2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
103 * Inherited from caller.
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
125 fis[13] = tf->hob_nsect;
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
143 * Inherited from caller.
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
161 tf->hob_nsect = fis[13];
164 static const u8 ata_rw_cmds[] = {
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
191 ATA_CMD_WRITE_FUA_EXT
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
210 int index, fua, lba48, write;
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
224 tf->protocol = ATA_PROT_DMA;
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
283 static const struct ata_xfer_ent {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
304 * Matching XFER_* value, 0 if no match found.
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
321 * Return matching xfer_mask for @xfer_mode.
327 * Matching xfer_mask, 0 if no match found.
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
331 const struct ata_xfer_ent *ent;
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
343 * Return matching xfer_shift for @xfer_mode.
349 * Matching xfer_shift, -1 if no match found.
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
353 const struct ata_xfer_ent *ent;
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
375 static const char *ata_mode_string(unsigned int xfer_mask)
377 static const char * const xfer_mode_str[] = {
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
403 static const char *sata_spd_string(unsigned int spd)
405 static const char * const spd_str[] = {
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
412 return spd_str[spd - 1];
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
445 struct ata_ioports *ioaddr = &ap->ioaddr;
448 ap->ops->dev_select(ap, device);
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
465 return 0; /* nothing found */
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
489 struct ata_ioports *ioaddr = &ap->ioaddr;
492 ap->ops->dev_select(ap, device);
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
509 return 0; /* nothing found */
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
525 static unsigned int ata_devchk(struct ata_port *ap,
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
597 struct ata_taskfile tf;
601 ap->ops->dev_select(ap, device);
603 memset(&tf, 0, sizeof(tf));
605 ap->ops->tf_read(ap, &tf);
610 /* see if device passed diags */
613 else if ((device == 0) && (err == 0x81))
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
621 if (class == ATA_DEV_UNKNOWN)
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
683 ata_id_string(id, s, ofs, len - 1);
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
691 static u64 ata_id_n_sectors(const u16 *id)
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
697 return ata_id_u32(id, 60);
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
702 return id[1] * id[3] * id[6];
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * This function performs no actual function.
713 * May be used as the dev_select() entry in ata_port_operations.
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
732 * May be used as the dev_select() entry in ata_port_operations.
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
743 tmp = ATA_DEVICE_OBS;
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
750 outb(tmp, ap->ioaddr.device_addr);
752 ata_pause(ap); /* needed; also flushes, for mmio */
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
783 ap->ops->dev_select(ap, device);
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 static inline void ata_dump_id(const u16 *id)
805 DPRINTK("49==0x%04x "
815 DPRINTK("80==0x%04x "
825 DPRINTK("88==0x%04x "
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
838 * FIXME: pre IDE drive timing (do we care ?).
846 static unsigned int ata_id_xfermask(const u16 *id)
848 unsigned int pio_mask, mwdma_mask, udma_mask;
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
893 * Inherited from caller.
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
903 PREPARE_WORK(&ap->port_task, fn, data);
906 rc = queue_work(ata_wq, &ap->port_task);
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
910 /* rc == 0 means that another user is using port task */
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
922 * Kernel thread context (may sleep)
924 void ata_port_flush_task(struct ata_port *ap)
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
956 struct completion *waiting = qc->private_data;
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
979 * None. Should be called with kernel context, might sleep.
982 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
990 unsigned int err_mask;
992 spin_lock_irqsave(&ap->host_set->lock, flags);
994 qc = ata_qc_new_init(ap, dev);
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1035 err_mask = qc->err_mask;
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1048 * Kill the following code as soon as those drivers are fixed.
1050 if (ap->flags & ATA_FLAG_DISABLED) {
1051 err_mask |= AC_ERR_SYSTEM;
1059 * ata_pio_need_iordy - check if iordy needed
1062 * Check if the current speed of the device requires IORDY. Used
1063 * by various controllers for chip configuration.
1066 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069 int speed = adev->pio_mode - XFER_PIO_0;
1076 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1078 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1079 pio = adev->id[ATA_ID_EIDE_PIO];
1080 /* Is the speed faster than the drive allows non IORDY ? */
1082 /* This is cycle times not frequency - watch the logic! */
1083 if (pio > 240) /* PIO2 is 240nS per cycle */
1092 * ata_dev_read_id - Read ID data from the specified device
1093 * @ap: port on which target device resides
1094 * @dev: target device
1095 * @p_class: pointer to class of the target device (may be changed)
1096 * @post_reset: is this read ID post-reset?
1097 * @p_id: read IDENTIFY page (newly allocated)
1099 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1100 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1101 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1102 * for pre-ATA4 drives.
1105 * Kernel thread context (may sleep)
1108 * 0 on success, -errno otherwise.
1110 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1111 unsigned int *p_class, int post_reset, u16 **p_id)
1113 unsigned int class = *p_class;
1114 struct ata_taskfile tf;
1115 unsigned int err_mask = 0;
1120 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1122 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1124 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1127 reason = "out of memory";
1132 ata_tf_init(ap, &tf, dev->devno);
1136 tf.command = ATA_CMD_ID_ATA;
1139 tf.command = ATA_CMD_ID_ATAPI;
1143 reason = "unsupported class";
1147 tf.protocol = ATA_PROT_PIO;
1149 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1150 id, sizeof(id[0]) * ATA_ID_WORDS);
1153 reason = "I/O error";
1157 swap_buf_le16(id, ATA_ID_WORDS);
1160 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1162 reason = "device reports illegal type";
1166 if (post_reset && class == ATA_DEV_ATA) {
1168 * The exact sequence expected by certain pre-ATA4 drives is:
1171 * INITIALIZE DEVICE PARAMETERS
1173 * Some drives were very specific about that exact sequence.
1175 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1176 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1179 reason = "INIT_DEV_PARAMS failed";
1183 /* current CHS translation info (id[53-58]) might be
1184 * changed. reread the identify device info.
1196 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1197 ap->id, dev->devno, reason);
1202 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1203 struct ata_device *dev)
1205 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1209 * ata_dev_configure - Configure the specified ATA/ATAPI device
1210 * @ap: Port on which target device resides
1211 * @dev: Target device to configure
1212 * @print_info: Enable device info printout
1214 * Configure @dev according to @dev->id. Generic and low-level
1215 * driver specific fixups are also applied.
1218 * Kernel thread context (may sleep)
1221 * 0 on success, -errno otherwise
1223 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1226 const u16 *id = dev->id;
1227 unsigned int xfer_mask;
1230 if (!ata_dev_enabled(dev)) {
1231 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1232 ap->id, dev->devno);
1236 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1238 /* print device capabilities */
1240 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1241 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1242 ap->id, dev->devno, id[49], id[82], id[83],
1243 id[84], id[85], id[86], id[87], id[88]);
1245 /* initialize to-be-configured parameters */
1246 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1247 dev->max_sectors = 0;
1255 * common ATA, ATAPI feature tests
1258 /* find max transfer mode; for printk only */
1259 xfer_mask = ata_id_xfermask(id);
1263 /* ATA-specific feature tests */
1264 if (dev->class == ATA_DEV_ATA) {
1265 dev->n_sectors = ata_id_n_sectors(id);
1267 if (ata_id_has_lba(id)) {
1268 const char *lba_desc;
1271 dev->flags |= ATA_DFLAG_LBA;
1272 if (ata_id_has_lba48(id)) {
1273 dev->flags |= ATA_DFLAG_LBA48;
1277 /* print device info to dmesg */
1279 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1280 "max %s, %Lu sectors: %s\n",
1282 ata_id_major_version(id),
1283 ata_mode_string(xfer_mask),
1284 (unsigned long long)dev->n_sectors,
1289 /* Default translation */
1290 dev->cylinders = id[1];
1292 dev->sectors = id[6];
1294 if (ata_id_current_chs_valid(id)) {
1295 /* Current CHS translation is valid. */
1296 dev->cylinders = id[54];
1297 dev->heads = id[55];
1298 dev->sectors = id[56];
1301 /* print device info to dmesg */
1303 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1304 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1306 ata_id_major_version(id),
1307 ata_mode_string(xfer_mask),
1308 (unsigned long long)dev->n_sectors,
1309 dev->cylinders, dev->heads, dev->sectors);
1315 /* ATAPI-specific feature tests */
1316 else if (dev->class == ATA_DEV_ATAPI) {
1317 rc = atapi_cdb_len(id);
1318 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1319 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1323 dev->cdb_len = (unsigned int) rc;
1325 /* print device info to dmesg */
1327 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1328 ap->id, dev->devno, ata_mode_string(xfer_mask));
1331 ap->host->max_cmd_len = 0;
1332 for (i = 0; i < ATA_MAX_DEVICES; i++)
1333 ap->host->max_cmd_len = max_t(unsigned int,
1334 ap->host->max_cmd_len,
1335 ap->device[i].cdb_len);
1337 /* limit bridge transfers to udma5, 200 sectors */
1338 if (ata_dev_knobble(ap, dev)) {
1340 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1341 ap->id, dev->devno);
1342 dev->udma_mask &= ATA_UDMA5;
1343 dev->max_sectors = ATA_MAX_SECTORS;
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, dev);
1349 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1353 DPRINTK("EXIT, err\n");
1358 * ata_bus_probe - Reset and probe ATA bus
1361 * Master ATA bus probing function. Initiates a hardware-dependent
1362 * bus reset, then attempts to identify any devices found on
1366 * PCI/etc. bus probe sem.
1369 * Zero on success, negative errno otherwise.
1372 static int ata_bus_probe(struct ata_port *ap)
1374 unsigned int classes[ATA_MAX_DEVICES];
1375 int tries[ATA_MAX_DEVICES];
1376 int i, rc, down_xfermask;
1377 struct ata_device *dev;
1381 for (i = 0; i < ATA_MAX_DEVICES; i++)
1382 tries[i] = ATA_PROBE_MAX_TRIES;
1387 /* reset and determine device classes */
1388 for (i = 0; i < ATA_MAX_DEVICES; i++)
1389 classes[i] = ATA_DEV_UNKNOWN;
1391 if (ap->ops->probe_reset) {
1392 rc = ap->ops->probe_reset(ap, classes);
1394 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1398 ap->ops->phy_reset(ap);
1400 if (!(ap->flags & ATA_FLAG_DISABLED))
1401 for (i = 0; i < ATA_MAX_DEVICES; i++)
1402 classes[i] = ap->device[i].class;
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
1408 if (classes[i] == ATA_DEV_UNKNOWN)
1409 classes[i] = ATA_DEV_NONE;
1411 /* read IDENTIFY page and configure devices */
1412 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1413 dev = &ap->device[i];
1416 dev->class = classes[i];
1418 if (!ata_dev_enabled(dev))
1423 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1427 rc = ata_dev_configure(ap, dev, 1);
1432 /* configure transfer mode */
1433 if (ap->ops->set_mode) {
1434 /* FIXME: make ->set_mode handle no device case and
1435 * return error code and failing device on failure as
1436 * ata_set_mode() does.
1438 for (i = 0; i < ATA_MAX_DEVICES; i++)
1439 if (ata_dev_enabled(&ap->device[i])) {
1440 ap->ops->set_mode(ap);
1445 rc = ata_set_mode(ap, &dev);
1452 for (i = 0; i < ATA_MAX_DEVICES; i++)
1453 if (ata_dev_enabled(&ap->device[i]))
1456 /* no device present, disable port */
1457 ata_port_disable(ap);
1458 ap->ops->port_disable(ap);
1465 tries[dev->devno] = 0;
1468 sata_down_spd_limit(ap);
1471 tries[dev->devno]--;
1472 if (down_xfermask &&
1473 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1474 tries[dev->devno] = 0;
1477 if (!tries[dev->devno]) {
1478 ata_down_xfermask_limit(ap, dev, 1);
1479 ata_dev_disable(ap, dev);
1486 * ata_port_probe - Mark port as enabled
1487 * @ap: Port for which we indicate enablement
1489 * Modify @ap data structure such that the system
1490 * thinks that the entire port is enabled.
1492 * LOCKING: host_set lock, or some other form of
1496 void ata_port_probe(struct ata_port *ap)
1498 ap->flags &= ~ATA_FLAG_DISABLED;
1502 * sata_print_link_status - Print SATA link status
1503 * @ap: SATA port to printk link status about
1505 * This function prints link speed and status of a SATA link.
1510 static void sata_print_link_status(struct ata_port *ap)
1512 u32 sstatus, scontrol, tmp;
1514 if (!ap->ops->scr_read)
1517 sstatus = scr_read(ap, SCR_STATUS);
1518 scontrol = scr_read(ap, SCR_CONTROL);
1520 if (sata_dev_present(ap)) {
1521 tmp = (sstatus >> 4) & 0xf;
1523 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1524 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1527 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1528 ap->id, sstatus, scontrol);
1533 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1534 * @ap: SATA port associated with target SATA PHY.
1536 * This function issues commands to standard SATA Sxxx
1537 * PHY registers, to wake up the phy (and device), and
1538 * clear any reset condition.
1541 * PCI/etc. bus probe sem.
1544 void __sata_phy_reset(struct ata_port *ap)
1547 unsigned long timeout = jiffies + (HZ * 5);
1549 if (ap->flags & ATA_FLAG_SATA_RESET) {
1550 /* issue phy wake/reset */
1551 scr_write_flush(ap, SCR_CONTROL, 0x301);
1552 /* Couldn't find anything in SATA I/II specs, but
1553 * AHCI-1.1 10.4.2 says at least 1 ms. */
1556 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1558 /* wait for phy to become ready, if necessary */
1561 sstatus = scr_read(ap, SCR_STATUS);
1562 if ((sstatus & 0xf) != 1)
1564 } while (time_before(jiffies, timeout));
1566 /* print link status */
1567 sata_print_link_status(ap);
1569 /* TODO: phy layer with polling, timeouts, etc. */
1570 if (sata_dev_present(ap))
1573 ata_port_disable(ap);
1575 if (ap->flags & ATA_FLAG_DISABLED)
1578 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1579 ata_port_disable(ap);
1583 ap->cbl = ATA_CBL_SATA;
1587 * sata_phy_reset - Reset SATA bus.
1588 * @ap: SATA port associated with target SATA PHY.
1590 * This function resets the SATA bus, and then probes
1591 * the bus for devices.
1594 * PCI/etc. bus probe sem.
1597 void sata_phy_reset(struct ata_port *ap)
1599 __sata_phy_reset(ap);
1600 if (ap->flags & ATA_FLAG_DISABLED)
1606 * ata_dev_pair - return other device on cable
1610 * Obtain the other device on the same cable, or if none is
1611 * present NULL is returned
1614 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1616 struct ata_device *pair = &ap->device[1 - adev->devno];
1617 if (!ata_dev_enabled(pair))
1623 * ata_port_disable - Disable port.
1624 * @ap: Port to be disabled.
1626 * Modify @ap data structure such that the system
1627 * thinks that the entire port is disabled, and should
1628 * never attempt to probe or communicate with devices
1631 * LOCKING: host_set lock, or some other form of
1635 void ata_port_disable(struct ata_port *ap)
1637 ap->device[0].class = ATA_DEV_NONE;
1638 ap->device[1].class = ATA_DEV_NONE;
1639 ap->flags |= ATA_FLAG_DISABLED;
1643 * sata_down_spd_limit - adjust SATA spd limit downward
1644 * @ap: Port to adjust SATA spd limit for
1646 * Adjust SATA spd limit of @ap downward. Note that this
1647 * function only adjusts the limit. The change must be applied
1648 * using sata_set_spd().
1651 * Inherited from caller.
1654 * 0 on success, negative errno on failure
1656 int sata_down_spd_limit(struct ata_port *ap)
1661 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1664 mask = ap->sata_spd_limit;
1667 highbit = fls(mask) - 1;
1668 mask &= ~(1 << highbit);
1670 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1674 mask &= (1 << spd) - 1;
1678 ap->sata_spd_limit = mask;
1680 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1681 ap->id, sata_spd_string(fls(mask)));
1686 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1690 if (ap->sata_spd_limit == UINT_MAX)
1693 limit = fls(ap->sata_spd_limit);
1695 spd = (*scontrol >> 4) & 0xf;
1696 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1698 return spd != limit;
1702 * sata_set_spd_needed - is SATA spd configuration needed
1703 * @ap: Port in question
1705 * Test whether the spd limit in SControl matches
1706 * @ap->sata_spd_limit. This function is used to determine
1707 * whether hardreset is necessary to apply SATA spd
1711 * Inherited from caller.
1714 * 1 if SATA spd configuration is needed, 0 otherwise.
1716 int sata_set_spd_needed(struct ata_port *ap)
1720 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1723 scontrol = scr_read(ap, SCR_CONTROL);
1725 return __sata_set_spd_needed(ap, &scontrol);
1729 * sata_set_spd - set SATA spd according to spd limit
1730 * @ap: Port to set SATA spd for
1732 * Set SATA spd of @ap according to sata_spd_limit.
1735 * Inherited from caller.
1738 * 0 if spd doesn't need to be changed, 1 if spd has been
1739 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1741 int sata_set_spd(struct ata_port *ap)
1745 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1748 scontrol = scr_read(ap, SCR_CONTROL);
1749 if (!__sata_set_spd_needed(ap, &scontrol))
1752 scr_write(ap, SCR_CONTROL, scontrol);
1757 * This mode timing computation functionality is ported over from
1758 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1761 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1762 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1763 * for PIO 5, which is a nonstandard extension and UDMA6, which
1764 * is currently supported only by Maxtor drives.
1767 static const struct ata_timing ata_timing[] = {
1769 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1770 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1771 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1772 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1774 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1775 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1776 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1778 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1780 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1781 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1782 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1784 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1785 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1786 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1788 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1789 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1790 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1792 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1793 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1794 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1796 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1801 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1802 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1804 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1806 q->setup = EZ(t->setup * 1000, T);
1807 q->act8b = EZ(t->act8b * 1000, T);
1808 q->rec8b = EZ(t->rec8b * 1000, T);
1809 q->cyc8b = EZ(t->cyc8b * 1000, T);
1810 q->active = EZ(t->active * 1000, T);
1811 q->recover = EZ(t->recover * 1000, T);
1812 q->cycle = EZ(t->cycle * 1000, T);
1813 q->udma = EZ(t->udma * 1000, UT);
1816 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1817 struct ata_timing *m, unsigned int what)
1819 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1820 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1821 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1822 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1823 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1824 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1825 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1826 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1829 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1831 const struct ata_timing *t;
1833 for (t = ata_timing; t->mode != speed; t++)
1834 if (t->mode == 0xFF)
1839 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1840 struct ata_timing *t, int T, int UT)
1842 const struct ata_timing *s;
1843 struct ata_timing p;
1849 if (!(s = ata_timing_find_mode(speed)))
1852 memcpy(t, s, sizeof(*s));
1855 * If the drive is an EIDE drive, it can tell us it needs extended
1856 * PIO/MW_DMA cycle timing.
1859 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1860 memset(&p, 0, sizeof(p));
1861 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1862 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1863 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1864 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1865 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1867 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1871 * Convert the timing to bus clock counts.
1874 ata_timing_quantize(t, t, T, UT);
1877 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1878 * S.M.A.R.T * and some other commands. We have to ensure that the
1879 * DMA cycle timing is slower/equal than the fastest PIO timing.
1882 if (speed > XFER_PIO_4) {
1883 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1884 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1888 * Lengthen active & recovery time so that cycle time is correct.
1891 if (t->act8b + t->rec8b < t->cyc8b) {
1892 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1893 t->rec8b = t->cyc8b - t->act8b;
1896 if (t->active + t->recover < t->cycle) {
1897 t->active += (t->cycle - (t->active + t->recover)) / 2;
1898 t->recover = t->cycle - t->active;
1905 * ata_down_xfermask_limit - adjust dev xfer masks downward
1906 * @ap: Port associated with device @dev
1907 * @dev: Device to adjust xfer masks
1908 * @force_pio0: Force PIO0
1910 * Adjust xfer masks of @dev downward. Note that this function
1911 * does not apply the change. Invoking ata_set_mode() afterwards
1912 * will apply the limit.
1915 * Inherited from caller.
1918 * 0 on success, negative errno on failure
1920 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1923 unsigned long xfer_mask;
1926 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1931 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1932 if (xfer_mask & ATA_MASK_UDMA)
1933 xfer_mask &= ~ATA_MASK_MWDMA;
1935 highbit = fls(xfer_mask) - 1;
1936 xfer_mask &= ~(1 << highbit);
1938 xfer_mask &= 1 << ATA_SHIFT_PIO;
1942 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1945 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1946 ap->id, dev->devno, ata_mode_string(xfer_mask));
1954 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1956 unsigned int err_mask;
1959 dev->flags &= ~ATA_DFLAG_PIO;
1960 if (dev->xfer_shift == ATA_SHIFT_PIO)
1961 dev->flags |= ATA_DFLAG_PIO;
1963 err_mask = ata_dev_set_xfermode(ap, dev);
1966 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1971 rc = ata_dev_revalidate(ap, dev, 0);
1975 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1976 dev->xfer_shift, (int)dev->xfer_mode);
1978 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1980 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1985 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1986 * @ap: port on which timings will be programmed
1987 * @r_failed_dev: out paramter for failed device
1989 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1990 * ata_set_mode() fails, pointer to the failing device is
1991 * returned in @r_failed_dev.
1994 * PCI/etc. bus probe sem.
1997 * 0 on success, negative errno otherwise
1999 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2001 struct ata_device *dev;
2002 int i, rc = 0, used_dma = 0, found = 0;
2004 /* step 1: calculate xfer_mask */
2005 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2006 unsigned int pio_mask, dma_mask;
2008 dev = &ap->device[i];
2010 if (!ata_dev_enabled(dev))
2013 ata_dev_xfermask(ap, dev);
2015 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2016 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2017 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2018 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2027 /* step 2: always set host PIO timings */
2028 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2029 dev = &ap->device[i];
2030 if (!ata_dev_enabled(dev))
2033 if (!dev->pio_mode) {
2034 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2035 ap->id, dev->devno);
2040 dev->xfer_mode = dev->pio_mode;
2041 dev->xfer_shift = ATA_SHIFT_PIO;
2042 if (ap->ops->set_piomode)
2043 ap->ops->set_piomode(ap, dev);
2046 /* step 3: set host DMA timings */
2047 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2048 dev = &ap->device[i];
2050 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2053 dev->xfer_mode = dev->dma_mode;
2054 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2055 if (ap->ops->set_dmamode)
2056 ap->ops->set_dmamode(ap, dev);
2059 /* step 4: update devices' xfer mode */
2060 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2061 dev = &ap->device[i];
2063 if (!ata_dev_enabled(dev))
2066 rc = ata_dev_set_mode(ap, dev);
2071 /* Record simplex status. If we selected DMA then the other
2072 * host channels are not permitted to do so.
2074 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2075 ap->host_set->simplex_claimed = 1;
2077 /* step5: chip specific finalisation */
2078 if (ap->ops->post_set_mode)
2079 ap->ops->post_set_mode(ap);
2083 *r_failed_dev = dev;
2088 * ata_tf_to_host - issue ATA taskfile to host controller
2089 * @ap: port to which command is being issued
2090 * @tf: ATA taskfile register set
2092 * Issues ATA taskfile register set to ATA host controller,
2093 * with proper synchronization with interrupt handler and
2097 * spin_lock_irqsave(host_set lock)
2100 static inline void ata_tf_to_host(struct ata_port *ap,
2101 const struct ata_taskfile *tf)
2103 ap->ops->tf_load(ap, tf);
2104 ap->ops->exec_command(ap, tf);
2108 * ata_busy_sleep - sleep until BSY clears, or timeout
2109 * @ap: port containing status register to be polled
2110 * @tmout_pat: impatience timeout
2111 * @tmout: overall timeout
2113 * Sleep until ATA Status register bit BSY clears,
2114 * or a timeout occurs.
2119 unsigned int ata_busy_sleep (struct ata_port *ap,
2120 unsigned long tmout_pat, unsigned long tmout)
2122 unsigned long timer_start, timeout;
2125 status = ata_busy_wait(ap, ATA_BUSY, 300);
2126 timer_start = jiffies;
2127 timeout = timer_start + tmout_pat;
2128 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2130 status = ata_busy_wait(ap, ATA_BUSY, 3);
2133 if (status & ATA_BUSY)
2134 printk(KERN_WARNING "ata%u is slow to respond, "
2135 "please be patient\n", ap->id);
2137 timeout = timer_start + tmout;
2138 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2140 status = ata_chk_status(ap);
2143 if (status & ATA_BUSY) {
2144 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2145 ap->id, tmout / HZ);
2152 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2154 struct ata_ioports *ioaddr = &ap->ioaddr;
2155 unsigned int dev0 = devmask & (1 << 0);
2156 unsigned int dev1 = devmask & (1 << 1);
2157 unsigned long timeout;
2159 /* if device 0 was found in ata_devchk, wait for its
2163 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2165 /* if device 1 was found in ata_devchk, wait for
2166 * register access, then wait for BSY to clear
2168 timeout = jiffies + ATA_TMOUT_BOOT;
2172 ap->ops->dev_select(ap, 1);
2173 if (ap->flags & ATA_FLAG_MMIO) {
2174 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2175 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2177 nsect = inb(ioaddr->nsect_addr);
2178 lbal = inb(ioaddr->lbal_addr);
2180 if ((nsect == 1) && (lbal == 1))
2182 if (time_after(jiffies, timeout)) {
2186 msleep(50); /* give drive a breather */
2189 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2191 /* is all this really necessary? */
2192 ap->ops->dev_select(ap, 0);
2194 ap->ops->dev_select(ap, 1);
2196 ap->ops->dev_select(ap, 0);
2199 static unsigned int ata_bus_softreset(struct ata_port *ap,
2200 unsigned int devmask)
2202 struct ata_ioports *ioaddr = &ap->ioaddr;
2204 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2206 /* software reset. causes dev0 to be selected */
2207 if (ap->flags & ATA_FLAG_MMIO) {
2208 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2209 udelay(20); /* FIXME: flush */
2210 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2211 udelay(20); /* FIXME: flush */
2212 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2214 outb(ap->ctl, ioaddr->ctl_addr);
2216 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2218 outb(ap->ctl, ioaddr->ctl_addr);
2221 /* spec mandates ">= 2ms" before checking status.
2222 * We wait 150ms, because that was the magic delay used for
2223 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2224 * between when the ATA command register is written, and then
2225 * status is checked. Because waiting for "a while" before
2226 * checking status is fine, post SRST, we perform this magic
2227 * delay here as well.
2229 * Old drivers/ide uses the 2mS rule and then waits for ready
2233 /* Before we perform post reset processing we want to see if
2234 * the bus shows 0xFF because the odd clown forgets the D7
2235 * pulldown resistor.
2237 if (ata_check_status(ap) == 0xFF) {
2238 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2239 return AC_ERR_OTHER;
2242 ata_bus_post_reset(ap, devmask);
2248 * ata_bus_reset - reset host port and associated ATA channel
2249 * @ap: port to reset
2251 * This is typically the first time we actually start issuing
2252 * commands to the ATA channel. We wait for BSY to clear, then
2253 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2254 * result. Determine what devices, if any, are on the channel
2255 * by looking at the device 0/1 error register. Look at the signature
2256 * stored in each device's taskfile registers, to determine if
2257 * the device is ATA or ATAPI.
2260 * PCI/etc. bus probe sem.
2261 * Obtains host_set lock.
2264 * Sets ATA_FLAG_DISABLED if bus reset fails.
2267 void ata_bus_reset(struct ata_port *ap)
2269 struct ata_ioports *ioaddr = &ap->ioaddr;
2270 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2272 unsigned int dev0, dev1 = 0, devmask = 0;
2274 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2276 /* determine if device 0/1 are present */
2277 if (ap->flags & ATA_FLAG_SATA_RESET)
2280 dev0 = ata_devchk(ap, 0);
2282 dev1 = ata_devchk(ap, 1);
2286 devmask |= (1 << 0);
2288 devmask |= (1 << 1);
2290 /* select device 0 again */
2291 ap->ops->dev_select(ap, 0);
2293 /* issue bus reset */
2294 if (ap->flags & ATA_FLAG_SRST)
2295 if (ata_bus_softreset(ap, devmask))
2299 * determine by signature whether we have ATA or ATAPI devices
2301 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2302 if ((slave_possible) && (err != 0x81))
2303 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2305 /* re-enable interrupts */
2306 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2309 /* is double-select really necessary? */
2310 if (ap->device[1].class != ATA_DEV_NONE)
2311 ap->ops->dev_select(ap, 1);
2312 if (ap->device[0].class != ATA_DEV_NONE)
2313 ap->ops->dev_select(ap, 0);
2315 /* if no devices were detected, disable this port */
2316 if ((ap->device[0].class == ATA_DEV_NONE) &&
2317 (ap->device[1].class == ATA_DEV_NONE))
2320 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2321 /* set up device control for ATA_FLAG_SATA_RESET */
2322 if (ap->flags & ATA_FLAG_MMIO)
2323 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2325 outb(ap->ctl, ioaddr->ctl_addr);
2332 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2333 ap->ops->port_disable(ap);
2338 static int sata_phy_resume(struct ata_port *ap)
2340 unsigned long timeout = jiffies + (HZ * 5);
2341 u32 scontrol, sstatus;
2343 scontrol = scr_read(ap, SCR_CONTROL);
2344 scontrol = (scontrol & 0x0f0) | 0x300;
2345 scr_write_flush(ap, SCR_CONTROL, scontrol);
2347 /* Wait for phy to become ready, if necessary. */
2350 sstatus = scr_read(ap, SCR_STATUS);
2351 if ((sstatus & 0xf) != 1)
2353 } while (time_before(jiffies, timeout));
2359 * ata_std_probeinit - initialize probing
2360 * @ap: port to be probed
2362 * @ap is about to be probed. Initialize it. This function is
2363 * to be used as standard callback for ata_drive_probe_reset().
2365 * NOTE!!! Do not use this function as probeinit if a low level
2366 * driver implements only hardreset. Just pass NULL as probeinit
2367 * in that case. Using this function is probably okay but doing
2368 * so makes reset sequence different from the original
2369 * ->phy_reset implementation and Jeff nervous. :-P
2371 void ata_std_probeinit(struct ata_port *ap)
2373 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2376 /* set cable type and resume link */
2377 ap->cbl = ATA_CBL_SATA;
2378 sata_phy_resume(ap);
2380 /* init sata_spd_limit to the current value */
2381 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2383 ap->sata_spd_limit &= (1 << spd) - 1;
2385 /* wait for device */
2386 if (sata_dev_present(ap))
2387 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2392 * ata_std_softreset - reset host port via ATA SRST
2393 * @ap: port to reset
2394 * @classes: resulting classes of attached devices
2396 * Reset host port using ATA SRST. This function is to be used
2397 * as standard callback for ata_drive_*_reset() functions.
2400 * Kernel thread context (may sleep)
2403 * 0 on success, -errno otherwise.
2405 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2407 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2408 unsigned int devmask = 0, err_mask;
2413 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2414 classes[0] = ATA_DEV_NONE;
2418 /* determine if device 0/1 are present */
2419 if (ata_devchk(ap, 0))
2420 devmask |= (1 << 0);
2421 if (slave_possible && ata_devchk(ap, 1))
2422 devmask |= (1 << 1);
2424 /* select device 0 again */
2425 ap->ops->dev_select(ap, 0);
2427 /* issue bus reset */
2428 DPRINTK("about to softreset, devmask=%x\n", devmask);
2429 err_mask = ata_bus_softreset(ap, devmask);
2431 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2436 /* determine by signature whether we have ATA or ATAPI devices */
2437 classes[0] = ata_dev_try_classify(ap, 0, &err);
2438 if (slave_possible && err != 0x81)
2439 classes[1] = ata_dev_try_classify(ap, 1, &err);
2442 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2447 * sata_std_hardreset - reset host port via SATA phy reset
2448 * @ap: port to reset
2449 * @class: resulting class of attached device
2451 * SATA phy-reset host port using DET bits of SControl register.
2452 * This function is to be used as standard callback for
2453 * ata_drive_*_reset().
2456 * Kernel thread context (may sleep)
2459 * 0 on success, -errno otherwise.
2461 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2467 if (sata_set_spd_needed(ap)) {
2468 /* SATA spec says nothing about how to reconfigure
2469 * spd. To be on the safe side, turn off phy during
2470 * reconfiguration. This works for at least ICH7 AHCI
2473 scontrol = scr_read(ap, SCR_CONTROL);
2474 scontrol = (scontrol & 0x0f0) | 0x302;
2475 scr_write_flush(ap, SCR_CONTROL, scontrol);
2480 /* issue phy wake/reset */
2481 scontrol = scr_read(ap, SCR_CONTROL);
2482 scontrol = (scontrol & 0x0f0) | 0x301;
2483 scr_write_flush(ap, SCR_CONTROL, scontrol);
2485 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2486 * 10.4.2 says at least 1 ms.
2490 /* bring phy back */
2491 sata_phy_resume(ap);
2493 /* TODO: phy layer with polling, timeouts, etc. */
2494 if (!sata_dev_present(ap)) {
2495 *class = ATA_DEV_NONE;
2496 DPRINTK("EXIT, link offline\n");
2500 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2502 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2506 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2508 *class = ata_dev_try_classify(ap, 0, NULL);
2510 DPRINTK("EXIT, class=%u\n", *class);
2515 * ata_std_postreset - standard postreset callback
2516 * @ap: the target ata_port
2517 * @classes: classes of attached devices
2519 * This function is invoked after a successful reset. Note that
2520 * the device might have been reset more than once using
2521 * different reset methods before postreset is invoked.
2523 * This function is to be used as standard callback for
2524 * ata_drive_*_reset().
2527 * Kernel thread context (may sleep)
2529 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2533 /* print link status */
2534 if (ap->cbl == ATA_CBL_SATA)
2535 sata_print_link_status(ap);
2537 /* re-enable interrupts */
2538 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2541 /* is double-select really necessary? */
2542 if (classes[0] != ATA_DEV_NONE)
2543 ap->ops->dev_select(ap, 1);
2544 if (classes[1] != ATA_DEV_NONE)
2545 ap->ops->dev_select(ap, 0);
2547 /* bail out if no device is present */
2548 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2549 DPRINTK("EXIT, no device\n");
2553 /* set up device control */
2554 if (ap->ioaddr.ctl_addr) {
2555 if (ap->flags & ATA_FLAG_MMIO)
2556 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2558 outb(ap->ctl, ap->ioaddr.ctl_addr);
2565 * ata_std_probe_reset - standard probe reset method
2566 * @ap: prot to perform probe-reset
2567 * @classes: resulting classes of attached devices
2569 * The stock off-the-shelf ->probe_reset method.
2572 * Kernel thread context (may sleep)
2575 * 0 on success, -errno otherwise.
2577 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2579 ata_reset_fn_t hardreset;
2582 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
2583 hardreset = sata_std_hardreset;
2585 return ata_drive_probe_reset(ap, ata_std_probeinit,
2586 ata_std_softreset, hardreset,
2587 ata_std_postreset, classes);
2590 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2591 ata_postreset_fn_t postreset, unsigned int *classes)
2595 for (i = 0; i < ATA_MAX_DEVICES; i++)
2596 classes[i] = ATA_DEV_UNKNOWN;
2598 rc = reset(ap, classes);
2602 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2603 * is complete and convert all ATA_DEV_UNKNOWN to
2606 for (i = 0; i < ATA_MAX_DEVICES; i++)
2607 if (classes[i] != ATA_DEV_UNKNOWN)
2610 if (i < ATA_MAX_DEVICES)
2611 for (i = 0; i < ATA_MAX_DEVICES; i++)
2612 if (classes[i] == ATA_DEV_UNKNOWN)
2613 classes[i] = ATA_DEV_NONE;
2616 postreset(ap, classes);
2622 * ata_drive_probe_reset - Perform probe reset with given methods
2623 * @ap: port to reset
2624 * @probeinit: probeinit method (can be NULL)
2625 * @softreset: softreset method (can be NULL)
2626 * @hardreset: hardreset method (can be NULL)
2627 * @postreset: postreset method (can be NULL)
2628 * @classes: resulting classes of attached devices
2630 * Reset the specified port and classify attached devices using
2631 * given methods. This function prefers softreset but tries all
2632 * possible reset sequences to reset and classify devices. This
2633 * function is intended to be used for constructing ->probe_reset
2634 * callback by low level drivers.
2636 * Reset methods should follow the following rules.
2638 * - Return 0 on sucess, -errno on failure.
2639 * - If classification is supported, fill classes[] with
2640 * recognized class codes.
2641 * - If classification is not supported, leave classes[] alone.
2644 * Kernel thread context (may sleep)
2647 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2648 * if classification fails, and any error code from reset
2651 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2652 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2653 ata_postreset_fn_t postreset, unsigned int *classes)
2660 if (softreset && !sata_set_spd_needed(ap)) {
2661 rc = ata_do_reset(ap, softreset, postreset, classes);
2662 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2664 printk(KERN_INFO "ata%u: softreset failed, will try "
2665 "hardreset in 5 secs\n", ap->id);
2673 rc = ata_do_reset(ap, hardreset, postreset, classes);
2675 if (classes[0] != ATA_DEV_UNKNOWN)
2680 if (sata_down_spd_limit(ap))
2683 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2684 "in 5 secs\n", ap->id);
2689 printk(KERN_INFO "ata%u: hardreset succeeded without "
2690 "classification, will retry softreset in 5 secs\n",
2694 rc = ata_do_reset(ap, softreset, postreset, classes);
2698 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2704 * ata_dev_same_device - Determine whether new ID matches configured device
2705 * @ap: port on which the device to compare against resides
2706 * @dev: device to compare against
2707 * @new_class: class of the new device
2708 * @new_id: IDENTIFY page of the new device
2710 * Compare @new_class and @new_id against @dev and determine
2711 * whether @dev is the device indicated by @new_class and
2718 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2720 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2721 unsigned int new_class, const u16 *new_id)
2723 const u16 *old_id = dev->id;
2724 unsigned char model[2][41], serial[2][21];
2727 if (dev->class != new_class) {
2729 "ata%u: dev %u class mismatch %d != %d\n",
2730 ap->id, dev->devno, dev->class, new_class);
2734 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2735 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2736 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2737 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2738 new_n_sectors = ata_id_n_sectors(new_id);
2740 if (strcmp(model[0], model[1])) {
2742 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2743 ap->id, dev->devno, model[0], model[1]);
2747 if (strcmp(serial[0], serial[1])) {
2749 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2750 ap->id, dev->devno, serial[0], serial[1]);
2754 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2756 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2757 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2758 (unsigned long long)new_n_sectors);
2766 * ata_dev_revalidate - Revalidate ATA device
2767 * @ap: port on which the device to revalidate resides
2768 * @dev: device to revalidate
2769 * @post_reset: is this revalidation after reset?
2771 * Re-read IDENTIFY page and make sure @dev is still attached to
2775 * Kernel thread context (may sleep)
2778 * 0 on success, negative errno otherwise
2780 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2783 unsigned int class = dev->class;
2787 if (!ata_dev_enabled(dev)) {
2792 /* allocate & read ID data */
2793 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2797 /* is the device still there? */
2798 if (!ata_dev_same_device(ap, dev, class, id)) {
2806 /* configure device according to the new ID */
2807 rc = ata_dev_configure(ap, dev, 0);
2812 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2813 ap->id, dev->devno, rc);
2818 static const char * const ata_dma_blacklist [] = {
2819 "WDC AC11000H", NULL,
2820 "WDC AC22100H", NULL,
2821 "WDC AC32500H", NULL,
2822 "WDC AC33100H", NULL,
2823 "WDC AC31600H", NULL,
2824 "WDC AC32100H", "24.09P07",
2825 "WDC AC23200L", "21.10N21",
2826 "Compaq CRD-8241B", NULL,
2831 "SanDisk SDP3B", NULL,
2832 "SanDisk SDP3B-64", NULL,
2833 "SANYO CD-ROM CRD", NULL,
2834 "HITACHI CDR-8", NULL,
2835 "HITACHI CDR-8335", NULL,
2836 "HITACHI CDR-8435", NULL,
2837 "Toshiba CD-ROM XM-6202B", NULL,
2838 "TOSHIBA CD-ROM XM-1702BC", NULL,
2840 "E-IDE CD-ROM CR-840", NULL,
2841 "CD-ROM Drive/F5A", NULL,
2842 "WPI CDD-820", NULL,
2843 "SAMSUNG CD-ROM SC-148C", NULL,
2844 "SAMSUNG CD-ROM SC", NULL,
2845 "SanDisk SDP3B-64", NULL,
2846 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2847 "_NEC DV5800A", NULL,
2848 "SAMSUNG CD-ROM SN-124", "N001"
2851 static int ata_strim(char *s, size_t len)
2853 len = strnlen(s, len);
2855 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2856 while ((len > 0) && (s[len - 1] == ' ')) {
2863 static int ata_dma_blacklisted(const struct ata_device *dev)
2865 unsigned char model_num[40];
2866 unsigned char model_rev[16];
2867 unsigned int nlen, rlen;
2870 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2872 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2874 nlen = ata_strim(model_num, sizeof(model_num));
2875 rlen = ata_strim(model_rev, sizeof(model_rev));
2877 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2878 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2879 if (ata_dma_blacklist[i+1] == NULL)
2881 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2889 * ata_dev_xfermask - Compute supported xfermask of the given device
2890 * @ap: Port on which the device to compute xfermask for resides
2891 * @dev: Device to compute xfermask for
2893 * Compute supported xfermask of @dev and store it in
2894 * dev->*_mask. This function is responsible for applying all
2895 * known limits including host controller limits, device
2898 * FIXME: The current implementation limits all transfer modes to
2899 * the fastest of the lowested device on the port. This is not
2900 * required on most controllers.
2905 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2907 struct ata_host_set *hs = ap->host_set;
2908 unsigned long xfer_mask;
2911 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2912 ap->mwdma_mask, ap->udma_mask);
2914 /* Apply cable rule here. Don't apply it early because when
2915 * we handle hot plug the cable type can itself change.
2917 if (ap->cbl == ATA_CBL_PATA40)
2918 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2920 /* FIXME: Use port-wide xfermask for now */
2921 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2922 struct ata_device *d = &ap->device[i];
2924 if (ata_dev_absent(d))
2927 if (ata_dev_disabled(d)) {
2928 /* to avoid violating device selection timing */
2929 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2930 UINT_MAX, UINT_MAX);
2934 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2935 d->mwdma_mask, d->udma_mask);
2936 xfer_mask &= ata_id_xfermask(d->id);
2937 if (ata_dma_blacklisted(d))
2938 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2941 if (ata_dma_blacklisted(dev))
2942 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2943 "disabling DMA\n", ap->id, dev->devno);
2945 if (hs->flags & ATA_HOST_SIMPLEX) {
2946 if (hs->simplex_claimed)
2947 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2950 if (ap->ops->mode_filter)
2951 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2953 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2954 &dev->mwdma_mask, &dev->udma_mask);
2958 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2959 * @ap: Port associated with device @dev
2960 * @dev: Device to which command will be sent
2962 * Issue SET FEATURES - XFER MODE command to device @dev
2966 * PCI/etc. bus probe sem.
2969 * 0 on success, AC_ERR_* mask otherwise.
2972 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2973 struct ata_device *dev)
2975 struct ata_taskfile tf;
2976 unsigned int err_mask;
2978 /* set up set-features taskfile */
2979 DPRINTK("set features - xfer mode\n");
2981 ata_tf_init(ap, &tf, dev->devno);
2982 tf.command = ATA_CMD_SET_FEATURES;
2983 tf.feature = SETFEATURES_XFER;
2984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2985 tf.protocol = ATA_PROT_NODATA;
2986 tf.nsect = dev->xfer_mode;
2988 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2990 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2995 * ata_dev_init_params - Issue INIT DEV PARAMS command
2996 * @ap: Port associated with device @dev
2997 * @dev: Device to which command will be sent
3000 * Kernel thread context (may sleep)
3003 * 0 on success, AC_ERR_* mask otherwise.
3006 static unsigned int ata_dev_init_params(struct ata_port *ap,
3007 struct ata_device *dev,
3011 struct ata_taskfile tf;
3012 unsigned int err_mask;
3014 /* Number of sectors per track 1-255. Number of heads 1-16 */
3015 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3016 return AC_ERR_INVALID;
3018 /* set up init dev params taskfile */
3019 DPRINTK("init dev params \n");
3021 ata_tf_init(ap, &tf, dev->devno);
3022 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3023 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3024 tf.protocol = ATA_PROT_NODATA;
3026 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3028 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3030 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3035 * ata_sg_clean - Unmap DMA memory associated with command
3036 * @qc: Command containing DMA memory to be released
3038 * Unmap all mapped DMA memory associated with this command.
3041 * spin_lock_irqsave(host_set lock)
3044 static void ata_sg_clean(struct ata_queued_cmd *qc)
3046 struct ata_port *ap = qc->ap;
3047 struct scatterlist *sg = qc->__sg;
3048 int dir = qc->dma_dir;
3049 void *pad_buf = NULL;
3051 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3052 WARN_ON(sg == NULL);
3054 if (qc->flags & ATA_QCFLAG_SINGLE)
3055 WARN_ON(qc->n_elem > 1);
3057 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3059 /* if we padded the buffer out to 32-bit bound, and data
3060 * xfer direction is from-device, we must copy from the
3061 * pad buffer back into the supplied buffer
3063 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3064 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3066 if (qc->flags & ATA_QCFLAG_SG) {
3068 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3069 /* restore last sg */
3070 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3072 struct scatterlist *psg = &qc->pad_sgent;
3073 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3074 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3075 kunmap_atomic(addr, KM_IRQ0);
3079 dma_unmap_single(ap->dev,
3080 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3083 sg->length += qc->pad_len;
3085 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3086 pad_buf, qc->pad_len);
3089 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3094 * ata_fill_sg - Fill PCI IDE PRD table
3095 * @qc: Metadata associated with taskfile to be transferred
3097 * Fill PCI IDE PRD (scatter-gather) table with segments
3098 * associated with the current disk command.
3101 * spin_lock_irqsave(host_set lock)
3104 static void ata_fill_sg(struct ata_queued_cmd *qc)
3106 struct ata_port *ap = qc->ap;
3107 struct scatterlist *sg;
3110 WARN_ON(qc->__sg == NULL);
3111 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3114 ata_for_each_sg(sg, qc) {
3118 /* determine if physical DMA addr spans 64K boundary.
3119 * Note h/w doesn't support 64-bit, so we unconditionally
3120 * truncate dma_addr_t to u32.
3122 addr = (u32) sg_dma_address(sg);
3123 sg_len = sg_dma_len(sg);
3126 offset = addr & 0xffff;
3128 if ((offset + sg_len) > 0x10000)
3129 len = 0x10000 - offset;
3131 ap->prd[idx].addr = cpu_to_le32(addr);
3132 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3133 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3142 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3145 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3146 * @qc: Metadata associated with taskfile to check
3148 * Allow low-level driver to filter ATA PACKET commands, returning
3149 * a status indicating whether or not it is OK to use DMA for the
3150 * supplied PACKET command.
3153 * spin_lock_irqsave(host_set lock)
3155 * RETURNS: 0 when ATAPI DMA can be used
3158 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3160 struct ata_port *ap = qc->ap;
3161 int rc = 0; /* Assume ATAPI DMA is OK by default */
3163 if (ap->ops->check_atapi_dma)
3164 rc = ap->ops->check_atapi_dma(qc);
3169 * ata_qc_prep - Prepare taskfile for submission
3170 * @qc: Metadata associated with taskfile to be prepared
3172 * Prepare ATA taskfile for submission.
3175 * spin_lock_irqsave(host_set lock)
3177 void ata_qc_prep(struct ata_queued_cmd *qc)
3179 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3185 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3188 * ata_sg_init_one - Associate command with memory buffer
3189 * @qc: Command to be associated
3190 * @buf: Memory buffer
3191 * @buflen: Length of memory buffer, in bytes.
3193 * Initialize the data-related elements of queued_cmd @qc
3194 * to point to a single memory buffer, @buf of byte length @buflen.
3197 * spin_lock_irqsave(host_set lock)
3200 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3202 struct scatterlist *sg;
3204 qc->flags |= ATA_QCFLAG_SINGLE;
3206 memset(&qc->sgent, 0, sizeof(qc->sgent));
3207 qc->__sg = &qc->sgent;
3209 qc->orig_n_elem = 1;
3213 sg_init_one(sg, buf, buflen);
3217 * ata_sg_init - Associate command with scatter-gather table.
3218 * @qc: Command to be associated
3219 * @sg: Scatter-gather table.
3220 * @n_elem: Number of elements in s/g table.
3222 * Initialize the data-related elements of queued_cmd @qc
3223 * to point to a scatter-gather table @sg, containing @n_elem
3227 * spin_lock_irqsave(host_set lock)
3230 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3231 unsigned int n_elem)
3233 qc->flags |= ATA_QCFLAG_SG;
3235 qc->n_elem = n_elem;
3236 qc->orig_n_elem = n_elem;
3240 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3241 * @qc: Command with memory buffer to be mapped.
3243 * DMA-map the memory buffer associated with queued_cmd @qc.
3246 * spin_lock_irqsave(host_set lock)
3249 * Zero on success, negative on error.
3252 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3254 struct ata_port *ap = qc->ap;
3255 int dir = qc->dma_dir;
3256 struct scatterlist *sg = qc->__sg;
3257 dma_addr_t dma_address;
3260 /* we must lengthen transfers to end on a 32-bit boundary */
3261 qc->pad_len = sg->length & 3;
3263 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3264 struct scatterlist *psg = &qc->pad_sgent;
3266 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3268 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3270 if (qc->tf.flags & ATA_TFLAG_WRITE)
3271 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3274 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3275 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3277 sg->length -= qc->pad_len;
3278 if (sg->length == 0)
3281 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3282 sg->length, qc->pad_len);
3290 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3292 if (dma_mapping_error(dma_address)) {
3294 sg->length += qc->pad_len;
3298 sg_dma_address(sg) = dma_address;
3299 sg_dma_len(sg) = sg->length;
3302 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3303 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3309 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3310 * @qc: Command with scatter-gather table to be mapped.
3312 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3315 * spin_lock_irqsave(host_set lock)
3318 * Zero on success, negative on error.
3322 static int ata_sg_setup(struct ata_queued_cmd *qc)
3324 struct ata_port *ap = qc->ap;
3325 struct scatterlist *sg = qc->__sg;
3326 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3327 int n_elem, pre_n_elem, dir, trim_sg = 0;
3329 VPRINTK("ENTER, ata%u\n", ap->id);
3330 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3332 /* we must lengthen transfers to end on a 32-bit boundary */
3333 qc->pad_len = lsg->length & 3;
3335 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3336 struct scatterlist *psg = &qc->pad_sgent;
3337 unsigned int offset;
3339 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3341 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3344 * psg->page/offset are used to copy to-be-written
3345 * data in this function or read data in ata_sg_clean.
3347 offset = lsg->offset + lsg->length - qc->pad_len;
3348 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3349 psg->offset = offset_in_page(offset);
3351 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3352 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3353 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3354 kunmap_atomic(addr, KM_IRQ0);
3357 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3358 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3360 lsg->length -= qc->pad_len;
3361 if (lsg->length == 0)
3364 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3365 qc->n_elem - 1, lsg->length, qc->pad_len);
3368 pre_n_elem = qc->n_elem;
3369 if (trim_sg && pre_n_elem)
3378 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3380 /* restore last sg */
3381 lsg->length += qc->pad_len;
3385 DPRINTK("%d sg elements mapped\n", n_elem);
3388 qc->n_elem = n_elem;
3394 * ata_poll_qc_complete - turn irq back on and finish qc
3395 * @qc: Command to complete
3396 * @err_mask: ATA status register content
3399 * None. (grabs host lock)
3402 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3404 struct ata_port *ap = qc->ap;
3405 unsigned long flags;
3407 spin_lock_irqsave(&ap->host_set->lock, flags);
3408 ap->flags &= ~ATA_FLAG_NOINTR;
3410 ata_qc_complete(qc);
3411 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3415 * ata_pio_poll - poll using PIO, depending on current state
3416 * @qc: qc in progress
3419 * None. (executing in kernel thread context)
3422 * timeout value to use
3424 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3426 struct ata_port *ap = qc->ap;
3428 unsigned int poll_state = HSM_ST_UNKNOWN;
3429 unsigned int reg_state = HSM_ST_UNKNOWN;
3431 switch (ap->hsm_task_state) {
3434 poll_state = HSM_ST_POLL;
3438 case HSM_ST_LAST_POLL:
3439 poll_state = HSM_ST_LAST_POLL;
3440 reg_state = HSM_ST_LAST;
3447 status = ata_chk_status(ap);
3448 if (status & ATA_BUSY) {
3449 if (time_after(jiffies, ap->pio_task_timeout)) {
3450 qc->err_mask |= AC_ERR_TIMEOUT;
3451 ap->hsm_task_state = HSM_ST_TMOUT;
3454 ap->hsm_task_state = poll_state;
3455 return ATA_SHORT_PAUSE;
3458 ap->hsm_task_state = reg_state;
3463 * ata_pio_complete - check if drive is busy or idle
3464 * @qc: qc to complete
3467 * None. (executing in kernel thread context)
3470 * Non-zero if qc completed, zero otherwise.
3472 static int ata_pio_complete(struct ata_queued_cmd *qc)
3474 struct ata_port *ap = qc->ap;
3478 * This is purely heuristic. This is a fast path. Sometimes when
3479 * we enter, BSY will be cleared in a chk-status or two. If not,
3480 * the drive is probably seeking or something. Snooze for a couple
3481 * msecs, then chk-status again. If still busy, fall back to
3482 * HSM_ST_POLL state.
3484 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3485 if (drv_stat & ATA_BUSY) {
3487 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3488 if (drv_stat & ATA_BUSY) {
3489 ap->hsm_task_state = HSM_ST_LAST_POLL;
3490 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3495 drv_stat = ata_wait_idle(ap);
3496 if (!ata_ok(drv_stat)) {
3497 qc->err_mask |= __ac_err_mask(drv_stat);
3498 ap->hsm_task_state = HSM_ST_ERR;
3502 ap->hsm_task_state = HSM_ST_IDLE;
3504 WARN_ON(qc->err_mask);
3505 ata_poll_qc_complete(qc);
3507 /* another command may start at this point */
3514 * swap_buf_le16 - swap halves of 16-bit words in place
3515 * @buf: Buffer to swap
3516 * @buf_words: Number of 16-bit words in buffer.
3518 * Swap halves of 16-bit words if needed to convert from
3519 * little-endian byte order to native cpu byte order, or
3523 * Inherited from caller.
3525 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3530 for (i = 0; i < buf_words; i++)
3531 buf[i] = le16_to_cpu(buf[i]);
3532 #endif /* __BIG_ENDIAN */
3536 * ata_mmio_data_xfer - Transfer data by MMIO
3537 * @ap: port to read/write
3539 * @buflen: buffer length
3540 * @write_data: read/write
3542 * Transfer data from/to the device data register by MMIO.
3545 * Inherited from caller.
3548 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3549 unsigned int buflen, int write_data)
3552 unsigned int words = buflen >> 1;
3553 u16 *buf16 = (u16 *) buf;
3554 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3556 /* Transfer multiple of 2 bytes */
3558 for (i = 0; i < words; i++)
3559 writew(le16_to_cpu(buf16[i]), mmio);
3561 for (i = 0; i < words; i++)
3562 buf16[i] = cpu_to_le16(readw(mmio));
3565 /* Transfer trailing 1 byte, if any. */
3566 if (unlikely(buflen & 0x01)) {
3567 u16 align_buf[1] = { 0 };
3568 unsigned char *trailing_buf = buf + buflen - 1;
3571 memcpy(align_buf, trailing_buf, 1);
3572 writew(le16_to_cpu(align_buf[0]), mmio);
3574 align_buf[0] = cpu_to_le16(readw(mmio));
3575 memcpy(trailing_buf, align_buf, 1);
3581 * ata_pio_data_xfer - Transfer data by PIO
3582 * @ap: port to read/write
3584 * @buflen: buffer length
3585 * @write_data: read/write
3587 * Transfer data from/to the device data register by PIO.
3590 * Inherited from caller.
3593 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3594 unsigned int buflen, int write_data)
3596 unsigned int words = buflen >> 1;
3598 /* Transfer multiple of 2 bytes */
3600 outsw(ap->ioaddr.data_addr, buf, words);
3602 insw(ap->ioaddr.data_addr, buf, words);
3604 /* Transfer trailing 1 byte, if any. */
3605 if (unlikely(buflen & 0x01)) {
3606 u16 align_buf[1] = { 0 };
3607 unsigned char *trailing_buf = buf + buflen - 1;
3610 memcpy(align_buf, trailing_buf, 1);
3611 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3613 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3614 memcpy(trailing_buf, align_buf, 1);
3620 * ata_data_xfer - Transfer data from/to the data register.
3621 * @ap: port to read/write
3623 * @buflen: buffer length
3624 * @do_write: read/write
3626 * Transfer data from/to the device data register.
3629 * Inherited from caller.
3632 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3633 unsigned int buflen, int do_write)
3635 /* Make the crap hardware pay the costs not the good stuff */
3636 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3637 unsigned long flags;
3638 local_irq_save(flags);
3639 if (ap->flags & ATA_FLAG_MMIO)
3640 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3642 ata_pio_data_xfer(ap, buf, buflen, do_write);
3643 local_irq_restore(flags);
3645 if (ap->flags & ATA_FLAG_MMIO)
3646 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3648 ata_pio_data_xfer(ap, buf, buflen, do_write);
3653 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3654 * @qc: Command on going
3656 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3659 * Inherited from caller.
3662 static void ata_pio_sector(struct ata_queued_cmd *qc)
3664 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3665 struct scatterlist *sg = qc->__sg;
3666 struct ata_port *ap = qc->ap;
3668 unsigned int offset;
3671 if (qc->cursect == (qc->nsect - 1))
3672 ap->hsm_task_state = HSM_ST_LAST;
3674 page = sg[qc->cursg].page;
3675 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3677 /* get the current page and offset */
3678 page = nth_page(page, (offset >> PAGE_SHIFT));
3679 offset %= PAGE_SIZE;
3681 buf = kmap(page) + offset;
3686 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3691 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3693 /* do the actual data transfer */
3694 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3695 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3701 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3702 * @qc: Command on going
3703 * @bytes: number of bytes
3705 * Transfer Transfer data from/to the ATAPI device.
3708 * Inherited from caller.
3712 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3714 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3715 struct scatterlist *sg = qc->__sg;
3716 struct ata_port *ap = qc->ap;
3719 unsigned int offset, count;
3721 if (qc->curbytes + bytes >= qc->nbytes)
3722 ap->hsm_task_state = HSM_ST_LAST;
3725 if (unlikely(qc->cursg >= qc->n_elem)) {
3727 * The end of qc->sg is reached and the device expects
3728 * more data to transfer. In order not to overrun qc->sg
3729 * and fulfill length specified in the byte count register,
3730 * - for read case, discard trailing data from the device
3731 * - for write case, padding zero data to the device
3733 u16 pad_buf[1] = { 0 };
3734 unsigned int words = bytes >> 1;
3737 if (words) /* warning if bytes > 1 */
3738 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3741 for (i = 0; i < words; i++)
3742 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3744 ap->hsm_task_state = HSM_ST_LAST;
3748 sg = &qc->__sg[qc->cursg];
3751 offset = sg->offset + qc->cursg_ofs;
3753 /* get the current page and offset */
3754 page = nth_page(page, (offset >> PAGE_SHIFT));
3755 offset %= PAGE_SIZE;
3757 /* don't overrun current sg */
3758 count = min(sg->length - qc->cursg_ofs, bytes);
3760 /* don't cross page boundaries */
3761 count = min(count, (unsigned int)PAGE_SIZE - offset);
3763 buf = kmap(page) + offset;
3766 qc->curbytes += count;
3767 qc->cursg_ofs += count;
3769 if (qc->cursg_ofs == sg->length) {
3774 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3776 /* do the actual data transfer */
3777 ata_data_xfer(ap, buf, count, do_write);
3786 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3787 * @qc: Command on going
3789 * Transfer Transfer data from/to the ATAPI device.
3792 * Inherited from caller.
3795 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3797 struct ata_port *ap = qc->ap;
3798 struct ata_device *dev = qc->dev;
3799 unsigned int ireason, bc_lo, bc_hi, bytes;
3800 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3802 ap->ops->tf_read(ap, &qc->tf);
3803 ireason = qc->tf.nsect;
3804 bc_lo = qc->tf.lbam;
3805 bc_hi = qc->tf.lbah;
3806 bytes = (bc_hi << 8) | bc_lo;
3808 /* shall be cleared to zero, indicating xfer of data */
3809 if (ireason & (1 << 0))
3812 /* make sure transfer direction matches expected */
3813 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3814 if (do_write != i_write)
3817 __atapi_pio_bytes(qc, bytes);
3822 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3823 ap->id, dev->devno);
3824 qc->err_mask |= AC_ERR_HSM;
3825 ap->hsm_task_state = HSM_ST_ERR;
3829 * ata_pio_block - start PIO on a block
3830 * @qc: qc to transfer block for
3833 * None. (executing in kernel thread context)
3835 static void ata_pio_block(struct ata_queued_cmd *qc)
3837 struct ata_port *ap = qc->ap;
3841 * This is purely heuristic. This is a fast path.
3842 * Sometimes when we enter, BSY will be cleared in
3843 * a chk-status or two. If not, the drive is probably seeking
3844 * or something. Snooze for a couple msecs, then
3845 * chk-status again. If still busy, fall back to
3846 * HSM_ST_POLL state.
3848 status = ata_busy_wait(ap, ATA_BUSY, 5);
3849 if (status & ATA_BUSY) {
3851 status = ata_busy_wait(ap, ATA_BUSY, 10);
3852 if (status & ATA_BUSY) {
3853 ap->hsm_task_state = HSM_ST_POLL;
3854 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3860 if (status & (ATA_ERR | ATA_DF)) {
3861 qc->err_mask |= AC_ERR_DEV;
3862 ap->hsm_task_state = HSM_ST_ERR;
3866 /* transfer data if any */
3867 if (is_atapi_taskfile(&qc->tf)) {
3868 /* DRQ=0 means no more data to transfer */
3869 if ((status & ATA_DRQ) == 0) {
3870 ap->hsm_task_state = HSM_ST_LAST;
3874 atapi_pio_bytes(qc);
3876 /* handle BSY=0, DRQ=0 as error */
3877 if ((status & ATA_DRQ) == 0) {
3878 qc->err_mask |= AC_ERR_HSM;
3879 ap->hsm_task_state = HSM_ST_ERR;
3887 static void ata_pio_error(struct ata_queued_cmd *qc)
3889 struct ata_port *ap = qc->ap;
3891 if (qc->tf.command != ATA_CMD_PACKET)
3892 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3893 ap->id, qc->dev->devno);
3895 /* make sure qc->err_mask is available to
3896 * know what's wrong and recover
3898 WARN_ON(qc->err_mask == 0);
3900 ap->hsm_task_state = HSM_ST_IDLE;
3902 ata_poll_qc_complete(qc);
3905 static void ata_pio_task(void *_data)
3907 struct ata_queued_cmd *qc = _data;
3908 struct ata_port *ap = qc->ap;
3909 unsigned long timeout;
3916 switch (ap->hsm_task_state) {
3925 qc_completed = ata_pio_complete(qc);
3929 case HSM_ST_LAST_POLL:
3930 timeout = ata_pio_poll(qc);
3940 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3941 else if (!qc_completed)
3946 * atapi_packet_task - Write CDB bytes to hardware
3947 * @_data: qc in progress
3949 * When device has indicated its readiness to accept
3950 * a CDB, this function is called. Send the CDB.
3951 * If DMA is to be performed, exit immediately.
3952 * Otherwise, we are in polling mode, so poll
3953 * status under operation succeeds or fails.
3956 * Kernel thread context (may sleep)
3958 static void atapi_packet_task(void *_data)
3960 struct ata_queued_cmd *qc = _data;
3961 struct ata_port *ap = qc->ap;
3964 /* sleep-wait for BSY to clear */
3965 DPRINTK("busy wait\n");
3966 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3967 qc->err_mask |= AC_ERR_TIMEOUT;
3971 /* make sure DRQ is set */
3972 status = ata_chk_status(ap);
3973 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3974 qc->err_mask |= AC_ERR_HSM;
3979 DPRINTK("send cdb\n");
3980 WARN_ON(qc->dev->cdb_len < 12);
3982 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3983 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3984 unsigned long flags;
3986 /* Once we're done issuing command and kicking bmdma,
3987 * irq handler takes over. To not lose irq, we need
3988 * to clear NOINTR flag before sending cdb, but
3989 * interrupt handler shouldn't be invoked before we're
3990 * finished. Hence, the following locking.
3992 spin_lock_irqsave(&ap->host_set->lock, flags);
3993 ap->flags &= ~ATA_FLAG_NOINTR;
3994 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3995 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3996 ap->ops->bmdma_start(qc); /* initiate bmdma */
3997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3999 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4001 /* PIO commands are handled by polling */
4002 ap->hsm_task_state = HSM_ST;
4003 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4009 ata_poll_qc_complete(qc);
4013 * ata_qc_new - Request an available ATA command, for queueing
4014 * @ap: Port associated with device @dev
4015 * @dev: Device from whom we request an available command structure
4021 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4023 struct ata_queued_cmd *qc = NULL;
4026 for (i = 0; i < ATA_MAX_QUEUE; i++)
4027 if (!test_and_set_bit(i, &ap->qactive)) {
4028 qc = ata_qc_from_tag(ap, i);
4039 * ata_qc_new_init - Request an available ATA command, and initialize it
4040 * @ap: Port associated with device @dev
4041 * @dev: Device from whom we request an available command structure
4047 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4048 struct ata_device *dev)
4050 struct ata_queued_cmd *qc;
4052 qc = ata_qc_new(ap);
4065 * ata_qc_free - free unused ata_queued_cmd
4066 * @qc: Command to complete
4068 * Designed to free unused ata_queued_cmd object
4069 * in case something prevents using it.
4072 * spin_lock_irqsave(host_set lock)
4074 void ata_qc_free(struct ata_queued_cmd *qc)
4076 struct ata_port *ap = qc->ap;
4079 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4083 if (likely(ata_tag_valid(tag))) {
4084 if (tag == ap->active_tag)
4085 ap->active_tag = ATA_TAG_POISON;
4086 qc->tag = ATA_TAG_POISON;
4087 clear_bit(tag, &ap->qactive);
4091 void __ata_qc_complete(struct ata_queued_cmd *qc)
4093 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4094 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4096 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4099 /* atapi: mark qc as inactive to prevent the interrupt handler
4100 * from completing the command twice later, before the error handler
4101 * is called. (when rc != 0 and atapi request sense is needed)
4103 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4105 /* call completion callback */
4106 qc->complete_fn(qc);
4109 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4111 struct ata_port *ap = qc->ap;
4113 switch (qc->tf.protocol) {
4115 case ATA_PROT_ATAPI_DMA:
4118 case ATA_PROT_ATAPI:
4120 if (ap->flags & ATA_FLAG_PIO_DMA)
4133 * ata_qc_issue - issue taskfile to device
4134 * @qc: command to issue to device
4136 * Prepare an ATA command to submission to device.
4137 * This includes mapping the data into a DMA-able
4138 * area, filling in the S/G table, and finally
4139 * writing the taskfile to hardware, starting the command.
4142 * spin_lock_irqsave(host_set lock)
4144 void ata_qc_issue(struct ata_queued_cmd *qc)
4146 struct ata_port *ap = qc->ap;
4148 qc->ap->active_tag = qc->tag;
4149 qc->flags |= ATA_QCFLAG_ACTIVE;
4151 if (ata_should_dma_map(qc)) {
4152 if (qc->flags & ATA_QCFLAG_SG) {
4153 if (ata_sg_setup(qc))
4155 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4156 if (ata_sg_setup_one(qc))
4160 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4163 ap->ops->qc_prep(qc);
4165 qc->err_mask |= ap->ops->qc_issue(qc);
4166 if (unlikely(qc->err_mask))
4171 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4172 qc->err_mask |= AC_ERR_SYSTEM;
4174 ata_qc_complete(qc);
4178 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4179 * @qc: command to issue to device
4181 * Using various libata functions and hooks, this function
4182 * starts an ATA command. ATA commands are grouped into
4183 * classes called "protocols", and issuing each type of protocol
4184 * is slightly different.
4186 * May be used as the qc_issue() entry in ata_port_operations.
4189 * spin_lock_irqsave(host_set lock)
4192 * Zero on success, AC_ERR_* mask on failure
4195 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4197 struct ata_port *ap = qc->ap;
4199 ata_dev_select(ap, qc->dev->devno, 1, 0);
4201 switch (qc->tf.protocol) {
4202 case ATA_PROT_NODATA:
4203 ata_tf_to_host(ap, &qc->tf);
4207 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4208 ap->ops->bmdma_setup(qc); /* set up bmdma */
4209 ap->ops->bmdma_start(qc); /* initiate bmdma */
4212 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4213 ata_qc_set_polling(qc);
4214 ata_tf_to_host(ap, &qc->tf);
4215 ap->hsm_task_state = HSM_ST;
4216 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4219 case ATA_PROT_ATAPI:
4220 ata_qc_set_polling(qc);
4221 ata_tf_to_host(ap, &qc->tf);
4222 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4225 case ATA_PROT_ATAPI_NODATA:
4226 ap->flags |= ATA_FLAG_NOINTR;
4227 ata_tf_to_host(ap, &qc->tf);
4228 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4231 case ATA_PROT_ATAPI_DMA:
4232 ap->flags |= ATA_FLAG_NOINTR;
4233 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4234 ap->ops->bmdma_setup(qc); /* set up bmdma */
4235 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4240 return AC_ERR_SYSTEM;
4247 * ata_host_intr - Handle host interrupt for given (port, task)
4248 * @ap: Port on which interrupt arrived (possibly...)
4249 * @qc: Taskfile currently active in engine
4251 * Handle host interrupt for given queued command. Currently,
4252 * only DMA interrupts are handled. All other commands are
4253 * handled via polling with interrupts disabled (nIEN bit).
4256 * spin_lock_irqsave(host_set lock)
4259 * One if interrupt was handled, zero if not (shared irq).
4262 inline unsigned int ata_host_intr (struct ata_port *ap,
4263 struct ata_queued_cmd *qc)
4265 u8 status, host_stat;
4267 switch (qc->tf.protocol) {
4270 case ATA_PROT_ATAPI_DMA:
4271 case ATA_PROT_ATAPI:
4272 /* check status of DMA engine */
4273 host_stat = ap->ops->bmdma_status(ap);
4274 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4276 /* if it's not our irq... */
4277 if (!(host_stat & ATA_DMA_INTR))
4280 /* before we do anything else, clear DMA-Start bit */
4281 ap->ops->bmdma_stop(qc);
4285 case ATA_PROT_ATAPI_NODATA:
4286 case ATA_PROT_NODATA:
4287 /* check altstatus */
4288 status = ata_altstatus(ap);
4289 if (status & ATA_BUSY)
4292 /* check main status, clearing INTRQ */
4293 status = ata_chk_status(ap);
4294 if (unlikely(status & ATA_BUSY))
4296 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4297 ap->id, qc->tf.protocol, status);
4299 /* ack bmdma irq events */
4300 ap->ops->irq_clear(ap);
4302 /* complete taskfile transaction */
4303 qc->err_mask |= ac_err_mask(status);
4304 ata_qc_complete(qc);
4311 return 1; /* irq handled */
4314 ap->stats.idle_irq++;
4317 if ((ap->stats.idle_irq % 1000) == 0) {
4318 ata_irq_ack(ap, 0); /* debug trap */
4319 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4323 return 0; /* irq not handled */
4327 * ata_interrupt - Default ATA host interrupt handler
4328 * @irq: irq line (unused)
4329 * @dev_instance: pointer to our ata_host_set information structure
4332 * Default interrupt handler for PCI IDE devices. Calls
4333 * ata_host_intr() for each port that is not disabled.
4336 * Obtains host_set lock during operation.
4339 * IRQ_NONE or IRQ_HANDLED.
4342 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4344 struct ata_host_set *host_set = dev_instance;
4346 unsigned int handled = 0;
4347 unsigned long flags;
4349 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4350 spin_lock_irqsave(&host_set->lock, flags);
4352 for (i = 0; i < host_set->n_ports; i++) {
4353 struct ata_port *ap;
4355 ap = host_set->ports[i];
4357 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4358 struct ata_queued_cmd *qc;
4360 qc = ata_qc_from_tag(ap, ap->active_tag);
4361 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4362 (qc->flags & ATA_QCFLAG_ACTIVE))
4363 handled |= ata_host_intr(ap, qc);
4367 spin_unlock_irqrestore(&host_set->lock, flags);
4369 return IRQ_RETVAL(handled);
4374 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4375 * without filling any other registers
4377 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4380 struct ata_taskfile tf;
4383 ata_tf_init(ap, &tf, dev->devno);
4386 tf.flags |= ATA_TFLAG_DEVICE;
4387 tf.protocol = ATA_PROT_NODATA;
4389 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4391 printk(KERN_ERR "%s: ata command failed: %d\n",
4397 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4401 if (!ata_try_flush_cache(dev))
4404 if (ata_id_has_flush_ext(dev->id))
4405 cmd = ATA_CMD_FLUSH_EXT;
4407 cmd = ATA_CMD_FLUSH;
4409 return ata_do_simple_cmd(ap, dev, cmd);
4412 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4414 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4417 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4419 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4423 * ata_device_resume - wakeup a previously suspended devices
4424 * @ap: port the device is connected to
4425 * @dev: the device to resume
4427 * Kick the drive back into action, by sending it an idle immediate
4428 * command and making sure its transfer mode matches between drive
4432 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4434 if (ap->flags & ATA_FLAG_SUSPENDED) {
4435 struct ata_device *failed_dev;
4436 ap->flags &= ~ATA_FLAG_SUSPENDED;
4437 while (ata_set_mode(ap, &failed_dev))
4438 ata_dev_disable(ap, failed_dev);
4440 if (!ata_dev_enabled(dev))
4442 if (dev->class == ATA_DEV_ATA)
4443 ata_start_drive(ap, dev);
4449 * ata_device_suspend - prepare a device for suspend
4450 * @ap: port the device is connected to
4451 * @dev: the device to suspend
4453 * Flush the cache on the drive, if appropriate, then issue a
4454 * standbynow command.
4456 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4458 if (!ata_dev_enabled(dev))
4460 if (dev->class == ATA_DEV_ATA)
4461 ata_flush_cache(ap, dev);
4463 if (state.event != PM_EVENT_FREEZE)
4464 ata_standby_drive(ap, dev);
4465 ap->flags |= ATA_FLAG_SUSPENDED;
4470 * ata_port_start - Set port up for dma.
4471 * @ap: Port to initialize
4473 * Called just after data structures for each port are
4474 * initialized. Allocates space for PRD table.
4476 * May be used as the port_start() entry in ata_port_operations.
4479 * Inherited from caller.
4482 int ata_port_start (struct ata_port *ap)
4484 struct device *dev = ap->dev;
4487 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4491 rc = ata_pad_alloc(ap, dev);
4493 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4497 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4504 * ata_port_stop - Undo ata_port_start()
4505 * @ap: Port to shut down
4507 * Frees the PRD table.
4509 * May be used as the port_stop() entry in ata_port_operations.
4512 * Inherited from caller.
4515 void ata_port_stop (struct ata_port *ap)
4517 struct device *dev = ap->dev;
4519 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4520 ata_pad_free(ap, dev);
4523 void ata_host_stop (struct ata_host_set *host_set)
4525 if (host_set->mmio_base)
4526 iounmap(host_set->mmio_base);
4531 * ata_host_remove - Unregister SCSI host structure with upper layers
4532 * @ap: Port to unregister
4533 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4536 * Inherited from caller.
4539 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4541 struct Scsi_Host *sh = ap->host;
4546 scsi_remove_host(sh);
4548 ap->ops->port_stop(ap);
4552 * ata_host_init - Initialize an ata_port structure
4553 * @ap: Structure to initialize
4554 * @host: associated SCSI mid-layer structure
4555 * @host_set: Collection of hosts to which @ap belongs
4556 * @ent: Probe information provided by low-level driver
4557 * @port_no: Port number associated with this ata_port
4559 * Initialize a new ata_port structure, and its associated
4563 * Inherited from caller.
4566 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4567 struct ata_host_set *host_set,
4568 const struct ata_probe_ent *ent, unsigned int port_no)
4574 host->max_channel = 1;
4575 host->unique_id = ata_unique_id++;
4576 host->max_cmd_len = 12;
4578 ap->flags = ATA_FLAG_DISABLED;
4579 ap->id = host->unique_id;
4581 ap->ctl = ATA_DEVCTL_OBS;
4582 ap->host_set = host_set;
4584 ap->port_no = port_no;
4586 ent->legacy_mode ? ent->hard_port_no : port_no;
4587 ap->pio_mask = ent->pio_mask;
4588 ap->mwdma_mask = ent->mwdma_mask;
4589 ap->udma_mask = ent->udma_mask;
4590 ap->flags |= ent->host_flags;
4591 ap->ops = ent->port_ops;
4592 ap->cbl = ATA_CBL_NONE;
4593 ap->sata_spd_limit = UINT_MAX;
4594 ap->active_tag = ATA_TAG_POISON;
4595 ap->last_ctl = 0xFF;
4597 INIT_WORK(&ap->port_task, NULL, NULL);
4598 INIT_LIST_HEAD(&ap->eh_done_q);
4600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4601 struct ata_device *dev = &ap->device[i];
4603 dev->pio_mask = UINT_MAX;
4604 dev->mwdma_mask = UINT_MAX;
4605 dev->udma_mask = UINT_MAX;
4609 ap->stats.unhandled_irq = 1;
4610 ap->stats.idle_irq = 1;
4613 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4617 * ata_host_add - Attach low-level ATA driver to system
4618 * @ent: Information provided by low-level driver
4619 * @host_set: Collections of ports to which we add
4620 * @port_no: Port number associated with this host
4622 * Attach low-level ATA driver to system.
4625 * PCI/etc. bus probe sem.
4628 * New ata_port on success, for NULL on error.
4631 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4632 struct ata_host_set *host_set,
4633 unsigned int port_no)
4635 struct Scsi_Host *host;
4636 struct ata_port *ap;
4641 if (!ent->port_ops->probe_reset &&
4642 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4643 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4648 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4652 host->transportt = &ata_scsi_transport_template;
4654 ap = ata_shost_to_port(host);
4656 ata_host_init(ap, host, host_set, ent, port_no);
4658 rc = ap->ops->port_start(ap);
4665 scsi_host_put(host);
4670 * ata_device_add - Register hardware device with ATA and SCSI layers
4671 * @ent: Probe information describing hardware device to be registered
4673 * This function processes the information provided in the probe
4674 * information struct @ent, allocates the necessary ATA and SCSI
4675 * host information structures, initializes them, and registers
4676 * everything with requisite kernel subsystems.
4678 * This function requests irqs, probes the ATA bus, and probes
4682 * PCI/etc. bus probe sem.
4685 * Number of ports registered. Zero on error (no ports registered).
4688 int ata_device_add(const struct ata_probe_ent *ent)
4690 unsigned int count = 0, i;
4691 struct device *dev = ent->dev;
4692 struct ata_host_set *host_set;
4695 /* alloc a container for our list of ATA ports (buses) */
4696 host_set = kzalloc(sizeof(struct ata_host_set) +
4697 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4700 spin_lock_init(&host_set->lock);
4702 host_set->dev = dev;
4703 host_set->n_ports = ent->n_ports;
4704 host_set->irq = ent->irq;
4705 host_set->mmio_base = ent->mmio_base;
4706 host_set->private_data = ent->private_data;
4707 host_set->ops = ent->port_ops;
4708 host_set->flags = ent->host_set_flags;
4710 /* register each port bound to this device */
4711 for (i = 0; i < ent->n_ports; i++) {
4712 struct ata_port *ap;
4713 unsigned long xfer_mode_mask;
4715 ap = ata_host_add(ent, host_set, i);
4719 host_set->ports[i] = ap;
4720 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4721 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4722 (ap->pio_mask << ATA_SHIFT_PIO);
4724 /* print per-port info to dmesg */
4725 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4726 "bmdma 0x%lX irq %lu\n",
4728 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4729 ata_mode_string(xfer_mode_mask),
4730 ap->ioaddr.cmd_addr,
4731 ap->ioaddr.ctl_addr,
4732 ap->ioaddr.bmdma_addr,
4736 host_set->ops->irq_clear(ap);
4743 /* obtain irq, that is shared between channels */
4744 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4745 DRV_NAME, host_set))
4748 /* perform each probe synchronously */
4749 DPRINTK("probe begin\n");
4750 for (i = 0; i < count; i++) {
4751 struct ata_port *ap;
4754 ap = host_set->ports[i];
4756 DPRINTK("ata%u: bus probe begin\n", ap->id);
4757 rc = ata_bus_probe(ap);
4758 DPRINTK("ata%u: bus probe end\n", ap->id);
4761 /* FIXME: do something useful here?
4762 * Current libata behavior will
4763 * tear down everything when
4764 * the module is removed
4765 * or the h/w is unplugged.
4769 rc = scsi_add_host(ap->host, dev);
4771 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4773 /* FIXME: do something useful here */
4774 /* FIXME: handle unconditional calls to
4775 * scsi_scan_host and ata_host_remove, below,
4781 /* probes are done, now scan each port's disk(s) */
4782 DPRINTK("host probe begin\n");
4783 for (i = 0; i < count; i++) {
4784 struct ata_port *ap = host_set->ports[i];
4786 ata_scsi_scan_host(ap);
4789 dev_set_drvdata(dev, host_set);
4791 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4792 return ent->n_ports; /* success */
4795 for (i = 0; i < count; i++) {
4796 ata_host_remove(host_set->ports[i], 1);
4797 scsi_host_put(host_set->ports[i]->host);
4801 VPRINTK("EXIT, returning 0\n");
4806 * ata_host_set_remove - PCI layer callback for device removal
4807 * @host_set: ATA host set that was removed
4809 * Unregister all objects associated with this host set. Free those
4813 * Inherited from calling layer (may sleep).
4816 void ata_host_set_remove(struct ata_host_set *host_set)
4818 struct ata_port *ap;
4821 for (i = 0; i < host_set->n_ports; i++) {
4822 ap = host_set->ports[i];
4823 scsi_remove_host(ap->host);
4826 free_irq(host_set->irq, host_set);
4828 for (i = 0; i < host_set->n_ports; i++) {
4829 ap = host_set->ports[i];
4831 ata_scsi_release(ap->host);
4833 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4834 struct ata_ioports *ioaddr = &ap->ioaddr;
4836 if (ioaddr->cmd_addr == 0x1f0)
4837 release_region(0x1f0, 8);
4838 else if (ioaddr->cmd_addr == 0x170)
4839 release_region(0x170, 8);
4842 scsi_host_put(ap->host);
4845 if (host_set->ops->host_stop)
4846 host_set->ops->host_stop(host_set);
4852 * ata_scsi_release - SCSI layer callback hook for host unload
4853 * @host: libata host to be unloaded
4855 * Performs all duties necessary to shut down a libata port...
4856 * Kill port kthread, disable port, and release resources.
4859 * Inherited from SCSI layer.
4865 int ata_scsi_release(struct Scsi_Host *host)
4867 struct ata_port *ap = ata_shost_to_port(host);
4872 ap->ops->port_disable(ap);
4873 ata_host_remove(ap, 0);
4874 for (i = 0; i < ATA_MAX_DEVICES; i++)
4875 kfree(ap->device[i].id);
4882 * ata_std_ports - initialize ioaddr with standard port offsets.
4883 * @ioaddr: IO address structure to be initialized
4885 * Utility function which initializes data_addr, error_addr,
4886 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4887 * device_addr, status_addr, and command_addr to standard offsets
4888 * relative to cmd_addr.
4890 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4893 void ata_std_ports(struct ata_ioports *ioaddr)
4895 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4896 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4897 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4898 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4899 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4900 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4901 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4902 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4903 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4904 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4910 void ata_pci_host_stop (struct ata_host_set *host_set)
4912 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4914 pci_iounmap(pdev, host_set->mmio_base);
4918 * ata_pci_remove_one - PCI layer callback for device removal
4919 * @pdev: PCI device that was removed
4921 * PCI layer indicates to libata via this hook that
4922 * hot-unplug or module unload event has occurred.
4923 * Handle this by unregistering all objects associated
4924 * with this PCI device. Free those objects. Then finally
4925 * release PCI resources and disable device.
4928 * Inherited from PCI layer (may sleep).
4931 void ata_pci_remove_one (struct pci_dev *pdev)
4933 struct device *dev = pci_dev_to_dev(pdev);
4934 struct ata_host_set *host_set = dev_get_drvdata(dev);
4936 ata_host_set_remove(host_set);
4937 pci_release_regions(pdev);
4938 pci_disable_device(pdev);
4939 dev_set_drvdata(dev, NULL);
4942 /* move to PCI subsystem */
4943 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4945 unsigned long tmp = 0;
4947 switch (bits->width) {
4950 pci_read_config_byte(pdev, bits->reg, &tmp8);
4956 pci_read_config_word(pdev, bits->reg, &tmp16);
4962 pci_read_config_dword(pdev, bits->reg, &tmp32);
4973 return (tmp == bits->val) ? 1 : 0;
4976 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4978 pci_save_state(pdev);
4979 pci_disable_device(pdev);
4980 pci_set_power_state(pdev, PCI_D3hot);
4984 int ata_pci_device_resume(struct pci_dev *pdev)
4986 pci_set_power_state(pdev, PCI_D0);
4987 pci_restore_state(pdev);
4988 pci_enable_device(pdev);
4989 pci_set_master(pdev);
4992 #endif /* CONFIG_PCI */
4995 static int __init ata_init(void)
4997 ata_wq = create_workqueue("ata");
5001 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5005 static void __exit ata_exit(void)
5007 destroy_workqueue(ata_wq);
5010 module_init(ata_init);
5011 module_exit(ata_exit);
5013 static unsigned long ratelimit_time;
5014 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5016 int ata_ratelimit(void)
5019 unsigned long flags;
5021 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5023 if (time_after(jiffies, ratelimit_time)) {
5025 ratelimit_time = jiffies + (HZ/5);
5029 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5035 * ata_wait_register - wait until register value changes
5036 * @reg: IO-mapped register
5037 * @mask: Mask to apply to read register value
5038 * @val: Wait condition
5039 * @interval_msec: polling interval in milliseconds
5040 * @timeout_msec: timeout in milliseconds
5042 * Waiting for some bits of register to change is a common
5043 * operation for ATA controllers. This function reads 32bit LE
5044 * IO-mapped register @reg and tests for the following condition.
5046 * (*@reg & mask) != val
5048 * If the condition is met, it returns; otherwise, the process is
5049 * repeated after @interval_msec until timeout.
5052 * Kernel thread context (may sleep)
5055 * The final register value.
5057 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5058 unsigned long interval_msec,
5059 unsigned long timeout_msec)
5061 unsigned long timeout;
5064 tmp = ioread32(reg);
5066 /* Calculate timeout _after_ the first read to make sure
5067 * preceding writes reach the controller before starting to
5068 * eat away the timeout.
5070 timeout = jiffies + (timeout_msec * HZ) / 1000;
5072 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5073 msleep(interval_msec);
5074 tmp = ioread32(reg);
5081 * libata is essentially a library of internal helper functions for
5082 * low-level ATA host controller drivers. As such, the API/ABI is
5083 * likely to change as new drivers are added and updated.
5084 * Do not depend on ABI/API stability.
5087 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5088 EXPORT_SYMBOL_GPL(ata_std_ports);
5089 EXPORT_SYMBOL_GPL(ata_device_add);
5090 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5091 EXPORT_SYMBOL_GPL(ata_sg_init);
5092 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5093 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5094 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5095 EXPORT_SYMBOL_GPL(ata_tf_load);
5096 EXPORT_SYMBOL_GPL(ata_tf_read);
5097 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5098 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5099 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5100 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5101 EXPORT_SYMBOL_GPL(ata_check_status);
5102 EXPORT_SYMBOL_GPL(ata_altstatus);
5103 EXPORT_SYMBOL_GPL(ata_exec_command);
5104 EXPORT_SYMBOL_GPL(ata_port_start);
5105 EXPORT_SYMBOL_GPL(ata_port_stop);
5106 EXPORT_SYMBOL_GPL(ata_host_stop);
5107 EXPORT_SYMBOL_GPL(ata_interrupt);
5108 EXPORT_SYMBOL_GPL(ata_qc_prep);
5109 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5110 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5111 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5112 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5113 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5114 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5115 EXPORT_SYMBOL_GPL(ata_port_probe);
5116 EXPORT_SYMBOL_GPL(sata_set_spd);
5117 EXPORT_SYMBOL_GPL(sata_phy_reset);
5118 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5119 EXPORT_SYMBOL_GPL(ata_bus_reset);
5120 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5121 EXPORT_SYMBOL_GPL(ata_std_softreset);
5122 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5123 EXPORT_SYMBOL_GPL(ata_std_postreset);
5124 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5125 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5126 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5127 EXPORT_SYMBOL_GPL(ata_dev_classify);
5128 EXPORT_SYMBOL_GPL(ata_dev_pair);
5129 EXPORT_SYMBOL_GPL(ata_port_disable);
5130 EXPORT_SYMBOL_GPL(ata_ratelimit);
5131 EXPORT_SYMBOL_GPL(ata_wait_register);
5132 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5133 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5134 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5135 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5136 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5137 EXPORT_SYMBOL_GPL(ata_scsi_release);
5138 EXPORT_SYMBOL_GPL(ata_host_intr);
5139 EXPORT_SYMBOL_GPL(ata_id_string);
5140 EXPORT_SYMBOL_GPL(ata_id_c_string);
5141 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5143 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5144 EXPORT_SYMBOL_GPL(ata_timing_compute);
5145 EXPORT_SYMBOL_GPL(ata_timing_merge);
5148 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5149 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5150 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5151 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5152 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5153 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5154 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5155 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5156 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5157 #endif /* CONFIG_PCI */
5159 EXPORT_SYMBOL_GPL(ata_device_suspend);
5160 EXPORT_SYMBOL_GPL(ata_device_resume);
5161 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5162 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5164 EXPORT_SYMBOL_GPL(ata_scsi_error);
5165 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5166 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5167 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);