x86: make e820_end return end_of_ram again for 64bit
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
148 {
149         pud_t *pud;
150         pmd_t *pmd;
151         pte_t *pte;
152
153         pud = pud_page + pud_index(vaddr);
154         if (pud_none(*pud)) {
155                 pmd = (pmd_t *) spp_getpage();
156                 pud_populate(&init_mm, pud, pmd);
157                 if (pmd != pmd_offset(pud, 0)) {
158                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
159                                 pmd, pmd_offset(pud, 0));
160                         return;
161                 }
162         }
163         pmd = pmd_offset(pud, vaddr);
164         if (pmd_none(*pmd)) {
165                 pte = (pte_t *) spp_getpage();
166                 pmd_populate_kernel(&init_mm, pmd, pte);
167                 if (pte != pte_offset_kernel(pmd, 0)) {
168                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
169                         return;
170                 }
171         }
172
173         pte = pte_offset_kernel(pmd, vaddr);
174         if (!pte_none(*pte) && pte_val(new_pte) &&
175             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
176                 pte_ERROR(*pte);
177         set_pte(pte, new_pte);
178
179         /*
180          * It's enough to flush this one mapping.
181          * (PGE mappings get flushed as well)
182          */
183         __flush_tlb_one(vaddr);
184 }
185
186 void
187 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
188 {
189         pgd_t *pgd;
190         pud_t *pud_page;
191
192         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
193
194         pgd = pgd_offset_k(vaddr);
195         if (pgd_none(*pgd)) {
196                 printk(KERN_ERR
197                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
198                 return;
199         }
200         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
201         set_pte_vaddr_pud(pud_page, vaddr, pteval);
202 }
203
204 /*
205  * Create large page table mappings for a range of physical addresses.
206  */
207 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
208                                                 pgprot_t prot)
209 {
210         pgd_t *pgd;
211         pud_t *pud;
212         pmd_t *pmd;
213
214         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
215         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
216                 pgd = pgd_offset_k((unsigned long)__va(phys));
217                 if (pgd_none(*pgd)) {
218                         pud = (pud_t *) spp_getpage();
219                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
220                                                 _PAGE_USER));
221                 }
222                 pud = pud_offset(pgd, (unsigned long)__va(phys));
223                 if (pud_none(*pud)) {
224                         pmd = (pmd_t *) spp_getpage();
225                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
226                                                 _PAGE_USER));
227                 }
228                 pmd = pmd_offset(pud, phys);
229                 BUG_ON(!pmd_none(*pmd));
230                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
231         }
232 }
233
234 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
235 {
236         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
237 }
238
239 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
240 {
241         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
242 }
243
244 /*
245  * The head.S code sets up the kernel high mapping:
246  *
247  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
248  *
249  * phys_addr holds the negative offset to the kernel, which is added
250  * to the compile time generated pmds. This results in invalid pmds up
251  * to the point where we hit the physaddr 0 mapping.
252  *
253  * We limit the mappings to the region from _text to _end.  _end is
254  * rounded up to the 2MB boundary. This catches the invalid pmds as
255  * well, as they are located before _text:
256  */
257 void __init cleanup_highmap(void)
258 {
259         unsigned long vaddr = __START_KERNEL_map;
260         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
261         pmd_t *pmd = level2_kernel_pgt;
262         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
263
264         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
265                 if (pmd_none(*pmd))
266                         continue;
267                 if (vaddr < (unsigned long) _text || vaddr > end)
268                         set_pmd(pmd, __pmd(0));
269         }
270 }
271
272 static unsigned long __initdata table_start;
273 static unsigned long __meminitdata table_end;
274 static unsigned long __meminitdata table_top;
275
276 static __meminit void *alloc_low_page(unsigned long *phys)
277 {
278         unsigned long pfn = table_end++;
279         void *adr;
280
281         if (after_bootmem) {
282                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
283                 *phys = __pa(adr);
284
285                 return adr;
286         }
287
288         if (pfn >= table_top)
289                 panic("alloc_low_page: ran out of memory");
290
291         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
292         memset(adr, 0, PAGE_SIZE);
293         *phys  = pfn * PAGE_SIZE;
294         return adr;
295 }
296
297 static __meminit void unmap_low_page(void *adr)
298 {
299         if (after_bootmem)
300                 return;
301
302         early_iounmap(adr, PAGE_SIZE);
303 }
304
305 static unsigned long __meminit
306 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
307 {
308         unsigned pages = 0;
309         unsigned long last_map_addr = end;
310         int i;
311
312         pte_t *pte = pte_page + pte_index(addr);
313
314         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
315
316                 if (addr >= end) {
317                         if (!after_bootmem) {
318                                 for(; i < PTRS_PER_PTE; i++, pte++)
319                                         set_pte(pte, __pte(0));
320                         }
321                         break;
322                 }
323
324                 if (pte_val(*pte))
325                         continue;
326
327                 if (0)
328                         printk("   pte=%p addr=%lx pte=%016lx\n",
329                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
330                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
331                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
332                 pages++;
333         }
334         update_page_count(PG_LEVEL_4K, pages);
335
336         return last_map_addr;
337 }
338
339 static unsigned long __meminit
340 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
341 {
342         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
343
344         return phys_pte_init(pte, address, end);
345 }
346
347 static unsigned long __meminit
348 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
349                          unsigned long page_size_mask)
350 {
351         unsigned long pages = 0;
352         unsigned long last_map_addr = end;
353
354         int i = pmd_index(address);
355
356         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
357                 unsigned long pte_phys;
358                 pmd_t *pmd = pmd_page + pmd_index(address);
359                 pte_t *pte;
360
361                 if (address >= end) {
362                         if (!after_bootmem) {
363                                 for (; i < PTRS_PER_PMD; i++, pmd++)
364                                         set_pmd(pmd, __pmd(0));
365                         }
366                         break;
367                 }
368
369                 if (pmd_val(*pmd)) {
370                         if (!pmd_large(*pmd))
371                                 last_map_addr = phys_pte_update(pmd, address,
372                                                                  end);
373                         continue;
374                 }
375
376                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
377                         pages++;
378                         set_pte((pte_t *)pmd,
379                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
380                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
381                         continue;
382                 }
383
384                 pte = alloc_low_page(&pte_phys);
385                 last_map_addr = phys_pte_init(pte, address, end);
386                 unmap_low_page(pte);
387
388                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
389         }
390         update_page_count(PG_LEVEL_2M, pages);
391         return last_map_addr;
392 }
393
394 static unsigned long __meminit
395 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
396                          unsigned long page_size_mask)
397 {
398         pmd_t *pmd = pmd_offset(pud, 0);
399         unsigned long last_map_addr;
400
401         spin_lock(&init_mm.page_table_lock);
402         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
403         spin_unlock(&init_mm.page_table_lock);
404         __flush_tlb_all();
405         return last_map_addr;
406 }
407
408 static unsigned long __meminit
409 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
410                          unsigned long page_size_mask)
411 {
412         unsigned long pages = 0;
413         unsigned long last_map_addr = end;
414         int i = pud_index(addr);
415
416         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
417                 unsigned long pmd_phys;
418                 pud_t *pud = pud_page + pud_index(addr);
419                 pmd_t *pmd;
420
421                 if (addr >= end)
422                         break;
423
424                 if (!after_bootmem &&
425                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
426                         set_pud(pud, __pud(0));
427                         continue;
428                 }
429
430                 if (pud_val(*pud)) {
431                         if (!pud_large(*pud))
432                                 last_map_addr = phys_pmd_update(pud, addr, end,
433                                                          page_size_mask);
434                         continue;
435                 }
436
437                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
438                         pages++;
439                         set_pte((pte_t *)pud,
440                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
441                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
442                         continue;
443                 }
444
445                 pmd = alloc_low_page(&pmd_phys);
446
447                 spin_lock(&init_mm.page_table_lock);
448                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
449                 unmap_low_page(pmd);
450                 pud_populate(&init_mm, pud, __va(pmd_phys));
451                 spin_unlock(&init_mm.page_table_lock);
452
453         }
454         __flush_tlb_all();
455         update_page_count(PG_LEVEL_1G, pages);
456
457         return last_map_addr;
458 }
459
460 static unsigned long __meminit
461 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
462                  unsigned long page_size_mask)
463 {
464         pud_t *pud;
465
466         pud = (pud_t *)pgd_page_vaddr(*pgd);
467
468         return phys_pud_init(pud, addr, end, page_size_mask);
469 }
470
471 static void __init find_early_table_space(unsigned long end)
472 {
473         unsigned long puds, pmds, ptes, tables, start;
474
475         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
476         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
477         if (direct_gbpages) {
478                 unsigned long extra;
479                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
480                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
481         } else
482                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
483         tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
484
485         if (cpu_has_pse) {
486                 unsigned long extra;
487                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
488                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
489         } else
490                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
491         tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
492
493         /*
494          * RED-PEN putting page tables only on node 0 could
495          * cause a hotspot and fill up ZONE_DMA. The page tables
496          * need roughly 0.5KB per GB.
497          */
498         start = 0x8000;
499         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
500         if (table_start == -1UL)
501                 panic("Cannot find space for the kernel page tables");
502
503         table_start >>= PAGE_SHIFT;
504         table_end = table_start;
505         table_top = table_start + (tables >> PAGE_SHIFT);
506
507         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
508                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
509 }
510
511 static void __init init_gbpages(void)
512 {
513         if (direct_gbpages && cpu_has_gbpages)
514                 printk(KERN_INFO "Using GB pages for direct mapping\n");
515         else
516                 direct_gbpages = 0;
517 }
518
519 #ifdef CONFIG_MEMTEST
520
521 static void __init memtest(unsigned long start_phys, unsigned long size,
522                                  unsigned pattern)
523 {
524         unsigned long i;
525         unsigned long *start;
526         unsigned long start_bad;
527         unsigned long last_bad;
528         unsigned long val;
529         unsigned long start_phys_aligned;
530         unsigned long count;
531         unsigned long incr;
532
533         switch (pattern) {
534         case 0:
535                 val = 0UL;
536                 break;
537         case 1:
538                 val = -1UL;
539                 break;
540         case 2:
541                 val = 0x5555555555555555UL;
542                 break;
543         case 3:
544                 val = 0xaaaaaaaaaaaaaaaaUL;
545                 break;
546         default:
547                 return;
548         }
549
550         incr = sizeof(unsigned long);
551         start_phys_aligned = ALIGN(start_phys, incr);
552         count = (size - (start_phys_aligned - start_phys))/incr;
553         start = __va(start_phys_aligned);
554         start_bad = 0;
555         last_bad = 0;
556
557         for (i = 0; i < count; i++)
558                 start[i] = val;
559         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
560                 if (*start != val) {
561                         if (start_phys_aligned == last_bad + incr) {
562                                 last_bad += incr;
563                         } else {
564                                 if (start_bad) {
565                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
566                                                 val, start_bad, last_bad + incr);
567                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
568                                 }
569                                 start_bad = last_bad = start_phys_aligned;
570                         }
571                 }
572         }
573         if (start_bad) {
574                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
575                         val, start_bad, last_bad + incr);
576                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
577         }
578
579 }
580
581 /* default is disabled */
582 static int memtest_pattern __initdata;
583
584 static int __init parse_memtest(char *arg)
585 {
586         if (arg)
587                 memtest_pattern = simple_strtoul(arg, NULL, 0);
588         return 0;
589 }
590
591 early_param("memtest", parse_memtest);
592
593 static void __init early_memtest(unsigned long start, unsigned long end)
594 {
595         u64 t_start, t_size;
596         unsigned pattern;
597
598         if (!memtest_pattern)
599                 return;
600
601         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
602         for (pattern = 0; pattern < memtest_pattern; pattern++) {
603                 t_start = start;
604                 t_size = 0;
605                 while (t_start < end) {
606                         t_start = find_e820_area_size(t_start, &t_size, 1);
607
608                         /* done ? */
609                         if (t_start >= end)
610                                 break;
611                         if (t_start + t_size > end)
612                                 t_size = end - t_start;
613
614                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
615                                 (unsigned long long)t_start,
616                                 (unsigned long long)t_start + t_size, pattern);
617
618                         memtest(t_start, t_size, pattern);
619
620                         t_start += t_size;
621                 }
622         }
623         printk(KERN_CONT "\n");
624 }
625 #else
626 static void __init early_memtest(unsigned long start, unsigned long end)
627 {
628 }
629 #endif
630
631 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
632                                                 unsigned long end,
633                                                 unsigned long page_size_mask)
634 {
635
636         unsigned long next, last_map_addr = end;
637
638         start = (unsigned long)__va(start);
639         end = (unsigned long)__va(end);
640
641         for (; start < end; start = next) {
642                 pgd_t *pgd = pgd_offset_k(start);
643                 unsigned long pud_phys;
644                 pud_t *pud;
645
646                 next = start + PGDIR_SIZE;
647                 if (next > end)
648                         next = end;
649
650                 if (pgd_val(*pgd)) {
651                         last_map_addr = phys_pud_update(pgd, __pa(start),
652                                                  __pa(end), page_size_mask);
653                         continue;
654                 }
655
656                 if (after_bootmem)
657                         pud = pud_offset(pgd, start & PGDIR_MASK);
658                 else
659                         pud = alloc_low_page(&pud_phys);
660
661                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
662                                                  page_size_mask);
663                 unmap_low_page(pud);
664                 pgd_populate(&init_mm, pgd_offset_k(start),
665                              __va(pud_phys));
666         }
667
668         return last_map_addr;
669 }
670
671 struct map_range {
672         unsigned long start;
673         unsigned long end;
674         unsigned page_size_mask;
675 };
676
677 #define NR_RANGE_MR 5
678
679 static int save_mr(struct map_range *mr, int nr_range,
680                    unsigned long start_pfn, unsigned long end_pfn,
681                    unsigned long page_size_mask)
682 {
683
684         if (start_pfn < end_pfn) {
685                 if (nr_range >= NR_RANGE_MR)
686                         panic("run out of range for init_memory_mapping\n");
687                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
688                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
689                 mr[nr_range].page_size_mask = page_size_mask;
690                 nr_range++;
691         }
692
693         return nr_range;
694 }
695
696 /*
697  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
698  * This runs before bootmem is initialized and gets pages directly from
699  * the physical memory. To access them they are temporarily mapped.
700  */
701 unsigned long __init_refok init_memory_mapping(unsigned long start,
702                                                unsigned long end)
703 {
704         unsigned long last_map_addr = 0;
705         unsigned long page_size_mask = 0;
706         unsigned long start_pfn, end_pfn;
707
708         struct map_range mr[NR_RANGE_MR];
709         int nr_range, i;
710
711         printk(KERN_INFO "init_memory_mapping\n");
712
713         /*
714          * Find space for the kernel direct mapping tables.
715          *
716          * Later we should allocate these tables in the local node of the
717          * memory mapped. Unfortunately this is done currently before the
718          * nodes are discovered.
719          */
720         if (!after_bootmem)
721                 init_gbpages();
722
723         if (direct_gbpages)
724                 page_size_mask |= 1 << PG_LEVEL_1G;
725         if (cpu_has_pse)
726                 page_size_mask |= 1 << PG_LEVEL_2M;
727
728         memset(mr, 0, sizeof(mr));
729         nr_range = 0;
730
731         /* head if not big page alignment ?*/
732         start_pfn = start >> PAGE_SHIFT;
733         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
734                         << (PMD_SHIFT - PAGE_SHIFT);
735         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
736
737         /* big page (2M) range*/
738         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
739                          << (PMD_SHIFT - PAGE_SHIFT);
740         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
741                          << (PUD_SHIFT - PAGE_SHIFT);
742         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
743                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
744         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
745                         page_size_mask & (1<<PG_LEVEL_2M));
746
747         /* big page (1G) range */
748         start_pfn = end_pfn;
749         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
750         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
751                                 page_size_mask &
752                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
753
754         /* tail is not big page (1G) alignment */
755         start_pfn = end_pfn;
756         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
757         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
758                         page_size_mask & (1<<PG_LEVEL_2M));
759
760         /* tail is not big page (2M) alignment */
761         start_pfn = end_pfn;
762         end_pfn = end>>PAGE_SHIFT;
763         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
764
765         for (i = 0; i < nr_range; i++)
766                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
767                                 mr[i].start, mr[i].end,
768                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
769                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
770
771         if (!after_bootmem)
772                 find_early_table_space(end);
773
774         for (i = 0; i < nr_range; i++)
775                 last_map_addr = kernel_physical_mapping_init(
776                                         mr[i].start, mr[i].end,
777                                         mr[i].page_size_mask);
778
779         if (!after_bootmem)
780                 mmu_cr4_features = read_cr4();
781         __flush_tlb_all();
782
783         if (!after_bootmem && table_end > table_start)
784                 reserve_early(table_start << PAGE_SHIFT,
785                                  table_end << PAGE_SHIFT, "PGTABLE");
786
787         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
788                          last_map_addr, end);
789
790         if (!after_bootmem)
791                 early_memtest(start, end);
792
793         return last_map_addr >> PAGE_SHIFT;
794 }
795
796 #ifndef CONFIG_NUMA
797 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
798 {
799         unsigned long bootmap_size, bootmap;
800
801         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
802         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
803                                  PAGE_SIZE);
804         if (bootmap == -1L)
805                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
806         /* don't touch min_low_pfn */
807         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
808                                          0, end_pfn);
809         e820_register_active_regions(0, start_pfn, end_pfn);
810         free_bootmem_with_active_regions(0, end_pfn);
811         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
812         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
813 }
814
815 void __init paging_init(void)
816 {
817         unsigned long max_zone_pfns[MAX_NR_ZONES];
818
819         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
820         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
821         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
822         max_zone_pfns[ZONE_NORMAL] = max_pfn;
823
824         memory_present(0, 0, max_pfn);
825         sparse_init();
826         free_area_init_nodes(max_zone_pfns);
827 }
828 #endif
829
830 /*
831  * Memory hotplug specific functions
832  */
833 #ifdef CONFIG_MEMORY_HOTPLUG
834 /*
835  * Memory is added always to NORMAL zone. This means you will never get
836  * additional DMA/DMA32 memory.
837  */
838 int arch_add_memory(int nid, u64 start, u64 size)
839 {
840         struct pglist_data *pgdat = NODE_DATA(nid);
841         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
842         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
843         unsigned long nr_pages = size >> PAGE_SHIFT;
844         int ret;
845
846         last_mapped_pfn = init_memory_mapping(start, start + size-1);
847         if (last_mapped_pfn > max_pfn_mapped)
848                 max_pfn_mapped = last_mapped_pfn;
849
850         ret = __add_pages(zone, start_pfn, nr_pages);
851         WARN_ON(1);
852
853         return ret;
854 }
855 EXPORT_SYMBOL_GPL(arch_add_memory);
856
857 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
858 int memory_add_physaddr_to_nid(u64 start)
859 {
860         return 0;
861 }
862 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
863 #endif
864
865 #endif /* CONFIG_MEMORY_HOTPLUG */
866
867 /*
868  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
869  * is valid. The argument is a physical page number.
870  *
871  *
872  * On x86, access has to be given to the first megabyte of ram because that area
873  * contains bios code and data regions used by X and dosemu and similar apps.
874  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
875  * mmio resources as well as potential bios/acpi data regions.
876  */
877 int devmem_is_allowed(unsigned long pagenr)
878 {
879         if (pagenr <= 256)
880                 return 1;
881         if (!page_is_ram(pagenr))
882                 return 1;
883         return 0;
884 }
885
886
887 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
888                          kcore_modules, kcore_vsyscall;
889
890 void __init mem_init(void)
891 {
892         long codesize, reservedpages, datasize, initsize;
893
894         pci_iommu_alloc();
895
896         /* clear_bss() already clear the empty_zero_page */
897
898         reservedpages = 0;
899
900         /* this will put all low memory onto the freelists */
901 #ifdef CONFIG_NUMA
902         totalram_pages = numa_free_all_bootmem();
903 #else
904         totalram_pages = free_all_bootmem();
905 #endif
906         reservedpages = max_pfn - totalram_pages -
907                                         absent_pages_in_range(0, max_pfn);
908         after_bootmem = 1;
909
910         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
911         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
912         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
913
914         /* Register memory areas for /proc/kcore */
915         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
916         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
917                    VMALLOC_END-VMALLOC_START);
918         kclist_add(&kcore_kernel, &_stext, _end - _stext);
919         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
920         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
921                                  VSYSCALL_END - VSYSCALL_START);
922
923         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
924                                 "%ldk reserved, %ldk data, %ldk init)\n",
925                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
926                 max_pfn << (PAGE_SHIFT-10),
927                 codesize >> 10,
928                 reservedpages << (PAGE_SHIFT-10),
929                 datasize >> 10,
930                 initsize >> 10);
931
932         cpa_init();
933 }
934
935 void free_init_pages(char *what, unsigned long begin, unsigned long end)
936 {
937         unsigned long addr = begin;
938
939         if (addr >= end)
940                 return;
941
942         /*
943          * If debugging page accesses then do not free this memory but
944          * mark them not present - any buggy init-section access will
945          * create a kernel page fault:
946          */
947 #ifdef CONFIG_DEBUG_PAGEALLOC
948         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
949                 begin, PAGE_ALIGN(end));
950         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
951 #else
952         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
953
954         for (; addr < end; addr += PAGE_SIZE) {
955                 ClearPageReserved(virt_to_page(addr));
956                 init_page_count(virt_to_page(addr));
957                 memset((void *)(addr & ~(PAGE_SIZE-1)),
958                         POISON_FREE_INITMEM, PAGE_SIZE);
959                 free_page(addr);
960                 totalram_pages++;
961         }
962 #endif
963 }
964
965 void free_initmem(void)
966 {
967         free_init_pages("unused kernel memory",
968                         (unsigned long)(&__init_begin),
969                         (unsigned long)(&__init_end));
970 }
971
972 #ifdef CONFIG_DEBUG_RODATA
973 const int rodata_test_data = 0xC3;
974 EXPORT_SYMBOL_GPL(rodata_test_data);
975
976 void mark_rodata_ro(void)
977 {
978         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
979
980         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
981                (end - start) >> 10);
982         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
983
984         /*
985          * The rodata section (but not the kernel text!) should also be
986          * not-executable.
987          */
988         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
989         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
990
991         rodata_test();
992
993 #ifdef CONFIG_CPA_DEBUG
994         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
995         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
996
997         printk(KERN_INFO "Testing CPA: again\n");
998         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
999 #endif
1000 }
1001
1002 #endif
1003
1004 #ifdef CONFIG_BLK_DEV_INITRD
1005 void free_initrd_mem(unsigned long start, unsigned long end)
1006 {
1007         free_init_pages("initrd memory", start, end);
1008 }
1009 #endif
1010
1011 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1012                                    int flags)
1013 {
1014 #ifdef CONFIG_NUMA
1015         int nid, next_nid;
1016         int ret;
1017 #endif
1018         unsigned long pfn = phys >> PAGE_SHIFT;
1019
1020         if (pfn >= max_pfn) {
1021                 /*
1022                  * This can happen with kdump kernels when accessing
1023                  * firmware tables:
1024                  */
1025                 if (pfn < max_pfn_mapped)
1026                         return -EFAULT;
1027
1028                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1029                                 phys, len);
1030                 return -EFAULT;
1031         }
1032
1033         /* Should check here against the e820 map to avoid double free */
1034 #ifdef CONFIG_NUMA
1035         nid = phys_to_nid(phys);
1036         next_nid = phys_to_nid(phys + len - 1);
1037         if (nid == next_nid)
1038                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1039         else
1040                 ret = reserve_bootmem(phys, len, flags);
1041
1042         if (ret != 0)
1043                 return ret;
1044
1045 #else
1046         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1047 #endif
1048
1049         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1050                 dma_reserve += len / PAGE_SIZE;
1051                 set_dma_reserve(dma_reserve);
1052         }
1053
1054         return 0;
1055 }
1056
1057 int kern_addr_valid(unsigned long addr)
1058 {
1059         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1060         pgd_t *pgd;
1061         pud_t *pud;
1062         pmd_t *pmd;
1063         pte_t *pte;
1064
1065         if (above != 0 && above != -1UL)
1066                 return 0;
1067
1068         pgd = pgd_offset_k(addr);
1069         if (pgd_none(*pgd))
1070                 return 0;
1071
1072         pud = pud_offset(pgd, addr);
1073         if (pud_none(*pud))
1074                 return 0;
1075
1076         pmd = pmd_offset(pud, addr);
1077         if (pmd_none(*pmd))
1078                 return 0;
1079
1080         if (pmd_large(*pmd))
1081                 return pfn_valid(pmd_pfn(*pmd));
1082
1083         pte = pte_offset_kernel(pmd, addr);
1084         if (pte_none(*pte))
1085                 return 0;
1086
1087         return pfn_valid(pte_pfn(*pte));
1088 }
1089
1090 /*
1091  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1092  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1093  * not need special handling anymore:
1094  */
1095 static struct vm_area_struct gate_vma = {
1096         .vm_start       = VSYSCALL_START,
1097         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1098         .vm_page_prot   = PAGE_READONLY_EXEC,
1099         .vm_flags       = VM_READ | VM_EXEC
1100 };
1101
1102 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1103 {
1104 #ifdef CONFIG_IA32_EMULATION
1105         if (test_tsk_thread_flag(tsk, TIF_IA32))
1106                 return NULL;
1107 #endif
1108         return &gate_vma;
1109 }
1110
1111 int in_gate_area(struct task_struct *task, unsigned long addr)
1112 {
1113         struct vm_area_struct *vma = get_gate_vma(task);
1114
1115         if (!vma)
1116                 return 0;
1117
1118         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1119 }
1120
1121 /*
1122  * Use this when you have no reliable task/vma, typically from interrupt
1123  * context. It is less reliable than using the task's vma and may give
1124  * false positives:
1125  */
1126 int in_gate_area_no_task(unsigned long addr)
1127 {
1128         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1129 }
1130
1131 const char *arch_vma_name(struct vm_area_struct *vma)
1132 {
1133         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1134                 return "[vdso]";
1135         if (vma == &gate_vma)
1136                 return "[vsyscall]";
1137         return NULL;
1138 }
1139
1140 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1141 /*
1142  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1143  */
1144 static long __meminitdata addr_start, addr_end;
1145 static void __meminitdata *p_start, *p_end;
1146 static int __meminitdata node_start;
1147
1148 int __meminit
1149 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1150 {
1151         unsigned long addr = (unsigned long)start_page;
1152         unsigned long end = (unsigned long)(start_page + size);
1153         unsigned long next;
1154         pgd_t *pgd;
1155         pud_t *pud;
1156         pmd_t *pmd;
1157
1158         for (; addr < end; addr = next) {
1159                 void *p = NULL;
1160
1161                 pgd = vmemmap_pgd_populate(addr, node);
1162                 if (!pgd)
1163                         return -ENOMEM;
1164
1165                 pud = vmemmap_pud_populate(pgd, addr, node);
1166                 if (!pud)
1167                         return -ENOMEM;
1168
1169                 if (!cpu_has_pse) {
1170                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1171                         pmd = vmemmap_pmd_populate(pud, addr, node);
1172
1173                         if (!pmd)
1174                                 return -ENOMEM;
1175
1176                         p = vmemmap_pte_populate(pmd, addr, node);
1177
1178                         if (!p)
1179                                 return -ENOMEM;
1180
1181                         addr_end = addr + PAGE_SIZE;
1182                         p_end = p + PAGE_SIZE;
1183                 } else {
1184                         next = pmd_addr_end(addr, end);
1185
1186                         pmd = pmd_offset(pud, addr);
1187                         if (pmd_none(*pmd)) {
1188                                 pte_t entry;
1189
1190                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1191                                 if (!p)
1192                                         return -ENOMEM;
1193
1194                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1195                                                 PAGE_KERNEL_LARGE);
1196                                 set_pmd(pmd, __pmd(pte_val(entry)));
1197
1198                                 /* check to see if we have contiguous blocks */
1199                                 if (p_end != p || node_start != node) {
1200                                         if (p_start)
1201                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1202                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1203                                         addr_start = addr;
1204                                         node_start = node;
1205                                         p_start = p;
1206                                 }
1207
1208                                 addr_end = addr + PMD_SIZE;
1209                                 p_end = p + PMD_SIZE;
1210                         } else
1211                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1212                 }
1213
1214         }
1215         return 0;
1216 }
1217
1218 void __meminit vmemmap_populate_print_last(void)
1219 {
1220         if (p_start) {
1221                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1222                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1223                 p_start = NULL;
1224                 p_end = NULL;
1225                 node_start = 0;
1226         }
1227 }
1228 #endif