Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2  * Common Flash Interface support:
3  *   Intel Extended Vendor Command Set (ID 0x0001)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  *
8  * 10/10/2000   Nicolas Pitre <nico@cam.org>
9  *      - completely revamped method functions so they are aware and
10  *        independent of the flash geometry (buswidth, interleave, etc.)
11  *      - scalability vs code size is completely set at compile-time
12  *        (see include/linux/mtd/cfi.h for selection)
13  *      - optimized write buffer method
14  * 02/05/2002   Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15  *      - reworked lock/unlock/erase support for var size flash
16  * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
17  *      - auto unlock sectors on resume for auto locking flash on power up
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/cfi.h>
39
40 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
41 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42
43 // debugging, turns off buffer write mode if set to 1
44 #define FORCE_WORD_WRITE 0
45
46 #define MANUFACTURER_INTEL      0x0089
47 #define I82802AB        0x00ad
48 #define I82802AC        0x00ac
49 #define MANUFACTURER_ST         0x0020
50 #define M50LPW080       0x002F
51 #define M50FLW080A      0x0080
52 #define M50FLW080B      0x0081
53 #define AT49BV640D      0x02de
54
55 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
59 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_intelext_sync (struct mtd_info *);
61 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
62 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
63 #ifdef CONFIG_MTD_OTP
64 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
67 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
68 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
69                                             struct otp_info *, size_t);
70 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
71                                             struct otp_info *, size_t);
72 #endif
73 static int cfi_intelext_suspend (struct mtd_info *);
74 static void cfi_intelext_resume (struct mtd_info *);
75 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
76
77 static void cfi_intelext_destroy(struct mtd_info *);
78
79 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
80
81 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
82 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
83
84 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
85                      size_t *retlen, void **virt, resource_size_t *phys);
86 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
87
88 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
89 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
90 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
91 #include "fwh_lock.h"
92
93
94
95 /*
96  *  *********** SETUP AND PROBE BITS  ***********
97  */
98
99 static struct mtd_chip_driver cfi_intelext_chipdrv = {
100         .probe          = NULL, /* Not usable directly */
101         .destroy        = cfi_intelext_destroy,
102         .name           = "cfi_cmdset_0001",
103         .module         = THIS_MODULE
104 };
105
106 /* #define DEBUG_LOCK_BITS */
107 /* #define DEBUG_CFI_FEATURES */
108
109 #ifdef DEBUG_CFI_FEATURES
110 static void cfi_tell_features(struct cfi_pri_intelext *extp)
111 {
112         int i;
113         printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
114         printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
115         printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
116         printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
117         printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
118         printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
119         printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
120         printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
121         printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
122         printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
123         printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
124         printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
125         printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
126         for (i=11; i<32; i++) {
127                 if (extp->FeatureSupport & (1<<i))
128                         printk("     - Unknown Bit %X:      supported\n", i);
129         }
130
131         printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
132         printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
133         for (i=1; i<8; i++) {
134                 if (extp->SuspendCmdSupport & (1<<i))
135                         printk("     - Unknown Bit %X:               supported\n", i);
136         }
137
138         printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
139         printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
140         printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
141         for (i=2; i<3; i++) {
142                 if (extp->BlkStatusRegMask & (1<<i))
143                         printk("     - Unknown Bit %X Active: yes\n",i);
144         }
145         printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
146         printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
147         for (i=6; i<16; i++) {
148                 if (extp->BlkStatusRegMask & (1<<i))
149                         printk("     - Unknown Bit %X Active: yes\n",i);
150         }
151
152         printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
153                extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
154         if (extp->VppOptimal)
155                 printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
156                        extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
157 }
158 #endif
159
160 /* Atmel chips don't use the same PRI format as Intel chips */
161 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
162 {
163         struct map_info *map = mtd->priv;
164         struct cfi_private *cfi = map->fldrv_priv;
165         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
166         struct cfi_pri_atmel atmel_pri;
167         uint32_t features = 0;
168
169         /* Reverse byteswapping */
170         extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
171         extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
172         extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
173
174         memcpy(&atmel_pri, extp, sizeof(atmel_pri));
175         memset((char *)extp + 5, 0, sizeof(*extp) - 5);
176
177         printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
178
179         if (atmel_pri.Features & 0x01) /* chip erase supported */
180                 features |= (1<<0);
181         if (atmel_pri.Features & 0x02) /* erase suspend supported */
182                 features |= (1<<1);
183         if (atmel_pri.Features & 0x04) /* program suspend supported */
184                 features |= (1<<2);
185         if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
186                 features |= (1<<9);
187         if (atmel_pri.Features & 0x20) /* page mode read supported */
188                 features |= (1<<7);
189         if (atmel_pri.Features & 0x40) /* queued erase supported */
190                 features |= (1<<4);
191         if (atmel_pri.Features & 0x80) /* Protection bits supported */
192                 features |= (1<<6);
193
194         extp->FeatureSupport = features;
195
196         /* burst write mode not supported */
197         cfi->cfiq->BufWriteTimeoutTyp = 0;
198         cfi->cfiq->BufWriteTimeoutMax = 0;
199 }
200
201 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
202 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
203 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
204 {
205         struct map_info *map = mtd->priv;
206         struct cfi_private *cfi = map->fldrv_priv;
207         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
208
209         printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
210                             "erase on write disabled.\n");
211         extp->SuspendCmdSupport &= ~1;
212 }
213 #endif
214
215 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
216 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
217 {
218         struct map_info *map = mtd->priv;
219         struct cfi_private *cfi = map->fldrv_priv;
220         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
221
222         if (cfip && (cfip->FeatureSupport&4)) {
223                 cfip->FeatureSupport &= ~4;
224                 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
225         }
226 }
227 #endif
228
229 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
230 {
231         struct map_info *map = mtd->priv;
232         struct cfi_private *cfi = map->fldrv_priv;
233
234         cfi->cfiq->BufWriteTimeoutTyp = 0;      /* Not supported */
235         cfi->cfiq->BufWriteTimeoutMax = 0;      /* Not supported */
236 }
237
238 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
239 {
240         struct map_info *map = mtd->priv;
241         struct cfi_private *cfi = map->fldrv_priv;
242
243         /* Note this is done after the region info is endian swapped */
244         cfi->cfiq->EraseRegionInfo[1] =
245                 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
246 };
247
248 static void fixup_use_point(struct mtd_info *mtd, void *param)
249 {
250         struct map_info *map = mtd->priv;
251         if (!mtd->point && map_is_linear(map)) {
252                 mtd->point   = cfi_intelext_point;
253                 mtd->unpoint = cfi_intelext_unpoint;
254         }
255 }
256
257 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
258 {
259         struct map_info *map = mtd->priv;
260         struct cfi_private *cfi = map->fldrv_priv;
261         if (cfi->cfiq->BufWriteTimeoutTyp) {
262                 printk(KERN_INFO "Using buffer write method\n" );
263                 mtd->write = cfi_intelext_write_buffers;
264                 mtd->writev = cfi_intelext_writev;
265         }
266 }
267
268 /*
269  * Some chips power-up with all sectors locked by default.
270  */
271 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
272 {
273         struct map_info *map = mtd->priv;
274         struct cfi_private *cfi = map->fldrv_priv;
275         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
276
277         if (cfip->FeatureSupport&32) {
278                 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
279                 mtd->flags |= MTD_POWERUP_LOCK;
280         }
281 }
282
283 static struct cfi_fixup cfi_fixup_table[] = {
284         { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
285 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
286         { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
287 #endif
288 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
289         { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
290 #endif
291 #if !FORCE_WORD_WRITE
292         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
293 #endif
294         { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
295         { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
296         { MANUFACTURER_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
297         { 0, 0, NULL, NULL }
298 };
299
300 static struct cfi_fixup jedec_fixup_table[] = {
301         { MANUFACTURER_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, },
302         { MANUFACTURER_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, },
303         { MANUFACTURER_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, },
304         { MANUFACTURER_ST,    M50FLW080A, fixup_use_fwh_lock, NULL, },
305         { MANUFACTURER_ST,    M50FLW080B, fixup_use_fwh_lock, NULL, },
306         { 0, 0, NULL, NULL }
307 };
308 static struct cfi_fixup fixup_table[] = {
309         /* The CFI vendor ids and the JEDEC vendor IDs appear
310          * to be common.  It is like the devices id's are as
311          * well.  This table is to pick all cases where
312          * we know that is the case.
313          */
314         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
315         { 0, 0, NULL, NULL }
316 };
317
318 static inline struct cfi_pri_intelext *
319 read_pri_intelext(struct map_info *map, __u16 adr)
320 {
321         struct cfi_pri_intelext *extp;
322         unsigned int extp_size = sizeof(*extp);
323
324  again:
325         extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
326         if (!extp)
327                 return NULL;
328
329         if (extp->MajorVersion != '1' ||
330             (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
331                 printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
332                        "version %c.%c.\n",  extp->MajorVersion,
333                        extp->MinorVersion);
334                 kfree(extp);
335                 return NULL;
336         }
337
338         /* Do some byteswapping if necessary */
339         extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
340         extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
341         extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
342
343         if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
344                 unsigned int extra_size = 0;
345                 int nb_parts, i;
346
347                 /* Protection Register info */
348                 extra_size += (extp->NumProtectionFields - 1) *
349                               sizeof(struct cfi_intelext_otpinfo);
350
351                 /* Burst Read info */
352                 extra_size += 2;
353                 if (extp_size < sizeof(*extp) + extra_size)
354                         goto need_more;
355                 extra_size += extp->extra[extra_size-1];
356
357                 /* Number of hardware-partitions */
358                 extra_size += 1;
359                 if (extp_size < sizeof(*extp) + extra_size)
360                         goto need_more;
361                 nb_parts = extp->extra[extra_size - 1];
362
363                 /* skip the sizeof(partregion) field in CFI 1.4 */
364                 if (extp->MinorVersion >= '4')
365                         extra_size += 2;
366
367                 for (i = 0; i < nb_parts; i++) {
368                         struct cfi_intelext_regioninfo *rinfo;
369                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
370                         extra_size += sizeof(*rinfo);
371                         if (extp_size < sizeof(*extp) + extra_size)
372                                 goto need_more;
373                         rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
374                         extra_size += (rinfo->NumBlockTypes - 1)
375                                       * sizeof(struct cfi_intelext_blockinfo);
376                 }
377
378                 if (extp->MinorVersion >= '4')
379                         extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
380
381                 if (extp_size < sizeof(*extp) + extra_size) {
382                         need_more:
383                         extp_size = sizeof(*extp) + extra_size;
384                         kfree(extp);
385                         if (extp_size > 4096) {
386                                 printk(KERN_ERR
387                                         "%s: cfi_pri_intelext is too fat\n",
388                                         __func__);
389                                 return NULL;
390                         }
391                         goto again;
392                 }
393         }
394
395         return extp;
396 }
397
398 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
399 {
400         struct cfi_private *cfi = map->fldrv_priv;
401         struct mtd_info *mtd;
402         int i;
403
404         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
405         if (!mtd) {
406                 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
407                 return NULL;
408         }
409         mtd->priv = map;
410         mtd->type = MTD_NORFLASH;
411
412         /* Fill in the default mtd operations */
413         mtd->erase   = cfi_intelext_erase_varsize;
414         mtd->read    = cfi_intelext_read;
415         mtd->write   = cfi_intelext_write_words;
416         mtd->sync    = cfi_intelext_sync;
417         mtd->lock    = cfi_intelext_lock;
418         mtd->unlock  = cfi_intelext_unlock;
419         mtd->suspend = cfi_intelext_suspend;
420         mtd->resume  = cfi_intelext_resume;
421         mtd->flags   = MTD_CAP_NORFLASH;
422         mtd->name    = map->name;
423         mtd->writesize = 1;
424
425         mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
426
427         if (cfi->cfi_mode == CFI_MODE_CFI) {
428                 /*
429                  * It's a real CFI chip, not one for which the probe
430                  * routine faked a CFI structure. So we read the feature
431                  * table from it.
432                  */
433                 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
434                 struct cfi_pri_intelext *extp;
435
436                 extp = read_pri_intelext(map, adr);
437                 if (!extp) {
438                         kfree(mtd);
439                         return NULL;
440                 }
441
442                 /* Install our own private info structure */
443                 cfi->cmdset_priv = extp;
444
445                 cfi_fixup(mtd, cfi_fixup_table);
446
447 #ifdef DEBUG_CFI_FEATURES
448                 /* Tell the user about it in lots of lovely detail */
449                 cfi_tell_features(extp);
450 #endif
451
452                 if(extp->SuspendCmdSupport & 1) {
453                         printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
454                 }
455         }
456         else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
457                 /* Apply jedec specific fixups */
458                 cfi_fixup(mtd, jedec_fixup_table);
459         }
460         /* Apply generic fixups */
461         cfi_fixup(mtd, fixup_table);
462
463         for (i=0; i< cfi->numchips; i++) {
464                 if (cfi->cfiq->WordWriteTimeoutTyp)
465                         cfi->chips[i].word_write_time =
466                                 1<<cfi->cfiq->WordWriteTimeoutTyp;
467                 else
468                         cfi->chips[i].word_write_time = 50000;
469
470                 if (cfi->cfiq->BufWriteTimeoutTyp)
471                         cfi->chips[i].buffer_write_time =
472                                 1<<cfi->cfiq->BufWriteTimeoutTyp;
473                 /* No default; if it isn't specified, we won't use it */
474
475                 if (cfi->cfiq->BlockEraseTimeoutTyp)
476                         cfi->chips[i].erase_time =
477                                 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
478                 else
479                         cfi->chips[i].erase_time = 2000000;
480
481                 if (cfi->cfiq->WordWriteTimeoutTyp &&
482                     cfi->cfiq->WordWriteTimeoutMax)
483                         cfi->chips[i].word_write_time_max =
484                                 1<<(cfi->cfiq->WordWriteTimeoutTyp +
485                                     cfi->cfiq->WordWriteTimeoutMax);
486                 else
487                         cfi->chips[i].word_write_time_max = 50000 * 8;
488
489                 if (cfi->cfiq->BufWriteTimeoutTyp &&
490                     cfi->cfiq->BufWriteTimeoutMax)
491                         cfi->chips[i].buffer_write_time_max =
492                                 1<<(cfi->cfiq->BufWriteTimeoutTyp +
493                                     cfi->cfiq->BufWriteTimeoutMax);
494
495                 if (cfi->cfiq->BlockEraseTimeoutTyp &&
496                     cfi->cfiq->BlockEraseTimeoutMax)
497                         cfi->chips[i].erase_time_max =
498                                 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
499                                        cfi->cfiq->BlockEraseTimeoutMax);
500                 else
501                         cfi->chips[i].erase_time_max = 2000000 * 8;
502
503                 cfi->chips[i].ref_point_counter = 0;
504                 init_waitqueue_head(&(cfi->chips[i].wq));
505         }
506
507         map->fldrv = &cfi_intelext_chipdrv;
508
509         return cfi_intelext_setup(mtd);
510 }
511 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
512 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
513 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
514 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
515 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
516
517 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
518 {
519         struct map_info *map = mtd->priv;
520         struct cfi_private *cfi = map->fldrv_priv;
521         unsigned long offset = 0;
522         int i,j;
523         unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
524
525         //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
526
527         mtd->size = devsize * cfi->numchips;
528
529         mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
530         mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
531                         * mtd->numeraseregions, GFP_KERNEL);
532         if (!mtd->eraseregions) {
533                 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
534                 goto setup_err;
535         }
536
537         for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
538                 unsigned long ernum, ersize;
539                 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
540                 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
541
542                 if (mtd->erasesize < ersize) {
543                         mtd->erasesize = ersize;
544                 }
545                 for (j=0; j<cfi->numchips; j++) {
546                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
547                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
548                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
549                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
550                 }
551                 offset += (ersize * ernum);
552         }
553
554         if (offset != devsize) {
555                 /* Argh */
556                 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
557                 goto setup_err;
558         }
559
560         for (i=0; i<mtd->numeraseregions;i++){
561                 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
562                        i,mtd->eraseregions[i].offset,
563                        mtd->eraseregions[i].erasesize,
564                        mtd->eraseregions[i].numblocks);
565         }
566
567 #ifdef CONFIG_MTD_OTP
568         mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
569         mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
570         mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
571         mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
572         mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
573         mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
574 #endif
575
576         /* This function has the potential to distort the reality
577            a bit and therefore should be called last. */
578         if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
579                 goto setup_err;
580
581         __module_get(THIS_MODULE);
582         register_reboot_notifier(&mtd->reboot_notifier);
583         return mtd;
584
585  setup_err:
586         if(mtd) {
587                 kfree(mtd->eraseregions);
588                 kfree(mtd);
589         }
590         kfree(cfi->cmdset_priv);
591         return NULL;
592 }
593
594 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
595                                         struct cfi_private **pcfi)
596 {
597         struct map_info *map = mtd->priv;
598         struct cfi_private *cfi = *pcfi;
599         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
600
601         /*
602          * Probing of multi-partition flash chips.
603          *
604          * To support multiple partitions when available, we simply arrange
605          * for each of them to have their own flchip structure even if they
606          * are on the same physical chip.  This means completely recreating
607          * a new cfi_private structure right here which is a blatent code
608          * layering violation, but this is still the least intrusive
609          * arrangement at this point. This can be rearranged in the future
610          * if someone feels motivated enough.  --nico
611          */
612         if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
613             && extp->FeatureSupport & (1 << 9)) {
614                 struct cfi_private *newcfi;
615                 struct flchip *chip;
616                 struct flchip_shared *shared;
617                 int offs, numregions, numparts, partshift, numvirtchips, i, j;
618
619                 /* Protection Register info */
620                 offs = (extp->NumProtectionFields - 1) *
621                        sizeof(struct cfi_intelext_otpinfo);
622
623                 /* Burst Read info */
624                 offs += extp->extra[offs+1]+2;
625
626                 /* Number of partition regions */
627                 numregions = extp->extra[offs];
628                 offs += 1;
629
630                 /* skip the sizeof(partregion) field in CFI 1.4 */
631                 if (extp->MinorVersion >= '4')
632                         offs += 2;
633
634                 /* Number of hardware partitions */
635                 numparts = 0;
636                 for (i = 0; i < numregions; i++) {
637                         struct cfi_intelext_regioninfo *rinfo;
638                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
639                         numparts += rinfo->NumIdentPartitions;
640                         offs += sizeof(*rinfo)
641                                 + (rinfo->NumBlockTypes - 1) *
642                                   sizeof(struct cfi_intelext_blockinfo);
643                 }
644
645                 if (!numparts)
646                         numparts = 1;
647
648                 /* Programming Region info */
649                 if (extp->MinorVersion >= '4') {
650                         struct cfi_intelext_programming_regioninfo *prinfo;
651                         prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
652                         mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
653                         mtd->flags &= ~MTD_BIT_WRITEABLE;
654                         printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
655                                map->name, mtd->writesize,
656                                cfi->interleave * prinfo->ControlValid,
657                                cfi->interleave * prinfo->ControlInvalid);
658                 }
659
660                 /*
661                  * All functions below currently rely on all chips having
662                  * the same geometry so we'll just assume that all hardware
663                  * partitions are of the same size too.
664                  */
665                 partshift = cfi->chipshift - __ffs(numparts);
666
667                 if ((1 << partshift) < mtd->erasesize) {
668                         printk( KERN_ERR
669                                 "%s: bad number of hw partitions (%d)\n",
670                                 __func__, numparts);
671                         return -EINVAL;
672                 }
673
674                 numvirtchips = cfi->numchips * numparts;
675                 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
676                 if (!newcfi)
677                         return -ENOMEM;
678                 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
679                 if (!shared) {
680                         kfree(newcfi);
681                         return -ENOMEM;
682                 }
683                 memcpy(newcfi, cfi, sizeof(struct cfi_private));
684                 newcfi->numchips = numvirtchips;
685                 newcfi->chipshift = partshift;
686
687                 chip = &newcfi->chips[0];
688                 for (i = 0; i < cfi->numchips; i++) {
689                         shared[i].writing = shared[i].erasing = NULL;
690                         spin_lock_init(&shared[i].lock);
691                         for (j = 0; j < numparts; j++) {
692                                 *chip = cfi->chips[i];
693                                 chip->start += j << partshift;
694                                 chip->priv = &shared[i];
695                                 /* those should be reset too since
696                                    they create memory references. */
697                                 init_waitqueue_head(&chip->wq);
698                                 spin_lock_init(&chip->_spinlock);
699                                 chip->mutex = &chip->_spinlock;
700                                 chip++;
701                         }
702                 }
703
704                 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
705                                   "--> %d partitions of %d KiB\n",
706                                   map->name, cfi->numchips, cfi->interleave,
707                                   newcfi->numchips, 1<<(newcfi->chipshift-10));
708
709                 map->fldrv_priv = newcfi;
710                 *pcfi = newcfi;
711                 kfree(cfi);
712         }
713
714         return 0;
715 }
716
717 /*
718  *  *********** CHIP ACCESS FUNCTIONS ***********
719  */
720 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
721 {
722         DECLARE_WAITQUEUE(wait, current);
723         struct cfi_private *cfi = map->fldrv_priv;
724         map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
725         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
726         unsigned long timeo = jiffies + HZ;
727
728         /* Prevent setting state FL_SYNCING for chip in suspended state. */
729         if (mode == FL_SYNCING && chip->oldstate != FL_READY)
730                 goto sleep;
731
732         switch (chip->state) {
733
734         case FL_STATUS:
735                 for (;;) {
736                         status = map_read(map, adr);
737                         if (map_word_andequal(map, status, status_OK, status_OK))
738                                 break;
739
740                         /* At this point we're fine with write operations
741                            in other partitions as they don't conflict. */
742                         if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
743                                 break;
744
745                         spin_unlock(chip->mutex);
746                         cfi_udelay(1);
747                         spin_lock(chip->mutex);
748                         /* Someone else might have been playing with it. */
749                         return -EAGAIN;
750                 }
751                 /* Fall through */
752         case FL_READY:
753         case FL_CFI_QUERY:
754         case FL_JEDEC_QUERY:
755                 return 0;
756
757         case FL_ERASING:
758                 if (!cfip ||
759                     !(cfip->FeatureSupport & 2) ||
760                     !(mode == FL_READY || mode == FL_POINT ||
761                      (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
762                         goto sleep;
763
764
765                 /* Erase suspend */
766                 map_write(map, CMD(0xB0), adr);
767
768                 /* If the flash has finished erasing, then 'erase suspend'
769                  * appears to make some (28F320) flash devices switch to
770                  * 'read' mode.  Make sure that we switch to 'read status'
771                  * mode so we get the right data. --rmk
772                  */
773                 map_write(map, CMD(0x70), adr);
774                 chip->oldstate = FL_ERASING;
775                 chip->state = FL_ERASE_SUSPENDING;
776                 chip->erase_suspended = 1;
777                 for (;;) {
778                         status = map_read(map, adr);
779                         if (map_word_andequal(map, status, status_OK, status_OK))
780                                 break;
781
782                         if (time_after(jiffies, timeo)) {
783                                 /* Urgh. Resume and pretend we weren't here.  */
784                                 map_write(map, CMD(0xd0), adr);
785                                 /* Make sure we're in 'read status' mode if it had finished */
786                                 map_write(map, CMD(0x70), adr);
787                                 chip->state = FL_ERASING;
788                                 chip->oldstate = FL_READY;
789                                 printk(KERN_ERR "%s: Chip not ready after erase "
790                                        "suspended: status = 0x%lx\n", map->name, status.x[0]);
791                                 return -EIO;
792                         }
793
794                         spin_unlock(chip->mutex);
795                         cfi_udelay(1);
796                         spin_lock(chip->mutex);
797                         /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
798                            So we can just loop here. */
799                 }
800                 chip->state = FL_STATUS;
801                 return 0;
802
803         case FL_XIP_WHILE_ERASING:
804                 if (mode != FL_READY && mode != FL_POINT &&
805                     (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
806                         goto sleep;
807                 chip->oldstate = chip->state;
808                 chip->state = FL_READY;
809                 return 0;
810
811         case FL_SHUTDOWN:
812                 /* The machine is rebooting now,so no one can get chip anymore */
813                 return -EIO;
814         case FL_POINT:
815                 /* Only if there's no operation suspended... */
816                 if (mode == FL_READY && chip->oldstate == FL_READY)
817                         return 0;
818                 /* Fall through */
819         default:
820         sleep:
821                 set_current_state(TASK_UNINTERRUPTIBLE);
822                 add_wait_queue(&chip->wq, &wait);
823                 spin_unlock(chip->mutex);
824                 schedule();
825                 remove_wait_queue(&chip->wq, &wait);
826                 spin_lock(chip->mutex);
827                 return -EAGAIN;
828         }
829 }
830
831 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
832 {
833         int ret;
834         DECLARE_WAITQUEUE(wait, current);
835
836  retry:
837         if (chip->priv &&
838             (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
839             || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
840                 /*
841                  * OK. We have possibility for contention on the write/erase
842                  * operations which are global to the real chip and not per
843                  * partition.  So let's fight it over in the partition which
844                  * currently has authority on the operation.
845                  *
846                  * The rules are as follows:
847                  *
848                  * - any write operation must own shared->writing.
849                  *
850                  * - any erase operation must own _both_ shared->writing and
851                  *   shared->erasing.
852                  *
853                  * - contention arbitration is handled in the owner's context.
854                  *
855                  * The 'shared' struct can be read and/or written only when
856                  * its lock is taken.
857                  */
858                 struct flchip_shared *shared = chip->priv;
859                 struct flchip *contender;
860                 spin_lock(&shared->lock);
861                 contender = shared->writing;
862                 if (contender && contender != chip) {
863                         /*
864                          * The engine to perform desired operation on this
865                          * partition is already in use by someone else.
866                          * Let's fight over it in the context of the chip
867                          * currently using it.  If it is possible to suspend,
868                          * that other partition will do just that, otherwise
869                          * it'll happily send us to sleep.  In any case, when
870                          * get_chip returns success we're clear to go ahead.
871                          */
872                         ret = spin_trylock(contender->mutex);
873                         spin_unlock(&shared->lock);
874                         if (!ret)
875                                 goto retry;
876                         spin_unlock(chip->mutex);
877                         ret = chip_ready(map, contender, contender->start, mode);
878                         spin_lock(chip->mutex);
879
880                         if (ret == -EAGAIN) {
881                                 spin_unlock(contender->mutex);
882                                 goto retry;
883                         }
884                         if (ret) {
885                                 spin_unlock(contender->mutex);
886                                 return ret;
887                         }
888                         spin_lock(&shared->lock);
889
890                         /* We should not own chip if it is already
891                          * in FL_SYNCING state. Put contender and retry. */
892                         if (chip->state == FL_SYNCING) {
893                                 put_chip(map, contender, contender->start);
894                                 spin_unlock(contender->mutex);
895                                 goto retry;
896                         }
897                         spin_unlock(contender->mutex);
898                 }
899
900                 /* Check if we already have suspended erase
901                  * on this chip. Sleep. */
902                 if (mode == FL_ERASING && shared->erasing
903                     && shared->erasing->oldstate == FL_ERASING) {
904                         spin_unlock(&shared->lock);
905                         set_current_state(TASK_UNINTERRUPTIBLE);
906                         add_wait_queue(&chip->wq, &wait);
907                         spin_unlock(chip->mutex);
908                         schedule();
909                         remove_wait_queue(&chip->wq, &wait);
910                         spin_lock(chip->mutex);
911                         goto retry;
912                 }
913
914                 /* We now own it */
915                 shared->writing = chip;
916                 if (mode == FL_ERASING)
917                         shared->erasing = chip;
918                 spin_unlock(&shared->lock);
919         }
920         ret = chip_ready(map, chip, adr, mode);
921         if (ret == -EAGAIN)
922                 goto retry;
923
924         return ret;
925 }
926
927 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
928 {
929         struct cfi_private *cfi = map->fldrv_priv;
930
931         if (chip->priv) {
932                 struct flchip_shared *shared = chip->priv;
933                 spin_lock(&shared->lock);
934                 if (shared->writing == chip && chip->oldstate == FL_READY) {
935                         /* We own the ability to write, but we're done */
936                         shared->writing = shared->erasing;
937                         if (shared->writing && shared->writing != chip) {
938                                 /* give back ownership to who we loaned it from */
939                                 struct flchip *loaner = shared->writing;
940                                 spin_lock(loaner->mutex);
941                                 spin_unlock(&shared->lock);
942                                 spin_unlock(chip->mutex);
943                                 put_chip(map, loaner, loaner->start);
944                                 spin_lock(chip->mutex);
945                                 spin_unlock(loaner->mutex);
946                                 wake_up(&chip->wq);
947                                 return;
948                         }
949                         shared->erasing = NULL;
950                         shared->writing = NULL;
951                 } else if (shared->erasing == chip && shared->writing != chip) {
952                         /*
953                          * We own the ability to erase without the ability
954                          * to write, which means the erase was suspended
955                          * and some other partition is currently writing.
956                          * Don't let the switch below mess things up since
957                          * we don't have ownership to resume anything.
958                          */
959                         spin_unlock(&shared->lock);
960                         wake_up(&chip->wq);
961                         return;
962                 }
963                 spin_unlock(&shared->lock);
964         }
965
966         switch(chip->oldstate) {
967         case FL_ERASING:
968                 chip->state = chip->oldstate;
969                 /* What if one interleaved chip has finished and the
970                    other hasn't? The old code would leave the finished
971                    one in READY mode. That's bad, and caused -EROFS
972                    errors to be returned from do_erase_oneblock because
973                    that's the only bit it checked for at the time.
974                    As the state machine appears to explicitly allow
975                    sending the 0x70 (Read Status) command to an erasing
976                    chip and expecting it to be ignored, that's what we
977                    do. */
978                 map_write(map, CMD(0xd0), adr);
979                 map_write(map, CMD(0x70), adr);
980                 chip->oldstate = FL_READY;
981                 chip->state = FL_ERASING;
982                 break;
983
984         case FL_XIP_WHILE_ERASING:
985                 chip->state = chip->oldstate;
986                 chip->oldstate = FL_READY;
987                 break;
988
989         case FL_READY:
990         case FL_STATUS:
991         case FL_JEDEC_QUERY:
992                 /* We should really make set_vpp() count, rather than doing this */
993                 DISABLE_VPP(map);
994                 break;
995         default:
996                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
997         }
998         wake_up(&chip->wq);
999 }
1000
1001 #ifdef CONFIG_MTD_XIP
1002
1003 /*
1004  * No interrupt what so ever can be serviced while the flash isn't in array
1005  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1006  * enclosing any code path where the flash is known not to be in array mode.
1007  * And within a XIP disabled code path, only functions marked with __xipram
1008  * may be called and nothing else (it's a good thing to inspect generated
1009  * assembly to make sure inline functions were actually inlined and that gcc
1010  * didn't emit calls to its own support functions). Also configuring MTD CFI
1011  * support to a single buswidth and a single interleave is also recommended.
1012  */
1013
1014 static void xip_disable(struct map_info *map, struct flchip *chip,
1015                         unsigned long adr)
1016 {
1017         /* TODO: chips with no XIP use should ignore and return */
1018         (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1019         local_irq_disable();
1020 }
1021
1022 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1023                                 unsigned long adr)
1024 {
1025         struct cfi_private *cfi = map->fldrv_priv;
1026         if (chip->state != FL_POINT && chip->state != FL_READY) {
1027                 map_write(map, CMD(0xff), adr);
1028                 chip->state = FL_READY;
1029         }
1030         (void) map_read(map, adr);
1031         xip_iprefetch();
1032         local_irq_enable();
1033 }
1034
1035 /*
1036  * When a delay is required for the flash operation to complete, the
1037  * xip_wait_for_operation() function is polling for both the given timeout
1038  * and pending (but still masked) hardware interrupts.  Whenever there is an
1039  * interrupt pending then the flash erase or write operation is suspended,
1040  * array mode restored and interrupts unmasked.  Task scheduling might also
1041  * happen at that point.  The CPU eventually returns from the interrupt or
1042  * the call to schedule() and the suspended flash operation is resumed for
1043  * the remaining of the delay period.
1044  *
1045  * Warning: this function _will_ fool interrupt latency tracing tools.
1046  */
1047
1048 static int __xipram xip_wait_for_operation(
1049                 struct map_info *map, struct flchip *chip,
1050                 unsigned long adr, unsigned int chip_op_time_max)
1051 {
1052         struct cfi_private *cfi = map->fldrv_priv;
1053         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1054         map_word status, OK = CMD(0x80);
1055         unsigned long usec, suspended, start, done;
1056         flstate_t oldstate, newstate;
1057
1058         start = xip_currtime();
1059         usec = chip_op_time_max;
1060         if (usec == 0)
1061                 usec = 500000;
1062         done = 0;
1063
1064         do {
1065                 cpu_relax();
1066                 if (xip_irqpending() && cfip &&
1067                     ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1068                      (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1069                     (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1070                         /*
1071                          * Let's suspend the erase or write operation when
1072                          * supported.  Note that we currently don't try to
1073                          * suspend interleaved chips if there is already
1074                          * another operation suspended (imagine what happens
1075                          * when one chip was already done with the current
1076                          * operation while another chip suspended it, then
1077                          * we resume the whole thing at once).  Yes, it
1078                          * can happen!
1079                          */
1080                         usec -= done;
1081                         map_write(map, CMD(0xb0), adr);
1082                         map_write(map, CMD(0x70), adr);
1083                         suspended = xip_currtime();
1084                         do {
1085                                 if (xip_elapsed_since(suspended) > 100000) {
1086                                         /*
1087                                          * The chip doesn't want to suspend
1088                                          * after waiting for 100 msecs.
1089                                          * This is a critical error but there
1090                                          * is not much we can do here.
1091                                          */
1092                                         return -EIO;
1093                                 }
1094                                 status = map_read(map, adr);
1095                         } while (!map_word_andequal(map, status, OK, OK));
1096
1097                         /* Suspend succeeded */
1098                         oldstate = chip->state;
1099                         if (oldstate == FL_ERASING) {
1100                                 if (!map_word_bitsset(map, status, CMD(0x40)))
1101                                         break;
1102                                 newstate = FL_XIP_WHILE_ERASING;
1103                                 chip->erase_suspended = 1;
1104                         } else {
1105                                 if (!map_word_bitsset(map, status, CMD(0x04)))
1106                                         break;
1107                                 newstate = FL_XIP_WHILE_WRITING;
1108                                 chip->write_suspended = 1;
1109                         }
1110                         chip->state = newstate;
1111                         map_write(map, CMD(0xff), adr);
1112                         (void) map_read(map, adr);
1113                         xip_iprefetch();
1114                         local_irq_enable();
1115                         spin_unlock(chip->mutex);
1116                         xip_iprefetch();
1117                         cond_resched();
1118
1119                         /*
1120                          * We're back.  However someone else might have
1121                          * decided to go write to the chip if we are in
1122                          * a suspended erase state.  If so let's wait
1123                          * until it's done.
1124                          */
1125                         spin_lock(chip->mutex);
1126                         while (chip->state != newstate) {
1127                                 DECLARE_WAITQUEUE(wait, current);
1128                                 set_current_state(TASK_UNINTERRUPTIBLE);
1129                                 add_wait_queue(&chip->wq, &wait);
1130                                 spin_unlock(chip->mutex);
1131                                 schedule();
1132                                 remove_wait_queue(&chip->wq, &wait);
1133                                 spin_lock(chip->mutex);
1134                         }
1135                         /* Disallow XIP again */
1136                         local_irq_disable();
1137
1138                         /* Resume the write or erase operation */
1139                         map_write(map, CMD(0xd0), adr);
1140                         map_write(map, CMD(0x70), adr);
1141                         chip->state = oldstate;
1142                         start = xip_currtime();
1143                 } else if (usec >= 1000000/HZ) {
1144                         /*
1145                          * Try to save on CPU power when waiting delay
1146                          * is at least a system timer tick period.
1147                          * No need to be extremely accurate here.
1148                          */
1149                         xip_cpu_idle();
1150                 }
1151                 status = map_read(map, adr);
1152                 done = xip_elapsed_since(start);
1153         } while (!map_word_andequal(map, status, OK, OK)
1154                  && done < usec);
1155
1156         return (done >= usec) ? -ETIME : 0;
1157 }
1158
1159 /*
1160  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1161  * the flash is actively programming or erasing since we have to poll for
1162  * the operation to complete anyway.  We can't do that in a generic way with
1163  * a XIP setup so do it before the actual flash operation in this case
1164  * and stub it out from INVAL_CACHE_AND_WAIT.
1165  */
1166 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1167         INVALIDATE_CACHED_RANGE(map, from, size)
1168
1169 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1170         xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1171
1172 #else
1173
1174 #define xip_disable(map, chip, adr)
1175 #define xip_enable(map, chip, adr)
1176 #define XIP_INVAL_CACHED_RANGE(x...)
1177 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1178
1179 static int inval_cache_and_wait_for_operation(
1180                 struct map_info *map, struct flchip *chip,
1181                 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1182                 unsigned int chip_op_time, unsigned int chip_op_time_max)
1183 {
1184         struct cfi_private *cfi = map->fldrv_priv;
1185         map_word status, status_OK = CMD(0x80);
1186         int chip_state = chip->state;
1187         unsigned int timeo, sleep_time, reset_timeo;
1188
1189         spin_unlock(chip->mutex);
1190         if (inval_len)
1191                 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1192         spin_lock(chip->mutex);
1193
1194         timeo = chip_op_time_max;
1195         if (!timeo)
1196                 timeo = 500000;
1197         reset_timeo = timeo;
1198         sleep_time = chip_op_time / 2;
1199
1200         for (;;) {
1201                 status = map_read(map, cmd_adr);
1202                 if (map_word_andequal(map, status, status_OK, status_OK))
1203                         break;
1204
1205                 if (!timeo) {
1206                         map_write(map, CMD(0x70), cmd_adr);
1207                         chip->state = FL_STATUS;
1208                         return -ETIME;
1209                 }
1210
1211                 /* OK Still waiting. Drop the lock, wait a while and retry. */
1212                 spin_unlock(chip->mutex);
1213                 if (sleep_time >= 1000000/HZ) {
1214                         /*
1215                          * Half of the normal delay still remaining
1216                          * can be performed with a sleeping delay instead
1217                          * of busy waiting.
1218                          */
1219                         msleep(sleep_time/1000);
1220                         timeo -= sleep_time;
1221                         sleep_time = 1000000/HZ;
1222                 } else {
1223                         udelay(1);
1224                         cond_resched();
1225                         timeo--;
1226                 }
1227                 spin_lock(chip->mutex);
1228
1229                 while (chip->state != chip_state) {
1230                         /* Someone's suspended the operation: sleep */
1231                         DECLARE_WAITQUEUE(wait, current);
1232                         set_current_state(TASK_UNINTERRUPTIBLE);
1233                         add_wait_queue(&chip->wq, &wait);
1234                         spin_unlock(chip->mutex);
1235                         schedule();
1236                         remove_wait_queue(&chip->wq, &wait);
1237                         spin_lock(chip->mutex);
1238                 }
1239                 if (chip->erase_suspended || chip->write_suspended)  {
1240                         /* Suspend has occured while sleep: reset timeout */
1241                         timeo = reset_timeo;
1242                         chip->erase_suspended = 0;
1243                         chip->write_suspended = 0;
1244                 }
1245         }
1246
1247         /* Done and happy. */
1248         chip->state = FL_STATUS;
1249         return 0;
1250 }
1251
1252 #endif
1253
1254 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1255         INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1256
1257
1258 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1259 {
1260         unsigned long cmd_addr;
1261         struct cfi_private *cfi = map->fldrv_priv;
1262         int ret = 0;
1263
1264         adr += chip->start;
1265
1266         /* Ensure cmd read/writes are aligned. */
1267         cmd_addr = adr & ~(map_bankwidth(map)-1);
1268
1269         spin_lock(chip->mutex);
1270
1271         ret = get_chip(map, chip, cmd_addr, FL_POINT);
1272
1273         if (!ret) {
1274                 if (chip->state != FL_POINT && chip->state != FL_READY)
1275                         map_write(map, CMD(0xff), cmd_addr);
1276
1277                 chip->state = FL_POINT;
1278                 chip->ref_point_counter++;
1279         }
1280         spin_unlock(chip->mutex);
1281
1282         return ret;
1283 }
1284
1285 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1286                 size_t *retlen, void **virt, resource_size_t *phys)
1287 {
1288         struct map_info *map = mtd->priv;
1289         struct cfi_private *cfi = map->fldrv_priv;
1290         unsigned long ofs, last_end = 0;
1291         int chipnum;
1292         int ret = 0;
1293
1294         if (!map->virt || (from + len > mtd->size))
1295                 return -EINVAL;
1296
1297         /* Now lock the chip(s) to POINT state */
1298
1299         /* ofs: offset within the first chip that the first read should start */
1300         chipnum = (from >> cfi->chipshift);
1301         ofs = from - (chipnum << cfi->chipshift);
1302
1303         *virt = map->virt + cfi->chips[chipnum].start + ofs;
1304         *retlen = 0;
1305         if (phys)
1306                 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1307
1308         while (len) {
1309                 unsigned long thislen;
1310
1311                 if (chipnum >= cfi->numchips)
1312                         break;
1313
1314                 /* We cannot point across chips that are virtually disjoint */
1315                 if (!last_end)
1316                         last_end = cfi->chips[chipnum].start;
1317                 else if (cfi->chips[chipnum].start != last_end)
1318                         break;
1319
1320                 if ((len + ofs -1) >> cfi->chipshift)
1321                         thislen = (1<<cfi->chipshift) - ofs;
1322                 else
1323                         thislen = len;
1324
1325                 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1326                 if (ret)
1327                         break;
1328
1329                 *retlen += thislen;
1330                 len -= thislen;
1331
1332                 ofs = 0;
1333                 last_end += 1 << cfi->chipshift;
1334                 chipnum++;
1335         }
1336         return 0;
1337 }
1338
1339 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1340 {
1341         struct map_info *map = mtd->priv;
1342         struct cfi_private *cfi = map->fldrv_priv;
1343         unsigned long ofs;
1344         int chipnum;
1345
1346         /* Now unlock the chip(s) POINT state */
1347
1348         /* ofs: offset within the first chip that the first read should start */
1349         chipnum = (from >> cfi->chipshift);
1350         ofs = from - (chipnum <<  cfi->chipshift);
1351
1352         while (len) {
1353                 unsigned long thislen;
1354                 struct flchip *chip;
1355
1356                 chip = &cfi->chips[chipnum];
1357                 if (chipnum >= cfi->numchips)
1358                         break;
1359
1360                 if ((len + ofs -1) >> cfi->chipshift)
1361                         thislen = (1<<cfi->chipshift) - ofs;
1362                 else
1363                         thislen = len;
1364
1365                 spin_lock(chip->mutex);
1366                 if (chip->state == FL_POINT) {
1367                         chip->ref_point_counter--;
1368                         if(chip->ref_point_counter == 0)
1369                                 chip->state = FL_READY;
1370                 } else
1371                         printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1372
1373                 put_chip(map, chip, chip->start);
1374                 spin_unlock(chip->mutex);
1375
1376                 len -= thislen;
1377                 ofs = 0;
1378                 chipnum++;
1379         }
1380 }
1381
1382 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1383 {
1384         unsigned long cmd_addr;
1385         struct cfi_private *cfi = map->fldrv_priv;
1386         int ret;
1387
1388         adr += chip->start;
1389
1390         /* Ensure cmd read/writes are aligned. */
1391         cmd_addr = adr & ~(map_bankwidth(map)-1);
1392
1393         spin_lock(chip->mutex);
1394         ret = get_chip(map, chip, cmd_addr, FL_READY);
1395         if (ret) {
1396                 spin_unlock(chip->mutex);
1397                 return ret;
1398         }
1399
1400         if (chip->state != FL_POINT && chip->state != FL_READY) {
1401                 map_write(map, CMD(0xff), cmd_addr);
1402
1403                 chip->state = FL_READY;
1404         }
1405
1406         map_copy_from(map, buf, adr, len);
1407
1408         put_chip(map, chip, cmd_addr);
1409
1410         spin_unlock(chip->mutex);
1411         return 0;
1412 }
1413
1414 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1415 {
1416         struct map_info *map = mtd->priv;
1417         struct cfi_private *cfi = map->fldrv_priv;
1418         unsigned long ofs;
1419         int chipnum;
1420         int ret = 0;
1421
1422         /* ofs: offset within the first chip that the first read should start */
1423         chipnum = (from >> cfi->chipshift);
1424         ofs = from - (chipnum <<  cfi->chipshift);
1425
1426         *retlen = 0;
1427
1428         while (len) {
1429                 unsigned long thislen;
1430
1431                 if (chipnum >= cfi->numchips)
1432                         break;
1433
1434                 if ((len + ofs -1) >> cfi->chipshift)
1435                         thislen = (1<<cfi->chipshift) - ofs;
1436                 else
1437                         thislen = len;
1438
1439                 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1440                 if (ret)
1441                         break;
1442
1443                 *retlen += thislen;
1444                 len -= thislen;
1445                 buf += thislen;
1446
1447                 ofs = 0;
1448                 chipnum++;
1449         }
1450         return ret;
1451 }
1452
1453 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1454                                      unsigned long adr, map_word datum, int mode)
1455 {
1456         struct cfi_private *cfi = map->fldrv_priv;
1457         map_word status, write_cmd;
1458         int ret=0;
1459
1460         adr += chip->start;
1461
1462         switch (mode) {
1463         case FL_WRITING:
1464                 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1465                 break;
1466         case FL_OTP_WRITE:
1467                 write_cmd = CMD(0xc0);
1468                 break;
1469         default:
1470                 return -EINVAL;
1471         }
1472
1473         spin_lock(chip->mutex);
1474         ret = get_chip(map, chip, adr, mode);
1475         if (ret) {
1476                 spin_unlock(chip->mutex);
1477                 return ret;
1478         }
1479
1480         XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1481         ENABLE_VPP(map);
1482         xip_disable(map, chip, adr);
1483         map_write(map, write_cmd, adr);
1484         map_write(map, datum, adr);
1485         chip->state = mode;
1486
1487         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1488                                    adr, map_bankwidth(map),
1489                                    chip->word_write_time,
1490                                    chip->word_write_time_max);
1491         if (ret) {
1492                 xip_enable(map, chip, adr);
1493                 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1494                 goto out;
1495         }
1496
1497         /* check for errors */
1498         status = map_read(map, adr);
1499         if (map_word_bitsset(map, status, CMD(0x1a))) {
1500                 unsigned long chipstatus = MERGESTATUS(status);
1501
1502                 /* reset status */
1503                 map_write(map, CMD(0x50), adr);
1504                 map_write(map, CMD(0x70), adr);
1505                 xip_enable(map, chip, adr);
1506
1507                 if (chipstatus & 0x02) {
1508                         ret = -EROFS;
1509                 } else if (chipstatus & 0x08) {
1510                         printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1511                         ret = -EIO;
1512                 } else {
1513                         printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1514                         ret = -EINVAL;
1515                 }
1516
1517                 goto out;
1518         }
1519
1520         xip_enable(map, chip, adr);
1521  out:   put_chip(map, chip, adr);
1522         spin_unlock(chip->mutex);
1523         return ret;
1524 }
1525
1526
1527 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1528 {
1529         struct map_info *map = mtd->priv;
1530         struct cfi_private *cfi = map->fldrv_priv;
1531         int ret = 0;
1532         int chipnum;
1533         unsigned long ofs;
1534
1535         *retlen = 0;
1536         if (!len)
1537                 return 0;
1538
1539         chipnum = to >> cfi->chipshift;
1540         ofs = to  - (chipnum << cfi->chipshift);
1541
1542         /* If it's not bus-aligned, do the first byte write */
1543         if (ofs & (map_bankwidth(map)-1)) {
1544                 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1545                 int gap = ofs - bus_ofs;
1546                 int n;
1547                 map_word datum;
1548
1549                 n = min_t(int, len, map_bankwidth(map)-gap);
1550                 datum = map_word_ff(map);
1551                 datum = map_word_load_partial(map, datum, buf, gap, n);
1552
1553                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1554                                                bus_ofs, datum, FL_WRITING);
1555                 if (ret)
1556                         return ret;
1557
1558                 len -= n;
1559                 ofs += n;
1560                 buf += n;
1561                 (*retlen) += n;
1562
1563                 if (ofs >> cfi->chipshift) {
1564                         chipnum ++;
1565                         ofs = 0;
1566                         if (chipnum == cfi->numchips)
1567                                 return 0;
1568                 }
1569         }
1570
1571         while(len >= map_bankwidth(map)) {
1572                 map_word datum = map_word_load(map, buf);
1573
1574                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1575                                        ofs, datum, FL_WRITING);
1576                 if (ret)
1577                         return ret;
1578
1579                 ofs += map_bankwidth(map);
1580                 buf += map_bankwidth(map);
1581                 (*retlen) += map_bankwidth(map);
1582                 len -= map_bankwidth(map);
1583
1584                 if (ofs >> cfi->chipshift) {
1585                         chipnum ++;
1586                         ofs = 0;
1587                         if (chipnum == cfi->numchips)
1588                                 return 0;
1589                 }
1590         }
1591
1592         if (len & (map_bankwidth(map)-1)) {
1593                 map_word datum;
1594
1595                 datum = map_word_ff(map);
1596                 datum = map_word_load_partial(map, datum, buf, 0, len);
1597
1598                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1599                                        ofs, datum, FL_WRITING);
1600                 if (ret)
1601                         return ret;
1602
1603                 (*retlen) += len;
1604         }
1605
1606         return 0;
1607 }
1608
1609
1610 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1611                                     unsigned long adr, const struct kvec **pvec,
1612                                     unsigned long *pvec_seek, int len)
1613 {
1614         struct cfi_private *cfi = map->fldrv_priv;
1615         map_word status, write_cmd, datum;
1616         unsigned long cmd_adr;
1617         int ret, wbufsize, word_gap, words;
1618         const struct kvec *vec;
1619         unsigned long vec_seek;
1620         unsigned long initial_adr;
1621         int initial_len = len;
1622
1623         wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1624         adr += chip->start;
1625         initial_adr = adr;
1626         cmd_adr = adr & ~(wbufsize-1);
1627
1628         /* Let's determine this according to the interleave only once */
1629         write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1630
1631         spin_lock(chip->mutex);
1632         ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1633         if (ret) {
1634                 spin_unlock(chip->mutex);
1635                 return ret;
1636         }
1637
1638         XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1639         ENABLE_VPP(map);
1640         xip_disable(map, chip, cmd_adr);
1641
1642         /* Â§4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1643            [...], the device will not accept any more Write to Buffer commands".
1644            So we must check here and reset those bits if they're set. Otherwise
1645            we're just pissing in the wind */
1646         if (chip->state != FL_STATUS) {
1647                 map_write(map, CMD(0x70), cmd_adr);
1648                 chip->state = FL_STATUS;
1649         }
1650         status = map_read(map, cmd_adr);
1651         if (map_word_bitsset(map, status, CMD(0x30))) {
1652                 xip_enable(map, chip, cmd_adr);
1653                 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1654                 xip_disable(map, chip, cmd_adr);
1655                 map_write(map, CMD(0x50), cmd_adr);
1656                 map_write(map, CMD(0x70), cmd_adr);
1657         }
1658
1659         chip->state = FL_WRITING_TO_BUFFER;
1660         map_write(map, write_cmd, cmd_adr);
1661         ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1662         if (ret) {
1663                 /* Argh. Not ready for write to buffer */
1664                 map_word Xstatus = map_read(map, cmd_adr);
1665                 map_write(map, CMD(0x70), cmd_adr);
1666                 chip->state = FL_STATUS;
1667                 status = map_read(map, cmd_adr);
1668                 map_write(map, CMD(0x50), cmd_adr);
1669                 map_write(map, CMD(0x70), cmd_adr);
1670                 xip_enable(map, chip, cmd_adr);
1671                 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1672                                 map->name, Xstatus.x[0], status.x[0]);
1673                 goto out;
1674         }
1675
1676         /* Figure out the number of words to write */
1677         word_gap = (-adr & (map_bankwidth(map)-1));
1678         words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1679         if (!word_gap) {
1680                 words--;
1681         } else {
1682                 word_gap = map_bankwidth(map) - word_gap;
1683                 adr -= word_gap;
1684                 datum = map_word_ff(map);
1685         }
1686
1687         /* Write length of data to come */
1688         map_write(map, CMD(words), cmd_adr );
1689
1690         /* Write data */
1691         vec = *pvec;
1692         vec_seek = *pvec_seek;
1693         do {
1694                 int n = map_bankwidth(map) - word_gap;
1695                 if (n > vec->iov_len - vec_seek)
1696                         n = vec->iov_len - vec_seek;
1697                 if (n > len)
1698                         n = len;
1699
1700                 if (!word_gap && len < map_bankwidth(map))
1701                         datum = map_word_ff(map);
1702
1703                 datum = map_word_load_partial(map, datum,
1704                                               vec->iov_base + vec_seek,
1705                                               word_gap, n);
1706
1707                 len -= n;
1708                 word_gap += n;
1709                 if (!len || word_gap == map_bankwidth(map)) {
1710                         map_write(map, datum, adr);
1711                         adr += map_bankwidth(map);
1712                         word_gap = 0;
1713                 }
1714
1715                 vec_seek += n;
1716                 if (vec_seek == vec->iov_len) {
1717                         vec++;
1718                         vec_seek = 0;
1719                 }
1720         } while (len);
1721         *pvec = vec;
1722         *pvec_seek = vec_seek;
1723
1724         /* GO GO GO */
1725         map_write(map, CMD(0xd0), cmd_adr);
1726         chip->state = FL_WRITING;
1727
1728         ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1729                                    initial_adr, initial_len,
1730                                    chip->buffer_write_time,
1731                                    chip->buffer_write_time_max);
1732         if (ret) {
1733                 map_write(map, CMD(0x70), cmd_adr);
1734                 chip->state = FL_STATUS;
1735                 xip_enable(map, chip, cmd_adr);
1736                 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1737                 goto out;
1738         }
1739
1740         /* check for errors */
1741         status = map_read(map, cmd_adr);
1742         if (map_word_bitsset(map, status, CMD(0x1a))) {
1743                 unsigned long chipstatus = MERGESTATUS(status);
1744
1745                 /* reset status */
1746                 map_write(map, CMD(0x50), cmd_adr);
1747                 map_write(map, CMD(0x70), cmd_adr);
1748                 xip_enable(map, chip, cmd_adr);
1749
1750                 if (chipstatus & 0x02) {
1751                         ret = -EROFS;
1752                 } else if (chipstatus & 0x08) {
1753                         printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1754                         ret = -EIO;
1755                 } else {
1756                         printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1757                         ret = -EINVAL;
1758                 }
1759
1760                 goto out;
1761         }
1762
1763         xip_enable(map, chip, cmd_adr);
1764  out:   put_chip(map, chip, cmd_adr);
1765         spin_unlock(chip->mutex);
1766         return ret;
1767 }
1768
1769 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1770                                 unsigned long count, loff_t to, size_t *retlen)
1771 {
1772         struct map_info *map = mtd->priv;
1773         struct cfi_private *cfi = map->fldrv_priv;
1774         int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1775         int ret = 0;
1776         int chipnum;
1777         unsigned long ofs, vec_seek, i;
1778         size_t len = 0;
1779
1780         for (i = 0; i < count; i++)
1781                 len += vecs[i].iov_len;
1782
1783         *retlen = 0;
1784         if (!len)
1785                 return 0;
1786
1787         chipnum = to >> cfi->chipshift;
1788         ofs = to - (chipnum << cfi->chipshift);
1789         vec_seek = 0;
1790
1791         do {
1792                 /* We must not cross write block boundaries */
1793                 int size = wbufsize - (ofs & (wbufsize-1));
1794
1795                 if (size > len)
1796                         size = len;
1797                 ret = do_write_buffer(map, &cfi->chips[chipnum],
1798                                       ofs, &vecs, &vec_seek, size);
1799                 if (ret)
1800                         return ret;
1801
1802                 ofs += size;
1803                 (*retlen) += size;
1804                 len -= size;
1805
1806                 if (ofs >> cfi->chipshift) {
1807                         chipnum ++;
1808                         ofs = 0;
1809                         if (chipnum == cfi->numchips)
1810                                 return 0;
1811                 }
1812
1813                 /* Be nice and reschedule with the chip in a usable state for other
1814                    processes. */
1815                 cond_resched();
1816
1817         } while (len);
1818
1819         return 0;
1820 }
1821
1822 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1823                                        size_t len, size_t *retlen, const u_char *buf)
1824 {
1825         struct kvec vec;
1826
1827         vec.iov_base = (void *) buf;
1828         vec.iov_len = len;
1829
1830         return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1831 }
1832
1833 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1834                                       unsigned long adr, int len, void *thunk)
1835 {
1836         struct cfi_private *cfi = map->fldrv_priv;
1837         map_word status;
1838         int retries = 3;
1839         int ret;
1840
1841         adr += chip->start;
1842
1843  retry:
1844         spin_lock(chip->mutex);
1845         ret = get_chip(map, chip, adr, FL_ERASING);
1846         if (ret) {
1847                 spin_unlock(chip->mutex);
1848                 return ret;
1849         }
1850
1851         XIP_INVAL_CACHED_RANGE(map, adr, len);
1852         ENABLE_VPP(map);
1853         xip_disable(map, chip, adr);
1854
1855         /* Clear the status register first */
1856         map_write(map, CMD(0x50), adr);
1857
1858         /* Now erase */
1859         map_write(map, CMD(0x20), adr);
1860         map_write(map, CMD(0xD0), adr);
1861         chip->state = FL_ERASING;
1862         chip->erase_suspended = 0;
1863
1864         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1865                                    adr, len,
1866                                    chip->erase_time,
1867                                    chip->erase_time_max);
1868         if (ret) {
1869                 map_write(map, CMD(0x70), adr);
1870                 chip->state = FL_STATUS;
1871                 xip_enable(map, chip, adr);
1872                 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1873                 goto out;
1874         }
1875
1876         /* We've broken this before. It doesn't hurt to be safe */
1877         map_write(map, CMD(0x70), adr);
1878         chip->state = FL_STATUS;
1879         status = map_read(map, adr);
1880
1881         /* check for errors */
1882         if (map_word_bitsset(map, status, CMD(0x3a))) {
1883                 unsigned long chipstatus = MERGESTATUS(status);
1884
1885                 /* Reset the error bits */
1886                 map_write(map, CMD(0x50), adr);
1887                 map_write(map, CMD(0x70), adr);
1888                 xip_enable(map, chip, adr);
1889
1890                 if ((chipstatus & 0x30) == 0x30) {
1891                         printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1892                         ret = -EINVAL;
1893                 } else if (chipstatus & 0x02) {
1894                         /* Protection bit set */
1895                         ret = -EROFS;
1896                 } else if (chipstatus & 0x8) {
1897                         /* Voltage */
1898                         printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1899                         ret = -EIO;
1900                 } else if (chipstatus & 0x20 && retries--) {
1901                         printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1902                         put_chip(map, chip, adr);
1903                         spin_unlock(chip->mutex);
1904                         goto retry;
1905                 } else {
1906                         printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1907                         ret = -EIO;
1908                 }
1909
1910                 goto out;
1911         }
1912
1913         xip_enable(map, chip, adr);
1914  out:   put_chip(map, chip, adr);
1915         spin_unlock(chip->mutex);
1916         return ret;
1917 }
1918
1919 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1920 {
1921         unsigned long ofs, len;
1922         int ret;
1923
1924         ofs = instr->addr;
1925         len = instr->len;
1926
1927         ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1928         if (ret)
1929                 return ret;
1930
1931         instr->state = MTD_ERASE_DONE;
1932         mtd_erase_callback(instr);
1933
1934         return 0;
1935 }
1936
1937 static void cfi_intelext_sync (struct mtd_info *mtd)
1938 {
1939         struct map_info *map = mtd->priv;
1940         struct cfi_private *cfi = map->fldrv_priv;
1941         int i;
1942         struct flchip *chip;
1943         int ret = 0;
1944
1945         for (i=0; !ret && i<cfi->numchips; i++) {
1946                 chip = &cfi->chips[i];
1947
1948                 spin_lock(chip->mutex);
1949                 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1950
1951                 if (!ret) {
1952                         chip->oldstate = chip->state;
1953                         chip->state = FL_SYNCING;
1954                         /* No need to wake_up() on this state change -
1955                          * as the whole point is that nobody can do anything
1956                          * with the chip now anyway.
1957                          */
1958                 }
1959                 spin_unlock(chip->mutex);
1960         }
1961
1962         /* Unlock the chips again */
1963
1964         for (i--; i >=0; i--) {
1965                 chip = &cfi->chips[i];
1966
1967                 spin_lock(chip->mutex);
1968
1969                 if (chip->state == FL_SYNCING) {
1970                         chip->state = chip->oldstate;
1971                         chip->oldstate = FL_READY;
1972                         wake_up(&chip->wq);
1973                 }
1974                 spin_unlock(chip->mutex);
1975         }
1976 }
1977
1978 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1979                                                 struct flchip *chip,
1980                                                 unsigned long adr,
1981                                                 int len, void *thunk)
1982 {
1983         struct cfi_private *cfi = map->fldrv_priv;
1984         int status, ofs_factor = cfi->interleave * cfi->device_type;
1985
1986         adr += chip->start;
1987         xip_disable(map, chip, adr+(2*ofs_factor));
1988         map_write(map, CMD(0x90), adr+(2*ofs_factor));
1989         chip->state = FL_JEDEC_QUERY;
1990         status = cfi_read_query(map, adr+(2*ofs_factor));
1991         xip_enable(map, chip, 0);
1992         return status;
1993 }
1994
1995 #ifdef DEBUG_LOCK_BITS
1996 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1997                                                 struct flchip *chip,
1998                                                 unsigned long adr,
1999                                                 int len, void *thunk)
2000 {
2001         printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2002                adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2003         return 0;
2004 }
2005 #endif
2006
2007 #define DO_XXLOCK_ONEBLOCK_LOCK         ((void *) 1)
2008 #define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *) 2)
2009
2010 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2011                                        unsigned long adr, int len, void *thunk)
2012 {
2013         struct cfi_private *cfi = map->fldrv_priv;
2014         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2015         int udelay;
2016         int ret;
2017
2018         adr += chip->start;
2019
2020         spin_lock(chip->mutex);
2021         ret = get_chip(map, chip, adr, FL_LOCKING);
2022         if (ret) {
2023                 spin_unlock(chip->mutex);
2024                 return ret;
2025         }
2026
2027         ENABLE_VPP(map);
2028         xip_disable(map, chip, adr);
2029
2030         map_write(map, CMD(0x60), adr);
2031         if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2032                 map_write(map, CMD(0x01), adr);
2033                 chip->state = FL_LOCKING;
2034         } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2035                 map_write(map, CMD(0xD0), adr);
2036                 chip->state = FL_UNLOCKING;
2037         } else
2038                 BUG();
2039
2040         /*
2041          * If Instant Individual Block Locking supported then no need
2042          * to delay.
2043          */
2044         udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2045
2046         ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2047         if (ret) {
2048                 map_write(map, CMD(0x70), adr);
2049                 chip->state = FL_STATUS;
2050                 xip_enable(map, chip, adr);
2051                 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2052                 goto out;
2053         }
2054
2055         xip_enable(map, chip, adr);
2056 out:    put_chip(map, chip, adr);
2057         spin_unlock(chip->mutex);
2058         return ret;
2059 }
2060
2061 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2062 {
2063         int ret;
2064
2065 #ifdef DEBUG_LOCK_BITS
2066         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2067                __func__, ofs, len);
2068         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2069                 ofs, len, NULL);
2070 #endif
2071
2072         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2073                 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2074
2075 #ifdef DEBUG_LOCK_BITS
2076         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2077                __func__, ret);
2078         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2079                 ofs, len, NULL);
2080 #endif
2081
2082         return ret;
2083 }
2084
2085 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2086 {
2087         int ret;
2088
2089 #ifdef DEBUG_LOCK_BITS
2090         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2091                __func__, ofs, len);
2092         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2093                 ofs, len, NULL);
2094 #endif
2095
2096         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2097                                         ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2098
2099 #ifdef DEBUG_LOCK_BITS
2100         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2101                __func__, ret);
2102         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2103                 ofs, len, NULL);
2104 #endif
2105
2106         return ret;
2107 }
2108
2109 #ifdef CONFIG_MTD_OTP
2110
2111 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2112                         u_long data_offset, u_char *buf, u_int size,
2113                         u_long prot_offset, u_int groupno, u_int groupsize);
2114
2115 static int __xipram
2116 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2117             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2118 {
2119         struct cfi_private *cfi = map->fldrv_priv;
2120         int ret;
2121
2122         spin_lock(chip->mutex);
2123         ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2124         if (ret) {
2125                 spin_unlock(chip->mutex);
2126                 return ret;
2127         }
2128
2129         /* let's ensure we're not reading back cached data from array mode */
2130         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2131
2132         xip_disable(map, chip, chip->start);
2133         if (chip->state != FL_JEDEC_QUERY) {
2134                 map_write(map, CMD(0x90), chip->start);
2135                 chip->state = FL_JEDEC_QUERY;
2136         }
2137         map_copy_from(map, buf, chip->start + offset, size);
2138         xip_enable(map, chip, chip->start);
2139
2140         /* then ensure we don't keep OTP data in the cache */
2141         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2142
2143         put_chip(map, chip, chip->start);
2144         spin_unlock(chip->mutex);
2145         return 0;
2146 }
2147
2148 static int
2149 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2150              u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2151 {
2152         int ret;
2153
2154         while (size) {
2155                 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2156                 int gap = offset - bus_ofs;
2157                 int n = min_t(int, size, map_bankwidth(map)-gap);
2158                 map_word datum = map_word_ff(map);
2159
2160                 datum = map_word_load_partial(map, datum, buf, gap, n);
2161                 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2162                 if (ret)
2163                         return ret;
2164
2165                 offset += n;
2166                 buf += n;
2167                 size -= n;
2168         }
2169
2170         return 0;
2171 }
2172
2173 static int
2174 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2175             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2176 {
2177         struct cfi_private *cfi = map->fldrv_priv;
2178         map_word datum;
2179
2180         /* make sure area matches group boundaries */
2181         if (size != grpsz)
2182                 return -EXDEV;
2183
2184         datum = map_word_ff(map);
2185         datum = map_word_clr(map, datum, CMD(1 << grpno));
2186         return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2187 }
2188
2189 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2190                                  size_t *retlen, u_char *buf,
2191                                  otp_op_t action, int user_regs)
2192 {
2193         struct map_info *map = mtd->priv;
2194         struct cfi_private *cfi = map->fldrv_priv;
2195         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2196         struct flchip *chip;
2197         struct cfi_intelext_otpinfo *otp;
2198         u_long devsize, reg_prot_offset, data_offset;
2199         u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2200         u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2201         int ret;
2202
2203         *retlen = 0;
2204
2205         /* Check that we actually have some OTP registers */
2206         if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2207                 return -ENODATA;
2208
2209         /* we need real chips here not virtual ones */
2210         devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2211         chip_step = devsize >> cfi->chipshift;
2212         chip_num = 0;
2213
2214         /* Some chips have OTP located in the _top_ partition only.
2215            For example: Intel 28F256L18T (T means top-parameter device) */
2216         if (cfi->mfr == MANUFACTURER_INTEL) {
2217                 switch (cfi->id) {
2218                 case 0x880b:
2219                 case 0x880c:
2220                 case 0x880d:
2221                         chip_num = chip_step - 1;
2222                 }
2223         }
2224
2225         for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2226                 chip = &cfi->chips[chip_num];
2227                 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2228
2229                 /* first OTP region */
2230                 field = 0;
2231                 reg_prot_offset = extp->ProtRegAddr;
2232                 reg_fact_groups = 1;
2233                 reg_fact_size = 1 << extp->FactProtRegSize;
2234                 reg_user_groups = 1;
2235                 reg_user_size = 1 << extp->UserProtRegSize;
2236
2237                 while (len > 0) {
2238                         /* flash geometry fixup */
2239                         data_offset = reg_prot_offset + 1;
2240                         data_offset *= cfi->interleave * cfi->device_type;
2241                         reg_prot_offset *= cfi->interleave * cfi->device_type;
2242                         reg_fact_size *= cfi->interleave;
2243                         reg_user_size *= cfi->interleave;
2244
2245                         if (user_regs) {
2246                                 groups = reg_user_groups;
2247                                 groupsize = reg_user_size;
2248                                 /* skip over factory reg area */
2249                                 groupno = reg_fact_groups;
2250                                 data_offset += reg_fact_groups * reg_fact_size;
2251                         } else {
2252                                 groups = reg_fact_groups;
2253                                 groupsize = reg_fact_size;
2254                                 groupno = 0;
2255                         }
2256
2257                         while (len > 0 && groups > 0) {
2258                                 if (!action) {
2259                                         /*
2260                                          * Special case: if action is NULL
2261                                          * we fill buf with otp_info records.
2262                                          */
2263                                         struct otp_info *otpinfo;
2264                                         map_word lockword;
2265                                         len -= sizeof(struct otp_info);
2266                                         if (len <= 0)
2267                                                 return -ENOSPC;
2268                                         ret = do_otp_read(map, chip,
2269                                                           reg_prot_offset,
2270                                                           (u_char *)&lockword,
2271                                                           map_bankwidth(map),
2272                                                           0, 0,  0);
2273                                         if (ret)
2274                                                 return ret;
2275                                         otpinfo = (struct otp_info *)buf;
2276                                         otpinfo->start = from;
2277                                         otpinfo->length = groupsize;
2278                                         otpinfo->locked =
2279                                            !map_word_bitsset(map, lockword,
2280                                                              CMD(1 << groupno));
2281                                         from += groupsize;
2282                                         buf += sizeof(*otpinfo);
2283                                         *retlen += sizeof(*otpinfo);
2284                                 } else if (from >= groupsize) {
2285                                         from -= groupsize;
2286                                         data_offset += groupsize;
2287                                 } else {
2288                                         int size = groupsize;
2289                                         data_offset += from;
2290                                         size -= from;
2291                                         from = 0;
2292                                         if (size > len)
2293                                                 size = len;
2294                                         ret = action(map, chip, data_offset,
2295                                                      buf, size, reg_prot_offset,
2296                                                      groupno, groupsize);
2297                                         if (ret < 0)
2298                                                 return ret;
2299                                         buf += size;
2300                                         len -= size;
2301                                         *retlen += size;
2302                                         data_offset += size;
2303                                 }
2304                                 groupno++;
2305                                 groups--;
2306                         }
2307
2308                         /* next OTP region */
2309                         if (++field == extp->NumProtectionFields)
2310                                 break;
2311                         reg_prot_offset = otp->ProtRegAddr;
2312                         reg_fact_groups = otp->FactGroups;
2313                         reg_fact_size = 1 << otp->FactProtRegSize;
2314                         reg_user_groups = otp->UserGroups;
2315                         reg_user_size = 1 << otp->UserProtRegSize;
2316                         otp++;
2317                 }
2318         }
2319
2320         return 0;
2321 }
2322
2323 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2324                                            size_t len, size_t *retlen,
2325                                             u_char *buf)
2326 {
2327         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2328                                      buf, do_otp_read, 0);
2329 }
2330
2331 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2332                                            size_t len, size_t *retlen,
2333                                             u_char *buf)
2334 {
2335         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2336                                      buf, do_otp_read, 1);
2337 }
2338
2339 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2340                                             size_t len, size_t *retlen,
2341                                              u_char *buf)
2342 {
2343         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2344                                      buf, do_otp_write, 1);
2345 }
2346
2347 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2348                                            loff_t from, size_t len)
2349 {
2350         size_t retlen;
2351         return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2352                                      NULL, do_otp_lock, 1);
2353 }
2354
2355 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2356                                            struct otp_info *buf, size_t len)
2357 {
2358         size_t retlen;
2359         int ret;
2360
2361         ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2362         return ret ? : retlen;
2363 }
2364
2365 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2366                                            struct otp_info *buf, size_t len)
2367 {
2368         size_t retlen;
2369         int ret;
2370
2371         ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2372         return ret ? : retlen;
2373 }
2374
2375 #endif
2376
2377 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2378 {
2379         struct mtd_erase_region_info *region;
2380         int block, status, i;
2381         unsigned long adr;
2382         size_t len;
2383
2384         for (i = 0; i < mtd->numeraseregions; i++) {
2385                 region = &mtd->eraseregions[i];
2386                 if (!region->lockmap)
2387                         continue;
2388
2389                 for (block = 0; block < region->numblocks; block++){
2390                         len = region->erasesize;
2391                         adr = region->offset + block * len;
2392
2393                         status = cfi_varsize_frob(mtd,
2394                                         do_getlockstatus_oneblock, adr, len, NULL);
2395                         if (status)
2396                                 set_bit(block, region->lockmap);
2397                         else
2398                                 clear_bit(block, region->lockmap);
2399                 }
2400         }
2401 }
2402
2403 static int cfi_intelext_suspend(struct mtd_info *mtd)
2404 {
2405         struct map_info *map = mtd->priv;
2406         struct cfi_private *cfi = map->fldrv_priv;
2407         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2408         int i;
2409         struct flchip *chip;
2410         int ret = 0;
2411
2412         if ((mtd->flags & MTD_POWERUP_LOCK)
2413             && extp && (extp->FeatureSupport & (1 << 5)))
2414                 cfi_intelext_save_locks(mtd);
2415
2416         for (i=0; !ret && i<cfi->numchips; i++) {
2417                 chip = &cfi->chips[i];
2418
2419                 spin_lock(chip->mutex);
2420
2421                 switch (chip->state) {
2422                 case FL_READY:
2423                 case FL_STATUS:
2424                 case FL_CFI_QUERY:
2425                 case FL_JEDEC_QUERY:
2426                         if (chip->oldstate == FL_READY) {
2427                                 /* place the chip in a known state before suspend */
2428                                 map_write(map, CMD(0xFF), cfi->chips[i].start);
2429                                 chip->oldstate = chip->state;
2430                                 chip->state = FL_PM_SUSPENDED;
2431                                 /* No need to wake_up() on this state change -
2432                                  * as the whole point is that nobody can do anything
2433                                  * with the chip now anyway.
2434                                  */
2435                         } else {
2436                                 /* There seems to be an operation pending. We must wait for it. */
2437                                 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2438                                 ret = -EAGAIN;
2439                         }
2440                         break;
2441                 default:
2442                         /* Should we actually wait? Once upon a time these routines weren't
2443                            allowed to. Or should we return -EAGAIN, because the upper layers
2444                            ought to have already shut down anything which was using the device
2445                            anyway? The latter for now. */
2446                         printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2447                         ret = -EAGAIN;
2448                 case FL_PM_SUSPENDED:
2449                         break;
2450                 }
2451                 spin_unlock(chip->mutex);
2452         }
2453
2454         /* Unlock the chips again */
2455
2456         if (ret) {
2457                 for (i--; i >=0; i--) {
2458                         chip = &cfi->chips[i];
2459
2460                         spin_lock(chip->mutex);
2461
2462                         if (chip->state == FL_PM_SUSPENDED) {
2463                                 /* No need to force it into a known state here,
2464                                    because we're returning failure, and it didn't
2465                                    get power cycled */
2466                                 chip->state = chip->oldstate;
2467                                 chip->oldstate = FL_READY;
2468                                 wake_up(&chip->wq);
2469                         }
2470                         spin_unlock(chip->mutex);
2471                 }
2472         }
2473
2474         return ret;
2475 }
2476
2477 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2478 {
2479         struct mtd_erase_region_info *region;
2480         int block, i;
2481         unsigned long adr;
2482         size_t len;
2483
2484         for (i = 0; i < mtd->numeraseregions; i++) {
2485                 region = &mtd->eraseregions[i];
2486                 if (!region->lockmap)
2487                         continue;
2488
2489                 for (block = 0; block < region->numblocks; block++) {
2490                         len = region->erasesize;
2491                         adr = region->offset + block * len;
2492
2493                         if (!test_bit(block, region->lockmap))
2494                                 cfi_intelext_unlock(mtd, adr, len);
2495                 }
2496         }
2497 }
2498
2499 static void cfi_intelext_resume(struct mtd_info *mtd)
2500 {
2501         struct map_info *map = mtd->priv;
2502         struct cfi_private *cfi = map->fldrv_priv;
2503         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2504         int i;
2505         struct flchip *chip;
2506
2507         for (i=0; i<cfi->numchips; i++) {
2508
2509                 chip = &cfi->chips[i];
2510
2511                 spin_lock(chip->mutex);
2512
2513                 /* Go to known state. Chip may have been power cycled */
2514                 if (chip->state == FL_PM_SUSPENDED) {
2515                         map_write(map, CMD(0xFF), cfi->chips[i].start);
2516                         chip->oldstate = chip->state = FL_READY;
2517                         wake_up(&chip->wq);
2518                 }
2519
2520                 spin_unlock(chip->mutex);
2521         }
2522
2523         if ((mtd->flags & MTD_POWERUP_LOCK)
2524             && extp && (extp->FeatureSupport & (1 << 5)))
2525                 cfi_intelext_restore_locks(mtd);
2526 }
2527
2528 static int cfi_intelext_reset(struct mtd_info *mtd)
2529 {
2530         struct map_info *map = mtd->priv;
2531         struct cfi_private *cfi = map->fldrv_priv;
2532         int i, ret;
2533
2534         for (i=0; i < cfi->numchips; i++) {
2535                 struct flchip *chip = &cfi->chips[i];
2536
2537                 /* force the completion of any ongoing operation
2538                    and switch to array mode so any bootloader in
2539                    flash is accessible for soft reboot. */
2540                 spin_lock(chip->mutex);
2541                 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2542                 if (!ret) {
2543                         map_write(map, CMD(0xff), chip->start);
2544                         chip->state = FL_SHUTDOWN;
2545                 }
2546                 spin_unlock(chip->mutex);
2547         }
2548
2549         return 0;
2550 }
2551
2552 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2553                                void *v)
2554 {
2555         struct mtd_info *mtd;
2556
2557         mtd = container_of(nb, struct mtd_info, reboot_notifier);
2558         cfi_intelext_reset(mtd);
2559         return NOTIFY_DONE;
2560 }
2561
2562 static void cfi_intelext_destroy(struct mtd_info *mtd)
2563 {
2564         struct map_info *map = mtd->priv;
2565         struct cfi_private *cfi = map->fldrv_priv;
2566         struct mtd_erase_region_info *region;
2567         int i;
2568         cfi_intelext_reset(mtd);
2569         unregister_reboot_notifier(&mtd->reboot_notifier);
2570         kfree(cfi->cmdset_priv);
2571         kfree(cfi->cfiq);
2572         kfree(cfi->chips[0].priv);
2573         kfree(cfi);
2574         for (i = 0; i < mtd->numeraseregions; i++) {
2575                 region = &mtd->eraseregions[i];
2576                 if (region->lockmap)
2577                         kfree(region->lockmap);
2578         }
2579         kfree(mtd->eraseregions);
2580 }
2581
2582 MODULE_LICENSE("GPL");
2583 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2584 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2585 MODULE_ALIAS("cfi_cmdset_0003");
2586 MODULE_ALIAS("cfi_cmdset_0200");