2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
43 * For the allocated request tables
45 static kmem_cache_t *request_cachep;
48 * For queue allocation
50 static kmem_cache_t *requestq_cachep;
53 * For io context allocations
55 static kmem_cache_t *iocontext_cachep;
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
63 * Controlling structure to kblockd
65 static struct workqueue_struct *kblockd_workqueue;
67 unsigned long blk_max_low_pfn, blk_max_pfn;
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 return q->nr_congestion_on;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 return q->nr_congestion_off;
96 static void blk_queue_congestion_threshold(struct request_queue *q)
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
103 q->nr_congestion_on = nr;
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 q->nr_congestion_off = nr;
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
116 static void clear_queue_congested(request_queue_t *q, int rw)
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
132 static void set_queue_congested(request_queue_t *q, int rw)
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
144 * Locates the passed device's request queue and returns the address of its
147 * Will return NULL if the request queue cannot be located.
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
155 ret = &q->backing_dev_info;
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
164 q->activity_data = data;
167 EXPORT_SYMBOL(blk_queue_activity_fn);
170 * blk_queue_prep_rq - set a prepare_request function for queue
172 * @pfn: prepare_request function
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 EXPORT_SYMBOL(blk_queue_prep_rq);
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
190 * @mbfn: merge_bvec_fn
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
205 q->merge_bvec_fn = mbfn;
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
237 q->nr_requests = BLKDEV_MAX_RQ;
238 q->max_phys_segments = MAX_PHYS_SEGMENTS;
239 q->max_hw_segments = MAX_HW_SEGMENTS;
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
261 * by default assume old behaviour and bounce for any highmem page
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
265 blk_queue_activity_fn(q, NULL, NULL);
267 INIT_LIST_HEAD(&q->drain_list);
270 EXPORT_SYMBOL(blk_queue_make_request);
272 static inline void rq_init(request_queue_t *q, struct request *rq)
274 INIT_LIST_HEAD(&rq->queuelist);
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
289 rq->end_io_data = NULL;
293 * blk_queue_ordered - does this queue support ordered writes
294 * @q: the request queue
298 * For journalled file systems, doing ordered writes on a commit
299 * block instead of explicitly doing wait_on_buffer (which is bad
300 * for performance) can be a big win. Block drivers supporting this
301 * feature should call this function and indicate so.
304 void blk_queue_ordered(request_queue_t *q, int flag)
307 case QUEUE_ORDERED_NONE:
309 kmem_cache_free(request_cachep, q->flush_rq);
313 case QUEUE_ORDERED_TAG:
316 case QUEUE_ORDERED_FLUSH:
319 q->flush_rq = kmem_cache_alloc(request_cachep,
323 printk("blk_queue_ordered: bad value %d\n", flag);
328 EXPORT_SYMBOL(blk_queue_ordered);
331 * blk_queue_issue_flush_fn - set function for issuing a flush
332 * @q: the request queue
333 * @iff: the function to be called issuing the flush
336 * If a driver supports issuing a flush command, the support is notified
337 * to the block layer by defining it through this call.
340 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
342 q->issue_flush_fn = iff;
345 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
348 * Cache flushing for ordered writes handling
350 static void blk_pre_flush_end_io(struct request *flush_rq)
352 struct request *rq = flush_rq->end_io_data;
353 request_queue_t *q = rq->q;
355 rq->flags |= REQ_BAR_PREFLUSH;
357 if (!flush_rq->errors)
358 elv_requeue_request(q, rq);
360 q->end_flush_fn(q, flush_rq);
361 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
366 static void blk_post_flush_end_io(struct request *flush_rq)
368 struct request *rq = flush_rq->end_io_data;
369 request_queue_t *q = rq->q;
371 rq->flags |= REQ_BAR_POSTFLUSH;
373 q->end_flush_fn(q, flush_rq);
374 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
378 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
380 struct request *flush_rq = q->flush_rq;
382 BUG_ON(!blk_barrier_rq(rq));
384 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
387 rq_init(q, flush_rq);
388 flush_rq->elevator_private = NULL;
389 flush_rq->flags = REQ_BAR_FLUSH;
390 flush_rq->rq_disk = rq->rq_disk;
394 * prepare_flush returns 0 if no flush is needed, just mark both
395 * pre and post flush as done in that case
397 if (!q->prepare_flush_fn(q, flush_rq)) {
398 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
399 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
404 * some drivers dequeue requests right away, some only after io
405 * completion. make sure the request is dequeued.
407 if (!list_empty(&rq->queuelist))
408 blkdev_dequeue_request(rq);
410 elv_deactivate_request(q, rq);
412 flush_rq->end_io_data = rq;
413 flush_rq->end_io = blk_pre_flush_end_io;
415 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
419 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421 struct request *flush_rq = q->flush_rq;
423 BUG_ON(!blk_barrier_rq(rq));
425 rq_init(q, flush_rq);
426 flush_rq->elevator_private = NULL;
427 flush_rq->flags = REQ_BAR_FLUSH;
428 flush_rq->rq_disk = rq->rq_disk;
431 if (q->prepare_flush_fn(q, flush_rq)) {
432 flush_rq->end_io_data = rq;
433 flush_rq->end_io = blk_post_flush_end_io;
435 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
440 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
443 if (sectors > rq->nr_sectors)
444 sectors = rq->nr_sectors;
446 rq->nr_sectors -= sectors;
447 return rq->nr_sectors;
450 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
451 int sectors, int queue_locked)
453 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 if (blk_barrier_postflush(rq))
460 if (!blk_check_end_barrier(q, rq, sectors)) {
461 unsigned long flags = 0;
464 spin_lock_irqsave(q->queue_lock, flags);
466 blk_start_post_flush(q, rq);
469 spin_unlock_irqrestore(q->queue_lock, flags);
476 * blk_complete_barrier_rq - complete possible barrier request
477 * @q: the request queue for the device
479 * @sectors: number of sectors to complete
482 * Used in driver end_io handling to determine whether to postpone
483 * completion of a barrier request until a post flush has been done. This
484 * is the unlocked variant, used if the caller doesn't already hold the
487 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491 EXPORT_SYMBOL(blk_complete_barrier_rq);
494 * blk_complete_barrier_rq_locked - complete possible barrier request
495 * @q: the request queue for the device
497 * @sectors: number of sectors to complete
500 * See blk_complete_barrier_rq(). This variant must be used if the caller
501 * holds the queue lock.
503 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
506 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
511 * blk_queue_bounce_limit - set bounce buffer limit for queue
512 * @q: the request queue for the device
513 * @dma_addr: bus address limit
516 * Different hardware can have different requirements as to what pages
517 * it can do I/O directly to. A low level driver can call
518 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
519 * buffers for doing I/O to pages residing above @page. By default
520 * the block layer sets this to the highest numbered "low" memory page.
522 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
527 * set appropriate bounce gfp mask -- unfortunately we don't have a
528 * full 4GB zone, so we have to resort to low memory for any bounces.
529 * ISA has its own < 16MB zone.
531 if (bounce_pfn < blk_max_low_pfn) {
532 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
533 init_emergency_isa_pool();
534 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 q->bounce_gfp = GFP_NOIO;
538 q->bounce_pfn = bounce_pfn;
541 EXPORT_SYMBOL(blk_queue_bounce_limit);
544 * blk_queue_max_sectors - set max sectors for a request for this queue
545 * @q: the request queue for the device
546 * @max_sectors: max sectors in the usual 512b unit
549 * Enables a low level driver to set an upper limit on the size of
552 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
555 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
556 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
559 q->max_sectors = q->max_hw_sectors = max_sectors;
562 EXPORT_SYMBOL(blk_queue_max_sectors);
565 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
566 * @q: the request queue for the device
567 * @max_segments: max number of segments
570 * Enables a low level driver to set an upper limit on the number of
571 * physical data segments in a request. This would be the largest sized
572 * scatter list the driver could handle.
574 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
578 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
581 q->max_phys_segments = max_segments;
584 EXPORT_SYMBOL(blk_queue_max_phys_segments);
587 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
588 * @q: the request queue for the device
589 * @max_segments: max number of segments
592 * Enables a low level driver to set an upper limit on the number of
593 * hw data segments in a request. This would be the largest number of
594 * address/length pairs the host adapter can actually give as once
597 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
601 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
604 q->max_hw_segments = max_segments;
607 EXPORT_SYMBOL(blk_queue_max_hw_segments);
610 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
611 * @q: the request queue for the device
612 * @max_size: max size of segment in bytes
615 * Enables a low level driver to set an upper limit on the size of a
618 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
620 if (max_size < PAGE_CACHE_SIZE) {
621 max_size = PAGE_CACHE_SIZE;
622 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
625 q->max_segment_size = max_size;
628 EXPORT_SYMBOL(blk_queue_max_segment_size);
631 * blk_queue_hardsect_size - set hardware sector size for the queue
632 * @q: the request queue for the device
633 * @size: the hardware sector size, in bytes
636 * This should typically be set to the lowest possible sector size
637 * that the hardware can operate on (possible without reverting to
638 * even internal read-modify-write operations). Usually the default
639 * of 512 covers most hardware.
641 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
643 q->hardsect_size = size;
646 EXPORT_SYMBOL(blk_queue_hardsect_size);
649 * Returns the minimum that is _not_ zero, unless both are zero.
651 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
654 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
655 * @t: the stacking driver (top)
656 * @b: the underlying device (bottom)
658 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
660 /* zero is "infinity" */
661 t->max_sectors = t->max_hw_sectors =
662 min_not_zero(t->max_sectors,b->max_sectors);
664 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
665 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
666 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
667 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
670 EXPORT_SYMBOL(blk_queue_stack_limits);
673 * blk_queue_segment_boundary - set boundary rules for segment merging
674 * @q: the request queue for the device
675 * @mask: the memory boundary mask
677 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
679 if (mask < PAGE_CACHE_SIZE - 1) {
680 mask = PAGE_CACHE_SIZE - 1;
681 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
684 q->seg_boundary_mask = mask;
687 EXPORT_SYMBOL(blk_queue_segment_boundary);
690 * blk_queue_dma_alignment - set dma length and memory alignment
691 * @q: the request queue for the device
692 * @mask: alignment mask
695 * set required memory and length aligment for direct dma transactions.
696 * this is used when buiding direct io requests for the queue.
699 void blk_queue_dma_alignment(request_queue_t *q, int mask)
701 q->dma_alignment = mask;
704 EXPORT_SYMBOL(blk_queue_dma_alignment);
707 * blk_queue_find_tag - find a request by its tag and queue
709 * @q: The request queue for the device
710 * @tag: The tag of the request
713 * Should be used when a device returns a tag and you want to match
716 * no locks need be held.
718 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
720 struct blk_queue_tag *bqt = q->queue_tags;
722 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
725 return bqt->tag_index[tag];
728 EXPORT_SYMBOL(blk_queue_find_tag);
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
738 static void __blk_queue_free_tags(request_queue_t *q)
740 struct blk_queue_tag *bqt = q->queue_tags;
745 if (atomic_dec_and_test(&bqt->refcnt)) {
747 BUG_ON(!list_empty(&bqt->busy_list));
749 kfree(bqt->tag_index);
750 bqt->tag_index = NULL;
758 q->queue_tags = NULL;
759 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
767 * This is used to disabled tagged queuing to a device, yet leave
770 void blk_queue_free_tags(request_queue_t *q)
772 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
775 EXPORT_SYMBOL(blk_queue_free_tags);
778 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
780 struct request **tag_index;
781 unsigned long *tag_map;
784 if (depth > q->nr_requests * 2) {
785 depth = q->nr_requests * 2;
786 printk(KERN_ERR "%s: adjusted depth to %d\n",
787 __FUNCTION__, depth);
790 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
794 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
795 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
799 memset(tag_index, 0, depth * sizeof(struct request *));
800 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
801 tags->real_max_depth = depth;
802 tags->max_depth = depth;
803 tags->tag_index = tag_index;
804 tags->tag_map = tag_map;
813 * blk_queue_init_tags - initialize the queue tag info
814 * @q: the request queue for the device
815 * @depth: the maximum queue depth supported
816 * @tags: the tag to use
818 int blk_queue_init_tags(request_queue_t *q, int depth,
819 struct blk_queue_tag *tags)
823 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
825 if (!tags && !q->queue_tags) {
826 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
830 if (init_tag_map(q, tags, depth))
833 INIT_LIST_HEAD(&tags->busy_list);
835 atomic_set(&tags->refcnt, 1);
836 } else if (q->queue_tags) {
837 if ((rc = blk_queue_resize_tags(q, depth)))
839 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
842 atomic_inc(&tags->refcnt);
845 * assign it, all done
847 q->queue_tags = tags;
848 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
855 EXPORT_SYMBOL(blk_queue_init_tags);
858 * blk_queue_resize_tags - change the queueing depth
859 * @q: the request queue for the device
860 * @new_depth: the new max command queueing depth
863 * Must be called with the queue lock held.
865 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
867 struct blk_queue_tag *bqt = q->queue_tags;
868 struct request **tag_index;
869 unsigned long *tag_map;
870 int max_depth, nr_ulongs;
876 * if we already have large enough real_max_depth. just
877 * adjust max_depth. *NOTE* as requests with tag value
878 * between new_depth and real_max_depth can be in-flight, tag
879 * map can not be shrunk blindly here.
881 if (new_depth <= bqt->real_max_depth) {
882 bqt->max_depth = new_depth;
887 * save the old state info, so we can copy it back
889 tag_index = bqt->tag_index;
890 tag_map = bqt->tag_map;
891 max_depth = bqt->real_max_depth;
893 if (init_tag_map(q, bqt, new_depth))
896 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
897 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
898 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
905 EXPORT_SYMBOL(blk_queue_resize_tags);
908 * blk_queue_end_tag - end tag operations for a request
909 * @q: the request queue for the device
910 * @rq: the request that has completed
913 * Typically called when end_that_request_first() returns 0, meaning
914 * all transfers have been done for a request. It's important to call
915 * this function before end_that_request_last(), as that will put the
916 * request back on the free list thus corrupting the internal tag list.
919 * queue lock must be held.
921 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923 struct blk_queue_tag *bqt = q->queue_tags;
928 if (unlikely(tag >= bqt->real_max_depth))
930 * This can happen after tag depth has been reduced.
931 * FIXME: how about a warning or info message here?
935 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
936 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
941 list_del_init(&rq->queuelist);
942 rq->flags &= ~REQ_QUEUED;
945 if (unlikely(bqt->tag_index[tag] == NULL))
946 printk(KERN_ERR "%s: tag %d is missing\n",
949 bqt->tag_index[tag] = NULL;
953 EXPORT_SYMBOL(blk_queue_end_tag);
956 * blk_queue_start_tag - find a free tag and assign it
957 * @q: the request queue for the device
958 * @rq: the block request that needs tagging
961 * This can either be used as a stand-alone helper, or possibly be
962 * assigned as the queue &prep_rq_fn (in which case &struct request
963 * automagically gets a tag assigned). Note that this function
964 * assumes that any type of request can be queued! if this is not
965 * true for your device, you must check the request type before
966 * calling this function. The request will also be removed from
967 * the request queue, so it's the drivers responsibility to readd
968 * it if it should need to be restarted for some reason.
971 * queue lock must be held.
973 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
975 struct blk_queue_tag *bqt = q->queue_tags;
978 if (unlikely((rq->flags & REQ_QUEUED))) {
980 "%s: request %p for device [%s] already tagged %d",
982 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
986 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
987 if (tag >= bqt->max_depth)
990 __set_bit(tag, bqt->tag_map);
992 rq->flags |= REQ_QUEUED;
994 bqt->tag_index[tag] = rq;
995 blkdev_dequeue_request(rq);
996 list_add(&rq->queuelist, &bqt->busy_list);
1001 EXPORT_SYMBOL(blk_queue_start_tag);
1004 * blk_queue_invalidate_tags - invalidate all pending tags
1005 * @q: the request queue for the device
1008 * Hardware conditions may dictate a need to stop all pending requests.
1009 * In this case, we will safely clear the block side of the tag queue and
1010 * readd all requests to the request queue in the right order.
1013 * queue lock must be held.
1015 void blk_queue_invalidate_tags(request_queue_t *q)
1017 struct blk_queue_tag *bqt = q->queue_tags;
1018 struct list_head *tmp, *n;
1021 list_for_each_safe(tmp, n, &bqt->busy_list) {
1022 rq = list_entry_rq(tmp);
1024 if (rq->tag == -1) {
1026 "%s: bad tag found on list\n", __FUNCTION__);
1027 list_del_init(&rq->queuelist);
1028 rq->flags &= ~REQ_QUEUED;
1030 blk_queue_end_tag(q, rq);
1032 rq->flags &= ~REQ_STARTED;
1033 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1037 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1039 static char *rq_flags[] = {
1057 "REQ_DRIVE_TASKFILE",
1064 void blk_dump_rq_flags(struct request *rq, char *msg)
1068 printk("%s: dev %s: flags = ", msg,
1069 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1072 if (rq->flags & (1 << bit))
1073 printk("%s ", rq_flags[bit]);
1075 } while (bit < __REQ_NR_BITS);
1077 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1079 rq->current_nr_sectors);
1080 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1082 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1084 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1085 printk("%02x ", rq->cmd[bit]);
1090 EXPORT_SYMBOL(blk_dump_rq_flags);
1092 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1094 struct bio_vec *bv, *bvprv = NULL;
1095 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1096 int high, highprv = 1;
1098 if (unlikely(!bio->bi_io_vec))
1101 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1102 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1103 bio_for_each_segment(bv, bio, i) {
1105 * the trick here is making sure that a high page is never
1106 * considered part of another segment, since that might
1107 * change with the bounce page.
1109 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1110 if (high || highprv)
1111 goto new_hw_segment;
1113 if (seg_size + bv->bv_len > q->max_segment_size)
1115 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1117 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1119 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1120 goto new_hw_segment;
1122 seg_size += bv->bv_len;
1123 hw_seg_size += bv->bv_len;
1128 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1129 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1130 hw_seg_size += bv->bv_len;
1133 if (hw_seg_size > bio->bi_hw_front_size)
1134 bio->bi_hw_front_size = hw_seg_size;
1135 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1141 seg_size = bv->bv_len;
1144 if (hw_seg_size > bio->bi_hw_back_size)
1145 bio->bi_hw_back_size = hw_seg_size;
1146 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1147 bio->bi_hw_front_size = hw_seg_size;
1148 bio->bi_phys_segments = nr_phys_segs;
1149 bio->bi_hw_segments = nr_hw_segs;
1150 bio->bi_flags |= (1 << BIO_SEG_VALID);
1154 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1157 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1160 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1162 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1166 * bio and nxt are contigous in memory, check if the queue allows
1167 * these two to be merged into one
1169 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1175 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1178 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1179 blk_recount_segments(q, bio);
1180 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1181 blk_recount_segments(q, nxt);
1182 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1183 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1185 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1192 * map a request to scatterlist, return number of sg entries setup. Caller
1193 * must make sure sg can hold rq->nr_phys_segments entries
1195 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1197 struct bio_vec *bvec, *bvprv;
1199 int nsegs, i, cluster;
1202 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1205 * for each bio in rq
1208 rq_for_each_bio(bio, rq) {
1210 * for each segment in bio
1212 bio_for_each_segment(bvec, bio, i) {
1213 int nbytes = bvec->bv_len;
1215 if (bvprv && cluster) {
1216 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1219 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1221 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1224 sg[nsegs - 1].length += nbytes;
1227 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1228 sg[nsegs].page = bvec->bv_page;
1229 sg[nsegs].length = nbytes;
1230 sg[nsegs].offset = bvec->bv_offset;
1235 } /* segments in bio */
1241 EXPORT_SYMBOL(blk_rq_map_sg);
1244 * the standard queue merge functions, can be overridden with device
1245 * specific ones if so desired
1248 static inline int ll_new_mergeable(request_queue_t *q,
1249 struct request *req,
1252 int nr_phys_segs = bio_phys_segments(q, bio);
1254 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1255 req->flags |= REQ_NOMERGE;
1256 if (req == q->last_merge)
1257 q->last_merge = NULL;
1262 * A hw segment is just getting larger, bump just the phys
1265 req->nr_phys_segments += nr_phys_segs;
1269 static inline int ll_new_hw_segment(request_queue_t *q,
1270 struct request *req,
1273 int nr_hw_segs = bio_hw_segments(q, bio);
1274 int nr_phys_segs = bio_phys_segments(q, bio);
1276 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1277 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1278 req->flags |= REQ_NOMERGE;
1279 if (req == q->last_merge)
1280 q->last_merge = NULL;
1285 * This will form the start of a new hw segment. Bump both
1288 req->nr_hw_segments += nr_hw_segs;
1289 req->nr_phys_segments += nr_phys_segs;
1293 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1298 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1299 req->flags |= REQ_NOMERGE;
1300 if (req == q->last_merge)
1301 q->last_merge = NULL;
1304 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1305 blk_recount_segments(q, req->biotail);
1306 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1307 blk_recount_segments(q, bio);
1308 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1309 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1310 !BIOVEC_VIRT_OVERSIZE(len)) {
1311 int mergeable = ll_new_mergeable(q, req, bio);
1314 if (req->nr_hw_segments == 1)
1315 req->bio->bi_hw_front_size = len;
1316 if (bio->bi_hw_segments == 1)
1317 bio->bi_hw_back_size = len;
1322 return ll_new_hw_segment(q, req, bio);
1325 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1330 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1331 req->flags |= REQ_NOMERGE;
1332 if (req == q->last_merge)
1333 q->last_merge = NULL;
1336 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1337 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1338 blk_recount_segments(q, bio);
1339 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1340 blk_recount_segments(q, req->bio);
1341 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1342 !BIOVEC_VIRT_OVERSIZE(len)) {
1343 int mergeable = ll_new_mergeable(q, req, bio);
1346 if (bio->bi_hw_segments == 1)
1347 bio->bi_hw_front_size = len;
1348 if (req->nr_hw_segments == 1)
1349 req->biotail->bi_hw_back_size = len;
1354 return ll_new_hw_segment(q, req, bio);
1357 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1358 struct request *next)
1360 int total_phys_segments;
1361 int total_hw_segments;
1364 * First check if the either of the requests are re-queued
1365 * requests. Can't merge them if they are.
1367 if (req->special || next->special)
1371 * Will it become too large?
1373 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1376 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1377 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1378 total_phys_segments--;
1380 if (total_phys_segments > q->max_phys_segments)
1383 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1384 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1385 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1387 * propagate the combined length to the end of the requests
1389 if (req->nr_hw_segments == 1)
1390 req->bio->bi_hw_front_size = len;
1391 if (next->nr_hw_segments == 1)
1392 next->biotail->bi_hw_back_size = len;
1393 total_hw_segments--;
1396 if (total_hw_segments > q->max_hw_segments)
1399 /* Merge is OK... */
1400 req->nr_phys_segments = total_phys_segments;
1401 req->nr_hw_segments = total_hw_segments;
1406 * "plug" the device if there are no outstanding requests: this will
1407 * force the transfer to start only after we have put all the requests
1410 * This is called with interrupts off and no requests on the queue and
1411 * with the queue lock held.
1413 void blk_plug_device(request_queue_t *q)
1415 WARN_ON(!irqs_disabled());
1418 * don't plug a stopped queue, it must be paired with blk_start_queue()
1419 * which will restart the queueing
1421 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1424 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1425 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1428 EXPORT_SYMBOL(blk_plug_device);
1431 * remove the queue from the plugged list, if present. called with
1432 * queue lock held and interrupts disabled.
1434 int blk_remove_plug(request_queue_t *q)
1436 WARN_ON(!irqs_disabled());
1438 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1441 del_timer(&q->unplug_timer);
1445 EXPORT_SYMBOL(blk_remove_plug);
1448 * remove the plug and let it rip..
1450 void __generic_unplug_device(request_queue_t *q)
1452 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1455 if (!blk_remove_plug(q))
1460 EXPORT_SYMBOL(__generic_unplug_device);
1463 * generic_unplug_device - fire a request queue
1464 * @q: The &request_queue_t in question
1467 * Linux uses plugging to build bigger requests queues before letting
1468 * the device have at them. If a queue is plugged, the I/O scheduler
1469 * is still adding and merging requests on the queue. Once the queue
1470 * gets unplugged, the request_fn defined for the queue is invoked and
1471 * transfers started.
1473 void generic_unplug_device(request_queue_t *q)
1475 spin_lock_irq(q->queue_lock);
1476 __generic_unplug_device(q);
1477 spin_unlock_irq(q->queue_lock);
1479 EXPORT_SYMBOL(generic_unplug_device);
1481 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1484 request_queue_t *q = bdi->unplug_io_data;
1487 * devices don't necessarily have an ->unplug_fn defined
1493 static void blk_unplug_work(void *data)
1495 request_queue_t *q = data;
1500 static void blk_unplug_timeout(unsigned long data)
1502 request_queue_t *q = (request_queue_t *)data;
1504 kblockd_schedule_work(&q->unplug_work);
1508 * blk_start_queue - restart a previously stopped queue
1509 * @q: The &request_queue_t in question
1512 * blk_start_queue() will clear the stop flag on the queue, and call
1513 * the request_fn for the queue if it was in a stopped state when
1514 * entered. Also see blk_stop_queue(). Queue lock must be held.
1516 void blk_start_queue(request_queue_t *q)
1518 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1521 * one level of recursion is ok and is much faster than kicking
1522 * the unplug handling
1524 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1526 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1529 kblockd_schedule_work(&q->unplug_work);
1533 EXPORT_SYMBOL(blk_start_queue);
1536 * blk_stop_queue - stop a queue
1537 * @q: The &request_queue_t in question
1540 * The Linux block layer assumes that a block driver will consume all
1541 * entries on the request queue when the request_fn strategy is called.
1542 * Often this will not happen, because of hardware limitations (queue
1543 * depth settings). If a device driver gets a 'queue full' response,
1544 * or if it simply chooses not to queue more I/O at one point, it can
1545 * call this function to prevent the request_fn from being called until
1546 * the driver has signalled it's ready to go again. This happens by calling
1547 * blk_start_queue() to restart queue operations. Queue lock must be held.
1549 void blk_stop_queue(request_queue_t *q)
1552 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1554 EXPORT_SYMBOL(blk_stop_queue);
1557 * blk_sync_queue - cancel any pending callbacks on a queue
1561 * The block layer may perform asynchronous callback activity
1562 * on a queue, such as calling the unplug function after a timeout.
1563 * A block device may call blk_sync_queue to ensure that any
1564 * such activity is cancelled, thus allowing it to release resources
1565 * the the callbacks might use. The caller must already have made sure
1566 * that its ->make_request_fn will not re-add plugging prior to calling
1570 void blk_sync_queue(struct request_queue *q)
1572 del_timer_sync(&q->unplug_timer);
1575 EXPORT_SYMBOL(blk_sync_queue);
1578 * blk_run_queue - run a single device queue
1579 * @q: The queue to run
1581 void blk_run_queue(struct request_queue *q)
1583 unsigned long flags;
1585 spin_lock_irqsave(q->queue_lock, flags);
1587 if (!elv_queue_empty(q))
1589 spin_unlock_irqrestore(q->queue_lock, flags);
1591 EXPORT_SYMBOL(blk_run_queue);
1594 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1595 * @q: the request queue to be released
1598 * blk_cleanup_queue is the pair to blk_init_queue() or
1599 * blk_queue_make_request(). It should be called when a request queue is
1600 * being released; typically when a block device is being de-registered.
1601 * Currently, its primary task it to free all the &struct request
1602 * structures that were allocated to the queue and the queue itself.
1605 * Hopefully the low level driver will have finished any
1606 * outstanding requests first...
1608 void blk_cleanup_queue(request_queue_t * q)
1610 struct request_list *rl = &q->rq;
1612 if (!atomic_dec_and_test(&q->refcnt))
1616 elevator_exit(q->elevator);
1621 mempool_destroy(rl->rq_pool);
1624 __blk_queue_free_tags(q);
1626 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1628 kmem_cache_free(requestq_cachep, q);
1631 EXPORT_SYMBOL(blk_cleanup_queue);
1633 static int blk_init_free_list(request_queue_t *q)
1635 struct request_list *rl = &q->rq;
1637 rl->count[READ] = rl->count[WRITE] = 0;
1638 rl->starved[READ] = rl->starved[WRITE] = 0;
1639 init_waitqueue_head(&rl->wait[READ]);
1640 init_waitqueue_head(&rl->wait[WRITE]);
1641 init_waitqueue_head(&rl->drain);
1643 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1644 mempool_free_slab, request_cachep, q->node);
1652 static int __make_request(request_queue_t *, struct bio *);
1654 request_queue_t *blk_alloc_queue(int gfp_mask)
1656 return blk_alloc_queue_node(gfp_mask, -1);
1658 EXPORT_SYMBOL(blk_alloc_queue);
1660 request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1664 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1668 memset(q, 0, sizeof(*q));
1669 init_timer(&q->unplug_timer);
1670 atomic_set(&q->refcnt, 1);
1672 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1673 q->backing_dev_info.unplug_io_data = q;
1677 EXPORT_SYMBOL(blk_alloc_queue_node);
1680 * blk_init_queue - prepare a request queue for use with a block device
1681 * @rfn: The function to be called to process requests that have been
1682 * placed on the queue.
1683 * @lock: Request queue spin lock
1686 * If a block device wishes to use the standard request handling procedures,
1687 * which sorts requests and coalesces adjacent requests, then it must
1688 * call blk_init_queue(). The function @rfn will be called when there
1689 * are requests on the queue that need to be processed. If the device
1690 * supports plugging, then @rfn may not be called immediately when requests
1691 * are available on the queue, but may be called at some time later instead.
1692 * Plugged queues are generally unplugged when a buffer belonging to one
1693 * of the requests on the queue is needed, or due to memory pressure.
1695 * @rfn is not required, or even expected, to remove all requests off the
1696 * queue, but only as many as it can handle at a time. If it does leave
1697 * requests on the queue, it is responsible for arranging that the requests
1698 * get dealt with eventually.
1700 * The queue spin lock must be held while manipulating the requests on the
1703 * Function returns a pointer to the initialized request queue, or NULL if
1704 * it didn't succeed.
1707 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1708 * when the block device is deactivated (such as at module unload).
1711 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1713 return blk_init_queue_node(rfn, lock, -1);
1715 EXPORT_SYMBOL(blk_init_queue);
1718 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1720 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1726 if (blk_init_free_list(q))
1730 * if caller didn't supply a lock, they get per-queue locking with
1734 spin_lock_init(&q->__queue_lock);
1735 lock = &q->__queue_lock;
1738 q->request_fn = rfn;
1739 q->back_merge_fn = ll_back_merge_fn;
1740 q->front_merge_fn = ll_front_merge_fn;
1741 q->merge_requests_fn = ll_merge_requests_fn;
1742 q->prep_rq_fn = NULL;
1743 q->unplug_fn = generic_unplug_device;
1744 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1745 q->queue_lock = lock;
1747 blk_queue_segment_boundary(q, 0xffffffff);
1749 blk_queue_make_request(q, __make_request);
1750 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1752 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1753 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1758 if (!elevator_init(q, NULL)) {
1759 blk_queue_congestion_threshold(q);
1763 blk_cleanup_queue(q);
1765 kmem_cache_free(requestq_cachep, q);
1768 EXPORT_SYMBOL(blk_init_queue_node);
1770 int blk_get_queue(request_queue_t *q)
1772 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1773 atomic_inc(&q->refcnt);
1780 EXPORT_SYMBOL(blk_get_queue);
1782 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1784 elv_put_request(q, rq);
1785 mempool_free(rq, q->rq.rq_pool);
1788 static inline struct request *
1789 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
1791 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1797 * first three bits are identical in rq->flags and bio->bi_rw,
1798 * see bio.h and blkdev.h
1802 if (!elv_set_request(q, rq, bio, gfp_mask))
1805 mempool_free(rq, q->rq.rq_pool);
1810 * ioc_batching returns true if the ioc is a valid batching request and
1811 * should be given priority access to a request.
1813 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1819 * Make sure the process is able to allocate at least 1 request
1820 * even if the batch times out, otherwise we could theoretically
1823 return ioc->nr_batch_requests == q->nr_batching ||
1824 (ioc->nr_batch_requests > 0
1825 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1829 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1830 * will cause the process to be a "batcher" on all queues in the system. This
1831 * is the behaviour we want though - once it gets a wakeup it should be given
1834 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1836 if (!ioc || ioc_batching(q, ioc))
1839 ioc->nr_batch_requests = q->nr_batching;
1840 ioc->last_waited = jiffies;
1843 static void __freed_request(request_queue_t *q, int rw)
1845 struct request_list *rl = &q->rq;
1847 if (rl->count[rw] < queue_congestion_off_threshold(q))
1848 clear_queue_congested(q, rw);
1850 if (rl->count[rw] + 1 <= q->nr_requests) {
1851 if (waitqueue_active(&rl->wait[rw]))
1852 wake_up(&rl->wait[rw]);
1854 blk_clear_queue_full(q, rw);
1859 * A request has just been released. Account for it, update the full and
1860 * congestion status, wake up any waiters. Called under q->queue_lock.
1862 static void freed_request(request_queue_t *q, int rw)
1864 struct request_list *rl = &q->rq;
1868 __freed_request(q, rw);
1870 if (unlikely(rl->starved[rw ^ 1]))
1871 __freed_request(q, rw ^ 1);
1873 if (!rl->count[READ] && !rl->count[WRITE]) {
1875 if (unlikely(waitqueue_active(&rl->drain)))
1876 wake_up(&rl->drain);
1880 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1882 * Get a free request, queue_lock must be held.
1883 * Returns NULL on failure, with queue_lock held.
1884 * Returns !NULL on success, with queue_lock *not held*.
1886 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1889 struct request *rq = NULL;
1890 struct request_list *rl = &q->rq;
1891 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1893 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1896 if (rl->count[rw]+1 >= q->nr_requests) {
1898 * The queue will fill after this allocation, so set it as
1899 * full, and mark this process as "batching". This process
1900 * will be allowed to complete a batch of requests, others
1903 if (!blk_queue_full(q, rw)) {
1904 ioc_set_batching(q, ioc);
1905 blk_set_queue_full(q, rw);
1909 switch (elv_may_queue(q, rw, bio)) {
1912 case ELV_MQUEUE_MAY:
1914 case ELV_MQUEUE_MUST:
1918 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1920 * The queue is full and the allocating process is not a
1921 * "batcher", and not exempted by the IO scheduler
1928 * Only allow batching queuers to allocate up to 50% over the defined
1929 * limit of requests, otherwise we could have thousands of requests
1930 * allocated with any setting of ->nr_requests
1932 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1936 rl->starved[rw] = 0;
1937 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1938 set_queue_congested(q, rw);
1939 spin_unlock_irq(q->queue_lock);
1941 rq = blk_alloc_request(q, rw, bio, gfp_mask);
1944 * Allocation failed presumably due to memory. Undo anything
1945 * we might have messed up.
1947 * Allocating task should really be put onto the front of the
1948 * wait queue, but this is pretty rare.
1950 spin_lock_irq(q->queue_lock);
1951 freed_request(q, rw);
1954 * in the very unlikely event that allocation failed and no
1955 * requests for this direction was pending, mark us starved
1956 * so that freeing of a request in the other direction will
1957 * notice us. another possible fix would be to split the
1958 * rq mempool into READ and WRITE
1961 if (unlikely(rl->count[rw] == 0))
1962 rl->starved[rw] = 1;
1967 if (ioc_batching(q, ioc))
1968 ioc->nr_batch_requests--;
1977 * No available requests for this queue, unplug the device and wait for some
1978 * requests to become available.
1980 * Called with q->queue_lock held, and returns with it unlocked.
1982 static struct request *get_request_wait(request_queue_t *q, int rw,
1987 rq = get_request(q, rw, bio, GFP_NOIO);
1990 struct request_list *rl = &q->rq;
1992 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1993 TASK_UNINTERRUPTIBLE);
1995 rq = get_request(q, rw, bio, GFP_NOIO);
1998 struct io_context *ioc;
2000 __generic_unplug_device(q);
2001 spin_unlock_irq(q->queue_lock);
2005 * After sleeping, we become a "batching" process and
2006 * will be able to allocate at least one request, and
2007 * up to a big batch of them for a small period time.
2008 * See ioc_batching, ioc_set_batching
2010 ioc = current_io_context(GFP_NOIO);
2011 ioc_set_batching(q, ioc);
2013 spin_lock_irq(q->queue_lock);
2015 finish_wait(&rl->wait[rw], &wait);
2021 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2025 BUG_ON(rw != READ && rw != WRITE);
2027 spin_lock_irq(q->queue_lock);
2028 if (gfp_mask & __GFP_WAIT) {
2029 rq = get_request_wait(q, rw, NULL);
2031 rq = get_request(q, rw, NULL, gfp_mask);
2033 spin_unlock_irq(q->queue_lock);
2035 /* q->queue_lock is unlocked at this point */
2039 EXPORT_SYMBOL(blk_get_request);
2042 * blk_requeue_request - put a request back on queue
2043 * @q: request queue where request should be inserted
2044 * @rq: request to be inserted
2047 * Drivers often keep queueing requests until the hardware cannot accept
2048 * more, when that condition happens we need to put the request back
2049 * on the queue. Must be called with queue lock held.
2051 void blk_requeue_request(request_queue_t *q, struct request *rq)
2053 if (blk_rq_tagged(rq))
2054 blk_queue_end_tag(q, rq);
2056 elv_requeue_request(q, rq);
2059 EXPORT_SYMBOL(blk_requeue_request);
2062 * blk_insert_request - insert a special request in to a request queue
2063 * @q: request queue where request should be inserted
2064 * @rq: request to be inserted
2065 * @at_head: insert request at head or tail of queue
2066 * @data: private data
2069 * Many block devices need to execute commands asynchronously, so they don't
2070 * block the whole kernel from preemption during request execution. This is
2071 * accomplished normally by inserting aritficial requests tagged as
2072 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2073 * scheduled for actual execution by the request queue.
2075 * We have the option of inserting the head or the tail of the queue.
2076 * Typically we use the tail for new ioctls and so forth. We use the head
2077 * of the queue for things like a QUEUE_FULL message from a device, or a
2078 * host that is unable to accept a particular command.
2080 void blk_insert_request(request_queue_t *q, struct request *rq,
2081 int at_head, void *data)
2083 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2084 unsigned long flags;
2087 * tell I/O scheduler that this isn't a regular read/write (ie it
2088 * must not attempt merges on this) and that it acts as a soft
2091 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2095 spin_lock_irqsave(q->queue_lock, flags);
2098 * If command is tagged, release the tag
2100 if (blk_rq_tagged(rq))
2101 blk_queue_end_tag(q, rq);
2103 drive_stat_acct(rq, rq->nr_sectors, 1);
2104 __elv_add_request(q, rq, where, 0);
2106 if (blk_queue_plugged(q))
2107 __generic_unplug_device(q);
2110 spin_unlock_irqrestore(q->queue_lock, flags);
2113 EXPORT_SYMBOL(blk_insert_request);
2116 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2117 * @q: request queue where request should be inserted
2118 * @rw: READ or WRITE data
2119 * @ubuf: the user buffer
2120 * @len: length of user data
2123 * Data will be mapped directly for zero copy io, if possible. Otherwise
2124 * a kernel bounce buffer is used.
2126 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2127 * still in process context.
2129 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2130 * before being submitted to the device, as pages mapped may be out of
2131 * reach. It's the callers responsibility to make sure this happens. The
2132 * original bio must be passed back in to blk_rq_unmap_user() for proper
2135 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2138 unsigned long uaddr;
2142 if (len > (q->max_sectors << 9))
2143 return ERR_PTR(-EINVAL);
2144 if ((!len && ubuf) || (len && !ubuf))
2145 return ERR_PTR(-EINVAL);
2147 rq = blk_get_request(q, rw, __GFP_WAIT);
2149 return ERR_PTR(-ENOMEM);
2152 * if alignment requirement is satisfied, map in user pages for
2153 * direct dma. else, set up kernel bounce buffers
2155 uaddr = (unsigned long) ubuf;
2156 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2157 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2159 bio = bio_copy_user(q, uaddr, len, rw == READ);
2162 rq->bio = rq->biotail = bio;
2163 blk_rq_bio_prep(q, rq, bio);
2165 rq->buffer = rq->data = NULL;
2171 * bio is the err-ptr
2173 blk_put_request(rq);
2174 return (struct request *) bio;
2177 EXPORT_SYMBOL(blk_rq_map_user);
2180 * blk_rq_unmap_user - unmap a request with user data
2181 * @rq: request to be unmapped
2182 * @bio: bio for the request
2183 * @ulen: length of user buffer
2186 * Unmap a request previously mapped by blk_rq_map_user().
2188 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2193 if (bio_flagged(bio, BIO_USER_MAPPED))
2194 bio_unmap_user(bio);
2196 ret = bio_uncopy_user(bio);
2199 blk_put_request(rq);
2203 EXPORT_SYMBOL(blk_rq_unmap_user);
2206 * blk_execute_rq - insert a request into queue for execution
2207 * @q: queue to insert the request in
2208 * @bd_disk: matching gendisk
2209 * @rq: request to insert
2212 * Insert a fully prepared request at the back of the io scheduler queue
2215 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2218 DECLARE_COMPLETION(wait);
2219 char sense[SCSI_SENSE_BUFFERSIZE];
2222 rq->rq_disk = bd_disk;
2225 * we need an extra reference to the request, so we can look at
2226 * it after io completion
2231 memset(sense, 0, sizeof(sense));
2236 rq->flags |= REQ_NOMERGE;
2237 rq->waiting = &wait;
2238 rq->end_io = blk_end_sync_rq;
2239 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2240 generic_unplug_device(q);
2241 wait_for_completion(&wait);
2250 EXPORT_SYMBOL(blk_execute_rq);
2253 * blkdev_issue_flush - queue a flush
2254 * @bdev: blockdev to issue flush for
2255 * @error_sector: error sector
2258 * Issue a flush for the block device in question. Caller can supply
2259 * room for storing the error offset in case of a flush error, if they
2260 * wish to. Caller must run wait_for_completion() on its own.
2262 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2266 if (bdev->bd_disk == NULL)
2269 q = bdev_get_queue(bdev);
2272 if (!q->issue_flush_fn)
2275 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2278 EXPORT_SYMBOL(blkdev_issue_flush);
2280 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2282 int rw = rq_data_dir(rq);
2284 if (!blk_fs_request(rq) || !rq->rq_disk)
2288 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2290 __disk_stat_inc(rq->rq_disk, read_merges);
2291 } else if (rw == WRITE) {
2292 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2294 __disk_stat_inc(rq->rq_disk, write_merges);
2297 disk_round_stats(rq->rq_disk);
2298 rq->rq_disk->in_flight++;
2303 * add-request adds a request to the linked list.
2304 * queue lock is held and interrupts disabled, as we muck with the
2305 * request queue list.
2307 static inline void add_request(request_queue_t * q, struct request * req)
2309 drive_stat_acct(req, req->nr_sectors, 1);
2312 q->activity_fn(q->activity_data, rq_data_dir(req));
2315 * elevator indicated where it wants this request to be
2316 * inserted at elevator_merge time
2318 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2322 * disk_round_stats() - Round off the performance stats on a struct
2325 * The average IO queue length and utilisation statistics are maintained
2326 * by observing the current state of the queue length and the amount of
2327 * time it has been in this state for.
2329 * Normally, that accounting is done on IO completion, but that can result
2330 * in more than a second's worth of IO being accounted for within any one
2331 * second, leading to >100% utilisation. To deal with that, we call this
2332 * function to do a round-off before returning the results when reading
2333 * /proc/diskstats. This accounts immediately for all queue usage up to
2334 * the current jiffies and restarts the counters again.
2336 void disk_round_stats(struct gendisk *disk)
2338 unsigned long now = jiffies;
2340 __disk_stat_add(disk, time_in_queue,
2341 disk->in_flight * (now - disk->stamp));
2344 if (disk->in_flight)
2345 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2346 disk->stamp_idle = now;
2350 * queue lock must be held
2352 static void __blk_put_request(request_queue_t *q, struct request *req)
2354 struct request_list *rl = req->rl;
2358 if (unlikely(--req->ref_count))
2361 req->rq_status = RQ_INACTIVE;
2365 * Request may not have originated from ll_rw_blk. if not,
2366 * it didn't come out of our reserved rq pools
2369 int rw = rq_data_dir(req);
2371 elv_completed_request(q, req);
2373 BUG_ON(!list_empty(&req->queuelist));
2375 blk_free_request(q, req);
2376 freed_request(q, rw);
2380 void blk_put_request(struct request *req)
2383 * if req->rl isn't set, this request didnt originate from the
2384 * block layer, so it's safe to just disregard it
2387 unsigned long flags;
2388 request_queue_t *q = req->q;
2390 spin_lock_irqsave(q->queue_lock, flags);
2391 __blk_put_request(q, req);
2392 spin_unlock_irqrestore(q->queue_lock, flags);
2396 EXPORT_SYMBOL(blk_put_request);
2399 * blk_end_sync_rq - executes a completion event on a request
2400 * @rq: request to complete
2402 void blk_end_sync_rq(struct request *rq)
2404 struct completion *waiting = rq->waiting;
2407 __blk_put_request(rq->q, rq);
2410 * complete last, if this is a stack request the process (and thus
2411 * the rq pointer) could be invalid right after this complete()
2415 EXPORT_SYMBOL(blk_end_sync_rq);
2418 * blk_congestion_wait - wait for a queue to become uncongested
2419 * @rw: READ or WRITE
2420 * @timeout: timeout in jiffies
2422 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2423 * If no queues are congested then just wait for the next request to be
2426 long blk_congestion_wait(int rw, long timeout)
2430 wait_queue_head_t *wqh = &congestion_wqh[rw];
2432 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2433 ret = io_schedule_timeout(timeout);
2434 finish_wait(wqh, &wait);
2438 EXPORT_SYMBOL(blk_congestion_wait);
2441 * Has to be called with the request spinlock acquired
2443 static int attempt_merge(request_queue_t *q, struct request *req,
2444 struct request *next)
2446 if (!rq_mergeable(req) || !rq_mergeable(next))
2452 if (req->sector + req->nr_sectors != next->sector)
2455 if (rq_data_dir(req) != rq_data_dir(next)
2456 || req->rq_disk != next->rq_disk
2457 || next->waiting || next->special)
2461 * If we are allowed to merge, then append bio list
2462 * from next to rq and release next. merge_requests_fn
2463 * will have updated segment counts, update sector
2466 if (!q->merge_requests_fn(q, req, next))
2470 * At this point we have either done a back merge
2471 * or front merge. We need the smaller start_time of
2472 * the merged requests to be the current request
2473 * for accounting purposes.
2475 if (time_after(req->start_time, next->start_time))
2476 req->start_time = next->start_time;
2478 req->biotail->bi_next = next->bio;
2479 req->biotail = next->biotail;
2481 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2483 elv_merge_requests(q, req, next);
2486 disk_round_stats(req->rq_disk);
2487 req->rq_disk->in_flight--;
2490 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2492 __blk_put_request(q, next);
2496 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2498 struct request *next = elv_latter_request(q, rq);
2501 return attempt_merge(q, rq, next);
2506 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2508 struct request *prev = elv_former_request(q, rq);
2511 return attempt_merge(q, prev, rq);
2517 * blk_attempt_remerge - attempt to remerge active head with next request
2518 * @q: The &request_queue_t belonging to the device
2519 * @rq: The head request (usually)
2522 * For head-active devices, the queue can easily be unplugged so quickly
2523 * that proper merging is not done on the front request. This may hurt
2524 * performance greatly for some devices. The block layer cannot safely
2525 * do merging on that first request for these queues, but the driver can
2526 * call this function and make it happen any way. Only the driver knows
2527 * when it is safe to do so.
2529 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2531 unsigned long flags;
2533 spin_lock_irqsave(q->queue_lock, flags);
2534 attempt_back_merge(q, rq);
2535 spin_unlock_irqrestore(q->queue_lock, flags);
2538 EXPORT_SYMBOL(blk_attempt_remerge);
2540 static int __make_request(request_queue_t *q, struct bio *bio)
2542 struct request *req;
2543 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2544 unsigned short prio;
2547 sector = bio->bi_sector;
2548 nr_sectors = bio_sectors(bio);
2549 cur_nr_sectors = bio_cur_sectors(bio);
2550 prio = bio_prio(bio);
2552 rw = bio_data_dir(bio);
2553 sync = bio_sync(bio);
2556 * low level driver can indicate that it wants pages above a
2557 * certain limit bounced to low memory (ie for highmem, or even
2558 * ISA dma in theory)
2560 blk_queue_bounce(q, &bio);
2562 spin_lock_prefetch(q->queue_lock);
2564 barrier = bio_barrier(bio);
2565 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2570 spin_lock_irq(q->queue_lock);
2572 if (unlikely(barrier) || elv_queue_empty(q))
2575 el_ret = elv_merge(q, &req, bio);
2577 case ELEVATOR_BACK_MERGE:
2578 BUG_ON(!rq_mergeable(req));
2580 if (!q->back_merge_fn(q, req, bio))
2583 req->biotail->bi_next = bio;
2585 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2586 req->ioprio = ioprio_best(req->ioprio, prio);
2587 drive_stat_acct(req, nr_sectors, 0);
2588 if (!attempt_back_merge(q, req))
2589 elv_merged_request(q, req);
2592 case ELEVATOR_FRONT_MERGE:
2593 BUG_ON(!rq_mergeable(req));
2595 if (!q->front_merge_fn(q, req, bio))
2598 bio->bi_next = req->bio;
2602 * may not be valid. if the low level driver said
2603 * it didn't need a bounce buffer then it better
2604 * not touch req->buffer either...
2606 req->buffer = bio_data(bio);
2607 req->current_nr_sectors = cur_nr_sectors;
2608 req->hard_cur_sectors = cur_nr_sectors;
2609 req->sector = req->hard_sector = sector;
2610 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2611 req->ioprio = ioprio_best(req->ioprio, prio);
2612 drive_stat_acct(req, nr_sectors, 0);
2613 if (!attempt_front_merge(q, req))
2614 elv_merged_request(q, req);
2617 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2624 * Grab a free request. This is might sleep but can not fail.
2625 * Returns with the queue unlocked.
2627 req = get_request_wait(q, rw, bio);
2630 * After dropping the lock and possibly sleeping here, our request
2631 * may now be mergeable after it had proven unmergeable (above).
2632 * We don't worry about that case for efficiency. It won't happen
2633 * often, and the elevators are able to handle it.
2636 req->flags |= REQ_CMD;
2639 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2641 if (bio_rw_ahead(bio) || bio_failfast(bio))
2642 req->flags |= REQ_FAILFAST;
2645 * REQ_BARRIER implies no merging, but lets make it explicit
2647 if (unlikely(barrier))
2648 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2651 req->hard_sector = req->sector = sector;
2652 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2653 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2654 req->nr_phys_segments = bio_phys_segments(q, bio);
2655 req->nr_hw_segments = bio_hw_segments(q, bio);
2656 req->buffer = bio_data(bio); /* see ->buffer comment above */
2657 req->waiting = NULL;
2658 req->bio = req->biotail = bio;
2660 req->rq_disk = bio->bi_bdev->bd_disk;
2661 req->start_time = jiffies;
2663 spin_lock_irq(q->queue_lock);
2664 if (elv_queue_empty(q))
2666 add_request(q, req);
2669 __generic_unplug_device(q);
2671 spin_unlock_irq(q->queue_lock);
2675 bio_endio(bio, nr_sectors << 9, err);
2680 * If bio->bi_dev is a partition, remap the location
2682 static inline void blk_partition_remap(struct bio *bio)
2684 struct block_device *bdev = bio->bi_bdev;
2686 if (bdev != bdev->bd_contains) {
2687 struct hd_struct *p = bdev->bd_part;
2689 switch (bio_data_dir(bio)) {
2691 p->read_sectors += bio_sectors(bio);
2695 p->write_sectors += bio_sectors(bio);
2699 bio->bi_sector += p->start_sect;
2700 bio->bi_bdev = bdev->bd_contains;
2704 void blk_finish_queue_drain(request_queue_t *q)
2706 struct request_list *rl = &q->rq;
2710 spin_lock_irq(q->queue_lock);
2711 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2713 while (!list_empty(&q->drain_list)) {
2714 rq = list_entry_rq(q->drain_list.next);
2716 list_del_init(&rq->queuelist);
2717 elv_requeue_request(q, rq);
2724 spin_unlock_irq(q->queue_lock);
2726 wake_up(&rl->wait[0]);
2727 wake_up(&rl->wait[1]);
2728 wake_up(&rl->drain);
2731 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2733 int wait = rl->count[READ] + rl->count[WRITE];
2736 wait += !list_empty(&q->queue_head);
2742 * We rely on the fact that only requests allocated through blk_alloc_request()
2743 * have io scheduler private data structures associated with them. Any other
2744 * type of request (allocated on stack or through kmalloc()) should not go
2745 * to the io scheduler core, but be attached to the queue head instead.
2747 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2749 struct request_list *rl = &q->rq;
2752 spin_lock_irq(q->queue_lock);
2753 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2755 while (wait_drain(q, rl, wait_dispatch)) {
2756 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2758 if (wait_drain(q, rl, wait_dispatch)) {
2759 __generic_unplug_device(q);
2760 spin_unlock_irq(q->queue_lock);
2762 spin_lock_irq(q->queue_lock);
2765 finish_wait(&rl->drain, &wait);
2768 spin_unlock_irq(q->queue_lock);
2772 * block waiting for the io scheduler being started again.
2774 static inline void block_wait_queue_running(request_queue_t *q)
2778 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
2779 struct request_list *rl = &q->rq;
2781 prepare_to_wait_exclusive(&rl->drain, &wait,
2782 TASK_UNINTERRUPTIBLE);
2785 * re-check the condition. avoids using prepare_to_wait()
2786 * in the fast path (queue is running)
2788 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2791 finish_wait(&rl->drain, &wait);
2795 static void handle_bad_sector(struct bio *bio)
2797 char b[BDEVNAME_SIZE];
2799 printk(KERN_INFO "attempt to access beyond end of device\n");
2800 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2801 bdevname(bio->bi_bdev, b),
2803 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2804 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2806 set_bit(BIO_EOF, &bio->bi_flags);
2810 * generic_make_request: hand a buffer to its device driver for I/O
2811 * @bio: The bio describing the location in memory and on the device.
2813 * generic_make_request() is used to make I/O requests of block
2814 * devices. It is passed a &struct bio, which describes the I/O that needs
2817 * generic_make_request() does not return any status. The
2818 * success/failure status of the request, along with notification of
2819 * completion, is delivered asynchronously through the bio->bi_end_io
2820 * function described (one day) else where.
2822 * The caller of generic_make_request must make sure that bi_io_vec
2823 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2824 * set to describe the device address, and the
2825 * bi_end_io and optionally bi_private are set to describe how
2826 * completion notification should be signaled.
2828 * generic_make_request and the drivers it calls may use bi_next if this
2829 * bio happens to be merged with someone else, and may change bi_dev and
2830 * bi_sector for remaps as it sees fit. So the values of these fields
2831 * should NOT be depended on after the call to generic_make_request.
2833 void generic_make_request(struct bio *bio)
2837 int ret, nr_sectors = bio_sectors(bio);
2840 /* Test device or partition size, when known. */
2841 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2843 sector_t sector = bio->bi_sector;
2845 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2847 * This may well happen - the kernel calls bread()
2848 * without checking the size of the device, e.g., when
2849 * mounting a device.
2851 handle_bad_sector(bio);
2857 * Resolve the mapping until finished. (drivers are
2858 * still free to implement/resolve their own stacking
2859 * by explicitly returning 0)
2861 * NOTE: we don't repeat the blk_size check for each new device.
2862 * Stacking drivers are expected to know what they are doing.
2865 char b[BDEVNAME_SIZE];
2867 q = bdev_get_queue(bio->bi_bdev);
2870 "generic_make_request: Trying to access "
2871 "nonexistent block-device %s (%Lu)\n",
2872 bdevname(bio->bi_bdev, b),
2873 (long long) bio->bi_sector);
2875 bio_endio(bio, bio->bi_size, -EIO);
2879 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2880 printk("bio too big device %s (%u > %u)\n",
2881 bdevname(bio->bi_bdev, b),
2887 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2890 block_wait_queue_running(q);
2893 * If this device has partitions, remap block n
2894 * of partition p to block n+start(p) of the disk.
2896 blk_partition_remap(bio);
2898 ret = q->make_request_fn(q, bio);
2902 EXPORT_SYMBOL(generic_make_request);
2905 * submit_bio: submit a bio to the block device layer for I/O
2906 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2907 * @bio: The &struct bio which describes the I/O
2909 * submit_bio() is very similar in purpose to generic_make_request(), and
2910 * uses that function to do most of the work. Both are fairly rough
2911 * interfaces, @bio must be presetup and ready for I/O.
2914 void submit_bio(int rw, struct bio *bio)
2916 int count = bio_sectors(bio);
2918 BIO_BUG_ON(!bio->bi_size);
2919 BIO_BUG_ON(!bio->bi_io_vec);
2922 mod_page_state(pgpgout, count);
2924 mod_page_state(pgpgin, count);
2926 if (unlikely(block_dump)) {
2927 char b[BDEVNAME_SIZE];
2928 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2929 current->comm, current->pid,
2930 (rw & WRITE) ? "WRITE" : "READ",
2931 (unsigned long long)bio->bi_sector,
2932 bdevname(bio->bi_bdev,b));
2935 generic_make_request(bio);
2938 EXPORT_SYMBOL(submit_bio);
2940 static void blk_recalc_rq_segments(struct request *rq)
2942 struct bio *bio, *prevbio = NULL;
2943 int nr_phys_segs, nr_hw_segs;
2944 unsigned int phys_size, hw_size;
2945 request_queue_t *q = rq->q;
2950 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2951 rq_for_each_bio(bio, rq) {
2952 /* Force bio hw/phys segs to be recalculated. */
2953 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2955 nr_phys_segs += bio_phys_segments(q, bio);
2956 nr_hw_segs += bio_hw_segments(q, bio);
2958 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2959 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2961 if (blk_phys_contig_segment(q, prevbio, bio) &&
2962 pseg <= q->max_segment_size) {
2964 phys_size += prevbio->bi_size + bio->bi_size;
2968 if (blk_hw_contig_segment(q, prevbio, bio) &&
2969 hseg <= q->max_segment_size) {
2971 hw_size += prevbio->bi_size + bio->bi_size;
2978 rq->nr_phys_segments = nr_phys_segs;
2979 rq->nr_hw_segments = nr_hw_segs;
2982 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
2984 if (blk_fs_request(rq)) {
2985 rq->hard_sector += nsect;
2986 rq->hard_nr_sectors -= nsect;
2989 * Move the I/O submission pointers ahead if required.
2991 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2992 (rq->sector <= rq->hard_sector)) {
2993 rq->sector = rq->hard_sector;
2994 rq->nr_sectors = rq->hard_nr_sectors;
2995 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2996 rq->current_nr_sectors = rq->hard_cur_sectors;
2997 rq->buffer = bio_data(rq->bio);
3001 * if total number of sectors is less than the first segment
3002 * size, something has gone terribly wrong
3004 if (rq->nr_sectors < rq->current_nr_sectors) {
3005 printk("blk: request botched\n");
3006 rq->nr_sectors = rq->current_nr_sectors;
3011 static int __end_that_request_first(struct request *req, int uptodate,
3014 int total_bytes, bio_nbytes, error, next_idx = 0;
3018 * extend uptodate bool to allow < 0 value to be direct io error
3021 if (end_io_error(uptodate))
3022 error = !uptodate ? -EIO : uptodate;
3025 * for a REQ_BLOCK_PC request, we want to carry any eventual
3026 * sense key with us all the way through
3028 if (!blk_pc_request(req))
3032 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3033 printk("end_request: I/O error, dev %s, sector %llu\n",
3034 req->rq_disk ? req->rq_disk->disk_name : "?",
3035 (unsigned long long)req->sector);
3038 total_bytes = bio_nbytes = 0;
3039 while ((bio = req->bio) != NULL) {
3042 if (nr_bytes >= bio->bi_size) {
3043 req->bio = bio->bi_next;
3044 nbytes = bio->bi_size;
3045 bio_endio(bio, nbytes, error);
3049 int idx = bio->bi_idx + next_idx;
3051 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3052 blk_dump_rq_flags(req, "__end_that");
3053 printk("%s: bio idx %d >= vcnt %d\n",
3055 bio->bi_idx, bio->bi_vcnt);
3059 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3060 BIO_BUG_ON(nbytes > bio->bi_size);
3063 * not a complete bvec done
3065 if (unlikely(nbytes > nr_bytes)) {
3066 bio_nbytes += nr_bytes;
3067 total_bytes += nr_bytes;
3072 * advance to the next vector
3075 bio_nbytes += nbytes;
3078 total_bytes += nbytes;
3081 if ((bio = req->bio)) {
3083 * end more in this run, or just return 'not-done'
3085 if (unlikely(nr_bytes <= 0))
3097 * if the request wasn't completed, update state
3100 bio_endio(bio, bio_nbytes, error);
3101 bio->bi_idx += next_idx;
3102 bio_iovec(bio)->bv_offset += nr_bytes;
3103 bio_iovec(bio)->bv_len -= nr_bytes;
3106 blk_recalc_rq_sectors(req, total_bytes >> 9);
3107 blk_recalc_rq_segments(req);
3112 * end_that_request_first - end I/O on a request
3113 * @req: the request being processed
3114 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3115 * @nr_sectors: number of sectors to end I/O on
3118 * Ends I/O on a number of sectors attached to @req, and sets it up
3119 * for the next range of segments (if any) in the cluster.
3122 * 0 - we are done with this request, call end_that_request_last()
3123 * 1 - still buffers pending for this request
3125 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3127 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3130 EXPORT_SYMBOL(end_that_request_first);
3133 * end_that_request_chunk - end I/O on a request
3134 * @req: the request being processed
3135 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3136 * @nr_bytes: number of bytes to complete
3139 * Ends I/O on a number of bytes attached to @req, and sets it up
3140 * for the next range of segments (if any). Like end_that_request_first(),
3141 * but deals with bytes instead of sectors.
3144 * 0 - we are done with this request, call end_that_request_last()
3145 * 1 - still buffers pending for this request
3147 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3149 return __end_that_request_first(req, uptodate, nr_bytes);
3152 EXPORT_SYMBOL(end_that_request_chunk);
3155 * queue lock must be held
3157 void end_that_request_last(struct request *req)
3159 struct gendisk *disk = req->rq_disk;
3161 if (unlikely(laptop_mode) && blk_fs_request(req))
3162 laptop_io_completion();
3164 if (disk && blk_fs_request(req)) {
3165 unsigned long duration = jiffies - req->start_time;
3166 switch (rq_data_dir(req)) {
3168 __disk_stat_inc(disk, writes);
3169 __disk_stat_add(disk, write_ticks, duration);
3172 __disk_stat_inc(disk, reads);
3173 __disk_stat_add(disk, read_ticks, duration);
3176 disk_round_stats(disk);
3182 __blk_put_request(req->q, req);
3185 EXPORT_SYMBOL(end_that_request_last);
3187 void end_request(struct request *req, int uptodate)
3189 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3190 add_disk_randomness(req->rq_disk);
3191 blkdev_dequeue_request(req);
3192 end_that_request_last(req);
3196 EXPORT_SYMBOL(end_request);
3198 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3200 /* first three bits are identical in rq->flags and bio->bi_rw */
3201 rq->flags |= (bio->bi_rw & 7);
3203 rq->nr_phys_segments = bio_phys_segments(q, bio);
3204 rq->nr_hw_segments = bio_hw_segments(q, bio);
3205 rq->current_nr_sectors = bio_cur_sectors(bio);
3206 rq->hard_cur_sectors = rq->current_nr_sectors;
3207 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3208 rq->buffer = bio_data(bio);
3210 rq->bio = rq->biotail = bio;
3213 EXPORT_SYMBOL(blk_rq_bio_prep);
3215 int kblockd_schedule_work(struct work_struct *work)
3217 return queue_work(kblockd_workqueue, work);
3220 EXPORT_SYMBOL(kblockd_schedule_work);
3222 void kblockd_flush(void)
3224 flush_workqueue(kblockd_workqueue);
3226 EXPORT_SYMBOL(kblockd_flush);
3228 int __init blk_dev_init(void)
3230 kblockd_workqueue = create_workqueue("kblockd");
3231 if (!kblockd_workqueue)
3232 panic("Failed to create kblockd\n");
3234 request_cachep = kmem_cache_create("blkdev_requests",
3235 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3237 requestq_cachep = kmem_cache_create("blkdev_queue",
3238 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3240 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3241 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3243 blk_max_low_pfn = max_low_pfn;
3244 blk_max_pfn = max_pfn;
3250 * IO Context helper functions
3252 void put_io_context(struct io_context *ioc)
3257 BUG_ON(atomic_read(&ioc->refcount) == 0);
3259 if (atomic_dec_and_test(&ioc->refcount)) {
3260 if (ioc->aic && ioc->aic->dtor)
3261 ioc->aic->dtor(ioc->aic);
3262 if (ioc->cic && ioc->cic->dtor)
3263 ioc->cic->dtor(ioc->cic);
3265 kmem_cache_free(iocontext_cachep, ioc);
3268 EXPORT_SYMBOL(put_io_context);
3270 /* Called by the exitting task */
3271 void exit_io_context(void)
3273 unsigned long flags;
3274 struct io_context *ioc;
3276 local_irq_save(flags);
3278 ioc = current->io_context;
3279 current->io_context = NULL;
3281 task_unlock(current);
3282 local_irq_restore(flags);
3284 if (ioc->aic && ioc->aic->exit)
3285 ioc->aic->exit(ioc->aic);
3286 if (ioc->cic && ioc->cic->exit)
3287 ioc->cic->exit(ioc->cic);
3289 put_io_context(ioc);
3293 * If the current task has no IO context then create one and initialise it.
3294 * Otherwise, return its existing IO context.
3296 * This returned IO context doesn't have a specifically elevated refcount,
3297 * but since the current task itself holds a reference, the context can be
3298 * used in general code, so long as it stays within `current` context.
3300 struct io_context *current_io_context(int gfp_flags)
3302 struct task_struct *tsk = current;
3303 struct io_context *ret;
3305 ret = tsk->io_context;
3309 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3311 atomic_set(&ret->refcount, 1);
3312 ret->task = current;
3313 ret->set_ioprio = NULL;
3314 ret->last_waited = jiffies; /* doesn't matter... */
3315 ret->nr_batch_requests = 0; /* because this is 0 */
3318 tsk->io_context = ret;
3323 EXPORT_SYMBOL(current_io_context);
3326 * If the current task has no IO context then create one and initialise it.
3327 * If it does have a context, take a ref on it.
3329 * This is always called in the context of the task which submitted the I/O.
3331 struct io_context *get_io_context(int gfp_flags)
3333 struct io_context *ret;
3334 ret = current_io_context(gfp_flags);
3336 atomic_inc(&ret->refcount);
3339 EXPORT_SYMBOL(get_io_context);
3341 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3343 struct io_context *src = *psrc;
3344 struct io_context *dst = *pdst;
3347 BUG_ON(atomic_read(&src->refcount) == 0);
3348 atomic_inc(&src->refcount);
3349 put_io_context(dst);
3353 EXPORT_SYMBOL(copy_io_context);
3355 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3357 struct io_context *temp;
3362 EXPORT_SYMBOL(swap_io_context);
3367 struct queue_sysfs_entry {
3368 struct attribute attr;
3369 ssize_t (*show)(struct request_queue *, char *);
3370 ssize_t (*store)(struct request_queue *, const char *, size_t);
3374 queue_var_show(unsigned int var, char *page)
3376 return sprintf(page, "%d\n", var);
3380 queue_var_store(unsigned long *var, const char *page, size_t count)
3382 char *p = (char *) page;
3384 *var = simple_strtoul(p, &p, 10);
3388 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3390 return queue_var_show(q->nr_requests, (page));
3394 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3396 struct request_list *rl = &q->rq;
3398 int ret = queue_var_store(&q->nr_requests, page, count);
3399 if (q->nr_requests < BLKDEV_MIN_RQ)
3400 q->nr_requests = BLKDEV_MIN_RQ;
3401 blk_queue_congestion_threshold(q);
3403 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3404 set_queue_congested(q, READ);
3405 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3406 clear_queue_congested(q, READ);
3408 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3409 set_queue_congested(q, WRITE);
3410 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3411 clear_queue_congested(q, WRITE);
3413 if (rl->count[READ] >= q->nr_requests) {
3414 blk_set_queue_full(q, READ);
3415 } else if (rl->count[READ]+1 <= q->nr_requests) {
3416 blk_clear_queue_full(q, READ);
3417 wake_up(&rl->wait[READ]);
3420 if (rl->count[WRITE] >= q->nr_requests) {
3421 blk_set_queue_full(q, WRITE);
3422 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3423 blk_clear_queue_full(q, WRITE);
3424 wake_up(&rl->wait[WRITE]);
3429 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3431 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3433 return queue_var_show(ra_kb, (page));
3437 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3439 unsigned long ra_kb;
3440 ssize_t ret = queue_var_store(&ra_kb, page, count);
3442 spin_lock_irq(q->queue_lock);
3443 if (ra_kb > (q->max_sectors >> 1))
3444 ra_kb = (q->max_sectors >> 1);
3446 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3447 spin_unlock_irq(q->queue_lock);
3452 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3454 int max_sectors_kb = q->max_sectors >> 1;
3456 return queue_var_show(max_sectors_kb, (page));
3460 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3462 unsigned long max_sectors_kb,
3463 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3464 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3465 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3468 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3471 * Take the queue lock to update the readahead and max_sectors
3472 * values synchronously:
3474 spin_lock_irq(q->queue_lock);
3476 * Trim readahead window as well, if necessary:
3478 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3479 if (ra_kb > max_sectors_kb)
3480 q->backing_dev_info.ra_pages =
3481 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3483 q->max_sectors = max_sectors_kb << 1;
3484 spin_unlock_irq(q->queue_lock);
3489 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3491 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3493 return queue_var_show(max_hw_sectors_kb, (page));
3497 static struct queue_sysfs_entry queue_requests_entry = {
3498 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3499 .show = queue_requests_show,
3500 .store = queue_requests_store,
3503 static struct queue_sysfs_entry queue_ra_entry = {
3504 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3505 .show = queue_ra_show,
3506 .store = queue_ra_store,
3509 static struct queue_sysfs_entry queue_max_sectors_entry = {
3510 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3511 .show = queue_max_sectors_show,
3512 .store = queue_max_sectors_store,
3515 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3516 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3517 .show = queue_max_hw_sectors_show,
3520 static struct queue_sysfs_entry queue_iosched_entry = {
3521 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3522 .show = elv_iosched_show,
3523 .store = elv_iosched_store,
3526 static struct attribute *default_attrs[] = {
3527 &queue_requests_entry.attr,
3528 &queue_ra_entry.attr,
3529 &queue_max_hw_sectors_entry.attr,
3530 &queue_max_sectors_entry.attr,
3531 &queue_iosched_entry.attr,
3535 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3538 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3540 struct queue_sysfs_entry *entry = to_queue(attr);
3541 struct request_queue *q;
3543 q = container_of(kobj, struct request_queue, kobj);
3547 return entry->show(q, page);
3551 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3552 const char *page, size_t length)
3554 struct queue_sysfs_entry *entry = to_queue(attr);
3555 struct request_queue *q;
3557 q = container_of(kobj, struct request_queue, kobj);
3561 return entry->store(q, page, length);
3564 static struct sysfs_ops queue_sysfs_ops = {
3565 .show = queue_attr_show,
3566 .store = queue_attr_store,
3569 static struct kobj_type queue_ktype = {
3570 .sysfs_ops = &queue_sysfs_ops,
3571 .default_attrs = default_attrs,
3574 int blk_register_queue(struct gendisk *disk)
3578 request_queue_t *q = disk->queue;
3580 if (!q || !q->request_fn)
3583 q->kobj.parent = kobject_get(&disk->kobj);
3584 if (!q->kobj.parent)
3587 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3588 q->kobj.ktype = &queue_ktype;
3590 ret = kobject_register(&q->kobj);
3594 ret = elv_register_queue(q);
3596 kobject_unregister(&q->kobj);
3603 void blk_unregister_queue(struct gendisk *disk)
3605 request_queue_t *q = disk->queue;
3607 if (q && q->request_fn) {
3608 elv_unregister_queue(q);
3610 kobject_unregister(&q->kobj);
3611 kobject_put(&disk->kobj);