash_status hsfsts;
8602     union ich8_hws_flash_ctrl hsflctl;
8603     uint32_t flash_linear_address;
8604     uint32_t flash_data = 0;
8605     int32_t error = -E1000_ERR_EEPROM;
8606     int32_t count = 0;
8607
8608     DEBUGFUNC("e1000_read_ich8_data");
8609
8610     if (size < 1  || size > 2 || data == NULL ||
8611         index > ICH_FLASH_LINEAR_ADDR_MASK)
8612         return error;
8613
8614     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8615                            hw->flash_base_addr;
8616
8617     do {
8618         udelay(1);
8619         /* Steps */
8620         error = e1000_ich8_cycle_init(hw);
8621         if (error != E1000_SUCCESS)
8622             break;
8623
8624         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8625         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8626         hsflctl.hsf_ctrl.fldbcount = size - 1;
8627         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
8628         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8629
8630         /* Write the last 24 bits of index into Flash Linear address field in
8631          * Flash Address */
8632         /* TODO: TBD maybe check the index against the size of flash */
8633
8634         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8635
8636         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8637
8638         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8639          * sequence a few more times, else read in (shift in) the Flash Data0,
8640          * the order is least significant byte first msb to lsb */
8641         if (error == E1000_SUCCESS) {
8642             flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
8643             if (size == 1) {
8644                 *data = (uint8_t)(flash_data & 0x000000FF);
8645             } else if (size == 2) {
8646                 *data = (uint16_t)(flash_data & 0x0000FFFF);
8647             }
8648             break;
8649         } else {
8650             /* If we've gotten here, then things are probably completely hosed,
8651              * but if the error condition is detected, it won't hurt to give
8652              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8653              */
8654             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8655             if (hsfsts.hsf_status.flcerr == 1) {
8656                 /* Repeat for some time before giving up. */
8657                 continue;
8658             } else if (hsfsts.hsf_status.flcdone == 0) {
8659                 DEBUGOUT("Timeout error - flash cycle did not complete.");
8660                 break;
8661             }
8662         }
8663     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8664
8665     return error;
8666 }
8667
8668 /******************************************************************************
8669  * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8670  *
8671  * hw - The pointer to the hw structure
8672  * index - The index of the byte/word to read.
8673  * size - Size of data to read, 1=byte 2=word
8674  * data - The byte(s) to write to the NVM.
8675  *****************************************************************************/
8676 static int32_t
8677 e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8678                       uint16_t data)
8679 {
8680     union ich8_hws_flash_status hsfsts;
8681     union ich8_hws_flash_ctrl hsflctl;
8682     uint32_t flash_linear_address;
8683     uint32_t flash_data = 0;
8684     int32_t error = -E1000_ERR_EEPROM;
8685     int32_t count = 0;
8686
8687     DEBUGFUNC("e1000_write_ich8_data");
8688
8689     if (size < 1  || size > 2 || data > size * 0xff ||
8690         index > ICH_FLASH_LINEAR_ADDR_MASK)
8691         return error;
8692
8693     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8694                            hw->flash_base_addr;
8695
8696     do {
8697         udelay(1);
8698         /* Steps */
8699         error = e1000_ich8_cycle_init(hw);
8700         if (error != E1000_SUCCESS)
8701             break;
8702
8703         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8704         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8705         hsflctl.hsf_ctrl.fldbcount = size -1;
8706         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
8707         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8708
8709         /* Write the last 24 bits of index into Flash Linear address field in
8710          * Flash Address */
8711         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8712
8713         if (size == 1)
8714             flash_data = (uint32_t)data & 0x00FF;
8715         else
8716             flash_data = (uint32_t)data;
8717
8718         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
8719
8720         /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8721          * sequence a few more times else done */
8722         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8723         if (error == E1000_SUCCESS) {
8724             break;
8725         } else {
8726             /* If we're here, then things are most likely completely hosed,
8727              * but if the error condition is detected, it won't hurt to give
8728              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8729              */
8730             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8731             if (hsfsts.hsf_status.flcerr == 1) {
8732                 /* Repeat for some time before giving up. */
8733                 continue;
8734             } else if (hsfsts.hsf_status.flcdone == 0) {
8735                 DEBUGOUT("Timeout error - flash cycle did not complete.");
8736                 break;
8737             }
8738         }
8739     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8740
8741     return error;
8742 }
8743
8744 /******************************************************************************
8745  * Reads a single byte from the NVM using the ICH8 flash access registers.
8746  *
8747  * hw - pointer to e1000_hw structure
8748  * index - The index of the byte to read.
8749  * data - Pointer to a byte to store the value read.
8750  *****************************************************************************/
8751 static int32_t
8752 e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8753 {
8754     int32_t status = E1000_SUCCESS;
8755     uint16_t word = 0;
8756
8757     status = e1000_read_ich8_data(hw, index, 1, &word);
8758     if (status == E1000_SUCCESS) {
8759         *data = (uint8_t)word;
8760     }
8761
8762     return status;
8763 }
8764
8765 /******************************************************************************
8766  * Writes a single byte to the NVM using the ICH8 flash access registers.
8767  * Performs verification by reading back the value and then going through
8768  * a retry algorithm before giving up.
8769  *
8770  * hw - pointer to e1000_hw structure
8771  * index - The index of the byte to write.
8772  * byte - The byte to write to the NVM.
8773  *****************************************************************************/
8774 static int32_t
8775 e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8776 {
8777     int32_t error = E1000_SUCCESS;
8778     int32_t program_retries = 0;
8779
8780     DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
8781
8782     error = e1000_write_ich8_byte(hw, index, byte);
8783
8784     if (error != E1000_SUCCESS) {
8785         for (program_retries = 0; program_retries < 100; program_retries++) {
8786             DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8787             error = e1000_write_ich8_byte(hw, index, byte);
8788             udelay(100);
8789             if (error == E1000_SUCCESS)
8790                 break;
8791         }
8792     }
8793
8794     if (program_retries == 100)
8795         error = E1000_ERR_EEPROM;
8796
8797     return error;
8798 }
8799
8800 /******************************************************************************
8801  * Writes a single byte to the NVM using the ICH8 flash access registers.
8802  *
8803  * hw - pointer to e1000_hw structure
8804  * index - The index of the byte to read.
8805  * data - The byte to write to the NVM.
8806  *****************************************************************************/
8807 static int32_t
8808 e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8809 {
8810     int32_t status = E1000_SUCCESS;
8811     uint16_t word = (uint16_t)data;
8812
8813     status = e1000_write_ich8_data(hw, index, 1, word);
8814
8815     return status;
8816 }
8817
8818 /******************************************************************************
8819  * Reads a word from the NVM using the ICH8 flash access registers.
8820  *
8821  * hw - pointer to e1000_hw structure
8822  * index - The starting byte index of the word to read.
8823  * data - Pointer to a word to store the value read.
8824  *****************************************************************************/
8825 static int32_t
8826 e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8827 {
8828     int32_t status = E1000_SUCCESS;
8829     status = e1000_read_ich8_data(hw, index, 2, data);
8830     return status;
8831 }
8832
8833 /******************************************************************************
8834  * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8835  * based.
8836  *
8837  * hw - pointer to e1000_hw structure
8838  * bank - 0 for first bank, 1 for second bank
8839  *
8840  * Note that this function may actually erase as much as 8 or 64 KBytes.  The
8841  * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8842  * bank size may be 4, 8 or 64 KBytes
8843  *****************************************************************************/
8844 static int32_t
8845 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
8846 {
8847     union ich8_hws_flash_status hsfsts;
8848     union ich8_hws_flash_ctrl hsflctl;
8849     uint32_t flash_linear_address;
8850     int32_t  count = 0;
8851     int32_t  error = E1000_ERR_EEPROM;
8852     int32_t  iteration;
8853     int32_t  sub_sector_size = 0;
8854     int32_t  bank_size;
8855     int32_t  j = 0;
8856     int32_t  error_flag = 0;
8857
8858     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8859
8860     /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8861     /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8862      *     consecutive sectors.  The start index for the nth Hw sector can be
8863      *     calculated as bank * 4096 + n * 256
8864      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8865      *     The start index for the nth Hw sector can be calculated
8866      *     as bank * 4096
8867      * 10: The HW sector is 8K bytes
8868      * 11: The Hw sector size is 64K bytes */
8869     if (hsfsts.hsf_status.berasesz == 0x0) {
8870         /* Hw sector size 256 */
8871         sub_sector_size = ICH_FLASH_SEG_SIZE_256;
8872         bank_size = ICH_FLASH_SECTOR_SIZE;
8873         iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
8874     } else if (hsfsts.hsf_status.berasesz == 0x1) {
8875         bank_size = ICH_FLASH_SEG_SIZE_4K;
8876         iteration = 1;
8877     } else if (hsfsts.hsf_status.berasesz == 0x3) {
8878         bank_size = ICH_FLASH_SEG_SIZE_64K;
8879         iteration = 1;
8880     } else {
8881         return error;
8882     }
8883
8884     for (j = 0; j < iteration ; j++) {
8885         do {
8886             count++;
8887             /* Steps */
8888             error = e1000_ich8_cycle_init(hw);
8889             if (error != E1000_SUCCESS) {
8890                 error_flag = 1;
8891                 break;
8892             }
8893
8894             /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8895              * Control */
8896             hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8897             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
8898             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8899
8900             /* Write the last 24 bits of an index within the block into Flash
8901              * Linear address field in Flash Address.  This probably needs to
8902              * be calculated here based off the on-chip erase sector size and
8903              * the software bank size (4, 8 or 64 KBytes) */
8904             flash_linear_address = bank * bank_size + j * sub_sector_size;
8905             flash_linear_address += hw->flash_base_addr;
8906             flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
8907
8908             E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8909
8910             error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
8911             /* Check if FCERR is set to 1.  If 1, clear it and try the whole
8912              * sequence a few more times else Done */
8913             if (error == E1000_SUCCESS) {
8914                 break;
8915             } else {
8916                 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8917                 if (hsfsts.hsf_status.flcerr == 1) {
8918                     /* repeat for some time before giving up */
8919                     continue;
8920                 } else if (hsfsts.hsf_status.flcdone == 0) {
8921                     error_flag = 1;
8922                     break;
8923                 }
8924             }
8925         } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8926         if (error_flag == 1)
8927             break;
8928     }
8929     if (error_flag != 1)
8930         error = E1000_SUCCESS;
8931     return error;
8932 }
8933
8934 static int32_t
8935 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8936                                       uint32_t cnf_base_addr, uint32_t cnf_size)
8937 {
8938     uint32_t ret_val = E1000_SUCCESS;
8939     uint16_t word_addr, reg_data, reg_addr;
8940     uint16_t i;
8941
8942     /* cnf_base_addr is in DWORD */
8943     word_addr = (uint16_t)(cnf_base_addr << 1);
8944
8945     /* cnf_size is returned in size of dwords */
8946     for (i = 0; i < cnf_size; i++) {
8947         ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8948         if (ret_val)
8949             return ret_val;
8950
8951         ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8952         if (ret_val)
8953             return ret_val;
8954
8955         ret_val = e1000_get_software_flag(hw);
8956         if (ret_val != E1000_SUCCESS)
8957             return ret_val;
8958
8959         ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
8960
8961         e1000_release_software_flag(hw);
8962     }
8963
8964     return ret_val;
8965 }
8966
8967
8968 /******************************************************************************
8969  * This function initializes the PHY from the NVM on ICH8 platforms. This
8970  * is needed due to an issue where the NVM configuration is not properly
8971  * autoloaded after power transitions. Therefore, after each PHY reset, we
8972  * will load the configuration data out of the NVM manually.
8973  *
8974  * hw: Struct containing variables accessed by shared code
8975  *****************************************************************************/
8976 static int32_t
8977 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8978 {
8979     uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8980
8981     if (hw->phy_type != e1000_phy_igp_3)
8982           return E1000_SUCCESS;
8983
8984     /* Check if SW needs configure the PHY */
8985     reg_data = E1000_READ_REG(hw, FEXTNVM);
8986     if (!(reg_data & FEXTNVM_SW_CONFIG))
8987         return E1000_SUCCESS;
8988
8989     /* Wait for basic configuration completes before proceeding*/
8990     loop = 0;
8991     do {
8992         reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
8993         udelay(100);
8994         loop++;
8995     } while ((!reg_data) && (loop < 50));
8996
8997     /* Clear the Init Done bit for the next init event */
8998     reg_data = E1000_READ_REG(hw, STATUS);
8999     reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9000     E1000_WRITE_REG(hw, STATUS, reg_data);
9001
9002     /* Make sure HW does not configure LCD from PHY extended configuration
9003        before SW configuration */
9004     reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9005     if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9006         reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9007         cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9008         cnf_size >>= 16;
9009         if (cnf_size) {
9010             reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9011             cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9012             /* cnf_base_addr is in DWORD */
9013             cnf_base_addr >>= 16;
9014
9015             /* Configure LCD from extended configuration region. */
9016             ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9017                                                             cnf_size);
9018             if (ret_val)
9019                 return ret_val;
9020         }
9021     }
9022
9023     return E1000_SUCCESS;
9024 }
9025