[TCP]: Add two new spurious RTO responses to FRTO
[linux-2.6] / include / linux / skbuff.h
1 /*
2  *      Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *      Authors:
5  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30
31 #define HAVE_ALLOC_SKB          /* For the drivers to know */
32 #define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
33
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_PARTIAL 1
36 #define CHECKSUM_UNNECESSARY 2
37 #define CHECKSUM_COMPLETE 3
38
39 #define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
40                                  ~(SMP_CACHE_BYTES - 1))
41 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
42                                   sizeof(struct skb_shared_info)) & \
43                                   ~(SMP_CACHE_BYTES - 1))
44 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48  *
49  *      NONE: device failed to checksum this packet.
50  *              skb->csum is undefined.
51  *
52  *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
53  *              skb->csum is undefined.
54  *            It is bad option, but, unfortunately, many of vendors do this.
55  *            Apparently with secret goal to sell you new device, when you
56  *            will add new protocol to your host. F.e. IPv6. 8)
57  *
58  *      COMPLETE: the most generic way. Device supplied checksum of _all_
59  *          the packet as seen by netif_rx in skb->csum.
60  *          NOTE: Even if device supports only some protocols, but
61  *          is able to produce some skb->csum, it MUST use COMPLETE,
62  *          not UNNECESSARY.
63  *
64  * B. Checksumming on output.
65  *
66  *      NONE: skb is checksummed by protocol or csum is not required.
67  *
68  *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
69  *      from skb->h.raw to the end and to record the checksum
70  *      at skb->h.raw+skb->csum.
71  *
72  *      Device must show its capabilities in dev->features, set
73  *      at device setup time.
74  *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
75  *                        everything.
76  *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
77  *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
78  *                        TCP/UDP over IPv4. Sigh. Vendors like this
79  *                        way by an unknown reason. Though, see comment above
80  *                        about CHECKSUM_UNNECESSARY. 8)
81  *
82  *      Any questions? No questions, good.              --ANK
83  */
84
85 struct net_device;
86
87 #ifdef CONFIG_NETFILTER
88 struct nf_conntrack {
89         atomic_t use;
90         void (*destroy)(struct nf_conntrack *);
91 };
92
93 #ifdef CONFIG_BRIDGE_NETFILTER
94 struct nf_bridge_info {
95         atomic_t use;
96         struct net_device *physindev;
97         struct net_device *physoutdev;
98 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
99         struct net_device *netoutdev;
100 #endif
101         unsigned int mask;
102         unsigned long data[32 / sizeof(unsigned long)];
103 };
104 #endif
105
106 #endif
107
108 struct sk_buff_head {
109         /* These two members must be first. */
110         struct sk_buff  *next;
111         struct sk_buff  *prev;
112
113         __u32           qlen;
114         spinlock_t      lock;
115 };
116
117 struct sk_buff;
118
119 /* To allow 64K frame to be packed as single skb without frag_list */
120 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
121
122 typedef struct skb_frag_struct skb_frag_t;
123
124 struct skb_frag_struct {
125         struct page *page;
126         __u16 page_offset;
127         __u16 size;
128 };
129
130 /* This data is invariant across clones and lives at
131  * the end of the header data, ie. at skb->end.
132  */
133 struct skb_shared_info {
134         atomic_t        dataref;
135         unsigned short  nr_frags;
136         unsigned short  gso_size;
137         /* Warning: this field is not always filled in (UFO)! */
138         unsigned short  gso_segs;
139         unsigned short  gso_type;
140         __be32          ip6_frag_id;
141         struct sk_buff  *frag_list;
142         skb_frag_t      frags[MAX_SKB_FRAGS];
143 };
144
145 /* We divide dataref into two halves.  The higher 16 bits hold references
146  * to the payload part of skb->data.  The lower 16 bits hold references to
147  * the entire skb->data.  It is up to the users of the skb to agree on
148  * where the payload starts.
149  *
150  * All users must obey the rule that the skb->data reference count must be
151  * greater than or equal to the payload reference count.
152  *
153  * Holding a reference to the payload part means that the user does not
154  * care about modifications to the header part of skb->data.
155  */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159 struct skb_timeval {
160         u32     off_sec;
161         u32     off_usec;
162 };
163
164
165 enum {
166         SKB_FCLONE_UNAVAILABLE,
167         SKB_FCLONE_ORIG,
168         SKB_FCLONE_CLONE,
169 };
170
171 enum {
172         SKB_GSO_TCPV4 = 1 << 0,
173         SKB_GSO_UDP = 1 << 1,
174
175         /* This indicates the skb is from an untrusted source. */
176         SKB_GSO_DODGY = 1 << 2,
177
178         /* This indicates the tcp segment has CWR set. */
179         SKB_GSO_TCP_ECN = 1 << 3,
180
181         SKB_GSO_TCPV6 = 1 << 4,
182 };
183
184 /** 
185  *      struct sk_buff - socket buffer
186  *      @next: Next buffer in list
187  *      @prev: Previous buffer in list
188  *      @sk: Socket we are owned by
189  *      @tstamp: Time we arrived
190  *      @dev: Device we arrived on/are leaving by
191  *      @iif: ifindex of device we arrived on
192  *      @h: Transport layer header
193  *      @nh: Network layer header
194  *      @mac: Link layer header
195  *      @dst: destination entry
196  *      @sp: the security path, used for xfrm
197  *      @cb: Control buffer. Free for use by every layer. Put private vars here
198  *      @len: Length of actual data
199  *      @data_len: Data length
200  *      @mac_len: Length of link layer header
201  *      @csum: Checksum
202  *      @local_df: allow local fragmentation
203  *      @cloned: Head may be cloned (check refcnt to be sure)
204  *      @nohdr: Payload reference only, must not modify header
205  *      @pkt_type: Packet class
206  *      @fclone: skbuff clone status
207  *      @ip_summed: Driver fed us an IP checksum
208  *      @priority: Packet queueing priority
209  *      @users: User count - see {datagram,tcp}.c
210  *      @protocol: Packet protocol from driver
211  *      @truesize: Buffer size 
212  *      @head: Head of buffer
213  *      @data: Data head pointer
214  *      @tail: Tail pointer
215  *      @end: End pointer
216  *      @destructor: Destruct function
217  *      @mark: Generic packet mark
218  *      @nfct: Associated connection, if any
219  *      @ipvs_property: skbuff is owned by ipvs
220  *      @nfctinfo: Relationship of this skb to the connection
221  *      @nfct_reasm: netfilter conntrack re-assembly pointer
222  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
223  *      @tc_index: Traffic control index
224  *      @tc_verd: traffic control verdict
225  *      @dma_cookie: a cookie to one of several possible DMA operations
226  *              done by skb DMA functions
227  *      @secmark: security marking
228  */
229
230 struct sk_buff {
231         /* These two members must be first. */
232         struct sk_buff          *next;
233         struct sk_buff          *prev;
234
235         struct sock             *sk;
236         struct skb_timeval      tstamp;
237         struct net_device       *dev;
238         int                     iif;
239         /* 4 byte hole on 64 bit*/
240
241         union {
242                 struct tcphdr   *th;
243                 struct udphdr   *uh;
244                 struct icmphdr  *icmph;
245                 struct igmphdr  *igmph;
246                 struct iphdr    *ipiph;
247                 struct ipv6hdr  *ipv6h;
248                 unsigned char   *raw;
249         } h;
250
251         union {
252                 struct iphdr    *iph;
253                 struct ipv6hdr  *ipv6h;
254                 struct arphdr   *arph;
255                 unsigned char   *raw;
256         } nh;
257
258         union {
259                 unsigned char   *raw;
260         } mac;
261
262         struct  dst_entry       *dst;
263         struct  sec_path        *sp;
264
265         /*
266          * This is the control buffer. It is free to use for every
267          * layer. Please put your private variables there. If you
268          * want to keep them across layers you have to do a skb_clone()
269          * first. This is owned by whoever has the skb queued ATM.
270          */
271         char                    cb[48];
272
273         unsigned int            len,
274                                 data_len,
275                                 mac_len;
276         union {
277                 __wsum          csum;
278                 __u32           csum_offset;
279         };
280         __u32                   priority;
281         __u8                    local_df:1,
282                                 cloned:1,
283                                 ip_summed:2,
284                                 nohdr:1,
285                                 nfctinfo:3;
286         __u8                    pkt_type:3,
287                                 fclone:2,
288                                 ipvs_property:1;
289         __be16                  protocol;
290
291         void                    (*destructor)(struct sk_buff *skb);
292 #ifdef CONFIG_NETFILTER
293         struct nf_conntrack     *nfct;
294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295         struct sk_buff          *nfct_reasm;
296 #endif
297 #ifdef CONFIG_BRIDGE_NETFILTER
298         struct nf_bridge_info   *nf_bridge;
299 #endif
300 #endif /* CONFIG_NETFILTER */
301 #ifdef CONFIG_NET_SCHED
302         __u16                   tc_index;       /* traffic control index */
303 #ifdef CONFIG_NET_CLS_ACT
304         __u16                   tc_verd;        /* traffic control verdict */
305 #endif
306 #endif
307 #ifdef CONFIG_NET_DMA
308         dma_cookie_t            dma_cookie;
309 #endif
310 #ifdef CONFIG_NETWORK_SECMARK
311         __u32                   secmark;
312 #endif
313
314         __u32                   mark;
315
316         /* These elements must be at the end, see alloc_skb() for details.  */
317         unsigned int            truesize;
318         atomic_t                users;
319         unsigned char           *head,
320                                 *data,
321                                 *tail,
322                                 *end;
323 };
324
325 #ifdef __KERNEL__
326 /*
327  *      Handling routines are only of interest to the kernel
328  */
329 #include <linux/slab.h>
330
331 #include <asm/system.h>
332
333 extern void kfree_skb(struct sk_buff *skb);
334 extern void            __kfree_skb(struct sk_buff *skb);
335 extern struct sk_buff *__alloc_skb(unsigned int size,
336                                    gfp_t priority, int fclone, int node);
337 static inline struct sk_buff *alloc_skb(unsigned int size,
338                                         gfp_t priority)
339 {
340         return __alloc_skb(size, priority, 0, -1);
341 }
342
343 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
344                                                gfp_t priority)
345 {
346         return __alloc_skb(size, priority, 1, -1);
347 }
348
349 extern void            kfree_skbmem(struct sk_buff *skb);
350 extern struct sk_buff *skb_clone(struct sk_buff *skb,
351                                  gfp_t priority);
352 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
353                                 gfp_t priority);
354 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
355                                  gfp_t gfp_mask);
356 extern int             pskb_expand_head(struct sk_buff *skb,
357                                         int nhead, int ntail,
358                                         gfp_t gfp_mask);
359 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
360                                             unsigned int headroom);
361 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
362                                        int newheadroom, int newtailroom,
363                                        gfp_t priority);
364 extern int             skb_pad(struct sk_buff *skb, int pad);
365 #define dev_kfree_skb(a)        kfree_skb(a)
366 extern void           skb_over_panic(struct sk_buff *skb, int len,
367                                      void *here);
368 extern void           skb_under_panic(struct sk_buff *skb, int len,
369                                       void *here);
370 extern void           skb_truesize_bug(struct sk_buff *skb);
371
372 static inline void skb_truesize_check(struct sk_buff *skb)
373 {
374         if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
375                 skb_truesize_bug(skb);
376 }
377
378 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
379                         int getfrag(void *from, char *to, int offset,
380                         int len,int odd, struct sk_buff *skb),
381                         void *from, int length);
382
383 struct skb_seq_state
384 {
385         __u32           lower_offset;
386         __u32           upper_offset;
387         __u32           frag_idx;
388         __u32           stepped_offset;
389         struct sk_buff  *root_skb;
390         struct sk_buff  *cur_skb;
391         __u8            *frag_data;
392 };
393
394 extern void           skb_prepare_seq_read(struct sk_buff *skb,
395                                            unsigned int from, unsigned int to,
396                                            struct skb_seq_state *st);
397 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
398                                    struct skb_seq_state *st);
399 extern void           skb_abort_seq_read(struct skb_seq_state *st);
400
401 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
402                                     unsigned int to, struct ts_config *config,
403                                     struct ts_state *state);
404
405 /* Internal */
406 #define skb_shinfo(SKB)         ((struct skb_shared_info *)((SKB)->end))
407
408 /**
409  *      skb_queue_empty - check if a queue is empty
410  *      @list: queue head
411  *
412  *      Returns true if the queue is empty, false otherwise.
413  */
414 static inline int skb_queue_empty(const struct sk_buff_head *list)
415 {
416         return list->next == (struct sk_buff *)list;
417 }
418
419 /**
420  *      skb_get - reference buffer
421  *      @skb: buffer to reference
422  *
423  *      Makes another reference to a socket buffer and returns a pointer
424  *      to the buffer.
425  */
426 static inline struct sk_buff *skb_get(struct sk_buff *skb)
427 {
428         atomic_inc(&skb->users);
429         return skb;
430 }
431
432 /*
433  * If users == 1, we are the only owner and are can avoid redundant
434  * atomic change.
435  */
436
437 /**
438  *      skb_cloned - is the buffer a clone
439  *      @skb: buffer to check
440  *
441  *      Returns true if the buffer was generated with skb_clone() and is
442  *      one of multiple shared copies of the buffer. Cloned buffers are
443  *      shared data so must not be written to under normal circumstances.
444  */
445 static inline int skb_cloned(const struct sk_buff *skb)
446 {
447         return skb->cloned &&
448                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
449 }
450
451 /**
452  *      skb_header_cloned - is the header a clone
453  *      @skb: buffer to check
454  *
455  *      Returns true if modifying the header part of the buffer requires
456  *      the data to be copied.
457  */
458 static inline int skb_header_cloned(const struct sk_buff *skb)
459 {
460         int dataref;
461
462         if (!skb->cloned)
463                 return 0;
464
465         dataref = atomic_read(&skb_shinfo(skb)->dataref);
466         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
467         return dataref != 1;
468 }
469
470 /**
471  *      skb_header_release - release reference to header
472  *      @skb: buffer to operate on
473  *
474  *      Drop a reference to the header part of the buffer.  This is done
475  *      by acquiring a payload reference.  You must not read from the header
476  *      part of skb->data after this.
477  */
478 static inline void skb_header_release(struct sk_buff *skb)
479 {
480         BUG_ON(skb->nohdr);
481         skb->nohdr = 1;
482         atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
483 }
484
485 /**
486  *      skb_shared - is the buffer shared
487  *      @skb: buffer to check
488  *
489  *      Returns true if more than one person has a reference to this
490  *      buffer.
491  */
492 static inline int skb_shared(const struct sk_buff *skb)
493 {
494         return atomic_read(&skb->users) != 1;
495 }
496
497 /**
498  *      skb_share_check - check if buffer is shared and if so clone it
499  *      @skb: buffer to check
500  *      @pri: priority for memory allocation
501  *
502  *      If the buffer is shared the buffer is cloned and the old copy
503  *      drops a reference. A new clone with a single reference is returned.
504  *      If the buffer is not shared the original buffer is returned. When
505  *      being called from interrupt status or with spinlocks held pri must
506  *      be GFP_ATOMIC.
507  *
508  *      NULL is returned on a memory allocation failure.
509  */
510 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
511                                               gfp_t pri)
512 {
513         might_sleep_if(pri & __GFP_WAIT);
514         if (skb_shared(skb)) {
515                 struct sk_buff *nskb = skb_clone(skb, pri);
516                 kfree_skb(skb);
517                 skb = nskb;
518         }
519         return skb;
520 }
521
522 /*
523  *      Copy shared buffers into a new sk_buff. We effectively do COW on
524  *      packets to handle cases where we have a local reader and forward
525  *      and a couple of other messy ones. The normal one is tcpdumping
526  *      a packet thats being forwarded.
527  */
528
529 /**
530  *      skb_unshare - make a copy of a shared buffer
531  *      @skb: buffer to check
532  *      @pri: priority for memory allocation
533  *
534  *      If the socket buffer is a clone then this function creates a new
535  *      copy of the data, drops a reference count on the old copy and returns
536  *      the new copy with the reference count at 1. If the buffer is not a clone
537  *      the original buffer is returned. When called with a spinlock held or
538  *      from interrupt state @pri must be %GFP_ATOMIC
539  *
540  *      %NULL is returned on a memory allocation failure.
541  */
542 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
543                                           gfp_t pri)
544 {
545         might_sleep_if(pri & __GFP_WAIT);
546         if (skb_cloned(skb)) {
547                 struct sk_buff *nskb = skb_copy(skb, pri);
548                 kfree_skb(skb); /* Free our shared copy */
549                 skb = nskb;
550         }
551         return skb;
552 }
553
554 /**
555  *      skb_peek
556  *      @list_: list to peek at
557  *
558  *      Peek an &sk_buff. Unlike most other operations you _MUST_
559  *      be careful with this one. A peek leaves the buffer on the
560  *      list and someone else may run off with it. You must hold
561  *      the appropriate locks or have a private queue to do this.
562  *
563  *      Returns %NULL for an empty list or a pointer to the head element.
564  *      The reference count is not incremented and the reference is therefore
565  *      volatile. Use with caution.
566  */
567 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
568 {
569         struct sk_buff *list = ((struct sk_buff *)list_)->next;
570         if (list == (struct sk_buff *)list_)
571                 list = NULL;
572         return list;
573 }
574
575 /**
576  *      skb_peek_tail
577  *      @list_: list to peek at
578  *
579  *      Peek an &sk_buff. Unlike most other operations you _MUST_
580  *      be careful with this one. A peek leaves the buffer on the
581  *      list and someone else may run off with it. You must hold
582  *      the appropriate locks or have a private queue to do this.
583  *
584  *      Returns %NULL for an empty list or a pointer to the tail element.
585  *      The reference count is not incremented and the reference is therefore
586  *      volatile. Use with caution.
587  */
588 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
589 {
590         struct sk_buff *list = ((struct sk_buff *)list_)->prev;
591         if (list == (struct sk_buff *)list_)
592                 list = NULL;
593         return list;
594 }
595
596 /**
597  *      skb_queue_len   - get queue length
598  *      @list_: list to measure
599  *
600  *      Return the length of an &sk_buff queue.
601  */
602 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
603 {
604         return list_->qlen;
605 }
606
607 /*
608  * This function creates a split out lock class for each invocation;
609  * this is needed for now since a whole lot of users of the skb-queue
610  * infrastructure in drivers have different locking usage (in hardirq)
611  * than the networking core (in softirq only). In the long run either the
612  * network layer or drivers should need annotation to consolidate the
613  * main types of usage into 3 classes.
614  */
615 static inline void skb_queue_head_init(struct sk_buff_head *list)
616 {
617         spin_lock_init(&list->lock);
618         list->prev = list->next = (struct sk_buff *)list;
619         list->qlen = 0;
620 }
621
622 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
623                 struct lock_class_key *class)
624 {
625         skb_queue_head_init(list);
626         lockdep_set_class(&list->lock, class);
627 }
628
629 /*
630  *      Insert an sk_buff at the start of a list.
631  *
632  *      The "__skb_xxxx()" functions are the non-atomic ones that
633  *      can only be called with interrupts disabled.
634  */
635
636 /**
637  *      __skb_queue_after - queue a buffer at the list head
638  *      @list: list to use
639  *      @prev: place after this buffer
640  *      @newsk: buffer to queue
641  *
642  *      Queue a buffer int the middle of a list. This function takes no locks
643  *      and you must therefore hold required locks before calling it.
644  *
645  *      A buffer cannot be placed on two lists at the same time.
646  */
647 static inline void __skb_queue_after(struct sk_buff_head *list,
648                                      struct sk_buff *prev,
649                                      struct sk_buff *newsk)
650 {
651         struct sk_buff *next;
652         list->qlen++;
653
654         next = prev->next;
655         newsk->next = next;
656         newsk->prev = prev;
657         next->prev  = prev->next = newsk;
658 }
659
660 /**
661  *      __skb_queue_head - queue a buffer at the list head
662  *      @list: list to use
663  *      @newsk: buffer to queue
664  *
665  *      Queue a buffer at the start of a list. This function takes no locks
666  *      and you must therefore hold required locks before calling it.
667  *
668  *      A buffer cannot be placed on two lists at the same time.
669  */
670 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
671 static inline void __skb_queue_head(struct sk_buff_head *list,
672                                     struct sk_buff *newsk)
673 {
674         __skb_queue_after(list, (struct sk_buff *)list, newsk);
675 }
676
677 /**
678  *      __skb_queue_tail - queue a buffer at the list tail
679  *      @list: list to use
680  *      @newsk: buffer to queue
681  *
682  *      Queue a buffer at the end of a list. This function takes no locks
683  *      and you must therefore hold required locks before calling it.
684  *
685  *      A buffer cannot be placed on two lists at the same time.
686  */
687 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
688 static inline void __skb_queue_tail(struct sk_buff_head *list,
689                                    struct sk_buff *newsk)
690 {
691         struct sk_buff *prev, *next;
692
693         list->qlen++;
694         next = (struct sk_buff *)list;
695         prev = next->prev;
696         newsk->next = next;
697         newsk->prev = prev;
698         next->prev  = prev->next = newsk;
699 }
700
701
702 /**
703  *      __skb_dequeue - remove from the head of the queue
704  *      @list: list to dequeue from
705  *
706  *      Remove the head of the list. This function does not take any locks
707  *      so must be used with appropriate locks held only. The head item is
708  *      returned or %NULL if the list is empty.
709  */
710 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
711 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
712 {
713         struct sk_buff *next, *prev, *result;
714
715         prev = (struct sk_buff *) list;
716         next = prev->next;
717         result = NULL;
718         if (next != prev) {
719                 result       = next;
720                 next         = next->next;
721                 list->qlen--;
722                 next->prev   = prev;
723                 prev->next   = next;
724                 result->next = result->prev = NULL;
725         }
726         return result;
727 }
728
729
730 /*
731  *      Insert a packet on a list.
732  */
733 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
734 static inline void __skb_insert(struct sk_buff *newsk,
735                                 struct sk_buff *prev, struct sk_buff *next,
736                                 struct sk_buff_head *list)
737 {
738         newsk->next = next;
739         newsk->prev = prev;
740         next->prev  = prev->next = newsk;
741         list->qlen++;
742 }
743
744 /*
745  *      Place a packet after a given packet in a list.
746  */
747 extern void        skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
748 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
749 {
750         __skb_insert(newsk, old, old->next, list);
751 }
752
753 /*
754  * remove sk_buff from list. _Must_ be called atomically, and with
755  * the list known..
756  */
757 extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
758 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
759 {
760         struct sk_buff *next, *prev;
761
762         list->qlen--;
763         next       = skb->next;
764         prev       = skb->prev;
765         skb->next  = skb->prev = NULL;
766         next->prev = prev;
767         prev->next = next;
768 }
769
770
771 /* XXX: more streamlined implementation */
772
773 /**
774  *      __skb_dequeue_tail - remove from the tail of the queue
775  *      @list: list to dequeue from
776  *
777  *      Remove the tail of the list. This function does not take any locks
778  *      so must be used with appropriate locks held only. The tail item is
779  *      returned or %NULL if the list is empty.
780  */
781 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
782 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
783 {
784         struct sk_buff *skb = skb_peek_tail(list);
785         if (skb)
786                 __skb_unlink(skb, list);
787         return skb;
788 }
789
790
791 static inline int skb_is_nonlinear(const struct sk_buff *skb)
792 {
793         return skb->data_len;
794 }
795
796 static inline unsigned int skb_headlen(const struct sk_buff *skb)
797 {
798         return skb->len - skb->data_len;
799 }
800
801 static inline int skb_pagelen(const struct sk_buff *skb)
802 {
803         int i, len = 0;
804
805         for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
806                 len += skb_shinfo(skb)->frags[i].size;
807         return len + skb_headlen(skb);
808 }
809
810 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
811                                       struct page *page, int off, int size)
812 {
813         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
814
815         frag->page                = page;
816         frag->page_offset         = off;
817         frag->size                = size;
818         skb_shinfo(skb)->nr_frags = i + 1;
819 }
820
821 #define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
822 #define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
823 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
824
825 /*
826  *      Add data to an sk_buff
827  */
828 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
829 {
830         unsigned char *tmp = skb->tail;
831         SKB_LINEAR_ASSERT(skb);
832         skb->tail += len;
833         skb->len  += len;
834         return tmp;
835 }
836
837 /**
838  *      skb_put - add data to a buffer
839  *      @skb: buffer to use
840  *      @len: amount of data to add
841  *
842  *      This function extends the used data area of the buffer. If this would
843  *      exceed the total buffer size the kernel will panic. A pointer to the
844  *      first byte of the extra data is returned.
845  */
846 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
847 {
848         unsigned char *tmp = skb->tail;
849         SKB_LINEAR_ASSERT(skb);
850         skb->tail += len;
851         skb->len  += len;
852         if (unlikely(skb->tail>skb->end))
853                 skb_over_panic(skb, len, current_text_addr());
854         return tmp;
855 }
856
857 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
858 {
859         skb->data -= len;
860         skb->len  += len;
861         return skb->data;
862 }
863
864 /**
865  *      skb_push - add data to the start of a buffer
866  *      @skb: buffer to use
867  *      @len: amount of data to add
868  *
869  *      This function extends the used data area of the buffer at the buffer
870  *      start. If this would exceed the total buffer headroom the kernel will
871  *      panic. A pointer to the first byte of the extra data is returned.
872  */
873 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
874 {
875         skb->data -= len;
876         skb->len  += len;
877         if (unlikely(skb->data<skb->head))
878                 skb_under_panic(skb, len, current_text_addr());
879         return skb->data;
880 }
881
882 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
883 {
884         skb->len -= len;
885         BUG_ON(skb->len < skb->data_len);
886         return skb->data += len;
887 }
888
889 /**
890  *      skb_pull - remove data from the start of a buffer
891  *      @skb: buffer to use
892  *      @len: amount of data to remove
893  *
894  *      This function removes data from the start of a buffer, returning
895  *      the memory to the headroom. A pointer to the next data in the buffer
896  *      is returned. Once the data has been pulled future pushes will overwrite
897  *      the old data.
898  */
899 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
900 {
901         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
902 }
903
904 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
905
906 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
907 {
908         if (len > skb_headlen(skb) &&
909             !__pskb_pull_tail(skb, len-skb_headlen(skb)))
910                 return NULL;
911         skb->len -= len;
912         return skb->data += len;
913 }
914
915 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
916 {
917         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
918 }
919
920 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
921 {
922         if (likely(len <= skb_headlen(skb)))
923                 return 1;
924         if (unlikely(len > skb->len))
925                 return 0;
926         return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
927 }
928
929 /**
930  *      skb_headroom - bytes at buffer head
931  *      @skb: buffer to check
932  *
933  *      Return the number of bytes of free space at the head of an &sk_buff.
934  */
935 static inline int skb_headroom(const struct sk_buff *skb)
936 {
937         return skb->data - skb->head;
938 }
939
940 /**
941  *      skb_tailroom - bytes at buffer end
942  *      @skb: buffer to check
943  *
944  *      Return the number of bytes of free space at the tail of an sk_buff
945  */
946 static inline int skb_tailroom(const struct sk_buff *skb)
947 {
948         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
949 }
950
951 /**
952  *      skb_reserve - adjust headroom
953  *      @skb: buffer to alter
954  *      @len: bytes to move
955  *
956  *      Increase the headroom of an empty &sk_buff by reducing the tail
957  *      room. This is only allowed for an empty buffer.
958  */
959 static inline void skb_reserve(struct sk_buff *skb, int len)
960 {
961         skb->data += len;
962         skb->tail += len;
963 }
964
965 /*
966  * CPUs often take a performance hit when accessing unaligned memory
967  * locations. The actual performance hit varies, it can be small if the
968  * hardware handles it or large if we have to take an exception and fix it
969  * in software.
970  *
971  * Since an ethernet header is 14 bytes network drivers often end up with
972  * the IP header at an unaligned offset. The IP header can be aligned by
973  * shifting the start of the packet by 2 bytes. Drivers should do this
974  * with:
975  *
976  * skb_reserve(NET_IP_ALIGN);
977  *
978  * The downside to this alignment of the IP header is that the DMA is now
979  * unaligned. On some architectures the cost of an unaligned DMA is high
980  * and this cost outweighs the gains made by aligning the IP header.
981  * 
982  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
983  * to be overridden.
984  */
985 #ifndef NET_IP_ALIGN
986 #define NET_IP_ALIGN    2
987 #endif
988
989 /*
990  * The networking layer reserves some headroom in skb data (via
991  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
992  * the header has to grow. In the default case, if the header has to grow
993  * 16 bytes or less we avoid the reallocation.
994  *
995  * Unfortunately this headroom changes the DMA alignment of the resulting
996  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
997  * on some architectures. An architecture can override this value,
998  * perhaps setting it to a cacheline in size (since that will maintain
999  * cacheline alignment of the DMA). It must be a power of 2.
1000  *
1001  * Various parts of the networking layer expect at least 16 bytes of
1002  * headroom, you should not reduce this.
1003  */
1004 #ifndef NET_SKB_PAD
1005 #define NET_SKB_PAD     16
1006 #endif
1007
1008 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1009
1010 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1011 {
1012         if (unlikely(skb->data_len)) {
1013                 WARN_ON(1);
1014                 return;
1015         }
1016         skb->len  = len;
1017         skb->tail = skb->data + len;
1018 }
1019
1020 /**
1021  *      skb_trim - remove end from a buffer
1022  *      @skb: buffer to alter
1023  *      @len: new length
1024  *
1025  *      Cut the length of a buffer down by removing data from the tail. If
1026  *      the buffer is already under the length specified it is not modified.
1027  *      The skb must be linear.
1028  */
1029 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1030 {
1031         if (skb->len > len)
1032                 __skb_trim(skb, len);
1033 }
1034
1035
1036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1037 {
1038         if (skb->data_len)
1039                 return ___pskb_trim(skb, len);
1040         __skb_trim(skb, len);
1041         return 0;
1042 }
1043
1044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1045 {
1046         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1047 }
1048
1049 /**
1050  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1051  *      @skb: buffer to alter
1052  *      @len: new length
1053  *
1054  *      This is identical to pskb_trim except that the caller knows that
1055  *      the skb is not cloned so we should never get an error due to out-
1056  *      of-memory.
1057  */
1058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1059 {
1060         int err = pskb_trim(skb, len);
1061         BUG_ON(err);
1062 }
1063
1064 /**
1065  *      skb_orphan - orphan a buffer
1066  *      @skb: buffer to orphan
1067  *
1068  *      If a buffer currently has an owner then we call the owner's
1069  *      destructor function and make the @skb unowned. The buffer continues
1070  *      to exist but is no longer charged to its former owner.
1071  */
1072 static inline void skb_orphan(struct sk_buff *skb)
1073 {
1074         if (skb->destructor)
1075                 skb->destructor(skb);
1076         skb->destructor = NULL;
1077         skb->sk         = NULL;
1078 }
1079
1080 /**
1081  *      __skb_queue_purge - empty a list
1082  *      @list: list to empty
1083  *
1084  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1085  *      the list and one reference dropped. This function does not take the
1086  *      list lock and the caller must hold the relevant locks to use it.
1087  */
1088 extern void skb_queue_purge(struct sk_buff_head *list);
1089 static inline void __skb_queue_purge(struct sk_buff_head *list)
1090 {
1091         struct sk_buff *skb;
1092         while ((skb = __skb_dequeue(list)) != NULL)
1093                 kfree_skb(skb);
1094 }
1095
1096 /**
1097  *      __dev_alloc_skb - allocate an skbuff for receiving
1098  *      @length: length to allocate
1099  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1100  *
1101  *      Allocate a new &sk_buff and assign it a usage count of one. The
1102  *      buffer has unspecified headroom built in. Users should allocate
1103  *      the headroom they think they need without accounting for the
1104  *      built in space. The built in space is used for optimisations.
1105  *
1106  *      %NULL is returned if there is no free memory.
1107  */
1108 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1109                                               gfp_t gfp_mask)
1110 {
1111         struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1112         if (likely(skb))
1113                 skb_reserve(skb, NET_SKB_PAD);
1114         return skb;
1115 }
1116
1117 /**
1118  *      dev_alloc_skb - allocate an skbuff for receiving
1119  *      @length: length to allocate
1120  *
1121  *      Allocate a new &sk_buff and assign it a usage count of one. The
1122  *      buffer has unspecified headroom built in. Users should allocate
1123  *      the headroom they think they need without accounting for the
1124  *      built in space. The built in space is used for optimisations.
1125  *
1126  *      %NULL is returned if there is no free memory. Although this function
1127  *      allocates memory it can be called from an interrupt.
1128  */
1129 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1130 {
1131         return __dev_alloc_skb(length, GFP_ATOMIC);
1132 }
1133
1134 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1135                 unsigned int length, gfp_t gfp_mask);
1136
1137 /**
1138  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1139  *      @dev: network device to receive on
1140  *      @length: length to allocate
1141  *
1142  *      Allocate a new &sk_buff and assign it a usage count of one. The
1143  *      buffer has unspecified headroom built in. Users should allocate
1144  *      the headroom they think they need without accounting for the
1145  *      built in space. The built in space is used for optimisations.
1146  *
1147  *      %NULL is returned if there is no free memory. Although this function
1148  *      allocates memory it can be called from an interrupt.
1149  */
1150 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1151                 unsigned int length)
1152 {
1153         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1154 }
1155
1156 /**
1157  *      skb_cow - copy header of skb when it is required
1158  *      @skb: buffer to cow
1159  *      @headroom: needed headroom
1160  *
1161  *      If the skb passed lacks sufficient headroom or its data part
1162  *      is shared, data is reallocated. If reallocation fails, an error
1163  *      is returned and original skb is not changed.
1164  *
1165  *      The result is skb with writable area skb->head...skb->tail
1166  *      and at least @headroom of space at head.
1167  */
1168 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1169 {
1170         int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1171                         skb_headroom(skb);
1172
1173         if (delta < 0)
1174                 delta = 0;
1175
1176         if (delta || skb_cloned(skb))
1177                 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1178                                 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1179         return 0;
1180 }
1181
1182 /**
1183  *      skb_padto       - pad an skbuff up to a minimal size
1184  *      @skb: buffer to pad
1185  *      @len: minimal length
1186  *
1187  *      Pads up a buffer to ensure the trailing bytes exist and are
1188  *      blanked. If the buffer already contains sufficient data it
1189  *      is untouched. Otherwise it is extended. Returns zero on
1190  *      success. The skb is freed on error.
1191  */
1192  
1193 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1194 {
1195         unsigned int size = skb->len;
1196         if (likely(size >= len))
1197                 return 0;
1198         return skb_pad(skb, len-size);
1199 }
1200
1201 static inline int skb_add_data(struct sk_buff *skb,
1202                                char __user *from, int copy)
1203 {
1204         const int off = skb->len;
1205
1206         if (skb->ip_summed == CHECKSUM_NONE) {
1207                 int err = 0;
1208                 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1209                                                             copy, 0, &err);
1210                 if (!err) {
1211                         skb->csum = csum_block_add(skb->csum, csum, off);
1212                         return 0;
1213                 }
1214         } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1215                 return 0;
1216
1217         __skb_trim(skb, off);
1218         return -EFAULT;
1219 }
1220
1221 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1222                                    struct page *page, int off)
1223 {
1224         if (i) {
1225                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1226
1227                 return page == frag->page &&
1228                        off == frag->page_offset + frag->size;
1229         }
1230         return 0;
1231 }
1232
1233 static inline int __skb_linearize(struct sk_buff *skb)
1234 {
1235         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1236 }
1237
1238 /**
1239  *      skb_linearize - convert paged skb to linear one
1240  *      @skb: buffer to linarize
1241  *
1242  *      If there is no free memory -ENOMEM is returned, otherwise zero
1243  *      is returned and the old skb data released.
1244  */
1245 static inline int skb_linearize(struct sk_buff *skb)
1246 {
1247         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1248 }
1249
1250 /**
1251  *      skb_linearize_cow - make sure skb is linear and writable
1252  *      @skb: buffer to process
1253  *
1254  *      If there is no free memory -ENOMEM is returned, otherwise zero
1255  *      is returned and the old skb data released.
1256  */
1257 static inline int skb_linearize_cow(struct sk_buff *skb)
1258 {
1259         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1260                __skb_linearize(skb) : 0;
1261 }
1262
1263 /**
1264  *      skb_postpull_rcsum - update checksum for received skb after pull
1265  *      @skb: buffer to update
1266  *      @start: start of data before pull
1267  *      @len: length of data pulled
1268  *
1269  *      After doing a pull on a received packet, you need to call this to
1270  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1271  *      CHECKSUM_NONE so that it can be recomputed from scratch.
1272  */
1273
1274 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1275                                       const void *start, unsigned int len)
1276 {
1277         if (skb->ip_summed == CHECKSUM_COMPLETE)
1278                 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1279 }
1280
1281 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1282
1283 /**
1284  *      pskb_trim_rcsum - trim received skb and update checksum
1285  *      @skb: buffer to trim
1286  *      @len: new length
1287  *
1288  *      This is exactly the same as pskb_trim except that it ensures the
1289  *      checksum of received packets are still valid after the operation.
1290  */
1291
1292 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1293 {
1294         if (likely(len >= skb->len))
1295                 return 0;
1296         if (skb->ip_summed == CHECKSUM_COMPLETE)
1297                 skb->ip_summed = CHECKSUM_NONE;
1298         return __pskb_trim(skb, len);
1299 }
1300
1301 #define skb_queue_walk(queue, skb) \
1302                 for (skb = (queue)->next;                                       \
1303                      prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1304                      skb = skb->next)
1305
1306 #define skb_queue_reverse_walk(queue, skb) \
1307                 for (skb = (queue)->prev;                                       \
1308                      prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1309                      skb = skb->prev)
1310
1311
1312 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1313                                          int noblock, int *err);
1314 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1315                                      struct poll_table_struct *wait);
1316 extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1317                                                int offset, struct iovec *to,
1318                                                int size);
1319 extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1320                                                         int hlen,
1321                                                         struct iovec *iov);
1322 extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1323 extern void            skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1324                                          unsigned int flags);
1325 extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1326                                     int len, __wsum csum);
1327 extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1328                                      void *to, int len);
1329 extern int             skb_store_bits(const struct sk_buff *skb, int offset,
1330                                       void *from, int len);
1331 extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1332                                               int offset, u8 *to, int len,
1333                                               __wsum csum);
1334 extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1335 extern void            skb_split(struct sk_buff *skb,
1336                                  struct sk_buff *skb1, const u32 len);
1337
1338 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1339
1340 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1341                                        int len, void *buffer)
1342 {
1343         int hlen = skb_headlen(skb);
1344
1345         if (hlen - offset >= len)
1346                 return skb->data + offset;
1347
1348         if (skb_copy_bits(skb, offset, buffer, len) < 0)
1349                 return NULL;
1350
1351         return buffer;
1352 }
1353
1354 extern void skb_init(void);
1355 extern void skb_add_mtu(int mtu);
1356
1357 /**
1358  *      skb_get_timestamp - get timestamp from a skb
1359  *      @skb: skb to get stamp from
1360  *      @stamp: pointer to struct timeval to store stamp in
1361  *
1362  *      Timestamps are stored in the skb as offsets to a base timestamp.
1363  *      This function converts the offset back to a struct timeval and stores
1364  *      it in stamp.
1365  */
1366 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1367 {
1368         stamp->tv_sec  = skb->tstamp.off_sec;
1369         stamp->tv_usec = skb->tstamp.off_usec;
1370 }
1371
1372 /**
1373  *      skb_set_timestamp - set timestamp of a skb
1374  *      @skb: skb to set stamp of
1375  *      @stamp: pointer to struct timeval to get stamp from
1376  *
1377  *      Timestamps are stored in the skb as offsets to a base timestamp.
1378  *      This function converts a struct timeval to an offset and stores
1379  *      it in the skb.
1380  */
1381 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1382 {
1383         skb->tstamp.off_sec  = stamp->tv_sec;
1384         skb->tstamp.off_usec = stamp->tv_usec;
1385 }
1386
1387 extern void __net_timestamp(struct sk_buff *skb);
1388
1389 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1390
1391 /**
1392  *      skb_checksum_complete - Calculate checksum of an entire packet
1393  *      @skb: packet to process
1394  *
1395  *      This function calculates the checksum over the entire packet plus
1396  *      the value of skb->csum.  The latter can be used to supply the
1397  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1398  *      checksum.
1399  *
1400  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1401  *      this function can be used to verify that checksum on received
1402  *      packets.  In that case the function should return zero if the
1403  *      checksum is correct.  In particular, this function will return zero
1404  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1405  *      hardware has already verified the correctness of the checksum.
1406  */
1407 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1408 {
1409         return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1410                 __skb_checksum_complete(skb);
1411 }
1412
1413 #ifdef CONFIG_NETFILTER
1414 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1415 {
1416         if (nfct && atomic_dec_and_test(&nfct->use))
1417                 nfct->destroy(nfct);
1418 }
1419 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1420 {
1421         if (nfct)
1422                 atomic_inc(&nfct->use);
1423 }
1424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1425 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1426 {
1427         if (skb)
1428                 atomic_inc(&skb->users);
1429 }
1430 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1431 {
1432         if (skb)
1433                 kfree_skb(skb);
1434 }
1435 #endif
1436 #ifdef CONFIG_BRIDGE_NETFILTER
1437 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1438 {
1439         if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1440                 kfree(nf_bridge);
1441 }
1442 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1443 {
1444         if (nf_bridge)
1445                 atomic_inc(&nf_bridge->use);
1446 }
1447 #endif /* CONFIG_BRIDGE_NETFILTER */
1448 static inline void nf_reset(struct sk_buff *skb)
1449 {
1450         nf_conntrack_put(skb->nfct);
1451         skb->nfct = NULL;
1452 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1453         nf_conntrack_put_reasm(skb->nfct_reasm);
1454         skb->nfct_reasm = NULL;
1455 #endif
1456 #ifdef CONFIG_BRIDGE_NETFILTER
1457         nf_bridge_put(skb->nf_bridge);
1458         skb->nf_bridge = NULL;
1459 #endif
1460 }
1461
1462 #else /* CONFIG_NETFILTER */
1463 static inline void nf_reset(struct sk_buff *skb) {}
1464 #endif /* CONFIG_NETFILTER */
1465
1466 #ifdef CONFIG_NETWORK_SECMARK
1467 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1468 {
1469         to->secmark = from->secmark;
1470 }
1471
1472 static inline void skb_init_secmark(struct sk_buff *skb)
1473 {
1474         skb->secmark = 0;
1475 }
1476 #else
1477 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1478 { }
1479
1480 static inline void skb_init_secmark(struct sk_buff *skb)
1481 { }
1482 #endif
1483
1484 static inline int skb_is_gso(const struct sk_buff *skb)
1485 {
1486         return skb_shinfo(skb)->gso_size;
1487 }
1488
1489 #endif  /* __KERNEL__ */
1490 #endif  /* _LINUX_SKBUFF_H */