Merge branches 'sh/pci-express-integration', 'sh/rsk-updates', 'sh/platform-updates...
[linux-2.6] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
64                                 ixgbe_get_phy_id(hw);
65                                 hw->phy.type =
66                                         ixgbe_get_phy_type_from_id(hw->phy.id);
67                                 status = 0;
68                                 break;
69                         }
70                 }
71         } else {
72                 status = 0;
73         }
74
75         return status;
76 }
77
78 /**
79  *  ixgbe_get_phy_id - Get the phy type
80  *  @hw: pointer to hardware structure
81  *
82  **/
83 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
84 {
85         u32 status;
86         u16 phy_id_high = 0;
87         u16 phy_id_low = 0;
88
89         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
90                                       &phy_id_high);
91
92         if (status == 0) {
93                 hw->phy.id = (u32)(phy_id_high << 16);
94                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
95                                               &phy_id_low);
96                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
97                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
98         }
99         return status;
100 }
101
102 /**
103  *  ixgbe_get_phy_type_from_id - Get the phy type
104  *  @hw: pointer to hardware structure
105  *
106  **/
107 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
108 {
109         enum ixgbe_phy_type phy_type;
110
111         switch (phy_id) {
112         case TN1010_PHY_ID:
113                 phy_type = ixgbe_phy_tn;
114                 break;
115         case QT2022_PHY_ID:
116                 phy_type = ixgbe_phy_qt;
117                 break;
118         case ATH_PHY_ID:
119                 phy_type = ixgbe_phy_nl;
120                 break;
121         default:
122                 phy_type = ixgbe_phy_unknown;
123                 break;
124         }
125
126         return phy_type;
127 }
128
129 /**
130  *  ixgbe_reset_phy_generic - Performs a PHY reset
131  *  @hw: pointer to hardware structure
132  **/
133 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
134 {
135         /*
136          * Perform soft PHY reset to the PHY_XS.
137          * This will cause a soft reset to the PHY
138          */
139         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
140                                      MDIO_CTRL1_RESET);
141 }
142
143 /**
144  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
145  *  @hw: pointer to hardware structure
146  *  @reg_addr: 32 bit address of PHY register to read
147  *  @phy_data: Pointer to read data from PHY register
148  **/
149 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
150                                u32 device_type, u16 *phy_data)
151 {
152         u32 command;
153         u32 i;
154         u32 data;
155         s32 status = 0;
156         u16 gssr;
157
158         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
159                 gssr = IXGBE_GSSR_PHY1_SM;
160         else
161                 gssr = IXGBE_GSSR_PHY0_SM;
162
163         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
164                 status = IXGBE_ERR_SWFW_SYNC;
165
166         if (status == 0) {
167                 /* Setup and write the address cycle command */
168                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
169                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
170                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
171                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
172
173                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
174
175                 /*
176                  * Check every 10 usec to see if the address cycle completed.
177                  * The MDI Command bit will clear when the operation is
178                  * complete
179                  */
180                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
181                         udelay(10);
182
183                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
184
185                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
186                                 break;
187                 }
188
189                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
190                         hw_dbg(hw, "PHY address command did not complete.\n");
191                         status = IXGBE_ERR_PHY;
192                 }
193
194                 if (status == 0) {
195                         /*
196                          * Address cycle complete, setup and write the read
197                          * command
198                          */
199                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
200                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
201                                    (hw->phy.mdio.prtad <<
202                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
203                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
204
205                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
206
207                         /*
208                          * Check every 10 usec to see if the address cycle
209                          * completed. The MDI Command bit will clear when the
210                          * operation is complete
211                          */
212                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
213                                 udelay(10);
214
215                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
216
217                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
218                                         break;
219                         }
220
221                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
222                                 hw_dbg(hw, "PHY read command didn't complete\n");
223                                 status = IXGBE_ERR_PHY;
224                         } else {
225                                 /*
226                                  * Read operation is complete.  Get the data
227                                  * from MSRWD
228                                  */
229                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
230                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
231                                 *phy_data = (u16)(data);
232                         }
233                 }
234
235                 ixgbe_release_swfw_sync(hw, gssr);
236         }
237
238         return status;
239 }
240
241 /**
242  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
243  *  @hw: pointer to hardware structure
244  *  @reg_addr: 32 bit PHY register to write
245  *  @device_type: 5 bit device type
246  *  @phy_data: Data to write to the PHY register
247  **/
248 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
249                                 u32 device_type, u16 phy_data)
250 {
251         u32 command;
252         u32 i;
253         s32 status = 0;
254         u16 gssr;
255
256         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
257                 gssr = IXGBE_GSSR_PHY1_SM;
258         else
259                 gssr = IXGBE_GSSR_PHY0_SM;
260
261         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
262                 status = IXGBE_ERR_SWFW_SYNC;
263
264         if (status == 0) {
265                 /* Put the data in the MDI single read and write data register*/
266                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
267
268                 /* Setup and write the address cycle command */
269                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
270                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
271                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
272                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
273
274                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
275
276                 /*
277                  * Check every 10 usec to see if the address cycle completed.
278                  * The MDI Command bit will clear when the operation is
279                  * complete
280                  */
281                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
282                         udelay(10);
283
284                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
285
286                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
287                                 break;
288                 }
289
290                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
291                         hw_dbg(hw, "PHY address cmd didn't complete\n");
292                         status = IXGBE_ERR_PHY;
293                 }
294
295                 if (status == 0) {
296                         /*
297                          * Address cycle complete, setup and write the write
298                          * command
299                          */
300                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
301                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
302                                    (hw->phy.mdio.prtad <<
303                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
304                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
305
306                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
307
308                         /*
309                          * Check every 10 usec to see if the address cycle
310                          * completed. The MDI Command bit will clear when the
311                          * operation is complete
312                          */
313                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
314                                 udelay(10);
315
316                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
317
318                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
319                                         break;
320                         }
321
322                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
323                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
324                                 status = IXGBE_ERR_PHY;
325                         }
326                 }
327
328                 ixgbe_release_swfw_sync(hw, gssr);
329         }
330
331         return status;
332 }
333
334 /**
335  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
336  *  @hw: pointer to hardware structure
337  *
338  *  Restart autonegotiation and PHY and waits for completion.
339  **/
340 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
341 {
342         s32 status = IXGBE_NOT_IMPLEMENTED;
343         u32 time_out;
344         u32 max_time_out = 10;
345         u16 autoneg_reg;
346
347         /*
348          * Set advertisement settings in PHY based on autoneg_advertised
349          * settings. If autoneg_advertised = 0, then advertise default values
350          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
351          * for a 1G.
352          */
353         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
354
355         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
356                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
357         else
358                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
359
360         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
361
362         /* Restart PHY autonegotiation and wait for completion */
363         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
364
365         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
366
367         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
368
369         /* Wait for autonegotiation to finish */
370         for (time_out = 0; time_out < max_time_out; time_out++) {
371                 udelay(10);
372                 /* Restart PHY autonegotiation and wait for completion */
373                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
374                                               &autoneg_reg);
375
376                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
377                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
378                         status = 0;
379                         break;
380                 }
381         }
382
383         if (time_out == max_time_out)
384                 status = IXGBE_ERR_LINK_SETUP;
385
386         return status;
387 }
388
389 /**
390  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
391  *  @hw: pointer to hardware structure
392  *  @speed: new link speed
393  *  @autoneg: true if autonegotiation enabled
394  **/
395 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
396                                        ixgbe_link_speed speed,
397                                        bool autoneg,
398                                        bool autoneg_wait_to_complete)
399 {
400
401         /*
402          * Clear autoneg_advertised and set new values based on input link
403          * speed.
404          */
405         hw->phy.autoneg_advertised = 0;
406
407         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
408                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
409
410         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
411                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
412
413         /* Setup link based on the new speed settings */
414         hw->phy.ops.setup_link(hw);
415
416         return 0;
417 }
418
419 /**
420  *  ixgbe_reset_phy_nl - Performs a PHY reset
421  *  @hw: pointer to hardware structure
422  **/
423 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
424 {
425         u16 phy_offset, control, eword, edata, block_crc;
426         bool end_data = false;
427         u16 list_offset, data_offset;
428         u16 phy_data = 0;
429         s32 ret_val = 0;
430         u32 i;
431
432         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
433
434         /* reset the PHY and poll for completion */
435         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
436                               (phy_data | MDIO_CTRL1_RESET));
437
438         for (i = 0; i < 100; i++) {
439                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
440                                      &phy_data);
441                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
442                         break;
443                 msleep(10);
444         }
445
446         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
447                 hw_dbg(hw, "PHY reset did not complete.\n");
448                 ret_val = IXGBE_ERR_PHY;
449                 goto out;
450         }
451
452         /* Get init offsets */
453         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
454                                                       &data_offset);
455         if (ret_val != 0)
456                 goto out;
457
458         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
459         data_offset++;
460         while (!end_data) {
461                 /*
462                  * Read control word from PHY init contents offset
463                  */
464                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
465                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
466                            IXGBE_CONTROL_SHIFT_NL;
467                 edata = eword & IXGBE_DATA_MASK_NL;
468                 switch (control) {
469                 case IXGBE_DELAY_NL:
470                         data_offset++;
471                         hw_dbg(hw, "DELAY: %d MS\n", edata);
472                         msleep(edata);
473                         break;
474                 case IXGBE_DATA_NL:
475                         hw_dbg(hw, "DATA:  \n");
476                         data_offset++;
477                         hw->eeprom.ops.read(hw, data_offset++,
478                                             &phy_offset);
479                         for (i = 0; i < edata; i++) {
480                                 hw->eeprom.ops.read(hw, data_offset, &eword);
481                                 hw->phy.ops.write_reg(hw, phy_offset,
482                                                       MDIO_MMD_PMAPMD, eword);
483                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
484                                        phy_offset);
485                                 data_offset++;
486                                 phy_offset++;
487                         }
488                         break;
489                 case IXGBE_CONTROL_NL:
490                         data_offset++;
491                         hw_dbg(hw, "CONTROL: \n");
492                         if (edata == IXGBE_CONTROL_EOL_NL) {
493                                 hw_dbg(hw, "EOL\n");
494                                 end_data = true;
495                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
496                                 hw_dbg(hw, "SOL\n");
497                         } else {
498                                 hw_dbg(hw, "Bad control value\n");
499                                 ret_val = IXGBE_ERR_PHY;
500                                 goto out;
501                         }
502                         break;
503                 default:
504                         hw_dbg(hw, "Bad control type\n");
505                         ret_val = IXGBE_ERR_PHY;
506                         goto out;
507                 }
508         }
509
510 out:
511         return ret_val;
512 }
513
514 /**
515  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
516  *                                      the PHY type.
517  *  @hw: pointer to hardware structure
518  *
519  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
520  **/
521 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
522 {
523         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
524         u32 vendor_oui = 0;
525         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
526         u8 identifier = 0;
527         u8 comp_codes_1g = 0;
528         u8 comp_codes_10g = 0;
529         u8 oui_bytes[3] = {0, 0, 0};
530         u8 cable_tech = 0;
531         u16 enforce_sfp = 0;
532
533         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
534                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
535                 status = IXGBE_ERR_SFP_NOT_PRESENT;
536                 goto out;
537         }
538
539         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
540                                              &identifier);
541
542         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
543                 status = IXGBE_ERR_SFP_NOT_PRESENT;
544                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
545                 if (hw->phy.type != ixgbe_phy_nl) {
546                         hw->phy.id = 0;
547                         hw->phy.type = ixgbe_phy_unknown;
548                 }
549                 goto out;
550         }
551
552         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
553                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
554                                             &comp_codes_1g);
555                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
556                                             &comp_codes_10g);
557                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
558                                             &cable_tech);
559
560                 /* ID Module
561                  * =========
562                  * 0    SFP_DA_CU
563                  * 1    SFP_SR
564                  * 2    SFP_LR
565                  * 3    SFP_DA_CORE0 - 82599-specific
566                  * 4    SFP_DA_CORE1 - 82599-specific
567                  * 5    SFP_SR/LR_CORE0 - 82599-specific
568                  * 6    SFP_SR/LR_CORE1 - 82599-specific
569                  */
570                 if (hw->mac.type == ixgbe_mac_82598EB) {
571                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
572                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
573                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
574                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
575                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
576                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
577                         else
578                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
579                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
580                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
581                                 if (hw->bus.lan_id == 0)
582                                         hw->phy.sfp_type =
583                                                      ixgbe_sfp_type_da_cu_core0;
584                                 else
585                                         hw->phy.sfp_type =
586                                                      ixgbe_sfp_type_da_cu_core1;
587                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
588                                 if (hw->bus.lan_id == 0)
589                                         hw->phy.sfp_type =
590                                                       ixgbe_sfp_type_srlr_core0;
591                                 else
592                                         hw->phy.sfp_type =
593                                                       ixgbe_sfp_type_srlr_core1;
594                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
595                                 if (hw->bus.lan_id == 0)
596                                         hw->phy.sfp_type =
597                                                       ixgbe_sfp_type_srlr_core0;
598                                 else
599                                         hw->phy.sfp_type =
600                                                       ixgbe_sfp_type_srlr_core1;
601                         else
602                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
603                 }
604
605                 if (hw->phy.sfp_type != stored_sfp_type)
606                         hw->phy.sfp_setup_needed = true;
607
608                 /* Determine if the SFP+ PHY is dual speed or not. */
609                 hw->phy.multispeed_fiber = false;
610                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
611                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
612                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
613                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
614                         hw->phy.multispeed_fiber = true;
615
616                 /* Determine PHY vendor */
617                 if (hw->phy.type != ixgbe_phy_nl) {
618                         hw->phy.id = identifier;
619                         hw->phy.ops.read_i2c_eeprom(hw,
620                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
621                                                     &oui_bytes[0]);
622                         hw->phy.ops.read_i2c_eeprom(hw,
623                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
624                                                     &oui_bytes[1]);
625                         hw->phy.ops.read_i2c_eeprom(hw,
626                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
627                                                     &oui_bytes[2]);
628
629                         vendor_oui =
630                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
631                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
632                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
633
634                         switch (vendor_oui) {
635                         case IXGBE_SFF_VENDOR_OUI_TYCO:
636                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
637                                         hw->phy.type = ixgbe_phy_tw_tyco;
638                                 break;
639                         case IXGBE_SFF_VENDOR_OUI_FTL:
640                                 hw->phy.type = ixgbe_phy_sfp_ftl;
641                                 break;
642                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
643                                 hw->phy.type = ixgbe_phy_sfp_avago;
644                                 break;
645                         case IXGBE_SFF_VENDOR_OUI_INTEL:
646                                 hw->phy.type = ixgbe_phy_sfp_intel;
647                                 break;
648                         default:
649                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
650                                         hw->phy.type = ixgbe_phy_tw_unknown;
651                                 else
652                                         hw->phy.type = ixgbe_phy_sfp_unknown;
653                                 break;
654                         }
655                 }
656
657                 /* All passive DA cables are supported */
658                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
659                         status = 0;
660                         goto out;
661                 }
662
663                 /* 1G SFP modules are not supported */
664                 if (comp_codes_10g == 0) {
665                         hw->phy.type = ixgbe_phy_sfp_unsupported;
666                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
667                         goto out;
668                 }
669
670                 /* Anything else 82598-based is supported */
671                 if (hw->mac.type == ixgbe_mac_82598EB) {
672                         status = 0;
673                         goto out;
674                 }
675
676                 /* This is guaranteed to be 82599, no need to check for NULL */
677                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
678                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
679                         /* Make sure we're a supported PHY type */
680                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
681                                 status = 0;
682                         } else {
683                                 hw_dbg(hw, "SFP+ module not supported\n");
684                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
685                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
686                         }
687                 } else {
688                         status = 0;
689                 }
690         }
691
692 out:
693         return status;
694 }
695
696 /**
697  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
698  *  if it supports a given SFP+ module type, if so it returns the offsets to the
699  *  phy init sequence block.
700  *  @hw: pointer to hardware structure
701  *  @list_offset: offset to the SFP ID list
702  *  @data_offset: offset to the SFP data block
703  **/
704 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
705                                         u16 *list_offset,
706                                         u16 *data_offset)
707 {
708         u16 sfp_id;
709
710         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
711                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
712
713         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
714                 return IXGBE_ERR_SFP_NOT_PRESENT;
715
716         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
717             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
718                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
719
720         /* Read offset to PHY init contents */
721         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
722
723         if ((!*list_offset) || (*list_offset == 0xFFFF))
724                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
725
726         /* Shift offset to first ID word */
727         (*list_offset)++;
728
729         /*
730          * Find the matching SFP ID in the EEPROM
731          * and program the init sequence
732          */
733         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
734
735         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
736                 if (sfp_id == hw->phy.sfp_type) {
737                         (*list_offset)++;
738                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
739                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
740                                 hw_dbg(hw, "SFP+ module not supported\n");
741                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
742                         } else {
743                                 break;
744                         }
745                 } else {
746                         (*list_offset) += 2;
747                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
748                                 return IXGBE_ERR_PHY;
749                 }
750         }
751
752         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
753                 hw_dbg(hw, "No matching SFP+ module found\n");
754                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
755         }
756
757         return 0;
758 }
759
760 /**
761  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
762  *  @hw: pointer to hardware structure
763  *  @byte_offset: EEPROM byte offset to read
764  *  @eeprom_data: value read
765  *
766  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
767  **/
768 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
769                                   u8 *eeprom_data)
770 {
771         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
772                                          IXGBE_I2C_EEPROM_DEV_ADDR,
773                                          eeprom_data);
774 }
775
776 /**
777  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
778  *  @hw: pointer to hardware structure
779  *  @byte_offset: EEPROM byte offset to write
780  *  @eeprom_data: value to write
781  *
782  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
783  **/
784 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
785                                    u8 eeprom_data)
786 {
787         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
788                                           IXGBE_I2C_EEPROM_DEV_ADDR,
789                                           eeprom_data);
790 }
791
792 /**
793  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
794  *  @hw: pointer to hardware structure
795  *  @byte_offset: byte offset to read
796  *  @data: value read
797  *
798  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
799  *  a specified deivce address.
800  **/
801 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
802                                 u8 dev_addr, u8 *data)
803 {
804         s32 status = 0;
805         u32 max_retry = 1;
806         u32 retry = 0;
807         bool nack = 1;
808
809         do {
810                 ixgbe_i2c_start(hw);
811
812                 /* Device Address and write indication */
813                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
814                 if (status != 0)
815                         goto fail;
816
817                 status = ixgbe_get_i2c_ack(hw);
818                 if (status != 0)
819                         goto fail;
820
821                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
822                 if (status != 0)
823                         goto fail;
824
825                 status = ixgbe_get_i2c_ack(hw);
826                 if (status != 0)
827                         goto fail;
828
829                 ixgbe_i2c_start(hw);
830
831                 /* Device Address and read indication */
832                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
833                 if (status != 0)
834                         goto fail;
835
836                 status = ixgbe_get_i2c_ack(hw);
837                 if (status != 0)
838                         goto fail;
839
840                 status = ixgbe_clock_in_i2c_byte(hw, data);
841                 if (status != 0)
842                         goto fail;
843
844                 status = ixgbe_clock_out_i2c_bit(hw, nack);
845                 if (status != 0)
846                         goto fail;
847
848                 ixgbe_i2c_stop(hw);
849                 break;
850
851 fail:
852                 ixgbe_i2c_bus_clear(hw);
853                 retry++;
854                 if (retry < max_retry)
855                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
856                 else
857                         hw_dbg(hw, "I2C byte read error.\n");
858
859         } while (retry < max_retry);
860
861         return status;
862 }
863
864 /**
865  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
866  *  @hw: pointer to hardware structure
867  *  @byte_offset: byte offset to write
868  *  @data: value to write
869  *
870  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
871  *  a specified device address.
872  **/
873 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
874                                  u8 dev_addr, u8 data)
875 {
876         s32 status = 0;
877         u32 max_retry = 1;
878         u32 retry = 0;
879
880         do {
881                 ixgbe_i2c_start(hw);
882
883                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
884                 if (status != 0)
885                         goto fail;
886
887                 status = ixgbe_get_i2c_ack(hw);
888                 if (status != 0)
889                         goto fail;
890
891                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
892                 if (status != 0)
893                         goto fail;
894
895                 status = ixgbe_get_i2c_ack(hw);
896                 if (status != 0)
897                         goto fail;
898
899                 status = ixgbe_clock_out_i2c_byte(hw, data);
900                 if (status != 0)
901                         goto fail;
902
903                 status = ixgbe_get_i2c_ack(hw);
904                 if (status != 0)
905                         goto fail;
906
907                 ixgbe_i2c_stop(hw);
908                 break;
909
910 fail:
911                 ixgbe_i2c_bus_clear(hw);
912                 retry++;
913                 if (retry < max_retry)
914                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
915                 else
916                         hw_dbg(hw, "I2C byte write error.\n");
917         } while (retry < max_retry);
918
919         return status;
920 }
921
922 /**
923  *  ixgbe_i2c_start - Sets I2C start condition
924  *  @hw: pointer to hardware structure
925  *
926  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
927  **/
928 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
929 {
930         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
931
932         /* Start condition must begin with data and clock high */
933         ixgbe_set_i2c_data(hw, &i2cctl, 1);
934         ixgbe_raise_i2c_clk(hw, &i2cctl);
935
936         /* Setup time for start condition (4.7us) */
937         udelay(IXGBE_I2C_T_SU_STA);
938
939         ixgbe_set_i2c_data(hw, &i2cctl, 0);
940
941         /* Hold time for start condition (4us) */
942         udelay(IXGBE_I2C_T_HD_STA);
943
944         ixgbe_lower_i2c_clk(hw, &i2cctl);
945
946         /* Minimum low period of clock is 4.7 us */
947         udelay(IXGBE_I2C_T_LOW);
948
949 }
950
951 /**
952  *  ixgbe_i2c_stop - Sets I2C stop condition
953  *  @hw: pointer to hardware structure
954  *
955  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
956  **/
957 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
958 {
959         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
960
961         /* Stop condition must begin with data low and clock high */
962         ixgbe_set_i2c_data(hw, &i2cctl, 0);
963         ixgbe_raise_i2c_clk(hw, &i2cctl);
964
965         /* Setup time for stop condition (4us) */
966         udelay(IXGBE_I2C_T_SU_STO);
967
968         ixgbe_set_i2c_data(hw, &i2cctl, 1);
969
970         /* bus free time between stop and start (4.7us)*/
971         udelay(IXGBE_I2C_T_BUF);
972 }
973
974 /**
975  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
976  *  @hw: pointer to hardware structure
977  *  @data: data byte to clock in
978  *
979  *  Clocks in one byte data via I2C data/clock
980  **/
981 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
982 {
983         s32 status = 0;
984         s32 i;
985         bool bit = 0;
986
987         for (i = 7; i >= 0; i--) {
988                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
989                 *data |= bit << i;
990
991                 if (status != 0)
992                         break;
993         }
994
995         return status;
996 }
997
998 /**
999  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1000  *  @hw: pointer to hardware structure
1001  *  @data: data byte clocked out
1002  *
1003  *  Clocks out one byte data via I2C data/clock
1004  **/
1005 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1006 {
1007         s32 status = 0;
1008         s32 i;
1009         u32 i2cctl;
1010         bool bit = 0;
1011
1012         for (i = 7; i >= 0; i--) {
1013                 bit = (data >> i) & 0x1;
1014                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1015
1016                 if (status != 0)
1017                         break;
1018         }
1019
1020         /* Release SDA line (set high) */
1021         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1022         i2cctl |= IXGBE_I2C_DATA_OUT;
1023         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1024
1025         return status;
1026 }
1027
1028 /**
1029  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1030  *  @hw: pointer to hardware structure
1031  *
1032  *  Clocks in/out one bit via I2C data/clock
1033  **/
1034 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1035 {
1036         s32 status;
1037         u32 i = 0;
1038         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1039         u32 timeout = 10;
1040         bool ack = 1;
1041
1042         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1043
1044         if (status != 0)
1045                 goto out;
1046
1047         /* Minimum high period of clock is 4us */
1048         udelay(IXGBE_I2C_T_HIGH);
1049
1050         /* Poll for ACK.  Note that ACK in I2C spec is
1051          * transition from 1 to 0 */
1052         for (i = 0; i < timeout; i++) {
1053                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1054                 ack = ixgbe_get_i2c_data(&i2cctl);
1055
1056                 udelay(1);
1057                 if (ack == 0)
1058                         break;
1059         }
1060
1061         if (ack == 1) {
1062                 hw_dbg(hw, "I2C ack was not received.\n");
1063                 status = IXGBE_ERR_I2C;
1064         }
1065
1066         ixgbe_lower_i2c_clk(hw, &i2cctl);
1067
1068         /* Minimum low period of clock is 4.7 us */
1069         udelay(IXGBE_I2C_T_LOW);
1070
1071 out:
1072         return status;
1073 }
1074
1075 /**
1076  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1077  *  @hw: pointer to hardware structure
1078  *  @data: read data value
1079  *
1080  *  Clocks in one bit via I2C data/clock
1081  **/
1082 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1083 {
1084         s32 status;
1085         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1086
1087         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1088
1089         /* Minimum high period of clock is 4us */
1090         udelay(IXGBE_I2C_T_HIGH);
1091
1092         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1093         *data = ixgbe_get_i2c_data(&i2cctl);
1094
1095         ixgbe_lower_i2c_clk(hw, &i2cctl);
1096
1097         /* Minimum low period of clock is 4.7 us */
1098         udelay(IXGBE_I2C_T_LOW);
1099
1100         return status;
1101 }
1102
1103 /**
1104  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1105  *  @hw: pointer to hardware structure
1106  *  @data: data value to write
1107  *
1108  *  Clocks out one bit via I2C data/clock
1109  **/
1110 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1111 {
1112         s32 status;
1113         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1114
1115         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1116         if (status == 0) {
1117                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1118
1119                 /* Minimum high period of clock is 4us */
1120                 udelay(IXGBE_I2C_T_HIGH);
1121
1122                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1123
1124                 /* Minimum low period of clock is 4.7 us.
1125                  * This also takes care of the data hold time.
1126                  */
1127                 udelay(IXGBE_I2C_T_LOW);
1128         } else {
1129                 status = IXGBE_ERR_I2C;
1130                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1131         }
1132
1133         return status;
1134 }
1135 /**
1136  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1137  *  @hw: pointer to hardware structure
1138  *  @i2cctl: Current value of I2CCTL register
1139  *
1140  *  Raises the I2C clock line '0'->'1'
1141  **/
1142 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1143 {
1144         s32 status = 0;
1145
1146         *i2cctl |= IXGBE_I2C_CLK_OUT;
1147
1148         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1149
1150         /* SCL rise time (1000ns) */
1151         udelay(IXGBE_I2C_T_RISE);
1152
1153         return status;
1154 }
1155
1156 /**
1157  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1158  *  @hw: pointer to hardware structure
1159  *  @i2cctl: Current value of I2CCTL register
1160  *
1161  *  Lowers the I2C clock line '1'->'0'
1162  **/
1163 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1164 {
1165
1166         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1167
1168         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1169
1170         /* SCL fall time (300ns) */
1171         udelay(IXGBE_I2C_T_FALL);
1172 }
1173
1174 /**
1175  *  ixgbe_set_i2c_data - Sets the I2C data bit
1176  *  @hw: pointer to hardware structure
1177  *  @i2cctl: Current value of I2CCTL register
1178  *  @data: I2C data value (0 or 1) to set
1179  *
1180  *  Sets the I2C data bit
1181  **/
1182 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1183 {
1184         s32 status = 0;
1185
1186         if (data)
1187                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1188         else
1189                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1190
1191         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1192
1193         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1194         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1195
1196         /* Verify data was set correctly */
1197         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1198         if (data != ixgbe_get_i2c_data(i2cctl)) {
1199                 status = IXGBE_ERR_I2C;
1200                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1201         }
1202
1203         return status;
1204 }
1205
1206 /**
1207  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1208  *  @hw: pointer to hardware structure
1209  *  @i2cctl: Current value of I2CCTL register
1210  *
1211  *  Returns the I2C data bit value
1212  **/
1213 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1214 {
1215         bool data;
1216
1217         if (*i2cctl & IXGBE_I2C_DATA_IN)
1218                 data = 1;
1219         else
1220                 data = 0;
1221
1222         return data;
1223 }
1224
1225 /**
1226  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1227  *  @hw: pointer to hardware structure
1228  *
1229  *  Clears the I2C bus by sending nine clock pulses.
1230  *  Used when data line is stuck low.
1231  **/
1232 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1233 {
1234         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1235         u32 i;
1236
1237         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1238
1239         for (i = 0; i < 9; i++) {
1240                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1241
1242                 /* Min high period of clock is 4us */
1243                 udelay(IXGBE_I2C_T_HIGH);
1244
1245                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1246
1247                 /* Min low period of clock is 4.7us*/
1248                 udelay(IXGBE_I2C_T_LOW);
1249         }
1250
1251         /* Put the i2c bus back to default state */
1252         ixgbe_i2c_stop(hw);
1253 }
1254
1255 /**
1256  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1257  *  @hw: pointer to hardware structure
1258  *
1259  *  Reads the VS1 register to determine if link is up and the current speed for
1260  *  the PHY.
1261  **/
1262 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1263                              bool *link_up)
1264 {
1265         s32 status = 0;
1266         u32 time_out;
1267         u32 max_time_out = 10;
1268         u16 phy_link = 0;
1269         u16 phy_speed = 0;
1270         u16 phy_data = 0;
1271
1272         /* Initialize speed and link to default case */
1273         *link_up = false;
1274         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1275
1276         /*
1277          * Check current speed and link status of the PHY register.
1278          * This is a vendor specific register and may have to
1279          * be changed for other copper PHYs.
1280          */
1281         for (time_out = 0; time_out < max_time_out; time_out++) {
1282                 udelay(10);
1283                 status = hw->phy.ops.read_reg(hw,
1284                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1285                                         MDIO_MMD_VEND1,
1286                                         &phy_data);
1287                 phy_link = phy_data &
1288                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1289                 phy_speed = phy_data &
1290                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1291                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1292                         *link_up = true;
1293                         if (phy_speed ==
1294                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1295                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1296                         break;
1297                 }
1298         }
1299
1300         return status;
1301 }
1302
1303 /**
1304  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1305  *  @hw: pointer to hardware structure
1306  *  @firmware_version: pointer to the PHY Firmware Version
1307  **/
1308 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1309                                        u16 *firmware_version)
1310 {
1311         s32 status = 0;
1312
1313         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1314                                       firmware_version);
1315
1316         return status;
1317 }
1318