Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 static const struct net_device_ops e1000_netdev_ops = {
892         .ndo_open               = e1000_open,
893         .ndo_stop               = e1000_close,
894         .ndo_start_xmit         = e1000_xmit_frame,
895         .ndo_get_stats          = e1000_get_stats,
896         .ndo_set_rx_mode        = e1000_set_rx_mode,
897         .ndo_set_mac_address    = e1000_set_mac,
898         .ndo_tx_timeout         = e1000_tx_timeout,
899         .ndo_change_mtu         = e1000_change_mtu,
900         .ndo_do_ioctl           = e1000_ioctl,
901         .ndo_validate_addr      = eth_validate_addr,
902
903         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
904         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
905         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907         .ndo_poll_controller    = e1000_netpoll,
908 #endif
909 };
910
911 /**
912  * e1000_probe - Device Initialization Routine
913  * @pdev: PCI device information struct
914  * @ent: entry in e1000_pci_tbl
915  *
916  * Returns 0 on success, negative on failure
917  *
918  * e1000_probe initializes an adapter identified by a pci_dev structure.
919  * The OS initialization, configuring of the adapter private structure,
920  * and a hardware reset occur.
921  **/
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923                                  const struct pci_device_id *ent)
924 {
925         struct net_device *netdev;
926         struct e1000_adapter *adapter;
927         struct e1000_hw *hw;
928
929         static int cards_found = 0;
930         static int global_quad_port_a = 0; /* global ksp3 port a indication */
931         int i, err, pci_using_dac;
932         u16 eeprom_data = 0;
933         u16 eeprom_apme_mask = E1000_EEPROM_APME;
934         int bars, need_ioport;
935
936         /* do not allocate ioport bars when not needed */
937         need_ioport = e1000_is_need_ioport(pdev);
938         if (need_ioport) {
939                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940                 err = pci_enable_device(pdev);
941         } else {
942                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943                 err = pci_enable_device(pdev);
944         }
945         if (err)
946                 return err;
947
948         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950                 pci_using_dac = 1;
951         } else {
952                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953                 if (err) {
954                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955                         if (err) {
956                                 E1000_ERR("No usable DMA configuration, "
957                                           "aborting\n");
958                                 goto err_dma;
959                         }
960                 }
961                 pci_using_dac = 0;
962         }
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = (1 << debug) - 1;
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         netdev->netdev_ops = &e1000_netdev_ops;
1005         e1000_set_ethtool_ops(netdev);
1006         netdev->watchdog_timeo = 5 * HZ;
1007         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1008
1009         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1010
1011         adapter->bd_number = cards_found;
1012
1013         /* setup the private structure */
1014
1015         err = e1000_sw_init(adapter);
1016         if (err)
1017                 goto err_sw_init;
1018
1019         err = -EIO;
1020         /* Flash BAR mapping must happen after e1000_sw_init
1021          * because it depends on mac_type */
1022         if ((hw->mac_type == e1000_ich8lan) &&
1023            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025                 if (!hw->flash_address)
1026                         goto err_flashmap;
1027         }
1028
1029         if (e1000_check_phy_reset_block(hw))
1030                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032         if (hw->mac_type >= e1000_82543) {
1033                 netdev->features = NETIF_F_SG |
1034                                    NETIF_F_HW_CSUM |
1035                                    NETIF_F_HW_VLAN_TX |
1036                                    NETIF_F_HW_VLAN_RX |
1037                                    NETIF_F_HW_VLAN_FILTER;
1038                 if (hw->mac_type == e1000_ich8lan)
1039                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040         }
1041
1042         if ((hw->mac_type >= e1000_82544) &&
1043            (hw->mac_type != e1000_82547))
1044                 netdev->features |= NETIF_F_TSO;
1045
1046         if (hw->mac_type > e1000_82547_rev_2)
1047                 netdev->features |= NETIF_F_TSO6;
1048         if (pci_using_dac)
1049                 netdev->features |= NETIF_F_HIGHDMA;
1050
1051         netdev->features |= NETIF_F_LLTX;
1052
1053         netdev->vlan_features |= NETIF_F_TSO;
1054         netdev->vlan_features |= NETIF_F_TSO6;
1055         netdev->vlan_features |= NETIF_F_HW_CSUM;
1056         netdev->vlan_features |= NETIF_F_SG;
1057
1058         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1059
1060         /* initialize eeprom parameters */
1061         if (e1000_init_eeprom_params(hw)) {
1062                 E1000_ERR("EEPROM initialization failed\n");
1063                 goto err_eeprom;
1064         }
1065
1066         /* before reading the EEPROM, reset the controller to
1067          * put the device in a known good starting state */
1068
1069         e1000_reset_hw(hw);
1070
1071         /* make sure the EEPROM is good */
1072         if (e1000_validate_eeprom_checksum(hw) < 0) {
1073                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1074                 e1000_dump_eeprom(adapter);
1075                 /*
1076                  * set MAC address to all zeroes to invalidate and temporary
1077                  * disable this device for the user. This blocks regular
1078                  * traffic while still permitting ethtool ioctls from reaching
1079                  * the hardware as well as allowing the user to run the
1080                  * interface after manually setting a hw addr using
1081                  * `ip set address`
1082                  */
1083                 memset(hw->mac_addr, 0, netdev->addr_len);
1084         } else {
1085                 /* copy the MAC address out of the EEPROM */
1086                 if (e1000_read_mac_addr(hw))
1087                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1088         }
1089         /* don't block initalization here due to bad MAC address */
1090         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1091         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1092
1093         if (!is_valid_ether_addr(netdev->perm_addr))
1094                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1095
1096         e1000_get_bus_info(hw);
1097
1098         init_timer(&adapter->tx_fifo_stall_timer);
1099         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1100         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1101
1102         init_timer(&adapter->watchdog_timer);
1103         adapter->watchdog_timer.function = &e1000_watchdog;
1104         adapter->watchdog_timer.data = (unsigned long) adapter;
1105
1106         init_timer(&adapter->phy_info_timer);
1107         adapter->phy_info_timer.function = &e1000_update_phy_info;
1108         adapter->phy_info_timer.data = (unsigned long)adapter;
1109
1110         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1111
1112         e1000_check_options(adapter);
1113
1114         /* Initial Wake on LAN setting
1115          * If APM wake is enabled in the EEPROM,
1116          * enable the ACPI Magic Packet filter
1117          */
1118
1119         switch (hw->mac_type) {
1120         case e1000_82542_rev2_0:
1121         case e1000_82542_rev2_1:
1122         case e1000_82543:
1123                 break;
1124         case e1000_82544:
1125                 e1000_read_eeprom(hw,
1126                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1127                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1128                 break;
1129         case e1000_ich8lan:
1130                 e1000_read_eeprom(hw,
1131                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1132                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1133                 break;
1134         case e1000_82546:
1135         case e1000_82546_rev_3:
1136         case e1000_82571:
1137         case e1000_80003es2lan:
1138                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1139                         e1000_read_eeprom(hw,
1140                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1141                         break;
1142                 }
1143                 /* Fall Through */
1144         default:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1147                 break;
1148         }
1149         if (eeprom_data & eeprom_apme_mask)
1150                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1151
1152         /* now that we have the eeprom settings, apply the special cases
1153          * where the eeprom may be wrong or the board simply won't support
1154          * wake on lan on a particular port */
1155         switch (pdev->device) {
1156         case E1000_DEV_ID_82546GB_PCIE:
1157                 adapter->eeprom_wol = 0;
1158                 break;
1159         case E1000_DEV_ID_82546EB_FIBER:
1160         case E1000_DEV_ID_82546GB_FIBER:
1161         case E1000_DEV_ID_82571EB_FIBER:
1162                 /* Wake events only supported on port A for dual fiber
1163                  * regardless of eeprom setting */
1164                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165                         adapter->eeprom_wol = 0;
1166                 break;
1167         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1169         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1170         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1171         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1172                 /* if quad port adapter, disable WoL on all but port A */
1173                 if (global_quad_port_a != 0)
1174                         adapter->eeprom_wol = 0;
1175                 else
1176                         adapter->quad_port_a = 1;
1177                 /* Reset for multiple quad port adapters */
1178                 if (++global_quad_port_a == 4)
1179                         global_quad_port_a = 0;
1180                 break;
1181         }
1182
1183         /* initialize the wol settings based on the eeprom settings */
1184         adapter->wol = adapter->eeprom_wol;
1185         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1186
1187         /* print bus type/speed/width info */
1188         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1189                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1190                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1191                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1192                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1193                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1194                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1195                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1196                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1197                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1198                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1199                  "32-bit"));
1200
1201         printk("%pM\n", netdev->dev_addr);
1202
1203         if (hw->bus_type == e1000_bus_type_pci_express) {
1204                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1205                         "longer be supported by this driver in the future.\n",
1206                         pdev->vendor, pdev->device);
1207                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1208                         "driver instead.\n");
1209         }
1210
1211         /* reset the hardware with the new settings */
1212         e1000_reset(adapter);
1213
1214         /* If the controller is 82573 and f/w is AMT, do not set
1215          * DRV_LOAD until the interface is up.  For all other cases,
1216          * let the f/w know that the h/w is now under the control
1217          * of the driver. */
1218         if (hw->mac_type != e1000_82573 ||
1219             !e1000_check_mng_mode(hw))
1220                 e1000_get_hw_control(adapter);
1221
1222         /* tell the stack to leave us alone until e1000_open() is called */
1223         netif_carrier_off(netdev);
1224         netif_stop_queue(netdev);
1225
1226         strcpy(netdev->name, "eth%d");
1227         err = register_netdev(netdev);
1228         if (err)
1229                 goto err_register;
1230
1231         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1232
1233         cards_found++;
1234         return 0;
1235
1236 err_register:
1237         e1000_release_hw_control(adapter);
1238 err_eeprom:
1239         if (!e1000_check_phy_reset_block(hw))
1240                 e1000_phy_hw_reset(hw);
1241
1242         if (hw->flash_address)
1243                 iounmap(hw->flash_address);
1244 err_flashmap:
1245         kfree(adapter->tx_ring);
1246         kfree(adapter->rx_ring);
1247 err_sw_init:
1248         iounmap(hw->hw_addr);
1249 err_ioremap:
1250         free_netdev(netdev);
1251 err_alloc_etherdev:
1252         pci_release_selected_regions(pdev, bars);
1253 err_pci_reg:
1254 err_dma:
1255         pci_disable_device(pdev);
1256         return err;
1257 }
1258
1259 /**
1260  * e1000_remove - Device Removal Routine
1261  * @pdev: PCI device information struct
1262  *
1263  * e1000_remove is called by the PCI subsystem to alert the driver
1264  * that it should release a PCI device.  The could be caused by a
1265  * Hot-Plug event, or because the driver is going to be removed from
1266  * memory.
1267  **/
1268
1269 static void __devexit e1000_remove(struct pci_dev *pdev)
1270 {
1271         struct net_device *netdev = pci_get_drvdata(pdev);
1272         struct e1000_adapter *adapter = netdev_priv(netdev);
1273         struct e1000_hw *hw = &adapter->hw;
1274
1275         cancel_work_sync(&adapter->reset_task);
1276
1277         e1000_release_manageability(adapter);
1278
1279         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1280          * would have already happened in close and is redundant. */
1281         e1000_release_hw_control(adapter);
1282
1283         unregister_netdev(netdev);
1284
1285         if (!e1000_check_phy_reset_block(hw))
1286                 e1000_phy_hw_reset(hw);
1287
1288         kfree(adapter->tx_ring);
1289         kfree(adapter->rx_ring);
1290
1291         iounmap(hw->hw_addr);
1292         if (hw->flash_address)
1293                 iounmap(hw->flash_address);
1294         pci_release_selected_regions(pdev, adapter->bars);
1295
1296         free_netdev(netdev);
1297
1298         pci_disable_device(pdev);
1299 }
1300
1301 /**
1302  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1303  * @adapter: board private structure to initialize
1304  *
1305  * e1000_sw_init initializes the Adapter private data structure.
1306  * Fields are initialized based on PCI device information and
1307  * OS network device settings (MTU size).
1308  **/
1309
1310 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1311 {
1312         struct e1000_hw *hw = &adapter->hw;
1313         struct net_device *netdev = adapter->netdev;
1314         struct pci_dev *pdev = adapter->pdev;
1315
1316         /* PCI config space info */
1317
1318         hw->vendor_id = pdev->vendor;
1319         hw->device_id = pdev->device;
1320         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1321         hw->subsystem_id = pdev->subsystem_device;
1322         hw->revision_id = pdev->revision;
1323
1324         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1325
1326         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1327         hw->max_frame_size = netdev->mtu +
1328                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1329         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1330
1331         /* identify the MAC */
1332
1333         if (e1000_set_mac_type(hw)) {
1334                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1335                 return -EIO;
1336         }
1337
1338         switch (hw->mac_type) {
1339         default:
1340                 break;
1341         case e1000_82541:
1342         case e1000_82547:
1343         case e1000_82541_rev_2:
1344         case e1000_82547_rev_2:
1345                 hw->phy_init_script = 1;
1346                 break;
1347         }
1348
1349         e1000_set_media_type(hw);
1350
1351         hw->wait_autoneg_complete = false;
1352         hw->tbi_compatibility_en = true;
1353         hw->adaptive_ifs = true;
1354
1355         /* Copper options */
1356
1357         if (hw->media_type == e1000_media_type_copper) {
1358                 hw->mdix = AUTO_ALL_MODES;
1359                 hw->disable_polarity_correction = false;
1360                 hw->master_slave = E1000_MASTER_SLAVE;
1361         }
1362
1363         adapter->num_tx_queues = 1;
1364         adapter->num_rx_queues = 1;
1365
1366         if (e1000_alloc_queues(adapter)) {
1367                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1368                 return -ENOMEM;
1369         }
1370
1371         spin_lock_init(&adapter->tx_queue_lock);
1372
1373         /* Explicitly disable IRQ since the NIC can be in any state. */
1374         e1000_irq_disable(adapter);
1375
1376         spin_lock_init(&adapter->stats_lock);
1377
1378         set_bit(__E1000_DOWN, &adapter->flags);
1379
1380         return 0;
1381 }
1382
1383 /**
1384  * e1000_alloc_queues - Allocate memory for all rings
1385  * @adapter: board private structure to initialize
1386  *
1387  * We allocate one ring per queue at run-time since we don't know the
1388  * number of queues at compile-time.
1389  **/
1390
1391 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1392 {
1393         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1394                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1395         if (!adapter->tx_ring)
1396                 return -ENOMEM;
1397
1398         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1399                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1400         if (!adapter->rx_ring) {
1401                 kfree(adapter->tx_ring);
1402                 return -ENOMEM;
1403         }
1404
1405         return E1000_SUCCESS;
1406 }
1407
1408 /**
1409  * e1000_open - Called when a network interface is made active
1410  * @netdev: network interface device structure
1411  *
1412  * Returns 0 on success, negative value on failure
1413  *
1414  * The open entry point is called when a network interface is made
1415  * active by the system (IFF_UP).  At this point all resources needed
1416  * for transmit and receive operations are allocated, the interrupt
1417  * handler is registered with the OS, the watchdog timer is started,
1418  * and the stack is notified that the interface is ready.
1419  **/
1420
1421 static int e1000_open(struct net_device *netdev)
1422 {
1423         struct e1000_adapter *adapter = netdev_priv(netdev);
1424         struct e1000_hw *hw = &adapter->hw;
1425         int err;
1426
1427         /* disallow open during test */
1428         if (test_bit(__E1000_TESTING, &adapter->flags))
1429                 return -EBUSY;
1430
1431         /* allocate transmit descriptors */
1432         err = e1000_setup_all_tx_resources(adapter);
1433         if (err)
1434                 goto err_setup_tx;
1435
1436         /* allocate receive descriptors */
1437         err = e1000_setup_all_rx_resources(adapter);
1438         if (err)
1439                 goto err_setup_rx;
1440
1441         e1000_power_up_phy(adapter);
1442
1443         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1444         if ((hw->mng_cookie.status &
1445                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1446                 e1000_update_mng_vlan(adapter);
1447         }
1448
1449         /* If AMT is enabled, let the firmware know that the network
1450          * interface is now open */
1451         if (hw->mac_type == e1000_82573 &&
1452             e1000_check_mng_mode(hw))
1453                 e1000_get_hw_control(adapter);
1454
1455         /* before we allocate an interrupt, we must be ready to handle it.
1456          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1457          * as soon as we call pci_request_irq, so we have to setup our
1458          * clean_rx handler before we do so.  */
1459         e1000_configure(adapter);
1460
1461         err = e1000_request_irq(adapter);
1462         if (err)
1463                 goto err_req_irq;
1464
1465         /* From here on the code is the same as e1000_up() */
1466         clear_bit(__E1000_DOWN, &adapter->flags);
1467
1468         napi_enable(&adapter->napi);
1469
1470         e1000_irq_enable(adapter);
1471
1472         netif_start_queue(netdev);
1473
1474         /* fire a link status change interrupt to start the watchdog */
1475         ew32(ICS, E1000_ICS_LSC);
1476
1477         return E1000_SUCCESS;
1478
1479 err_req_irq:
1480         e1000_release_hw_control(adapter);
1481         e1000_power_down_phy(adapter);
1482         e1000_free_all_rx_resources(adapter);
1483 err_setup_rx:
1484         e1000_free_all_tx_resources(adapter);
1485 err_setup_tx:
1486         e1000_reset(adapter);
1487
1488         return err;
1489 }
1490
1491 /**
1492  * e1000_close - Disables a network interface
1493  * @netdev: network interface device structure
1494  *
1495  * Returns 0, this is not allowed to fail
1496  *
1497  * The close entry point is called when an interface is de-activated
1498  * by the OS.  The hardware is still under the drivers control, but
1499  * needs to be disabled.  A global MAC reset is issued to stop the
1500  * hardware, and all transmit and receive resources are freed.
1501  **/
1502
1503 static int e1000_close(struct net_device *netdev)
1504 {
1505         struct e1000_adapter *adapter = netdev_priv(netdev);
1506         struct e1000_hw *hw = &adapter->hw;
1507
1508         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1509         e1000_down(adapter);
1510         e1000_power_down_phy(adapter);
1511         e1000_free_irq(adapter);
1512
1513         e1000_free_all_tx_resources(adapter);
1514         e1000_free_all_rx_resources(adapter);
1515
1516         /* kill manageability vlan ID if supported, but not if a vlan with
1517          * the same ID is registered on the host OS (let 8021q kill it) */
1518         if ((hw->mng_cookie.status &
1519                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1520              !(adapter->vlgrp &&
1521                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1522                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1523         }
1524
1525         /* If AMT is enabled, let the firmware know that the network
1526          * interface is now closed */
1527         if (hw->mac_type == e1000_82573 &&
1528             e1000_check_mng_mode(hw))
1529                 e1000_release_hw_control(adapter);
1530
1531         return 0;
1532 }
1533
1534 /**
1535  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1536  * @adapter: address of board private structure
1537  * @start: address of beginning of memory
1538  * @len: length of memory
1539  **/
1540 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1541                                   unsigned long len)
1542 {
1543         struct e1000_hw *hw = &adapter->hw;
1544         unsigned long begin = (unsigned long)start;
1545         unsigned long end = begin + len;
1546
1547         /* First rev 82545 and 82546 need to not allow any memory
1548          * write location to cross 64k boundary due to errata 23 */
1549         if (hw->mac_type == e1000_82545 ||
1550             hw->mac_type == e1000_82546) {
1551                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1552         }
1553
1554         return true;
1555 }
1556
1557 /**
1558  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1559  * @adapter: board private structure
1560  * @txdr:    tx descriptor ring (for a specific queue) to setup
1561  *
1562  * Return 0 on success, negative on failure
1563  **/
1564
1565 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1566                                     struct e1000_tx_ring *txdr)
1567 {
1568         struct pci_dev *pdev = adapter->pdev;
1569         int size;
1570
1571         size = sizeof(struct e1000_buffer) * txdr->count;
1572         txdr->buffer_info = vmalloc(size);
1573         if (!txdr->buffer_info) {
1574                 DPRINTK(PROBE, ERR,
1575                 "Unable to allocate memory for the transmit descriptor ring\n");
1576                 return -ENOMEM;
1577         }
1578         memset(txdr->buffer_info, 0, size);
1579
1580         /* round up to nearest 4K */
1581
1582         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1583         txdr->size = ALIGN(txdr->size, 4096);
1584
1585         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1586         if (!txdr->desc) {
1587 setup_tx_desc_die:
1588                 vfree(txdr->buffer_info);
1589                 DPRINTK(PROBE, ERR,
1590                 "Unable to allocate memory for the transmit descriptor ring\n");
1591                 return -ENOMEM;
1592         }
1593
1594         /* Fix for errata 23, can't cross 64kB boundary */
1595         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1596                 void *olddesc = txdr->desc;
1597                 dma_addr_t olddma = txdr->dma;
1598                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1599                                      "at %p\n", txdr->size, txdr->desc);
1600                 /* Try again, without freeing the previous */
1601                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1602                 /* Failed allocation, critical failure */
1603                 if (!txdr->desc) {
1604                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1605                         goto setup_tx_desc_die;
1606                 }
1607
1608                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1609                         /* give up */
1610                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1611                                             txdr->dma);
1612                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1613                         DPRINTK(PROBE, ERR,
1614                                 "Unable to allocate aligned memory "
1615                                 "for the transmit descriptor ring\n");
1616                         vfree(txdr->buffer_info);
1617                         return -ENOMEM;
1618                 } else {
1619                         /* Free old allocation, new allocation was successful */
1620                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1621                 }
1622         }
1623         memset(txdr->desc, 0, txdr->size);
1624
1625         txdr->next_to_use = 0;
1626         txdr->next_to_clean = 0;
1627         spin_lock_init(&txdr->tx_lock);
1628
1629         return 0;
1630 }
1631
1632 /**
1633  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1634  *                                (Descriptors) for all queues
1635  * @adapter: board private structure
1636  *
1637  * Return 0 on success, negative on failure
1638  **/
1639
1640 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1641 {
1642         int i, err = 0;
1643
1644         for (i = 0; i < adapter->num_tx_queues; i++) {
1645                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1646                 if (err) {
1647                         DPRINTK(PROBE, ERR,
1648                                 "Allocation for Tx Queue %u failed\n", i);
1649                         for (i-- ; i >= 0; i--)
1650                                 e1000_free_tx_resources(adapter,
1651                                                         &adapter->tx_ring[i]);
1652                         break;
1653                 }
1654         }
1655
1656         return err;
1657 }
1658
1659 /**
1660  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1661  * @adapter: board private structure
1662  *
1663  * Configure the Tx unit of the MAC after a reset.
1664  **/
1665
1666 static void e1000_configure_tx(struct e1000_adapter *adapter)
1667 {
1668         u64 tdba;
1669         struct e1000_hw *hw = &adapter->hw;
1670         u32 tdlen, tctl, tipg, tarc;
1671         u32 ipgr1, ipgr2;
1672
1673         /* Setup the HW Tx Head and Tail descriptor pointers */
1674
1675         switch (adapter->num_tx_queues) {
1676         case 1:
1677         default:
1678                 tdba = adapter->tx_ring[0].dma;
1679                 tdlen = adapter->tx_ring[0].count *
1680                         sizeof(struct e1000_tx_desc);
1681                 ew32(TDLEN, tdlen);
1682                 ew32(TDBAH, (tdba >> 32));
1683                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1684                 ew32(TDT, 0);
1685                 ew32(TDH, 0);
1686                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1687                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1688                 break;
1689         }
1690
1691         /* Set the default values for the Tx Inter Packet Gap timer */
1692         if (hw->mac_type <= e1000_82547_rev_2 &&
1693             (hw->media_type == e1000_media_type_fiber ||
1694              hw->media_type == e1000_media_type_internal_serdes))
1695                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1696         else
1697                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1698
1699         switch (hw->mac_type) {
1700         case e1000_82542_rev2_0:
1701         case e1000_82542_rev2_1:
1702                 tipg = DEFAULT_82542_TIPG_IPGT;
1703                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1704                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1705                 break;
1706         case e1000_80003es2lan:
1707                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1708                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1709                 break;
1710         default:
1711                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1712                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1713                 break;
1714         }
1715         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1716         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1717         ew32(TIPG, tipg);
1718
1719         /* Set the Tx Interrupt Delay register */
1720
1721         ew32(TIDV, adapter->tx_int_delay);
1722         if (hw->mac_type >= e1000_82540)
1723                 ew32(TADV, adapter->tx_abs_int_delay);
1724
1725         /* Program the Transmit Control Register */
1726
1727         tctl = er32(TCTL);
1728         tctl &= ~E1000_TCTL_CT;
1729         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1730                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1731
1732         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1733                 tarc = er32(TARC0);
1734                 /* set the speed mode bit, we'll clear it if we're not at
1735                  * gigabit link later */
1736                 tarc |= (1 << 21);
1737                 ew32(TARC0, tarc);
1738         } else if (hw->mac_type == e1000_80003es2lan) {
1739                 tarc = er32(TARC0);
1740                 tarc |= 1;
1741                 ew32(TARC0, tarc);
1742                 tarc = er32(TARC1);
1743                 tarc |= 1;
1744                 ew32(TARC1, tarc);
1745         }
1746
1747         e1000_config_collision_dist(hw);
1748
1749         /* Setup Transmit Descriptor Settings for eop descriptor */
1750         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1751
1752         /* only set IDE if we are delaying interrupts using the timers */
1753         if (adapter->tx_int_delay)
1754                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1755
1756         if (hw->mac_type < e1000_82543)
1757                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1758         else
1759                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1760
1761         /* Cache if we're 82544 running in PCI-X because we'll
1762          * need this to apply a workaround later in the send path. */
1763         if (hw->mac_type == e1000_82544 &&
1764             hw->bus_type == e1000_bus_type_pcix)
1765                 adapter->pcix_82544 = 1;
1766
1767         ew32(TCTL, tctl);
1768
1769 }
1770
1771 /**
1772  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1773  * @adapter: board private structure
1774  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1775  *
1776  * Returns 0 on success, negative on failure
1777  **/
1778
1779 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1780                                     struct e1000_rx_ring *rxdr)
1781 {
1782         struct e1000_hw *hw = &adapter->hw;
1783         struct pci_dev *pdev = adapter->pdev;
1784         int size, desc_len;
1785
1786         size = sizeof(struct e1000_buffer) * rxdr->count;
1787         rxdr->buffer_info = vmalloc(size);
1788         if (!rxdr->buffer_info) {
1789                 DPRINTK(PROBE, ERR,
1790                 "Unable to allocate memory for the receive descriptor ring\n");
1791                 return -ENOMEM;
1792         }
1793         memset(rxdr->buffer_info, 0, size);
1794
1795         if (hw->mac_type <= e1000_82547_rev_2)
1796                 desc_len = sizeof(struct e1000_rx_desc);
1797         else
1798                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1799
1800         /* Round up to nearest 4K */
1801
1802         rxdr->size = rxdr->count * desc_len;
1803         rxdr->size = ALIGN(rxdr->size, 4096);
1804
1805         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1806
1807         if (!rxdr->desc) {
1808                 DPRINTK(PROBE, ERR,
1809                 "Unable to allocate memory for the receive descriptor ring\n");
1810 setup_rx_desc_die:
1811                 vfree(rxdr->buffer_info);
1812                 return -ENOMEM;
1813         }
1814
1815         /* Fix for errata 23, can't cross 64kB boundary */
1816         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1817                 void *olddesc = rxdr->desc;
1818                 dma_addr_t olddma = rxdr->dma;
1819                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1820                                      "at %p\n", rxdr->size, rxdr->desc);
1821                 /* Try again, without freeing the previous */
1822                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1823                 /* Failed allocation, critical failure */
1824                 if (!rxdr->desc) {
1825                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1826                         DPRINTK(PROBE, ERR,
1827                                 "Unable to allocate memory "
1828                                 "for the receive descriptor ring\n");
1829                         goto setup_rx_desc_die;
1830                 }
1831
1832                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1833                         /* give up */
1834                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1835                                             rxdr->dma);
1836                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1837                         DPRINTK(PROBE, ERR,
1838                                 "Unable to allocate aligned memory "
1839                                 "for the receive descriptor ring\n");
1840                         goto setup_rx_desc_die;
1841                 } else {
1842                         /* Free old allocation, new allocation was successful */
1843                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1844                 }
1845         }
1846         memset(rxdr->desc, 0, rxdr->size);
1847
1848         rxdr->next_to_clean = 0;
1849         rxdr->next_to_use = 0;
1850
1851         return 0;
1852 }
1853
1854 /**
1855  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1856  *                                (Descriptors) for all queues
1857  * @adapter: board private structure
1858  *
1859  * Return 0 on success, negative on failure
1860  **/
1861
1862 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1863 {
1864         int i, err = 0;
1865
1866         for (i = 0; i < adapter->num_rx_queues; i++) {
1867                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1868                 if (err) {
1869                         DPRINTK(PROBE, ERR,
1870                                 "Allocation for Rx Queue %u failed\n", i);
1871                         for (i-- ; i >= 0; i--)
1872                                 e1000_free_rx_resources(adapter,
1873                                                         &adapter->rx_ring[i]);
1874                         break;
1875                 }
1876         }
1877
1878         return err;
1879 }
1880
1881 /**
1882  * e1000_setup_rctl - configure the receive control registers
1883  * @adapter: Board private structure
1884  **/
1885 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1886                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1887 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1888 {
1889         struct e1000_hw *hw = &adapter->hw;
1890         u32 rctl;
1891
1892         rctl = er32(RCTL);
1893
1894         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1895
1896         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1897                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1898                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1899
1900         if (hw->tbi_compatibility_on == 1)
1901                 rctl |= E1000_RCTL_SBP;
1902         else
1903                 rctl &= ~E1000_RCTL_SBP;
1904
1905         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1906                 rctl &= ~E1000_RCTL_LPE;
1907         else
1908                 rctl |= E1000_RCTL_LPE;
1909
1910         /* Setup buffer sizes */
1911         rctl &= ~E1000_RCTL_SZ_4096;
1912         rctl |= E1000_RCTL_BSEX;
1913         switch (adapter->rx_buffer_len) {
1914                 case E1000_RXBUFFER_256:
1915                         rctl |= E1000_RCTL_SZ_256;
1916                         rctl &= ~E1000_RCTL_BSEX;
1917                         break;
1918                 case E1000_RXBUFFER_512:
1919                         rctl |= E1000_RCTL_SZ_512;
1920                         rctl &= ~E1000_RCTL_BSEX;
1921                         break;
1922                 case E1000_RXBUFFER_1024:
1923                         rctl |= E1000_RCTL_SZ_1024;
1924                         rctl &= ~E1000_RCTL_BSEX;
1925                         break;
1926                 case E1000_RXBUFFER_2048:
1927                 default:
1928                         rctl |= E1000_RCTL_SZ_2048;
1929                         rctl &= ~E1000_RCTL_BSEX;
1930                         break;
1931                 case E1000_RXBUFFER_4096:
1932                         rctl |= E1000_RCTL_SZ_4096;
1933                         break;
1934                 case E1000_RXBUFFER_8192:
1935                         rctl |= E1000_RCTL_SZ_8192;
1936                         break;
1937                 case E1000_RXBUFFER_16384:
1938                         rctl |= E1000_RCTL_SZ_16384;
1939                         break;
1940         }
1941
1942         ew32(RCTL, rctl);
1943 }
1944
1945 /**
1946  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1947  * @adapter: board private structure
1948  *
1949  * Configure the Rx unit of the MAC after a reset.
1950  **/
1951
1952 static void e1000_configure_rx(struct e1000_adapter *adapter)
1953 {
1954         u64 rdba;
1955         struct e1000_hw *hw = &adapter->hw;
1956         u32 rdlen, rctl, rxcsum, ctrl_ext;
1957
1958         rdlen = adapter->rx_ring[0].count *
1959                 sizeof(struct e1000_rx_desc);
1960         adapter->clean_rx = e1000_clean_rx_irq;
1961         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1962
1963         /* disable receives while setting up the descriptors */
1964         rctl = er32(RCTL);
1965         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1966
1967         /* set the Receive Delay Timer Register */
1968         ew32(RDTR, adapter->rx_int_delay);
1969
1970         if (hw->mac_type >= e1000_82540) {
1971                 ew32(RADV, adapter->rx_abs_int_delay);
1972                 if (adapter->itr_setting != 0)
1973                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1974         }
1975
1976         if (hw->mac_type >= e1000_82571) {
1977                 ctrl_ext = er32(CTRL_EXT);
1978                 /* Reset delay timers after every interrupt */
1979                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1980                 /* Auto-Mask interrupts upon ICR access */
1981                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1982                 ew32(IAM, 0xffffffff);
1983                 ew32(CTRL_EXT, ctrl_ext);
1984                 E1000_WRITE_FLUSH();
1985         }
1986
1987         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1988          * the Base and Length of the Rx Descriptor Ring */
1989         switch (adapter->num_rx_queues) {
1990         case 1:
1991         default:
1992                 rdba = adapter->rx_ring[0].dma;
1993                 ew32(RDLEN, rdlen);
1994                 ew32(RDBAH, (rdba >> 32));
1995                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1996                 ew32(RDT, 0);
1997                 ew32(RDH, 0);
1998                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1999                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2000                 break;
2001         }
2002
2003         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2004         if (hw->mac_type >= e1000_82543) {
2005                 rxcsum = er32(RXCSUM);
2006                 if (adapter->rx_csum)
2007                         rxcsum |= E1000_RXCSUM_TUOFL;
2008                 else
2009                         /* don't need to clear IPPCSE as it defaults to 0 */
2010                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2011                 ew32(RXCSUM, rxcsum);
2012         }
2013
2014         /* Enable Receives */
2015         ew32(RCTL, rctl);
2016 }
2017
2018 /**
2019  * e1000_free_tx_resources - Free Tx Resources per Queue
2020  * @adapter: board private structure
2021  * @tx_ring: Tx descriptor ring for a specific queue
2022  *
2023  * Free all transmit software resources
2024  **/
2025
2026 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2027                                     struct e1000_tx_ring *tx_ring)
2028 {
2029         struct pci_dev *pdev = adapter->pdev;
2030
2031         e1000_clean_tx_ring(adapter, tx_ring);
2032
2033         vfree(tx_ring->buffer_info);
2034         tx_ring->buffer_info = NULL;
2035
2036         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2037
2038         tx_ring->desc = NULL;
2039 }
2040
2041 /**
2042  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2043  * @adapter: board private structure
2044  *
2045  * Free all transmit software resources
2046  **/
2047
2048 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2049 {
2050         int i;
2051
2052         for (i = 0; i < adapter->num_tx_queues; i++)
2053                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2054 }
2055
2056 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2057                                              struct e1000_buffer *buffer_info)
2058 {
2059         if (buffer_info->dma) {
2060                 pci_unmap_page(adapter->pdev,
2061                                 buffer_info->dma,
2062                                 buffer_info->length,
2063                                 PCI_DMA_TODEVICE);
2064                 buffer_info->dma = 0;
2065         }
2066         if (buffer_info->skb) {
2067                 dev_kfree_skb_any(buffer_info->skb);
2068                 buffer_info->skb = NULL;
2069         }
2070         /* buffer_info must be completely set up in the transmit path */
2071 }
2072
2073 /**
2074  * e1000_clean_tx_ring - Free Tx Buffers
2075  * @adapter: board private structure
2076  * @tx_ring: ring to be cleaned
2077  **/
2078
2079 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2080                                 struct e1000_tx_ring *tx_ring)
2081 {
2082         struct e1000_hw *hw = &adapter->hw;
2083         struct e1000_buffer *buffer_info;
2084         unsigned long size;
2085         unsigned int i;
2086
2087         /* Free all the Tx ring sk_buffs */
2088
2089         for (i = 0; i < tx_ring->count; i++) {
2090                 buffer_info = &tx_ring->buffer_info[i];
2091                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2092         }
2093
2094         size = sizeof(struct e1000_buffer) * tx_ring->count;
2095         memset(tx_ring->buffer_info, 0, size);
2096
2097         /* Zero out the descriptor ring */
2098
2099         memset(tx_ring->desc, 0, tx_ring->size);
2100
2101         tx_ring->next_to_use = 0;
2102         tx_ring->next_to_clean = 0;
2103         tx_ring->last_tx_tso = 0;
2104
2105         writel(0, hw->hw_addr + tx_ring->tdh);
2106         writel(0, hw->hw_addr + tx_ring->tdt);
2107 }
2108
2109 /**
2110  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2111  * @adapter: board private structure
2112  **/
2113
2114 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2115 {
2116         int i;
2117
2118         for (i = 0; i < adapter->num_tx_queues; i++)
2119                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2120 }
2121
2122 /**
2123  * e1000_free_rx_resources - Free Rx Resources
2124  * @adapter: board private structure
2125  * @rx_ring: ring to clean the resources from
2126  *
2127  * Free all receive software resources
2128  **/
2129
2130 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2131                                     struct e1000_rx_ring *rx_ring)
2132 {
2133         struct pci_dev *pdev = adapter->pdev;
2134
2135         e1000_clean_rx_ring(adapter, rx_ring);
2136
2137         vfree(rx_ring->buffer_info);
2138         rx_ring->buffer_info = NULL;
2139
2140         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2141
2142         rx_ring->desc = NULL;
2143 }
2144
2145 /**
2146  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2147  * @adapter: board private structure
2148  *
2149  * Free all receive software resources
2150  **/
2151
2152 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2153 {
2154         int i;
2155
2156         for (i = 0; i < adapter->num_rx_queues; i++)
2157                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2158 }
2159
2160 /**
2161  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2162  * @adapter: board private structure
2163  * @rx_ring: ring to free buffers from
2164  **/
2165
2166 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2167                                 struct e1000_rx_ring *rx_ring)
2168 {
2169         struct e1000_hw *hw = &adapter->hw;
2170         struct e1000_buffer *buffer_info;
2171         struct pci_dev *pdev = adapter->pdev;
2172         unsigned long size;
2173         unsigned int i;
2174
2175         /* Free all the Rx ring sk_buffs */
2176         for (i = 0; i < rx_ring->count; i++) {
2177                 buffer_info = &rx_ring->buffer_info[i];
2178                 if (buffer_info->skb) {
2179                         pci_unmap_single(pdev,
2180                                          buffer_info->dma,
2181                                          buffer_info->length,
2182                                          PCI_DMA_FROMDEVICE);
2183
2184                         dev_kfree_skb(buffer_info->skb);
2185                         buffer_info->skb = NULL;
2186                 }
2187         }
2188
2189         size = sizeof(struct e1000_buffer) * rx_ring->count;
2190         memset(rx_ring->buffer_info, 0, size);
2191
2192         /* Zero out the descriptor ring */
2193
2194         memset(rx_ring->desc, 0, rx_ring->size);
2195
2196         rx_ring->next_to_clean = 0;
2197         rx_ring->next_to_use = 0;
2198
2199         writel(0, hw->hw_addr + rx_ring->rdh);
2200         writel(0, hw->hw_addr + rx_ring->rdt);
2201 }
2202
2203 /**
2204  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2205  * @adapter: board private structure
2206  **/
2207
2208 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2209 {
2210         int i;
2211
2212         for (i = 0; i < adapter->num_rx_queues; i++)
2213                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2214 }
2215
2216 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2217  * and memory write and invalidate disabled for certain operations
2218  */
2219 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2220 {
2221         struct e1000_hw *hw = &adapter->hw;
2222         struct net_device *netdev = adapter->netdev;
2223         u32 rctl;
2224
2225         e1000_pci_clear_mwi(hw);
2226
2227         rctl = er32(RCTL);
2228         rctl |= E1000_RCTL_RST;
2229         ew32(RCTL, rctl);
2230         E1000_WRITE_FLUSH();
2231         mdelay(5);
2232
2233         if (netif_running(netdev))
2234                 e1000_clean_all_rx_rings(adapter);
2235 }
2236
2237 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2238 {
2239         struct e1000_hw *hw = &adapter->hw;
2240         struct net_device *netdev = adapter->netdev;
2241         u32 rctl;
2242
2243         rctl = er32(RCTL);
2244         rctl &= ~E1000_RCTL_RST;
2245         ew32(RCTL, rctl);
2246         E1000_WRITE_FLUSH();
2247         mdelay(5);
2248
2249         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2250                 e1000_pci_set_mwi(hw);
2251
2252         if (netif_running(netdev)) {
2253                 /* No need to loop, because 82542 supports only 1 queue */
2254                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2255                 e1000_configure_rx(adapter);
2256                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2257         }
2258 }
2259
2260 /**
2261  * e1000_set_mac - Change the Ethernet Address of the NIC
2262  * @netdev: network interface device structure
2263  * @p: pointer to an address structure
2264  *
2265  * Returns 0 on success, negative on failure
2266  **/
2267
2268 static int e1000_set_mac(struct net_device *netdev, void *p)
2269 {
2270         struct e1000_adapter *adapter = netdev_priv(netdev);
2271         struct e1000_hw *hw = &adapter->hw;
2272         struct sockaddr *addr = p;
2273
2274         if (!is_valid_ether_addr(addr->sa_data))
2275                 return -EADDRNOTAVAIL;
2276
2277         /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279         if (hw->mac_type == e1000_82542_rev2_0)
2280                 e1000_enter_82542_rst(adapter);
2281
2282         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2283         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2284
2285         e1000_rar_set(hw, hw->mac_addr, 0);
2286
2287         /* With 82571 controllers, LAA may be overwritten (with the default)
2288          * due to controller reset from the other port. */
2289         if (hw->mac_type == e1000_82571) {
2290                 /* activate the work around */
2291                 hw->laa_is_present = 1;
2292
2293                 /* Hold a copy of the LAA in RAR[14] This is done so that
2294                  * between the time RAR[0] gets clobbered  and the time it
2295                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2296                  * of the RARs and no incoming packets directed to this port
2297                  * are dropped. Eventaully the LAA will be in RAR[0] and
2298                  * RAR[14] */
2299                 e1000_rar_set(hw, hw->mac_addr,
2300                                         E1000_RAR_ENTRIES - 1);
2301         }
2302
2303         if (hw->mac_type == e1000_82542_rev2_0)
2304                 e1000_leave_82542_rst(adapter);
2305
2306         return 0;
2307 }
2308
2309 /**
2310  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2311  * @netdev: network interface device structure
2312  *
2313  * The set_rx_mode entry point is called whenever the unicast or multicast
2314  * address lists or the network interface flags are updated. This routine is
2315  * responsible for configuring the hardware for proper unicast, multicast,
2316  * promiscuous mode, and all-multi behavior.
2317  **/
2318
2319 static void e1000_set_rx_mode(struct net_device *netdev)
2320 {
2321         struct e1000_adapter *adapter = netdev_priv(netdev);
2322         struct e1000_hw *hw = &adapter->hw;
2323         struct dev_addr_list *uc_ptr;
2324         struct dev_addr_list *mc_ptr;
2325         u32 rctl;
2326         u32 hash_value;
2327         int i, rar_entries = E1000_RAR_ENTRIES;
2328         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2329                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2330                                 E1000_NUM_MTA_REGISTERS;
2331
2332         if (hw->mac_type == e1000_ich8lan)
2333                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2334
2335         /* reserve RAR[14] for LAA over-write work-around */
2336         if (hw->mac_type == e1000_82571)
2337                 rar_entries--;
2338
2339         /* Check for Promiscuous and All Multicast modes */
2340
2341         rctl = er32(RCTL);
2342
2343         if (netdev->flags & IFF_PROMISC) {
2344                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2345                 rctl &= ~E1000_RCTL_VFE;
2346         } else {
2347                 if (netdev->flags & IFF_ALLMULTI) {
2348                         rctl |= E1000_RCTL_MPE;
2349                 } else {
2350                         rctl &= ~E1000_RCTL_MPE;
2351                 }
2352                 if (adapter->hw.mac_type != e1000_ich8lan)
2353                         rctl |= E1000_RCTL_VFE;
2354         }
2355
2356         uc_ptr = NULL;
2357         if (netdev->uc_count > rar_entries - 1) {
2358                 rctl |= E1000_RCTL_UPE;
2359         } else if (!(netdev->flags & IFF_PROMISC)) {
2360                 rctl &= ~E1000_RCTL_UPE;
2361                 uc_ptr = netdev->uc_list;
2362         }
2363
2364         ew32(RCTL, rctl);
2365
2366         /* 82542 2.0 needs to be in reset to write receive address registers */
2367
2368         if (hw->mac_type == e1000_82542_rev2_0)
2369                 e1000_enter_82542_rst(adapter);
2370
2371         /* load the first 14 addresses into the exact filters 1-14. Unicast
2372          * addresses take precedence to avoid disabling unicast filtering
2373          * when possible.
2374          *
2375          * RAR 0 is used for the station MAC adddress
2376          * if there are not 14 addresses, go ahead and clear the filters
2377          * -- with 82571 controllers only 0-13 entries are filled here
2378          */
2379         mc_ptr = netdev->mc_list;
2380
2381         for (i = 1; i < rar_entries; i++) {
2382                 if (uc_ptr) {
2383                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2384                         uc_ptr = uc_ptr->next;
2385                 } else if (mc_ptr) {
2386                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2387                         mc_ptr = mc_ptr->next;
2388                 } else {
2389                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2390                         E1000_WRITE_FLUSH();
2391                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2392                         E1000_WRITE_FLUSH();
2393                 }
2394         }
2395         WARN_ON(uc_ptr != NULL);
2396
2397         /* clear the old settings from the multicast hash table */
2398
2399         for (i = 0; i < mta_reg_count; i++) {
2400                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2401                 E1000_WRITE_FLUSH();
2402         }
2403
2404         /* load any remaining addresses into the hash table */
2405
2406         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2407                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2408                 e1000_mta_set(hw, hash_value);
2409         }
2410
2411         if (hw->mac_type == e1000_82542_rev2_0)
2412                 e1000_leave_82542_rst(adapter);
2413 }
2414
2415 /* Need to wait a few seconds after link up to get diagnostic information from
2416  * the phy */
2417
2418 static void e1000_update_phy_info(unsigned long data)
2419 {
2420         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2421         struct e1000_hw *hw = &adapter->hw;
2422         e1000_phy_get_info(hw, &adapter->phy_info);
2423 }
2424
2425 /**
2426  * e1000_82547_tx_fifo_stall - Timer Call-back
2427  * @data: pointer to adapter cast into an unsigned long
2428  **/
2429
2430 static void e1000_82547_tx_fifo_stall(unsigned long data)
2431 {
2432         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2433         struct e1000_hw *hw = &adapter->hw;
2434         struct net_device *netdev = adapter->netdev;
2435         u32 tctl;
2436
2437         if (atomic_read(&adapter->tx_fifo_stall)) {
2438                 if ((er32(TDT) == er32(TDH)) &&
2439                    (er32(TDFT) == er32(TDFH)) &&
2440                    (er32(TDFTS) == er32(TDFHS))) {
2441                         tctl = er32(TCTL);
2442                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2443                         ew32(TDFT, adapter->tx_head_addr);
2444                         ew32(TDFH, adapter->tx_head_addr);
2445                         ew32(TDFTS, adapter->tx_head_addr);
2446                         ew32(TDFHS, adapter->tx_head_addr);
2447                         ew32(TCTL, tctl);
2448                         E1000_WRITE_FLUSH();
2449
2450                         adapter->tx_fifo_head = 0;
2451                         atomic_set(&adapter->tx_fifo_stall, 0);
2452                         netif_wake_queue(netdev);
2453                 } else {
2454                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2455                 }
2456         }
2457 }
2458
2459 /**
2460  * e1000_watchdog - Timer Call-back
2461  * @data: pointer to adapter cast into an unsigned long
2462  **/
2463 static void e1000_watchdog(unsigned long data)
2464 {
2465         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2466         struct e1000_hw *hw = &adapter->hw;
2467         struct net_device *netdev = adapter->netdev;
2468         struct e1000_tx_ring *txdr = adapter->tx_ring;
2469         u32 link, tctl;
2470         s32 ret_val;
2471
2472         ret_val = e1000_check_for_link(hw);
2473         if ((ret_val == E1000_ERR_PHY) &&
2474             (hw->phy_type == e1000_phy_igp_3) &&
2475             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2476                 /* See e1000_kumeran_lock_loss_workaround() */
2477                 DPRINTK(LINK, INFO,
2478                         "Gigabit has been disabled, downgrading speed\n");
2479         }
2480
2481         if (hw->mac_type == e1000_82573) {
2482                 e1000_enable_tx_pkt_filtering(hw);
2483                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2484                         e1000_update_mng_vlan(adapter);
2485         }
2486
2487         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2488            !(er32(TXCW) & E1000_TXCW_ANE))
2489                 link = !hw->serdes_link_down;
2490         else
2491                 link = er32(STATUS) & E1000_STATUS_LU;
2492
2493         if (link) {
2494                 if (!netif_carrier_ok(netdev)) {
2495                         u32 ctrl;
2496                         bool txb2b = true;
2497                         e1000_get_speed_and_duplex(hw,
2498                                                    &adapter->link_speed,
2499                                                    &adapter->link_duplex);
2500
2501                         ctrl = er32(CTRL);
2502                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2503                                "Flow Control: %s\n",
2504                                netdev->name,
2505                                adapter->link_speed,
2506                                adapter->link_duplex == FULL_DUPLEX ?
2507                                 "Full Duplex" : "Half Duplex",
2508                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2509                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2510                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2511                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2512
2513                         /* tweak tx_queue_len according to speed/duplex
2514                          * and adjust the timeout factor */
2515                         netdev->tx_queue_len = adapter->tx_queue_len;
2516                         adapter->tx_timeout_factor = 1;
2517                         switch (adapter->link_speed) {
2518                         case SPEED_10:
2519                                 txb2b = false;
2520                                 netdev->tx_queue_len = 10;
2521                                 adapter->tx_timeout_factor = 8;
2522                                 break;
2523                         case SPEED_100:
2524                                 txb2b = false;
2525                                 netdev->tx_queue_len = 100;
2526                                 /* maybe add some timeout factor ? */
2527                                 break;
2528                         }
2529
2530                         if ((hw->mac_type == e1000_82571 ||
2531                              hw->mac_type == e1000_82572) &&
2532                             !txb2b) {
2533                                 u32 tarc0;
2534                                 tarc0 = er32(TARC0);
2535                                 tarc0 &= ~(1 << 21);
2536                                 ew32(TARC0, tarc0);
2537                         }
2538
2539                         /* disable TSO for pcie and 10/100 speeds, to avoid
2540                          * some hardware issues */
2541                         if (!adapter->tso_force &&
2542                             hw->bus_type == e1000_bus_type_pci_express){
2543                                 switch (adapter->link_speed) {
2544                                 case SPEED_10:
2545                                 case SPEED_100:
2546                                         DPRINTK(PROBE,INFO,
2547                                         "10/100 speed: disabling TSO\n");
2548                                         netdev->features &= ~NETIF_F_TSO;
2549                                         netdev->features &= ~NETIF_F_TSO6;
2550                                         break;
2551                                 case SPEED_1000:
2552                                         netdev->features |= NETIF_F_TSO;
2553                                         netdev->features |= NETIF_F_TSO6;
2554                                         break;
2555                                 default:
2556                                         /* oops */
2557                                         break;
2558                                 }
2559                         }
2560
2561                         /* enable transmits in the hardware, need to do this
2562                          * after setting TARC0 */
2563                         tctl = er32(TCTL);
2564                         tctl |= E1000_TCTL_EN;
2565                         ew32(TCTL, tctl);
2566
2567                         netif_carrier_on(netdev);
2568                         netif_wake_queue(netdev);
2569                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2570                         adapter->smartspeed = 0;
2571                 } else {
2572                         /* make sure the receive unit is started */
2573                         if (hw->rx_needs_kicking) {
2574                                 u32 rctl = er32(RCTL);
2575                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2576                         }
2577                 }
2578         } else {
2579                 if (netif_carrier_ok(netdev)) {
2580                         adapter->link_speed = 0;
2581                         adapter->link_duplex = 0;
2582                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2583                                netdev->name);
2584                         netif_carrier_off(netdev);
2585                         netif_stop_queue(netdev);
2586                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2587
2588                         /* 80003ES2LAN workaround--
2589                          * For packet buffer work-around on link down event;
2590                          * disable receives in the ISR and
2591                          * reset device here in the watchdog
2592                          */
2593                         if (hw->mac_type == e1000_80003es2lan)
2594                                 /* reset device */
2595                                 schedule_work(&adapter->reset_task);
2596                 }
2597
2598                 e1000_smartspeed(adapter);
2599         }
2600
2601         e1000_update_stats(adapter);
2602
2603         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2604         adapter->tpt_old = adapter->stats.tpt;
2605         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2606         adapter->colc_old = adapter->stats.colc;
2607
2608         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2609         adapter->gorcl_old = adapter->stats.gorcl;
2610         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2611         adapter->gotcl_old = adapter->stats.gotcl;
2612
2613         e1000_update_adaptive(hw);
2614
2615         if (!netif_carrier_ok(netdev)) {
2616                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2617                         /* We've lost link, so the controller stops DMA,
2618                          * but we've got queued Tx work that's never going
2619                          * to get done, so reset controller to flush Tx.
2620                          * (Do the reset outside of interrupt context). */
2621                         adapter->tx_timeout_count++;
2622                         schedule_work(&adapter->reset_task);
2623                 }
2624         }
2625
2626         /* Cause software interrupt to ensure rx ring is cleaned */
2627         ew32(ICS, E1000_ICS_RXDMT0);
2628
2629         /* Force detection of hung controller every watchdog period */
2630         adapter->detect_tx_hung = true;
2631
2632         /* With 82571 controllers, LAA may be overwritten due to controller
2633          * reset from the other port. Set the appropriate LAA in RAR[0] */
2634         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2635                 e1000_rar_set(hw, hw->mac_addr, 0);
2636
2637         /* Reset the timer */
2638         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2639 }
2640
2641 enum latency_range {
2642         lowest_latency = 0,
2643         low_latency = 1,
2644         bulk_latency = 2,
2645         latency_invalid = 255
2646 };
2647
2648 /**
2649  * e1000_update_itr - update the dynamic ITR value based on statistics
2650  *      Stores a new ITR value based on packets and byte
2651  *      counts during the last interrupt.  The advantage of per interrupt
2652  *      computation is faster updates and more accurate ITR for the current
2653  *      traffic pattern.  Constants in this function were computed
2654  *      based on theoretical maximum wire speed and thresholds were set based
2655  *      on testing data as well as attempting to minimize response time
2656  *      while increasing bulk throughput.
2657  *      this functionality is controlled by the InterruptThrottleRate module
2658  *      parameter (see e1000_param.c)
2659  * @adapter: pointer to adapter
2660  * @itr_setting: current adapter->itr
2661  * @packets: the number of packets during this measurement interval
2662  * @bytes: the number of bytes during this measurement interval
2663  **/
2664 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2665                                      u16 itr_setting, int packets, int bytes)
2666 {
2667         unsigned int retval = itr_setting;
2668         struct e1000_hw *hw = &adapter->hw;
2669
2670         if (unlikely(hw->mac_type < e1000_82540))
2671                 goto update_itr_done;
2672
2673         if (packets == 0)
2674                 goto update_itr_done;
2675
2676         switch (itr_setting) {
2677         case lowest_latency:
2678                 /* jumbo frames get bulk treatment*/
2679                 if (bytes/packets > 8000)
2680                         retval = bulk_latency;
2681                 else if ((packets < 5) && (bytes > 512))
2682                         retval = low_latency;
2683                 break;
2684         case low_latency:  /* 50 usec aka 20000 ints/s */
2685                 if (bytes > 10000) {
2686                         /* jumbo frames need bulk latency setting */
2687                         if (bytes/packets > 8000)
2688                                 retval = bulk_latency;
2689                         else if ((packets < 10) || ((bytes/packets) > 1200))
2690                                 retval = bulk_latency;
2691                         else if ((packets > 35))
2692                                 retval = lowest_latency;
2693                 } else if (bytes/packets > 2000)
2694                         retval = bulk_latency;
2695                 else if (packets <= 2 && bytes < 512)
2696                         retval = lowest_latency;
2697                 break;
2698         case bulk_latency: /* 250 usec aka 4000 ints/s */
2699                 if (bytes > 25000) {
2700                         if (packets > 35)
2701                                 retval = low_latency;
2702                 } else if (bytes < 6000) {
2703                         retval = low_latency;
2704                 }
2705                 break;
2706         }
2707
2708 update_itr_done:
2709         return retval;
2710 }
2711
2712 static void e1000_set_itr(struct e1000_adapter *adapter)
2713 {
2714         struct e1000_hw *hw = &adapter->hw;
2715         u16 current_itr;
2716         u32 new_itr = adapter->itr;
2717
2718         if (unlikely(hw->mac_type < e1000_82540))
2719                 return;
2720
2721         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2722         if (unlikely(adapter->link_speed != SPEED_1000)) {
2723                 current_itr = 0;
2724                 new_itr = 4000;
2725                 goto set_itr_now;
2726         }
2727
2728         adapter->tx_itr = e1000_update_itr(adapter,
2729                                     adapter->tx_itr,
2730                                     adapter->total_tx_packets,
2731                                     adapter->total_tx_bytes);
2732         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2733         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2734                 adapter->tx_itr = low_latency;
2735
2736         adapter->rx_itr = e1000_update_itr(adapter,
2737                                     adapter->rx_itr,
2738                                     adapter->total_rx_packets,
2739                                     adapter->total_rx_bytes);
2740         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2741         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2742                 adapter->rx_itr = low_latency;
2743
2744         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2745
2746         switch (current_itr) {
2747         /* counts and packets in update_itr are dependent on these numbers */
2748         case lowest_latency:
2749                 new_itr = 70000;
2750                 break;
2751         case low_latency:
2752                 new_itr = 20000; /* aka hwitr = ~200 */
2753                 break;
2754         case bulk_latency:
2755                 new_itr = 4000;
2756                 break;
2757         default:
2758                 break;
2759         }
2760
2761 set_itr_now:
2762         if (new_itr != adapter->itr) {
2763                 /* this attempts to bias the interrupt rate towards Bulk
2764                  * by adding intermediate steps when interrupt rate is
2765                  * increasing */
2766                 new_itr = new_itr > adapter->itr ?
2767                              min(adapter->itr + (new_itr >> 2), new_itr) :
2768                              new_itr;
2769                 adapter->itr = new_itr;
2770                 ew32(ITR, 1000000000 / (new_itr * 256));
2771         }
2772
2773         return;
2774 }
2775
2776 #define E1000_TX_FLAGS_CSUM             0x00000001
2777 #define E1000_TX_FLAGS_VLAN             0x00000002
2778 #define E1000_TX_FLAGS_TSO              0x00000004
2779 #define E1000_TX_FLAGS_IPV4             0x00000008
2780 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2781 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2782
2783 static int e1000_tso(struct e1000_adapter *adapter,
2784                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2785 {
2786         struct e1000_context_desc *context_desc;
2787         struct e1000_buffer *buffer_info;
2788         unsigned int i;
2789         u32 cmd_length = 0;
2790         u16 ipcse = 0, tucse, mss;
2791         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2792         int err;
2793
2794         if (skb_is_gso(skb)) {
2795                 if (skb_header_cloned(skb)) {
2796                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2797                         if (err)
2798                                 return err;
2799                 }
2800
2801                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2802                 mss = skb_shinfo(skb)->gso_size;
2803                 if (skb->protocol == htons(ETH_P_IP)) {
2804                         struct iphdr *iph = ip_hdr(skb);
2805                         iph->tot_len = 0;
2806                         iph->check = 0;
2807                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2808                                                                  iph->daddr, 0,
2809                                                                  IPPROTO_TCP,
2810                                                                  0);
2811                         cmd_length = E1000_TXD_CMD_IP;
2812                         ipcse = skb_transport_offset(skb) - 1;
2813                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2814                         ipv6_hdr(skb)->payload_len = 0;
2815                         tcp_hdr(skb)->check =
2816                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2817                                                  &ipv6_hdr(skb)->daddr,
2818                                                  0, IPPROTO_TCP, 0);
2819                         ipcse = 0;
2820                 }
2821                 ipcss = skb_network_offset(skb);
2822                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2823                 tucss = skb_transport_offset(skb);
2824                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2825                 tucse = 0;
2826
2827                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2828                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2829
2830                 i = tx_ring->next_to_use;
2831                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2832                 buffer_info = &tx_ring->buffer_info[i];
2833
2834                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2835                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2836                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2837                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2838                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2839                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2840                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2841                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2842                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2843
2844                 buffer_info->time_stamp = jiffies;
2845                 buffer_info->next_to_watch = i;
2846
2847                 if (++i == tx_ring->count) i = 0;
2848                 tx_ring->next_to_use = i;
2849
2850                 return true;
2851         }
2852         return false;
2853 }
2854
2855 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2856                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2857 {
2858         struct e1000_context_desc *context_desc;
2859         struct e1000_buffer *buffer_info;
2860         unsigned int i;
2861         u8 css;
2862         u32 cmd_len = E1000_TXD_CMD_DEXT;
2863
2864         if (skb->ip_summed != CHECKSUM_PARTIAL)
2865                 return false;
2866
2867         switch (skb->protocol) {
2868         case __constant_htons(ETH_P_IP):
2869                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2870                         cmd_len |= E1000_TXD_CMD_TCP;
2871                 break;
2872         case __constant_htons(ETH_P_IPV6):
2873                 /* XXX not handling all IPV6 headers */
2874                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2875                         cmd_len |= E1000_TXD_CMD_TCP;
2876                 break;
2877         default:
2878                 if (unlikely(net_ratelimit()))
2879                         DPRINTK(DRV, WARNING,
2880                                 "checksum_partial proto=%x!\n", skb->protocol);
2881                 break;
2882         }
2883
2884         css = skb_transport_offset(skb);
2885
2886         i = tx_ring->next_to_use;
2887         buffer_info = &tx_ring->buffer_info[i];
2888         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2889
2890         context_desc->lower_setup.ip_config = 0;
2891         context_desc->upper_setup.tcp_fields.tucss = css;
2892         context_desc->upper_setup.tcp_fields.tucso =
2893                 css + skb->csum_offset;
2894         context_desc->upper_setup.tcp_fields.tucse = 0;
2895         context_desc->tcp_seg_setup.data = 0;
2896         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2897
2898         buffer_info->time_stamp = jiffies;
2899         buffer_info->next_to_watch = i;
2900
2901         if (unlikely(++i == tx_ring->count)) i = 0;
2902         tx_ring->next_to_use = i;
2903
2904         return true;
2905 }
2906
2907 #define E1000_MAX_TXD_PWR       12
2908 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2909
2910 static int e1000_tx_map(struct e1000_adapter *adapter,
2911                         struct e1000_tx_ring *tx_ring,
2912                         struct sk_buff *skb, unsigned int first,
2913                         unsigned int max_per_txd, unsigned int nr_frags,
2914                         unsigned int mss)
2915 {
2916         struct e1000_hw *hw = &adapter->hw;
2917         struct e1000_buffer *buffer_info;
2918         unsigned int len = skb->len;
2919         unsigned int offset = 0, size, count = 0, i;
2920         unsigned int f;
2921         len -= skb->data_len;
2922
2923         i = tx_ring->next_to_use;
2924
2925         while (len) {
2926                 buffer_info = &tx_ring->buffer_info[i];
2927                 size = min(len, max_per_txd);
2928                 /* Workaround for Controller erratum --
2929                  * descriptor for non-tso packet in a linear SKB that follows a
2930                  * tso gets written back prematurely before the data is fully
2931                  * DMA'd to the controller */
2932                 if (!skb->data_len && tx_ring->last_tx_tso &&
2933                     !skb_is_gso(skb)) {
2934                         tx_ring->last_tx_tso = 0;
2935                         size -= 4;
2936                 }
2937
2938                 /* Workaround for premature desc write-backs
2939                  * in TSO mode.  Append 4-byte sentinel desc */
2940                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2941                         size -= 4;
2942                 /* work-around for errata 10 and it applies
2943                  * to all controllers in PCI-X mode
2944                  * The fix is to make sure that the first descriptor of a
2945                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2946                  */
2947                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2948                                 (size > 2015) && count == 0))
2949                         size = 2015;
2950
2951                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2952                  * terminating buffers within evenly-aligned dwords. */
2953                 if (unlikely(adapter->pcix_82544 &&
2954                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2955                    size > 4))
2956                         size -= 4;
2957
2958                 buffer_info->length = size;
2959                 buffer_info->dma =
2960                         pci_map_single(adapter->pdev,
2961                                 skb->data + offset,
2962                                 size,
2963                                 PCI_DMA_TODEVICE);
2964                 buffer_info->time_stamp = jiffies;
2965                 buffer_info->next_to_watch = i;
2966
2967                 len -= size;
2968                 offset += size;
2969                 count++;
2970                 if (unlikely(++i == tx_ring->count)) i = 0;
2971         }
2972
2973         for (f = 0; f < nr_frags; f++) {
2974                 struct skb_frag_struct *frag;
2975
2976                 frag = &skb_shinfo(skb)->frags[f];
2977                 len = frag->size;
2978                 offset = frag->page_offset;
2979
2980                 while (len) {
2981                         buffer_info = &tx_ring->buffer_info[i];
2982                         size = min(len, max_per_txd);
2983                         /* Workaround for premature desc write-backs
2984                          * in TSO mode.  Append 4-byte sentinel desc */
2985                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2986                                 size -= 4;
2987                         /* Workaround for potential 82544 hang in PCI-X.
2988                          * Avoid terminating buffers within evenly-aligned
2989                          * dwords. */
2990                         if (unlikely(adapter->pcix_82544 &&
2991                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2992                            size > 4))
2993                                 size -= 4;
2994
2995                         buffer_info->length = size;
2996                         buffer_info->dma =
2997                                 pci_map_page(adapter->pdev,
2998                                         frag->page,
2999                                         offset,
3000                                         size,
3001                                         PCI_DMA_TODEVICE);
3002                         buffer_info->time_stamp = jiffies;
3003                         buffer_info->next_to_watch = i;
3004
3005                         len -= size;
3006                         offset += size;
3007                         count++;
3008                         if (unlikely(++i == tx_ring->count)) i = 0;
3009                 }
3010         }
3011
3012         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3013         tx_ring->buffer_info[i].skb = skb;
3014         tx_ring->buffer_info[first].next_to_watch = i;
3015
3016         return count;
3017 }
3018
3019 static void e1000_tx_queue(struct e1000_adapter *adapter,
3020                            struct e1000_tx_ring *tx_ring, int tx_flags,
3021                            int count)
3022 {
3023         struct e1000_hw *hw = &adapter->hw;
3024         struct e1000_tx_desc *tx_desc = NULL;
3025         struct e1000_buffer *buffer_info;
3026         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3027         unsigned int i;
3028
3029         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3030                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3031                              E1000_TXD_CMD_TSE;
3032                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3033
3034                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3035                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3036         }
3037
3038         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3039                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3040                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3041         }
3042
3043         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3044                 txd_lower |= E1000_TXD_CMD_VLE;
3045                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3046         }
3047
3048         i = tx_ring->next_to_use;
3049
3050         while (count--) {
3051                 buffer_info = &tx_ring->buffer_info[i];
3052                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3053                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3054                 tx_desc->lower.data =
3055                         cpu_to_le32(txd_lower | buffer_info->length);
3056                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3057                 if (unlikely(++i == tx_ring->count)) i = 0;
3058         }
3059
3060         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3061
3062         /* Force memory writes to complete before letting h/w
3063          * know there are new descriptors to fetch.  (Only
3064          * applicable for weak-ordered memory model archs,
3065          * such as IA-64). */
3066         wmb();
3067
3068         tx_ring->next_to_use = i;
3069         writel(i, hw->hw_addr + tx_ring->tdt);
3070         /* we need this if more than one processor can write to our tail
3071          * at a time, it syncronizes IO on IA64/Altix systems */
3072         mmiowb();
3073 }
3074
3075 /**
3076  * 82547 workaround to avoid controller hang in half-duplex environment.
3077  * The workaround is to avoid queuing a large packet that would span
3078  * the internal Tx FIFO ring boundary by notifying the stack to resend
3079  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3080  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3081  * to the beginning of the Tx FIFO.
3082  **/
3083
3084 #define E1000_FIFO_HDR                  0x10
3085 #define E1000_82547_PAD_LEN             0x3E0
3086
3087 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3088                                        struct sk_buff *skb)
3089 {
3090         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3091         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3092
3093         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3094
3095         if (adapter->link_duplex != HALF_DUPLEX)
3096                 goto no_fifo_stall_required;
3097
3098         if (atomic_read(&adapter->tx_fifo_stall))
3099                 return 1;
3100
3101         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3102                 atomic_set(&adapter->tx_fifo_stall, 1);
3103                 return 1;
3104         }
3105
3106 no_fifo_stall_required:
3107         adapter->tx_fifo_head += skb_fifo_len;
3108         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3109                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3110         return 0;
3111 }
3112
3113 #define MINIMUM_DHCP_PACKET_SIZE 282
3114 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3115                                     struct sk_buff *skb)
3116 {
3117         struct e1000_hw *hw =  &adapter->hw;
3118         u16 length, offset;
3119         if (vlan_tx_tag_present(skb)) {
3120                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3121                         ( hw->mng_cookie.status &
3122                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3123                         return 0;
3124         }
3125         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3126                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3127                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3128                         const struct iphdr *ip =
3129                                 (struct iphdr *)((u8 *)skb->data+14);
3130                         if (IPPROTO_UDP == ip->protocol) {
3131                                 struct udphdr *udp =
3132                                         (struct udphdr *)((u8 *)ip +
3133                                                 (ip->ihl << 2));
3134                                 if (ntohs(udp->dest) == 67) {
3135                                         offset = (u8 *)udp + 8 - skb->data;
3136                                         length = skb->len - offset;
3137
3138                                         return e1000_mng_write_dhcp_info(hw,
3139                                                         (u8 *)udp + 8,
3140                                                         length);
3141                                 }
3142                         }
3143                 }
3144         }
3145         return 0;
3146 }
3147
3148 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3149 {
3150         struct e1000_adapter *adapter = netdev_priv(netdev);
3151         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3152
3153         netif_stop_queue(netdev);
3154         /* Herbert's original patch had:
3155          *  smp_mb__after_netif_stop_queue();
3156          * but since that doesn't exist yet, just open code it. */
3157         smp_mb();
3158
3159         /* We need to check again in a case another CPU has just
3160          * made room available. */
3161         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3162                 return -EBUSY;
3163
3164         /* A reprieve! */
3165         netif_start_queue(netdev);
3166         ++adapter->restart_queue;
3167         return 0;
3168 }
3169
3170 static int e1000_maybe_stop_tx(struct net_device *netdev,
3171                                struct e1000_tx_ring *tx_ring, int size)
3172 {
3173         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3174                 return 0;
3175         return __e1000_maybe_stop_tx(netdev, size);
3176 }
3177
3178 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3179 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3180 {
3181         struct e1000_adapter *adapter = netdev_priv(netdev);
3182         struct e1000_hw *hw = &adapter->hw;
3183         struct e1000_tx_ring *tx_ring;
3184         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3185         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3186         unsigned int tx_flags = 0;
3187         unsigned int len = skb->len - skb->data_len;
3188         unsigned long flags;
3189         unsigned int nr_frags;
3190         unsigned int mss;
3191         int count = 0;
3192         int tso;
3193         unsigned int f;
3194
3195         /* This goes back to the question of how to logically map a tx queue
3196          * to a flow.  Right now, performance is impacted slightly negatively
3197          * if using multiple tx queues.  If the stack breaks away from a
3198          * single qdisc implementation, we can look at this again. */
3199         tx_ring = adapter->tx_ring;
3200
3201         if (unlikely(skb->len <= 0)) {
3202                 dev_kfree_skb_any(skb);
3203                 return NETDEV_TX_OK;
3204         }
3205
3206         /* 82571 and newer doesn't need the workaround that limited descriptor
3207          * length to 4kB */
3208         if (hw->mac_type >= e1000_82571)
3209                 max_per_txd = 8192;
3210
3211         mss = skb_shinfo(skb)->gso_size;
3212         /* The controller does a simple calculation to
3213          * make sure there is enough room in the FIFO before
3214          * initiating the DMA for each buffer.  The calc is:
3215          * 4 = ceil(buffer len/mss).  To make sure we don't
3216          * overrun the FIFO, adjust the max buffer len if mss
3217          * drops. */
3218         if (mss) {
3219                 u8 hdr_len;
3220                 max_per_txd = min(mss << 2, max_per_txd);
3221                 max_txd_pwr = fls(max_per_txd) - 1;
3222
3223                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3224                 * points to just header, pull a few bytes of payload from
3225                 * frags into skb->data */
3226                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3227                 if (skb->data_len && hdr_len == len) {
3228                         switch (hw->mac_type) {
3229                                 unsigned int pull_size;
3230                         case e1000_82544:
3231                                 /* Make sure we have room to chop off 4 bytes,
3232                                  * and that the end alignment will work out to
3233                                  * this hardware's requirements
3234                                  * NOTE: this is a TSO only workaround
3235                                  * if end byte alignment not correct move us
3236                                  * into the next dword */
3237                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3238                                         break;
3239                                 /* fall through */
3240                         case e1000_82571:
3241                         case e1000_82572:
3242                         case e1000_82573:
3243                         case e1000_ich8lan:
3244                                 pull_size = min((unsigned int)4, skb->data_len);
3245                                 if (!__pskb_pull_tail(skb, pull_size)) {
3246                                         DPRINTK(DRV, ERR,
3247                                                 "__pskb_pull_tail failed.\n");
3248                                         dev_kfree_skb_any(skb);
3249                                         return NETDEV_TX_OK;
3250                                 }
3251                                 len = skb->len - skb->data_len;
3252                                 break;
3253                         default:
3254                                 /* do nothing */
3255                                 break;
3256                         }
3257                 }
3258         }
3259
3260         /* reserve a descriptor for the offload context */
3261         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3262                 count++;
3263         count++;
3264
3265         /* Controller Erratum workaround */
3266         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3267                 count++;
3268
3269         count += TXD_USE_COUNT(len, max_txd_pwr);
3270
3271         if (adapter->pcix_82544)
3272                 count++;
3273
3274         /* work-around for errata 10 and it applies to all controllers
3275          * in PCI-X mode, so add one more descriptor to the count
3276          */
3277         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3278                         (len > 2015)))
3279                 count++;
3280
3281         nr_frags = skb_shinfo(skb)->nr_frags;
3282         for (f = 0; f < nr_frags; f++)
3283                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3284                                        max_txd_pwr);
3285         if (adapter->pcix_82544)
3286                 count += nr_frags;
3287
3288
3289         if (hw->tx_pkt_filtering &&
3290             (hw->mac_type == e1000_82573))
3291                 e1000_transfer_dhcp_info(adapter, skb);
3292
3293         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3294                 /* Collision - tell upper layer to requeue */
3295                 return NETDEV_TX_LOCKED;
3296
3297         /* need: count + 2 desc gap to keep tail from touching
3298          * head, otherwise try next time */
3299         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3300                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3301                 return NETDEV_TX_BUSY;
3302         }
3303
3304         if (unlikely(hw->mac_type == e1000_82547)) {
3305                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3306                         netif_stop_queue(netdev);
3307                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3308                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3309                         return NETDEV_TX_BUSY;
3310                 }
3311         }
3312
3313         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3314                 tx_flags |= E1000_TX_FLAGS_VLAN;
3315                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3316         }
3317
3318         first = tx_ring->next_to_use;
3319
3320         tso = e1000_tso(adapter, tx_ring, skb);
3321         if (tso < 0) {
3322                 dev_kfree_skb_any(skb);
3323                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3324                 return NETDEV_TX_OK;
3325         }
3326
3327         if (likely(tso)) {
3328                 tx_ring->last_tx_tso = 1;
3329                 tx_flags |= E1000_TX_FLAGS_TSO;
3330         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3331                 tx_flags |= E1000_TX_FLAGS_CSUM;
3332
3333         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3334          * 82571 hardware supports TSO capabilities for IPv6 as well...
3335          * no longer assume, we must. */
3336         if (likely(skb->protocol == htons(ETH_P_IP)))
3337                 tx_flags |= E1000_TX_FLAGS_IPV4;
3338
3339         e1000_tx_queue(adapter, tx_ring, tx_flags,
3340                        e1000_tx_map(adapter, tx_ring, skb, first,
3341                                     max_per_txd, nr_frags, mss));
3342
3343         netdev->trans_start = jiffies;
3344
3345         /* Make sure there is space in the ring for the next send. */
3346         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3347
3348         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3349         return NETDEV_TX_OK;
3350 }
3351
3352 /**
3353  * e1000_tx_timeout - Respond to a Tx Hang
3354  * @netdev: network interface device structure
3355  **/
3356
3357 static void e1000_tx_timeout(struct net_device *netdev)
3358 {
3359         struct e1000_adapter *adapter = netdev_priv(netdev);
3360
3361         /* Do the reset outside of interrupt context */
3362         adapter->tx_timeout_count++;
3363         schedule_work(&adapter->reset_task);
3364 }
3365
3366 static void e1000_reset_task(struct work_struct *work)
3367 {
3368         struct e1000_adapter *adapter =
3369                 container_of(work, struct e1000_adapter, reset_task);
3370
3371         e1000_reinit_locked(adapter);
3372 }
3373
3374 /**
3375  * e1000_get_stats - Get System Network Statistics
3376  * @netdev: network interface device structure
3377  *
3378  * Returns the address of the device statistics structure.
3379  * The statistics are actually updated from the timer callback.
3380  **/
3381
3382 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3383 {
3384         struct e1000_adapter *adapter = netdev_priv(netdev);
3385
3386         /* only return the current stats */
3387         return &adapter->net_stats;
3388 }
3389
3390 /**
3391  * e1000_change_mtu - Change the Maximum Transfer Unit
3392  * @netdev: network interface device structure
3393  * @new_mtu: new value for maximum frame size
3394  *
3395  * Returns 0 on success, negative on failure
3396  **/
3397
3398 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3399 {
3400         struct e1000_adapter *adapter = netdev_priv(netdev);
3401         struct e1000_hw *hw = &adapter->hw;
3402         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3403         u16 eeprom_data = 0;
3404
3405         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3406             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3407                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3408                 return -EINVAL;
3409         }
3410
3411         /* Adapter-specific max frame size limits. */
3412         switch (hw->mac_type) {
3413         case e1000_undefined ... e1000_82542_rev2_1:
3414         case e1000_ich8lan:
3415                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3416                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3417                         return -EINVAL;
3418                 }
3419                 break;
3420         case e1000_82573:
3421                 /* Jumbo Frames not supported if:
3422                  * - this is not an 82573L device
3423                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3424                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3425                                   &eeprom_data);
3426                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3427                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3428                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3429                                 DPRINTK(PROBE, ERR,
3430                                         "Jumbo Frames not supported.\n");
3431                                 return -EINVAL;
3432                         }
3433                         break;
3434                 }
3435                 /* ERT will be enabled later to enable wire speed receives */
3436
3437                 /* fall through to get support */
3438         case e1000_82571:
3439         case e1000_82572:
3440         case e1000_80003es2lan:
3441 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3442                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3443                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3444                         return -EINVAL;
3445                 }
3446                 break;
3447         default:
3448                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3449                 break;
3450         }
3451
3452         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3453          * means we reserve 2 more, this pushes us to allocate from the next
3454          * larger slab size
3455          * i.e. RXBUFFER_2048 --> size-4096 slab */
3456
3457         if (max_frame <= E1000_RXBUFFER_256)
3458                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3459         else if (max_frame <= E1000_RXBUFFER_512)
3460                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3461         else if (max_frame <= E1000_RXBUFFER_1024)
3462                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3463         else if (max_frame <= E1000_RXBUFFER_2048)
3464                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3465         else if (max_frame <= E1000_RXBUFFER_4096)
3466                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3467         else if (max_frame <= E1000_RXBUFFER_8192)
3468                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3469         else if (max_frame <= E1000_RXBUFFER_16384)
3470                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3471
3472         /* adjust allocation if LPE protects us, and we aren't using SBP */
3473         if (!hw->tbi_compatibility_on &&
3474             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3475              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3476                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3477
3478         netdev->mtu = new_mtu;
3479         hw->max_frame_size = max_frame;
3480
3481         if (netif_running(netdev))
3482                 e1000_reinit_locked(adapter);
3483
3484         return 0;
3485 }
3486
3487 /**
3488  * e1000_update_stats - Update the board statistics counters
3489  * @adapter: board private structure
3490  **/
3491
3492 void e1000_update_stats(struct e1000_adapter *adapter)
3493 {
3494         struct e1000_hw *hw = &adapter->hw;
3495         struct pci_dev *pdev = adapter->pdev;
3496         unsigned long flags;
3497         u16 phy_tmp;
3498
3499 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3500
3501         /*
3502          * Prevent stats update while adapter is being reset, or if the pci
3503          * connection is down.
3504          */
3505         if (adapter->link_speed == 0)
3506                 return;
3507         if (pci_channel_offline(pdev))
3508                 return;
3509
3510         spin_lock_irqsave(&adapter->stats_lock, flags);
3511
3512         /* these counters are modified from e1000_tbi_adjust_stats,
3513          * called from the interrupt context, so they must only
3514          * be written while holding adapter->stats_lock
3515          */
3516
3517         adapter->stats.crcerrs += er32(CRCERRS);
3518         adapter->stats.gprc += er32(GPRC);
3519         adapter->stats.gorcl += er32(GORCL);
3520         adapter->stats.gorch += er32(GORCH);
3521         adapter->stats.bprc += er32(BPRC);
3522         adapter->stats.mprc += er32(MPRC);
3523         adapter->stats.roc += er32(ROC);
3524
3525         if (hw->mac_type != e1000_ich8lan) {
3526                 adapter->stats.prc64 += er32(PRC64);
3527                 adapter->stats.prc127 += er32(PRC127);
3528                 adapter->stats.prc255 += er32(PRC255);
3529                 adapter->stats.prc511 += er32(PRC511);
3530                 adapter->stats.prc1023 += er32(PRC1023);
3531                 adapter->stats.prc1522 += er32(PRC1522);
3532         }
3533
3534         adapter->stats.symerrs += er32(SYMERRS);
3535         adapter->stats.mpc += er32(MPC);
3536         adapter->stats.scc += er32(SCC);
3537         adapter->stats.ecol += er32(ECOL);
3538         adapter->stats.mcc += er32(MCC);
3539         adapter->stats.latecol += er32(LATECOL);
3540         adapter->stats.dc += er32(DC);
3541         adapter->stats.sec += er32(SEC);
3542         adapter->stats.rlec += er32(RLEC);
3543         adapter->stats.xonrxc += er32(XONRXC);
3544         adapter->stats.xontxc += er32(XONTXC);
3545         adapter->stats.xoffrxc += er32(XOFFRXC);
3546         adapter->stats.xofftxc += er32(XOFFTXC);
3547         adapter->stats.fcruc += er32(FCRUC);
3548         adapter->stats.gptc += er32(GPTC);
3549         adapter->stats.gotcl += er32(GOTCL);
3550         adapter->stats.gotch += er32(GOTCH);
3551         adapter->stats.rnbc += er32(RNBC);
3552         adapter->stats.ruc += er32(RUC);
3553         adapter->stats.rfc += er32(RFC);
3554         adapter->stats.rjc += er32(RJC);
3555         adapter->stats.torl += er32(TORL);
3556         adapter->stats.torh += er32(TORH);
3557         adapter->stats.totl += er32(TOTL);
3558         adapter->stats.toth += er32(TOTH);
3559         adapter->stats.tpr += er32(TPR);
3560
3561         if (hw->mac_type != e1000_ich8lan) {
3562                 adapter->stats.ptc64 += er32(PTC64);
3563                 adapter->stats.ptc127 += er32(PTC127);
3564                 adapter->stats.ptc255 += er32(PTC255);
3565                 adapter->stats.ptc511 += er32(PTC511);
3566                 adapter->stats.ptc1023 += er32(PTC1023);
3567                 adapter->stats.ptc1522 += er32(PTC1522);
3568         }
3569
3570         adapter->stats.mptc += er32(MPTC);
3571         adapter->stats.bptc += er32(BPTC);
3572
3573         /* used for adaptive IFS */
3574
3575         hw->tx_packet_delta = er32(TPT);
3576         adapter->stats.tpt += hw->tx_packet_delta;
3577         hw->collision_delta = er32(COLC);
3578         adapter->stats.colc += hw->collision_delta;
3579
3580         if (hw->mac_type >= e1000_82543) {
3581                 adapter->stats.algnerrc += er32(ALGNERRC);
3582                 adapter->stats.rxerrc += er32(RXERRC);
3583                 adapter->stats.tncrs += er32(TNCRS);
3584                 adapter->stats.cexterr += er32(CEXTERR);
3585                 adapter->stats.tsctc += er32(TSCTC);
3586                 adapter->stats.tsctfc += er32(TSCTFC);
3587         }
3588         if (hw->mac_type > e1000_82547_rev_2) {
3589                 adapter->stats.iac += er32(IAC);
3590                 adapter->stats.icrxoc += er32(ICRXOC);
3591
3592                 if (hw->mac_type != e1000_ich8lan) {
3593                         adapter->stats.icrxptc += er32(ICRXPTC);
3594                         adapter->stats.icrxatc += er32(ICRXATC);
3595                         adapter->stats.ictxptc += er32(ICTXPTC);
3596                         adapter->stats.ictxatc += er32(ICTXATC);
3597                         adapter->stats.ictxqec += er32(ICTXQEC);
3598                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3599                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3600                 }
3601         }
3602
3603         /* Fill out the OS statistics structure */
3604         adapter->net_stats.multicast = adapter->stats.mprc;
3605         adapter->net_stats.collisions = adapter->stats.colc;
3606
3607         /* Rx Errors */
3608
3609         /* RLEC on some newer hardware can be incorrect so build
3610         * our own version based on RUC and ROC */
3611         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3612                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3613                 adapter->stats.ruc + adapter->stats.roc +
3614                 adapter->stats.cexterr;
3615         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3616         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3617         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3618         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3619         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3620
3621         /* Tx Errors */
3622         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3623         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3624         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3625         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3626         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3627         if (hw->bad_tx_carr_stats_fd &&
3628             adapter->link_duplex == FULL_DUPLEX) {
3629                 adapter->net_stats.tx_carrier_errors = 0;
3630                 adapter->stats.tncrs = 0;
3631         }
3632
3633         /* Tx Dropped needs to be maintained elsewhere */
3634
3635         /* Phy Stats */
3636         if (hw->media_type == e1000_media_type_copper) {
3637                 if ((adapter->link_speed == SPEED_1000) &&
3638                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3639                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3640                         adapter->phy_stats.idle_errors += phy_tmp;
3641                 }
3642
3643                 if ((hw->mac_type <= e1000_82546) &&
3644                    (hw->phy_type == e1000_phy_m88) &&
3645                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3646                         adapter->phy_stats.receive_errors += phy_tmp;
3647         }
3648
3649         /* Management Stats */
3650         if (hw->has_smbus) {
3651                 adapter->stats.mgptc += er32(MGTPTC);
3652                 adapter->stats.mgprc += er32(MGTPRC);
3653                 adapter->stats.mgpdc += er32(MGTPDC);
3654         }
3655
3656         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3657 }
3658
3659 /**
3660  * e1000_intr_msi - Interrupt Handler
3661  * @irq: interrupt number
3662  * @data: pointer to a network interface device structure
3663  **/
3664
3665 static irqreturn_t e1000_intr_msi(int irq, void *data)
3666 {
3667         struct net_device *netdev = data;
3668         struct e1000_adapter *adapter = netdev_priv(netdev);
3669         struct e1000_hw *hw = &adapter->hw;
3670         u32 icr = er32(ICR);
3671
3672         /* in NAPI mode read ICR disables interrupts using IAM */
3673
3674         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3675                 hw->get_link_status = 1;
3676                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3677                  * link down event; disable receives here in the ISR and reset
3678                  * adapter in watchdog */
3679                 if (netif_carrier_ok(netdev) &&
3680                     (hw->mac_type == e1000_80003es2lan)) {
3681                         /* disable receives */
3682                         u32 rctl = er32(RCTL);
3683                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3684                 }
3685                 /* guard against interrupt when we're going down */
3686                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3687                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3688         }
3689
3690         if (likely(netif_rx_schedule_prep(&adapter->napi))) {
3691                 adapter->total_tx_bytes = 0;
3692                 adapter->total_tx_packets = 0;
3693                 adapter->total_rx_bytes = 0;
3694                 adapter->total_rx_packets = 0;
3695                 __netif_rx_schedule(&adapter->napi);
3696         } else
3697                 e1000_irq_enable(adapter);
3698
3699         return IRQ_HANDLED;
3700 }
3701
3702 /**
3703  * e1000_intr - Interrupt Handler
3704  * @irq: interrupt number
3705  * @data: pointer to a network interface device structure
3706  **/
3707
3708 static irqreturn_t e1000_intr(int irq, void *data)
3709 {
3710         struct net_device *netdev = data;
3711         struct e1000_adapter *adapter = netdev_priv(netdev);
3712         struct e1000_hw *hw = &adapter->hw;
3713         u32 rctl, icr = er32(ICR);
3714
3715         if (unlikely(!icr))
3716                 return IRQ_NONE;  /* Not our interrupt */
3717
3718         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3719          * not set, then the adapter didn't send an interrupt */
3720         if (unlikely(hw->mac_type >= e1000_82571 &&
3721                      !(icr & E1000_ICR_INT_ASSERTED)))
3722                 return IRQ_NONE;
3723
3724         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3725          * need for the IMC write */
3726
3727         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3728                 hw->get_link_status = 1;
3729                 /* 80003ES2LAN workaround--
3730                  * For packet buffer work-around on link down event;
3731                  * disable receives here in the ISR and
3732                  * reset adapter in watchdog
3733                  */
3734                 if (netif_carrier_ok(netdev) &&
3735                     (hw->mac_type == e1000_80003es2lan)) {
3736                         /* disable receives */
3737                         rctl = er32(RCTL);
3738                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3739                 }
3740                 /* guard against interrupt when we're going down */
3741                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3742                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3743         }
3744
3745         if (unlikely(hw->mac_type < e1000_82571)) {
3746                 /* disable interrupts, without the synchronize_irq bit */
3747                 ew32(IMC, ~0);
3748                 E1000_WRITE_FLUSH();
3749         }
3750         if (likely(netif_rx_schedule_prep(&adapter->napi))) {
3751                 adapter->total_tx_bytes = 0;
3752                 adapter->total_tx_packets = 0;
3753                 adapter->total_rx_bytes = 0;
3754                 adapter->total_rx_packets = 0;
3755                 __netif_rx_schedule(&adapter->napi);
3756         } else
3757                 /* this really should not happen! if it does it is basically a
3758                  * bug, but not a hard error, so enable ints and continue */
3759                 e1000_irq_enable(adapter);
3760
3761         return IRQ_HANDLED;
3762 }
3763
3764 /**
3765  * e1000_clean - NAPI Rx polling callback
3766  * @adapter: board private structure
3767  **/
3768 static int e1000_clean(struct napi_struct *napi, int budget)
3769 {
3770         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3771         struct net_device *poll_dev = adapter->netdev;
3772         int tx_cleaned = 0, work_done = 0;
3773
3774         adapter = netdev_priv(poll_dev);
3775
3776         /* e1000_clean is called per-cpu.  This lock protects
3777          * tx_ring[0] from being cleaned by multiple cpus
3778          * simultaneously.  A failure obtaining the lock means
3779          * tx_ring[0] is currently being cleaned anyway. */
3780         if (spin_trylock(&adapter->tx_queue_lock)) {
3781                 tx_cleaned = e1000_clean_tx_irq(adapter,
3782                                                 &adapter->tx_ring[0]);
3783                 spin_unlock(&adapter->tx_queue_lock);
3784         }
3785
3786         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3787                           &work_done, budget);
3788
3789         if (tx_cleaned)
3790                 work_done = budget;
3791
3792         /* If budget not fully consumed, exit the polling mode */
3793         if (work_done < budget) {
3794                 if (likely(adapter->itr_setting & 3))
3795                         e1000_set_itr(adapter);
3796                 netif_rx_complete(napi);
3797                 e1000_irq_enable(adapter);
3798         }
3799
3800         return work_done;
3801 }
3802
3803 /**
3804  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3805  * @adapter: board private structure
3806  **/
3807 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3808                                struct e1000_tx_ring *tx_ring)
3809 {
3810         struct e1000_hw *hw = &adapter->hw;
3811         struct net_device *netdev = adapter->netdev;
3812         struct e1000_tx_desc *tx_desc, *eop_desc;
3813         struct e1000_buffer *buffer_info;
3814         unsigned int i, eop;
3815         unsigned int count = 0;
3816         bool cleaned = false;
3817         unsigned int total_tx_bytes=0, total_tx_packets=0;
3818
3819         i = tx_ring->next_to_clean;
3820         eop = tx_ring->buffer_info[i].next_to_watch;
3821         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3822
3823         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3824                 for (cleaned = false; !cleaned; ) {
3825                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3826                         buffer_info = &tx_ring->buffer_info[i];
3827                         cleaned = (i == eop);
3828
3829                         if (cleaned) {
3830                                 struct sk_buff *skb = buffer_info->skb;
3831                                 unsigned int segs, bytecount;
3832                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3833                                 /* multiply data chunks by size of headers */
3834                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3835                                             skb->len;
3836                                 total_tx_packets += segs;
3837                                 total_tx_bytes += bytecount;
3838                         }
3839                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3840                         tx_desc->upper.data = 0;
3841
3842                         if (unlikely(++i == tx_ring->count)) i = 0;
3843                 }
3844
3845                 eop = tx_ring->buffer_info[i].next_to_watch;
3846                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3847 #define E1000_TX_WEIGHT 64
3848                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3849                 if (count++ == E1000_TX_WEIGHT)
3850                         break;
3851         }
3852
3853         tx_ring->next_to_clean = i;
3854
3855 #define TX_WAKE_THRESHOLD 32
3856         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3857                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3858                 /* Make sure that anybody stopping the queue after this
3859                  * sees the new next_to_clean.
3860                  */
3861                 smp_mb();
3862                 if (netif_queue_stopped(netdev)) {
3863                         netif_wake_queue(netdev);
3864                         ++adapter->restart_queue;
3865                 }
3866         }
3867
3868         if (adapter->detect_tx_hung) {
3869                 /* Detect a transmit hang in hardware, this serializes the
3870                  * check with the clearing of time_stamp and movement of i */
3871                 adapter->detect_tx_hung = false;
3872                 if (tx_ring->buffer_info[eop].dma &&
3873                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3874                                (adapter->tx_timeout_factor * HZ))
3875                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3876
3877                         /* detected Tx unit hang */
3878                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3879                                         "  Tx Queue             <%lu>\n"
3880                                         "  TDH                  <%x>\n"
3881                                         "  TDT                  <%x>\n"
3882                                         "  next_to_use          <%x>\n"
3883                                         "  next_to_clean        <%x>\n"
3884                                         "buffer_info[next_to_clean]\n"
3885                                         "  time_stamp           <%lx>\n"
3886                                         "  next_to_watch        <%x>\n"
3887                                         "  jiffies              <%lx>\n"
3888                                         "  next_to_watch.status <%x>\n",
3889                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3890                                         sizeof(struct e1000_tx_ring)),
3891                                 readl(hw->hw_addr + tx_ring->tdh),
3892                                 readl(hw->hw_addr + tx_ring->tdt),
3893                                 tx_ring->next_to_use,
3894                                 tx_ring->next_to_clean,
3895                                 tx_ring->buffer_info[eop].time_stamp,
3896                                 eop,
3897                                 jiffies,
3898                                 eop_desc->upper.fields.status);
3899                         netif_stop_queue(netdev);
3900                 }
3901         }
3902         adapter->total_tx_bytes += total_tx_bytes;
3903         adapter->total_tx_packets += total_tx_packets;
3904         adapter->net_stats.tx_bytes += total_tx_bytes;
3905         adapter->net_stats.tx_packets += total_tx_packets;
3906         return cleaned;
3907 }
3908
3909 /**
3910  * e1000_rx_checksum - Receive Checksum Offload for 82543
3911  * @adapter:     board private structure
3912  * @status_err:  receive descriptor status and error fields
3913  * @csum:        receive descriptor csum field
3914  * @sk_buff:     socket buffer with received data
3915  **/
3916
3917 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3918                               u32 csum, struct sk_buff *skb)
3919 {
3920         struct e1000_hw *hw = &adapter->hw;
3921         u16 status = (u16)status_err;
3922         u8 errors = (u8)(status_err >> 24);
3923         skb->ip_summed = CHECKSUM_NONE;
3924
3925         /* 82543 or newer only */
3926         if (unlikely(hw->mac_type < e1000_82543)) return;
3927         /* Ignore Checksum bit is set */
3928         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3929         /* TCP/UDP checksum error bit is set */
3930         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3931                 /* let the stack verify checksum errors */
3932                 adapter->hw_csum_err++;
3933                 return;
3934         }
3935         /* TCP/UDP Checksum has not been calculated */
3936         if (hw->mac_type <= e1000_82547_rev_2) {
3937                 if (!(status & E1000_RXD_STAT_TCPCS))
3938                         return;
3939         } else {
3940                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3941                         return;
3942         }
3943         /* It must be a TCP or UDP packet with a valid checksum */
3944         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3945                 /* TCP checksum is good */
3946                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3947         } else if (hw->mac_type > e1000_82547_rev_2) {
3948                 /* IP fragment with UDP payload */
3949                 /* Hardware complements the payload checksum, so we undo it
3950                  * and then put the value in host order for further stack use.
3951                  */
3952                 __sum16 sum = (__force __sum16)htons(csum);
3953                 skb->csum = csum_unfold(~sum);
3954                 skb->ip_summed = CHECKSUM_COMPLETE;
3955         }
3956         adapter->hw_csum_good++;
3957 }
3958
3959 /**
3960  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3961  * @adapter: board private structure
3962  **/
3963 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3964                                struct e1000_rx_ring *rx_ring,
3965                                int *work_done, int work_to_do)
3966 {
3967         struct e1000_hw *hw = &adapter->hw;
3968         struct net_device *netdev = adapter->netdev;
3969         struct pci_dev *pdev = adapter->pdev;
3970         struct e1000_rx_desc *rx_desc, *next_rxd;
3971         struct e1000_buffer *buffer_info, *next_buffer;
3972         unsigned long flags;
3973         u32 length;
3974         u8 last_byte;
3975         unsigned int i;
3976         int cleaned_count = 0;
3977         bool cleaned = false;
3978         unsigned int total_rx_bytes=0, total_rx_packets=0;
3979
3980         i = rx_ring->next_to_clean;
3981         rx_desc = E1000_RX_DESC(*rx_ring, i);
3982         buffer_info = &rx_ring->buffer_info[i];
3983
3984         while (rx_desc->status & E1000_RXD_STAT_DD) {
3985                 struct sk_buff *skb;
3986                 u8 status;
3987
3988                 if (*work_done >= work_to_do)
3989                         break;
3990                 (*work_done)++;
3991
3992                 status = rx_desc->status;
3993                 skb = buffer_info->skb;
3994                 buffer_info->skb = NULL;
3995
3996                 prefetch(skb->data - NET_IP_ALIGN);
3997
3998                 if (++i == rx_ring->count) i = 0;
3999                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4000                 prefetch(next_rxd);
4001
4002                 next_buffer = &rx_ring->buffer_info[i];
4003
4004                 cleaned = true;
4005                 cleaned_count++;
4006                 pci_unmap_single(pdev,
4007                                  buffer_info->dma,
4008                                  buffer_info->length,
4009                                  PCI_DMA_FROMDEVICE);
4010
4011                 length = le16_to_cpu(rx_desc->length);
4012
4013                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4014                         /* All receives must fit into a single buffer */
4015                         E1000_DBG("%s: Receive packet consumed multiple"
4016                                   " buffers\n", netdev->name);
4017                         /* recycle */
4018                         buffer_info->skb = skb;
4019                         goto next_desc;
4020                 }
4021
4022                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4023                         last_byte = *(skb->data + length - 1);
4024                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4025                                        last_byte)) {
4026                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4027                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4028                                                        length, skb->data);
4029                                 spin_unlock_irqrestore(&adapter->stats_lock,
4030                                                        flags);
4031                                 length--;
4032                         } else {
4033                                 /* recycle */
4034                                 buffer_info->skb = skb;
4035                                 goto next_desc;
4036                         }
4037                 }
4038
4039                 /* adjust length to remove Ethernet CRC, this must be
4040                  * done after the TBI_ACCEPT workaround above */
4041                 length -= 4;
4042
4043                 /* probably a little skewed due to removing CRC */
4044                 total_rx_bytes += length;
4045                 total_rx_packets++;
4046
4047                 /* code added for copybreak, this should improve
4048                  * performance for small packets with large amounts
4049                  * of reassembly being done in the stack */
4050                 if (length < copybreak) {
4051                         struct sk_buff *new_skb =
4052                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4053                         if (new_skb) {
4054                                 skb_reserve(new_skb, NET_IP_ALIGN);
4055                                 skb_copy_to_linear_data_offset(new_skb,
4056                                                                -NET_IP_ALIGN,
4057                                                                (skb->data -
4058                                                                 NET_IP_ALIGN),
4059                                                                (length +
4060                                                                 NET_IP_ALIGN));
4061                                 /* save the skb in buffer_info as good */
4062                                 buffer_info->skb = skb;
4063                                 skb = new_skb;
4064                         }
4065                         /* else just continue with the old one */
4066                 }
4067                 /* end copybreak code */
4068                 skb_put(skb, length);
4069
4070                 /* Receive Checksum Offload */
4071                 e1000_rx_checksum(adapter,
4072                                   (u32)(status) |
4073                                   ((u32)(rx_desc->errors) << 24),
4074                                   le16_to_cpu(rx_desc->csum), skb);
4075
4076                 skb->protocol = eth_type_trans(skb, netdev);
4077
4078                 if (unlikely(adapter->vlgrp &&
4079                             (status & E1000_RXD_STAT_VP))) {
4080                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4081                                                  le16_to_cpu(rx_desc->special));
4082                 } else {
4083                         netif_receive_skb(skb);
4084                 }
4085
4086 next_desc:
4087                 rx_desc->status = 0;
4088
4089                 /* return some buffers to hardware, one at a time is too slow */
4090                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4091                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4092                         cleaned_count = 0;
4093                 }
4094
4095                 /* use prefetched values */
4096                 rx_desc = next_rxd;
4097                 buffer_info = next_buffer;
4098         }
4099         rx_ring->next_to_clean = i;
4100
4101         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4102         if (cleaned_count)
4103                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4104
4105         adapter->total_rx_packets += total_rx_packets;
4106         adapter->total_rx_bytes += total_rx_bytes;
4107         adapter->net_stats.rx_bytes += total_rx_bytes;
4108         adapter->net_stats.rx_packets += total_rx_packets;
4109         return cleaned;
4110 }
4111
4112 /**
4113  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4114  * @adapter: address of board private structure
4115  **/
4116
4117 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4118                                    struct e1000_rx_ring *rx_ring,
4119                                    int cleaned_count)
4120 {
4121         struct e1000_hw *hw = &adapter->hw;
4122         struct net_device *netdev = adapter->netdev;
4123         struct pci_dev *pdev = adapter->pdev;
4124         struct e1000_rx_desc *rx_desc;
4125         struct e1000_buffer *buffer_info;
4126         struct sk_buff *skb;
4127         unsigned int i;
4128         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4129
4130         i = rx_ring->next_to_use;
4131         buffer_info = &rx_ring->buffer_info[i];
4132
4133         while (cleaned_count--) {
4134                 skb = buffer_info->skb;
4135                 if (skb) {
4136                         skb_trim(skb, 0);
4137                         goto map_skb;
4138                 }
4139
4140                 skb = netdev_alloc_skb(netdev, bufsz);
4141                 if (unlikely(!skb)) {
4142                         /* Better luck next round */
4143                         adapter->alloc_rx_buff_failed++;
4144                         break;
4145                 }
4146
4147                 /* Fix for errata 23, can't cross 64kB boundary */
4148                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4149                         struct sk_buff *oldskb = skb;
4150                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4151                                              "at %p\n", bufsz, skb->data);
4152                         /* Try again, without freeing the previous */
4153                         skb = netdev_alloc_skb(netdev, bufsz);
4154                         /* Failed allocation, critical failure */
4155                         if (!skb) {
4156                                 dev_kfree_skb(oldskb);
4157                                 break;
4158                         }
4159
4160                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4161                                 /* give up */
4162                                 dev_kfree_skb(skb);
4163                                 dev_kfree_skb(oldskb);
4164                                 break; /* while !buffer_info->skb */
4165                         }
4166
4167                         /* Use new allocation */
4168                         dev_kfree_skb(oldskb);
4169                 }
4170                 /* Make buffer alignment 2 beyond a 16 byte boundary
4171                  * this will result in a 16 byte aligned IP header after
4172                  * the 14 byte MAC header is removed
4173                  */
4174                 skb_reserve(skb, NET_IP_ALIGN);
4175
4176                 buffer_info->skb = skb;
4177                 buffer_info->length = adapter->rx_buffer_len;
4178 map_skb:
4179                 buffer_info->dma = pci_map_single(pdev,
4180                                                   skb->data,
4181                                                   adapter->rx_buffer_len,
4182                                                   PCI_DMA_FROMDEVICE);
4183
4184                 /* Fix for errata 23, can't cross 64kB boundary */
4185                 if (!e1000_check_64k_bound(adapter,
4186                                         (void *)(unsigned long)buffer_info->dma,
4187                                         adapter->rx_buffer_len)) {
4188                         DPRINTK(RX_ERR, ERR,
4189                                 "dma align check failed: %u bytes at %p\n",
4190                                 adapter->rx_buffer_len,
4191                                 (void *)(unsigned long)buffer_info->dma);
4192                         dev_kfree_skb(skb);
4193                         buffer_info->skb = NULL;
4194
4195                         pci_unmap_single(pdev, buffer_info->dma,
4196                                          adapter->rx_buffer_len,
4197                                          PCI_DMA_FROMDEVICE);
4198
4199                         break; /* while !buffer_info->skb */
4200                 }
4201                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4202                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4203
4204                 if (unlikely(++i == rx_ring->count))
4205                         i = 0;
4206                 buffer_info = &rx_ring->buffer_info[i];
4207         }
4208
4209         if (likely(rx_ring->next_to_use != i)) {
4210                 rx_ring->next_to_use = i;
4211                 if (unlikely(i-- == 0))
4212                         i = (rx_ring->count - 1);
4213
4214                 /* Force memory writes to complete before letting h/w
4215                  * know there are new descriptors to fetch.  (Only
4216                  * applicable for weak-ordered memory model archs,
4217                  * such as IA-64). */
4218                 wmb();
4219                 writel(i, hw->hw_addr + rx_ring->rdt);
4220         }
4221 }
4222
4223 /**
4224  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4225  * @adapter:
4226  **/
4227
4228 static void e1000_smartspeed(struct e1000_adapter *adapter)
4229 {
4230         struct e1000_hw *hw = &adapter->hw;
4231         u16 phy_status;
4232         u16 phy_ctrl;
4233
4234         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4235            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4236                 return;
4237
4238         if (adapter->smartspeed == 0) {
4239                 /* If Master/Slave config fault is asserted twice,
4240                  * we assume back-to-back */
4241                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4242                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4243                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4244                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4245                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4246                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4247                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4248                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4249                                             phy_ctrl);
4250                         adapter->smartspeed++;
4251                         if (!e1000_phy_setup_autoneg(hw) &&
4252                            !e1000_read_phy_reg(hw, PHY_CTRL,
4253                                                &phy_ctrl)) {
4254                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4255                                              MII_CR_RESTART_AUTO_NEG);
4256                                 e1000_write_phy_reg(hw, PHY_CTRL,
4257                                                     phy_ctrl);
4258                         }
4259                 }
4260                 return;
4261         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4262                 /* If still no link, perhaps using 2/3 pair cable */
4263                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4264                 phy_ctrl |= CR_1000T_MS_ENABLE;
4265                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4266                 if (!e1000_phy_setup_autoneg(hw) &&
4267                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4268                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4269                                      MII_CR_RESTART_AUTO_NEG);
4270                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4271                 }
4272         }
4273         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4274         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4275                 adapter->smartspeed = 0;
4276 }
4277
4278 /**
4279  * e1000_ioctl -
4280  * @netdev:
4281  * @ifreq:
4282  * @cmd:
4283  **/
4284
4285 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4286 {
4287         switch (cmd) {
4288         case SIOCGMIIPHY:
4289         case SIOCGMIIREG:
4290         case SIOCSMIIREG:
4291                 return e1000_mii_ioctl(netdev, ifr, cmd);
4292         default:
4293                 return -EOPNOTSUPP;
4294         }
4295 }
4296
4297 /**
4298  * e1000_mii_ioctl -
4299  * @netdev:
4300  * @ifreq:
4301  * @cmd:
4302  **/
4303
4304 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4305                            int cmd)
4306 {
4307         struct e1000_adapter *adapter = netdev_priv(netdev);
4308         struct e1000_hw *hw = &adapter->hw;
4309         struct mii_ioctl_data *data = if_mii(ifr);
4310         int retval;
4311         u16 mii_reg;
4312         u16 spddplx;
4313         unsigned long flags;
4314
4315         if (hw->media_type != e1000_media_type_copper)
4316                 return -EOPNOTSUPP;
4317
4318         switch (cmd) {
4319         case SIOCGMIIPHY:
4320                 data->phy_id = hw->phy_addr;
4321                 break;
4322         case SIOCGMIIREG:
4323                 if (!capable(CAP_NET_ADMIN))
4324                         return -EPERM;
4325                 spin_lock_irqsave(&adapter->stats_lock, flags);
4326                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4327                                    &data->val_out)) {
4328                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4329                         return -EIO;
4330                 }
4331                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4332                 break;
4333         case SIOCSMIIREG:
4334                 if (!capable(CAP_NET_ADMIN))
4335                         return -EPERM;
4336                 if (data->reg_num & ~(0x1F))
4337                         return -EFAULT;
4338                 mii_reg = data->val_in;
4339                 spin_lock_irqsave(&adapter->stats_lock, flags);
4340                 if (e1000_write_phy_reg(hw, data->reg_num,
4341                                         mii_reg)) {
4342                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4343                         return -EIO;
4344                 }
4345                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4346                 if (hw->media_type == e1000_media_type_copper) {
4347                         switch (data->reg_num) {
4348                         case PHY_CTRL:
4349                                 if (mii_reg & MII_CR_POWER_DOWN)
4350                                         break;
4351                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4352                                         hw->autoneg = 1;
4353                                         hw->autoneg_advertised = 0x2F;
4354                                 } else {
4355                                         if (mii_reg & 0x40)
4356                                                 spddplx = SPEED_1000;
4357                                         else if (mii_reg & 0x2000)
4358                                                 spddplx = SPEED_100;
4359                                         else
4360                                                 spddplx = SPEED_10;
4361                                         spddplx += (mii_reg & 0x100)
4362                                                    ? DUPLEX_FULL :
4363                                                    DUPLEX_HALF;
4364                                         retval = e1000_set_spd_dplx(adapter,
4365                                                                     spddplx);
4366                                         if (retval)
4367                                                 return retval;
4368                                 }
4369                                 if (netif_running(adapter->netdev))
4370                                         e1000_reinit_locked(adapter);
4371                                 else
4372                                         e1000_reset(adapter);
4373                                 break;
4374                         case M88E1000_PHY_SPEC_CTRL:
4375                         case M88E1000_EXT_PHY_SPEC_CTRL:
4376                                 if (e1000_phy_reset(hw))
4377                                         return -EIO;
4378                                 break;
4379                         }
4380                 } else {
4381                         switch (data->reg_num) {
4382                         case PHY_CTRL:
4383                                 if (mii_reg & MII_CR_POWER_DOWN)
4384                                         break;
4385                                 if (netif_running(adapter->netdev))
4386                                         e1000_reinit_locked(adapter);
4387                                 else
4388                                         e1000_reset(adapter);
4389                                 break;
4390                         }
4391                 }
4392                 break;
4393         default:
4394                 return -EOPNOTSUPP;
4395         }
4396         return E1000_SUCCESS;
4397 }
4398
4399 void e1000_pci_set_mwi(struct e1000_hw *hw)
4400 {
4401         struct e1000_adapter *adapter = hw->back;
4402         int ret_val = pci_set_mwi(adapter->pdev);
4403
4404         if (ret_val)
4405                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4406 }
4407
4408 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4409 {
4410         struct e1000_adapter *adapter = hw->back;
4411
4412         pci_clear_mwi(adapter->pdev);
4413 }
4414
4415 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4416 {
4417         struct e1000_adapter *adapter = hw->back;
4418         return pcix_get_mmrbc(adapter->pdev);
4419 }
4420
4421 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4422 {
4423         struct e1000_adapter *adapter = hw->back;
4424         pcix_set_mmrbc(adapter->pdev, mmrbc);
4425 }
4426
4427 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4428 {
4429     struct e1000_adapter *adapter = hw->back;
4430     u16 cap_offset;
4431
4432     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4433     if (!cap_offset)
4434         return -E1000_ERR_CONFIG;
4435
4436     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4437
4438     return E1000_SUCCESS;
4439 }
4440
4441 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4442 {
4443         outl(value, port);
4444 }
4445
4446 static void e1000_vlan_rx_register(struct net_device *netdev,
4447                                    struct vlan_group *grp)
4448 {
4449         struct e1000_adapter *adapter = netdev_priv(netdev);
4450         struct e1000_hw *hw = &adapter->hw;
4451         u32 ctrl, rctl;
4452
4453         if (!test_bit(__E1000_DOWN, &adapter->flags))
4454                 e1000_irq_disable(adapter);
4455         adapter->vlgrp = grp;
4456
4457         if (grp) {
4458                 /* enable VLAN tag insert/strip */
4459                 ctrl = er32(CTRL);
4460                 ctrl |= E1000_CTRL_VME;
4461                 ew32(CTRL, ctrl);
4462
4463                 if (adapter->hw.mac_type != e1000_ich8lan) {
4464                         /* enable VLAN receive filtering */
4465                         rctl = er32(RCTL);
4466                         rctl &= ~E1000_RCTL_CFIEN;
4467                         ew32(RCTL, rctl);
4468                         e1000_update_mng_vlan(adapter);
4469                 }
4470         } else {
4471                 /* disable VLAN tag insert/strip */
4472                 ctrl = er32(CTRL);
4473                 ctrl &= ~E1000_CTRL_VME;
4474                 ew32(CTRL, ctrl);
4475
4476                 if (adapter->hw.mac_type != e1000_ich8lan) {
4477                         if (adapter->mng_vlan_id !=
4478                             (u16)E1000_MNG_VLAN_NONE) {
4479                                 e1000_vlan_rx_kill_vid(netdev,
4480                                                        adapter->mng_vlan_id);
4481                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4482                         }
4483                 }
4484         }
4485
4486         if (!test_bit(__E1000_DOWN, &adapter->flags))
4487                 e1000_irq_enable(adapter);
4488 }
4489
4490 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4491 {
4492         struct e1000_adapter *adapter = netdev_priv(netdev);
4493         struct e1000_hw *hw = &adapter->hw;
4494         u32 vfta, index;
4495
4496         if ((hw->mng_cookie.status &
4497              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4498             (vid == adapter->mng_vlan_id))
4499                 return;
4500         /* add VID to filter table */
4501         index = (vid >> 5) & 0x7F;
4502         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4503         vfta |= (1 << (vid & 0x1F));
4504         e1000_write_vfta(hw, index, vfta);
4505 }
4506
4507 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4508 {
4509         struct e1000_adapter *adapter = netdev_priv(netdev);
4510         struct e1000_hw *hw = &adapter->hw;
4511         u32 vfta, index;
4512
4513         if (!test_bit(__E1000_DOWN, &adapter->flags))
4514                 e1000_irq_disable(adapter);
4515         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4516         if (!test_bit(__E1000_DOWN, &adapter->flags))
4517                 e1000_irq_enable(adapter);
4518
4519         if ((hw->mng_cookie.status &
4520              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4521             (vid == adapter->mng_vlan_id)) {
4522                 /* release control to f/w */
4523                 e1000_release_hw_control(adapter);
4524                 return;
4525         }
4526
4527         /* remove VID from filter table */
4528         index = (vid >> 5) & 0x7F;
4529         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4530         vfta &= ~(1 << (vid & 0x1F));
4531         e1000_write_vfta(hw, index, vfta);
4532 }
4533
4534 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4535 {
4536         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4537
4538         if (adapter->vlgrp) {
4539                 u16 vid;
4540                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4541                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4542                                 continue;
4543                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4544                 }
4545         }
4546 }
4547
4548 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4549 {
4550         struct e1000_hw *hw = &adapter->hw;
4551
4552         hw->autoneg = 0;
4553
4554         /* Fiber NICs only allow 1000 gbps Full duplex */
4555         if ((hw->media_type == e1000_media_type_fiber) &&
4556                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4557                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4558                 return -EINVAL;
4559         }
4560
4561         switch (spddplx) {
4562         case SPEED_10 + DUPLEX_HALF:
4563                 hw->forced_speed_duplex = e1000_10_half;
4564                 break;
4565         case SPEED_10 + DUPLEX_FULL:
4566                 hw->forced_speed_duplex = e1000_10_full;
4567                 break;
4568         case SPEED_100 + DUPLEX_HALF:
4569                 hw->forced_speed_duplex = e1000_100_half;
4570                 break;
4571         case SPEED_100 + DUPLEX_FULL:
4572                 hw->forced_speed_duplex = e1000_100_full;
4573                 break;
4574         case SPEED_1000 + DUPLEX_FULL:
4575                 hw->autoneg = 1;
4576                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4577                 break;
4578         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4579         default:
4580                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4581                 return -EINVAL;
4582         }
4583         return 0;
4584 }
4585
4586 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4587 {
4588         struct net_device *netdev = pci_get_drvdata(pdev);
4589         struct e1000_adapter *adapter = netdev_priv(netdev);
4590         struct e1000_hw *hw = &adapter->hw;
4591         u32 ctrl, ctrl_ext, rctl, status;
4592         u32 wufc = adapter->wol;
4593 #ifdef CONFIG_PM
4594         int retval = 0;
4595 #endif
4596
4597         netif_device_detach(netdev);
4598
4599         if (netif_running(netdev)) {
4600                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4601                 e1000_down(adapter);
4602         }
4603
4604 #ifdef CONFIG_PM
4605         retval = pci_save_state(pdev);
4606         if (retval)
4607                 return retval;
4608 #endif
4609
4610         status = er32(STATUS);
4611         if (status & E1000_STATUS_LU)
4612                 wufc &= ~E1000_WUFC_LNKC;
4613
4614         if (wufc) {
4615                 e1000_setup_rctl(adapter);
4616                 e1000_set_rx_mode(netdev);
4617
4618                 /* turn on all-multi mode if wake on multicast is enabled */
4619                 if (wufc & E1000_WUFC_MC) {
4620                         rctl = er32(RCTL);
4621                         rctl |= E1000_RCTL_MPE;
4622                         ew32(RCTL, rctl);
4623                 }
4624
4625                 if (hw->mac_type >= e1000_82540) {
4626                         ctrl = er32(CTRL);
4627                         /* advertise wake from D3Cold */
4628                         #define E1000_CTRL_ADVD3WUC 0x00100000
4629                         /* phy power management enable */
4630                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4631                         ctrl |= E1000_CTRL_ADVD3WUC |
4632                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4633                         ew32(CTRL, ctrl);
4634                 }
4635
4636                 if (hw->media_type == e1000_media_type_fiber ||
4637                    hw->media_type == e1000_media_type_internal_serdes) {
4638                         /* keep the laser running in D3 */
4639                         ctrl_ext = er32(CTRL_EXT);
4640                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4641                         ew32(CTRL_EXT, ctrl_ext);
4642                 }
4643
4644                 /* Allow time for pending master requests to run */
4645                 e1000_disable_pciex_master(hw);
4646
4647                 ew32(WUC, E1000_WUC_PME_EN);
4648                 ew32(WUFC, wufc);
4649                 pci_enable_wake(pdev, PCI_D3hot, 1);
4650                 pci_enable_wake(pdev, PCI_D3cold, 1);
4651         } else {
4652                 ew32(WUC, 0);
4653                 ew32(WUFC, 0);
4654                 pci_enable_wake(pdev, PCI_D3hot, 0);
4655                 pci_enable_wake(pdev, PCI_D3cold, 0);
4656         }
4657
4658         e1000_release_manageability(adapter);
4659
4660         /* make sure adapter isn't asleep if manageability is enabled */
4661         if (adapter->en_mng_pt) {
4662                 pci_enable_wake(pdev, PCI_D3hot, 1);
4663                 pci_enable_wake(pdev, PCI_D3cold, 1);
4664         }
4665
4666         if (hw->phy_type == e1000_phy_igp_3)
4667                 e1000_phy_powerdown_workaround(hw);
4668
4669         if (netif_running(netdev))
4670                 e1000_free_irq(adapter);
4671
4672         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4673          * would have already happened in close and is redundant. */
4674         e1000_release_hw_control(adapter);
4675
4676         pci_disable_device(pdev);
4677
4678         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4679
4680         return 0;
4681 }
4682
4683 #ifdef CONFIG_PM
4684 static int e1000_resume(struct pci_dev *pdev)
4685 {
4686         struct net_device *netdev = pci_get_drvdata(pdev);
4687         struct e1000_adapter *adapter = netdev_priv(netdev);
4688         struct e1000_hw *hw = &adapter->hw;
4689         u32 err;
4690
4691         pci_set_power_state(pdev, PCI_D0);
4692         pci_restore_state(pdev);
4693
4694         if (adapter->need_ioport)
4695                 err = pci_enable_device(pdev);
4696         else
4697                 err = pci_enable_device_mem(pdev);
4698         if (err) {
4699                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4700                 return err;
4701         }
4702         pci_set_master(pdev);
4703
4704         pci_enable_wake(pdev, PCI_D3hot, 0);
4705         pci_enable_wake(pdev, PCI_D3cold, 0);
4706
4707         if (netif_running(netdev)) {
4708                 err = e1000_request_irq(adapter);
4709                 if (err)
4710                         return err;
4711         }
4712
4713         e1000_power_up_phy(adapter);
4714         e1000_reset(adapter);
4715         ew32(WUS, ~0);
4716
4717         e1000_init_manageability(adapter);
4718
4719         if (netif_running(netdev))
4720                 e1000_up(adapter);
4721
4722         netif_device_attach(netdev);
4723
4724         /* If the controller is 82573 and f/w is AMT, do not set
4725          * DRV_LOAD until the interface is up.  For all other cases,
4726          * let the f/w know that the h/w is now under the control
4727          * of the driver. */
4728         if (hw->mac_type != e1000_82573 ||
4729             !e1000_check_mng_mode(hw))
4730                 e1000_get_hw_control(adapter);
4731
4732         return 0;
4733 }
4734 #endif
4735
4736 static void e1000_shutdown(struct pci_dev *pdev)
4737 {
4738         e1000_suspend(pdev, PMSG_SUSPEND);
4739 }
4740
4741 #ifdef CONFIG_NET_POLL_CONTROLLER
4742 /*
4743  * Polling 'interrupt' - used by things like netconsole to send skbs
4744  * without having to re-enable interrupts. It's not called while
4745  * the interrupt routine is executing.
4746  */
4747 static void e1000_netpoll(struct net_device *netdev)
4748 {
4749         struct e1000_adapter *adapter = netdev_priv(netdev);
4750
4751         disable_irq(adapter->pdev->irq);
4752         e1000_intr(adapter->pdev->irq, netdev);
4753         enable_irq(adapter->pdev->irq);
4754 }
4755 #endif
4756
4757 /**
4758  * e1000_io_error_detected - called when PCI error is detected
4759  * @pdev: Pointer to PCI device
4760  * @state: The current pci conneection state
4761  *
4762  * This function is called after a PCI bus error affecting
4763  * this device has been detected.
4764  */
4765 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4766                                                 pci_channel_state_t state)
4767 {
4768         struct net_device *netdev = pci_get_drvdata(pdev);
4769         struct e1000_adapter *adapter = netdev_priv(netdev);
4770
4771         netif_device_detach(netdev);
4772
4773         if (netif_running(netdev))
4774                 e1000_down(adapter);
4775         pci_disable_device(pdev);
4776
4777         /* Request a slot slot reset. */
4778         return PCI_ERS_RESULT_NEED_RESET;
4779 }
4780
4781 /**
4782  * e1000_io_slot_reset - called after the pci bus has been reset.
4783  * @pdev: Pointer to PCI device
4784  *
4785  * Restart the card from scratch, as if from a cold-boot. Implementation
4786  * resembles the first-half of the e1000_resume routine.
4787  */
4788 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4789 {
4790         struct net_device *netdev = pci_get_drvdata(pdev);
4791         struct e1000_adapter *adapter = netdev_priv(netdev);
4792         struct e1000_hw *hw = &adapter->hw;
4793         int err;
4794
4795         if (adapter->need_ioport)
4796                 err = pci_enable_device(pdev);
4797         else
4798                 err = pci_enable_device_mem(pdev);
4799         if (err) {
4800                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4801                 return PCI_ERS_RESULT_DISCONNECT;
4802         }
4803         pci_set_master(pdev);
4804
4805         pci_enable_wake(pdev, PCI_D3hot, 0);
4806         pci_enable_wake(pdev, PCI_D3cold, 0);
4807
4808         e1000_reset(adapter);
4809         ew32(WUS, ~0);
4810
4811         return PCI_ERS_RESULT_RECOVERED;
4812 }
4813
4814 /**
4815  * e1000_io_resume - called when traffic can start flowing again.
4816  * @pdev: Pointer to PCI device
4817  *
4818  * This callback is called when the error recovery driver tells us that
4819  * its OK to resume normal operation. Implementation resembles the
4820  * second-half of the e1000_resume routine.
4821  */
4822 static void e1000_io_resume(struct pci_dev *pdev)
4823 {
4824         struct net_device *netdev = pci_get_drvdata(pdev);
4825         struct e1000_adapter *adapter = netdev_priv(netdev);
4826         struct e1000_hw *hw = &adapter->hw;
4827
4828         e1000_init_manageability(adapter);
4829
4830         if (netif_running(netdev)) {
4831                 if (e1000_up(adapter)) {
4832                         printk("e1000: can't bring device back up after reset\n");
4833                         return;
4834                 }
4835         }
4836
4837         netif_device_attach(netdev);
4838
4839         /* If the controller is 82573 and f/w is AMT, do not set
4840          * DRV_LOAD until the interface is up.  For all other cases,
4841          * let the f/w know that the h/w is now under the control
4842          * of the driver. */
4843         if (hw->mac_type != e1000_82573 ||
4844             !e1000_check_mng_mode(hw))
4845                 e1000_get_hw_control(adapter);
4846
4847 }
4848
4849 /* e1000_main.c */