Merge branch 'cell-merge' of master.kernel.org:/pub/scm/linux/kernel/git/arnd/cell-2.6
[linux-2.6] / arch / powerpc / math-emu / op-2.h
1 /*
2  * Basic two-word fraction declaration and manipulation.
3  */
4
5 #define _FP_FRAC_DECL_2(X)      _FP_W_TYPE X##_f0, X##_f1
6 #define _FP_FRAC_COPY_2(D,S)    (D##_f0 = S##_f0, D##_f1 = S##_f1)
7 #define _FP_FRAC_SET_2(X,I)     __FP_FRAC_SET_2(X, I)
8 #define _FP_FRAC_HIGH_2(X)      (X##_f1)
9 #define _FP_FRAC_LOW_2(X)       (X##_f0)
10 #define _FP_FRAC_WORD_2(X,w)    (X##_f##w)
11
12 #define _FP_FRAC_SLL_2(X,N)                                             \
13   do {                                                                  \
14     if ((N) < _FP_W_TYPE_SIZE)                                          \
15       {                                                                 \
16         if (__builtin_constant_p(N) && (N) == 1)                        \
17           {                                                             \
18             X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);   \
19             X##_f0 += X##_f0;                                           \
20           }                                                             \
21         else                                                            \
22           {                                                             \
23             X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
24             X##_f0 <<= (N);                                             \
25           }                                                             \
26       }                                                                 \
27     else                                                                \
28       {                                                                 \
29         X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);                     \
30         X##_f0 = 0;                                                     \
31       }                                                                 \
32   } while (0)
33
34 #define _FP_FRAC_SRL_2(X,N)                                             \
35   do {                                                                  \
36     if ((N) < _FP_W_TYPE_SIZE)                                          \
37       {                                                                 \
38         X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));     \
39         X##_f1 >>= (N);                                                 \
40       }                                                                 \
41     else                                                                \
42       {                                                                 \
43         X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);                     \
44         X##_f1 = 0;                                                     \
45       }                                                                 \
46   } while (0)
47
48 /* Right shift with sticky-lsb.  */
49 #define _FP_FRAC_SRS_2(X,N,sz)                                          \
50   do {                                                                  \
51     if ((N) < _FP_W_TYPE_SIZE)                                          \
52       {                                                                 \
53         X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |   \
54                   (__builtin_constant_p(N) && (N) == 1                  \
55                    ? X##_f0 & 1                                         \
56                    : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));        \
57         X##_f1 >>= (N);                                                 \
58       }                                                                 \
59     else                                                                \
60       {                                                                 \
61         X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |                   \
62                   (((X##_f1 << (sz - (N))) | X##_f0) != 0));            \
63         X##_f1 = 0;                                                     \
64       }                                                                 \
65   } while (0)
66
67 #define _FP_FRAC_ADDI_2(X,I) \
68   __FP_FRAC_ADDI_2(X##_f1, X##_f0, I)
69
70 #define _FP_FRAC_ADD_2(R,X,Y) \
71   __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
72
73 #define _FP_FRAC_SUB_2(R,X,Y) \
74   __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
75
76 #define _FP_FRAC_CLZ_2(R,X)     \
77   do {                          \
78     if (X##_f1)                 \
79       __FP_CLZ(R,X##_f1);       \
80     else                        \
81     {                           \
82       __FP_CLZ(R,X##_f0);       \
83       R += _FP_W_TYPE_SIZE;     \
84     }                           \
85   } while(0)
86
87 /* Predicates */
88 #define _FP_FRAC_NEGP_2(X)      ((_FP_WS_TYPE)X##_f1 < 0)
89 #define _FP_FRAC_ZEROP_2(X)     ((X##_f1 | X##_f0) == 0)
90 #define _FP_FRAC_OVERP_2(fs,X)  (X##_f1 & _FP_OVERFLOW_##fs)
91 #define _FP_FRAC_EQ_2(X, Y)     (X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
92 #define _FP_FRAC_GT_2(X, Y)     \
93   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
94 #define _FP_FRAC_GE_2(X, Y)     \
95   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
96
97 #define _FP_ZEROFRAC_2          0, 0
98 #define _FP_MINFRAC_2           0, 1
99
100 /*
101  * Internals
102  */
103
104 #define __FP_FRAC_SET_2(X,I1,I0)        (X##_f0 = I0, X##_f1 = I1)
105
106 #define __FP_CLZ_2(R, xh, xl)   \
107   do {                          \
108     if (xh)                     \
109       __FP_CLZ(R,xl);           \
110     else                        \
111     {                           \
112       __FP_CLZ(R,xl);           \
113       R += _FP_W_TYPE_SIZE;     \
114     }                           \
115   } while(0)
116
117 #if 0
118
119 #ifndef __FP_FRAC_ADDI_2
120 #define __FP_FRAC_ADDI_2(xh, xl, i) \
121   (xh += ((xl += i) < i))
122 #endif
123 #ifndef __FP_FRAC_ADD_2
124 #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \
125   (rh = xh + yh + ((rl = xl + yl) < xl))
126 #endif
127 #ifndef __FP_FRAC_SUB_2
128 #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \
129   (rh = xh - yh - ((rl = xl - yl) > xl))
130 #endif
131
132 #else
133
134 #undef __FP_FRAC_ADDI_2
135 #define __FP_FRAC_ADDI_2(xh, xl, i)     add_ssaaaa(xh, xl, xh, xl, 0, i)
136 #undef __FP_FRAC_ADD_2
137 #define __FP_FRAC_ADD_2                 add_ssaaaa
138 #undef __FP_FRAC_SUB_2
139 #define __FP_FRAC_SUB_2                 sub_ddmmss
140
141 #endif
142
143 /*
144  * Unpack the raw bits of a native fp value.  Do not classify or
145  * normalize the data.
146  */
147
148 #define _FP_UNPACK_RAW_2(fs, X, val)                    \
149   do {                                                  \
150     union _FP_UNION_##fs _flo; _flo.flt = (val);        \
151                                                         \
152     X##_f0 = _flo.bits.frac0;                           \
153     X##_f1 = _flo.bits.frac1;                           \
154     X##_e  = _flo.bits.exp;                             \
155     X##_s  = _flo.bits.sign;                            \
156   } while (0)
157
158
159 /*
160  * Repack the raw bits of a native fp value.
161  */
162
163 #define _FP_PACK_RAW_2(fs, val, X)                      \
164   do {                                                  \
165     union _FP_UNION_##fs _flo;                          \
166                                                         \
167     _flo.bits.frac0 = X##_f0;                           \
168     _flo.bits.frac1 = X##_f1;                           \
169     _flo.bits.exp   = X##_e;                            \
170     _flo.bits.sign  = X##_s;                            \
171                                                         \
172     (val) = _flo.flt;                                   \
173   } while (0)
174
175
176 /*
177  * Multiplication algorithms:
178  */
179
180 /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
181
182 #define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit)                          \
183   do {                                                                  \
184     _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);      \
185                                                                         \
186     doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \
187     doit(_b_f1, _b_f0, X##_f0, Y##_f1);                                 \
188     doit(_c_f1, _c_f0, X##_f1, Y##_f0);                                 \
189     doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \
190                                                                         \
191     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
192                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),        \
193                     0, _b_f1, _b_f0, 0,                                 \
194                     _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
195                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));       \
196     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
197                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),        \
198                     0, _c_f1, _c_f0, 0,                                 \
199                     _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
200                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));       \
201                                                                         \
202     /* Normalize since we know where the msb of the multiplicands       \
203        were (bit B), we know that the msb of the of the product is      \
204        at either 2B or 2B-1.  */                                        \
205     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);     \
206     R##_f0 = _FP_FRAC_WORD_4(_z,0);                                     \
207     R##_f1 = _FP_FRAC_WORD_4(_z,1);                                     \
208   } while (0)
209
210 /* This next macro appears to be totally broken. Fortunately nowhere
211  * seems to use it :-> The problem is that we define _z[4] but
212  * then use it in _FP_FRAC_SRS_4, which will attempt to access
213  * _z_f[n] which will cause an error. The fix probably involves
214  * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998
215  */
216 #define _FP_MUL_MEAT_2_gmp(fs, R, X, Y)                                 \
217   do {                                                                  \
218     _FP_W_TYPE _x[2], _y[2], _z[4];                                     \
219     _x[0] = X##_f0; _x[1] = X##_f1;                                     \
220     _y[0] = Y##_f0; _y[1] = Y##_f1;                                     \
221                                                                         \
222     mpn_mul_n(_z, _x, _y, 2);                                           \
223                                                                         \
224     /* Normalize since we know where the msb of the multiplicands       \
225        were (bit B), we know that the msb of the of the product is      \
226        at either 2B or 2B-1.  */                                        \
227     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs);     \
228     R##_f0 = _z[0];                                                     \
229     R##_f1 = _z[1];                                                     \
230   } while (0)
231
232
233 /*
234  * Division algorithms:
235  * This seems to be giving me difficulties -- PMM
236  * Look, NetBSD seems to be able to comment algorithms. Can't you?
237  * I've thrown printks at the problem.
238  * This now appears to work, but I still don't really know why.
239  * Also, I don't think the result is properly normalised...
240  */
241
242 #define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y)                             \
243   do {                                                                  \
244     extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2],        \
245                                _FP_W_TYPE n1, _FP_W_TYPE n0,            \
246                                _FP_W_TYPE d1, _FP_W_TYPE d0);           \
247     _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0;                \
248     _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0;                              \
249     _FP_W_TYPE _rmem[2], _qmem[2];                                      \
250     /* I think this check is to ensure that the result is normalised.   \
251      * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in         \
252      * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y.      \
253      * In this case we tweak things. (this is based on comments in      \
254      * the NetBSD FPU emulation code. )                                 \
255      * We know X,Y are normalised because we ensure this as part of     \
256      * the unpacking process. -- PMM                                    \
257      */                                                                 \
258     if (_FP_FRAC_GT_2(X, Y))                                            \
259       {                                                                 \
260 /*      R##_e++; */                                                     \
261         _n_f3 = X##_f1 >> 1;                                            \
262         _n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;          \
263         _n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1);                        \
264         _n_f0 = 0;                                                      \
265       }                                                                 \
266     else                                                                \
267       {                                                                 \
268         R##_e--;                                                        \
269         _n_f3 = X##_f1;                                                 \
270         _n_f2 = X##_f0;                                                 \
271         _n_f1 = _n_f0 = 0;                                              \
272       }                                                                 \
273                                                                         \
274     /* Normalize, i.e. make the most significant bit of the             \
275        denominator set.  CHANGED: - 1 to nothing -- PMM */              \
276     _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */);                    \
277                                                                         \
278     /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4     \
279        primitive snagged from libgcc2.c.  */                            \
280                                                                         \
281     _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1);              \
282     _q_f1 = _qmem[0];                                                   \
283     umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0);                             \
284     _r_f1 = _rmem[0];                                                   \
285     _r_f0 = _n_f1;                                                      \
286     if (_FP_FRAC_GT_2(_m, _r))                                          \
287       {                                                                 \
288         _q_f1--;                                                        \
289         _FP_FRAC_ADD_2(_r, _r, Y);                                      \
290         if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))              \
291           {                                                             \
292             _q_f1--;                                                    \
293             _FP_FRAC_ADD_2(_r, _r, Y);                                  \
294           }                                                             \
295       }                                                                 \
296     _FP_FRAC_SUB_2(_r, _r, _m);                                         \
297                                                                         \
298     _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1);              \
299     _q_f0 = _qmem[0];                                                   \
300     umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0);                             \
301     _r_f1 = _rmem[0];                                                   \
302     _r_f0 = _n_f0;                                                      \
303     if (_FP_FRAC_GT_2(_m, _r))                                          \
304       {                                                                 \
305         _q_f0--;                                                        \
306         _FP_FRAC_ADD_2(_r, _r, Y);                                      \
307         if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))              \
308           {                                                             \
309             _q_f0--;                                                    \
310             _FP_FRAC_ADD_2(_r, _r, Y);                                  \
311           }                                                             \
312       }                                                                 \
313     _FP_FRAC_SUB_2(_r, _r, _m);                                         \
314                                                                         \
315     R##_f1 = _q_f1;                                                     \
316     R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0);                            \
317     /* adjust so answer is normalized again. I'm not sure what the      \
318      * final sz param should be. In practice it's never used since      \
319      * N is 1 which is always going to be < _FP_W_TYPE_SIZE...          \
320      */                                                                 \
321     /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs);  */                      \
322   } while (0)
323
324
325 #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)                                 \
326   do {                                                                  \
327     _FP_W_TYPE _x[4], _y[2], _z[4];                                     \
328     _y[0] = Y##_f0; _y[1] = Y##_f1;                                     \
329     _x[0] = _x[3] = 0;                                                  \
330     if (_FP_FRAC_GT_2(X, Y))                                            \
331       {                                                                 \
332         R##_e++;                                                        \
333         _x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) |        \
334                  X##_f1 >> (_FP_W_TYPE_SIZE -                           \
335                             (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE)));      \
336         _x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE);          \
337       }                                                                 \
338     else                                                                \
339       {                                                                 \
340         _x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) |          \
341                  X##_f1 >> (_FP_W_TYPE_SIZE -                           \
342                             (_FP_WFRACBITS - _FP_W_TYPE_SIZE)));        \
343         _x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE);            \
344       }                                                                 \
345                                                                         \
346     (void) mpn_divrem (_z, 0, _x, 4, _y, 2);                            \
347     R##_f1 = _z[1];                                                     \
348     R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);                            \
349   } while (0)
350
351
352 /*
353  * Square root algorithms:
354  * We have just one right now, maybe Newton approximation
355  * should be added for those machines where division is fast.
356  */
357
358 #define _FP_SQRT_MEAT_2(R, S, T, X, q)                  \
359   do {                                                  \
360     while (q)                                           \
361       {                                                 \
362         T##_f1 = S##_f1 + q;                            \
363         if (T##_f1 <= X##_f1)                           \
364           {                                             \
365             S##_f1 = T##_f1 + q;                        \
366             X##_f1 -= T##_f1;                           \
367             R##_f1 += q;                                \
368           }                                             \
369         _FP_FRAC_SLL_2(X, 1);                           \
370         q >>= 1;                                        \
371       }                                                 \
372     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
373     while (q)                                           \
374       {                                                 \
375         T##_f0 = S##_f0 + q;                            \
376         T##_f1 = S##_f1;                                \
377         if (T##_f1 < X##_f1 ||                          \
378             (T##_f1 == X##_f1 && T##_f0 < X##_f0))      \
379           {                                             \
380             S##_f0 = T##_f0 + q;                        \
381             if (((_FP_WS_TYPE)T##_f0) < 0 &&            \
382                 ((_FP_WS_TYPE)S##_f0) >= 0)             \
383               S##_f1++;                                 \
384             _FP_FRAC_SUB_2(X, X, T);                    \
385             R##_f0 += q;                                \
386           }                                             \
387         _FP_FRAC_SLL_2(X, 1);                           \
388         q >>= 1;                                        \
389       }                                                 \
390   } while (0)
391
392
393 /*
394  * Assembly/disassembly for converting to/from integral types.
395  * No shifting or overflow handled here.
396  */
397
398 #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)        \
399   do {                                          \
400     if (rsize <= _FP_W_TYPE_SIZE)               \
401       r = X##_f0;                               \
402     else                                        \
403       {                                         \
404         r = X##_f1;                             \
405         r <<= _FP_W_TYPE_SIZE;                  \
406         r += X##_f0;                            \
407       }                                         \
408   } while (0)
409
410 #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)                             \
411   do {                                                                  \
412     X##_f0 = r;                                                         \
413     X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);     \
414   } while (0)
415
416 /*
417  * Convert FP values between word sizes
418  */
419
420 #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)                               \
421   do {                                                                  \
422     _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),      \
423                    _FP_WFRACBITS_##sfs);                                \
424     D##_f = S##_f0;                                                     \
425   } while (0)
426
427 #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)                               \
428   do {                                                                  \
429     D##_f0 = S##_f;                                                     \
430     D##_f1 = 0;                                                         \
431     _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));     \
432   } while (0)
433