1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Tomas Winkler <tomas.winkler@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 int iwl_send_calib_results(struct iwl_priv *priv)
78 struct iwl_host_cmd hcmd = {
79 .id = REPLY_PHY_CALIBRATION_CMD,
80 .meta.flags = CMD_SIZE_HUGE,
83 for (i = 0; i < IWL_CALIB_MAX; i++)
84 if (priv->calib_results[i].buf) {
85 hcmd.len = priv->calib_results[i].buf_len;
86 hcmd.data = priv->calib_results[i].buf;
87 ret = iwl_send_cmd_sync(priv, &hcmd);
94 IWL_ERROR("Error %d iteration %d\n", ret, i);
97 EXPORT_SYMBOL(iwl_send_calib_results);
99 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
101 if (res->buf_len != len) {
103 res->buf = kzalloc(len, GFP_ATOMIC);
105 if (unlikely(res->buf == NULL))
109 memcpy(res->buf, buf, len);
112 EXPORT_SYMBOL(iwl_calib_set);
114 void iwl_calib_free_results(struct iwl_priv *priv)
118 for (i = 0; i < IWL_CALIB_MAX; i++) {
119 kfree(priv->calib_results[i].buf);
120 priv->calib_results[i].buf = NULL;
121 priv->calib_results[i].buf_len = 0;
125 /*****************************************************************************
126 * RUNTIME calibrations framework
127 *****************************************************************************/
129 /* "false alarms" are signals that our DSP tries to lock onto,
130 * but then determines that they are either noise, or transmissions
131 * from a distant wireless network (also "noise", really) that get
132 * "stepped on" by stronger transmissions within our own network.
133 * This algorithm attempts to set a sensitivity level that is high
134 * enough to receive all of our own network traffic, but not so
135 * high that our DSP gets too busy trying to lock onto non-network
137 static int iwl_sens_energy_cck(struct iwl_priv *priv,
140 struct statistics_general_data *rx_info)
144 u8 max_silence_rssi = 0;
146 u8 silence_rssi_a = 0;
147 u8 silence_rssi_b = 0;
148 u8 silence_rssi_c = 0;
151 /* "false_alarms" values below are cross-multiplications to assess the
152 * numbers of false alarms within the measured period of actual Rx
153 * (Rx is off when we're txing), vs the min/max expected false alarms
154 * (some should be expected if rx is sensitive enough) in a
155 * hypothetical listening period of 200 time units (TU), 204.8 msec:
157 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
160 u32 false_alarms = norm_fa * 200 * 1024;
161 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
162 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
163 struct iwl_sensitivity_data *data = NULL;
164 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
166 data = &(priv->sensitivity_data);
168 data->nrg_auto_corr_silence_diff = 0;
170 /* Find max silence rssi among all 3 receivers.
171 * This is background noise, which may include transmissions from other
172 * networks, measured during silence before our network's beacon */
173 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
174 ALL_BAND_FILTER) >> 8);
175 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
176 ALL_BAND_FILTER) >> 8);
177 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
178 ALL_BAND_FILTER) >> 8);
180 val = max(silence_rssi_b, silence_rssi_c);
181 max_silence_rssi = max(silence_rssi_a, (u8) val);
183 /* Store silence rssi in 20-beacon history table */
184 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
185 data->nrg_silence_idx++;
186 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
187 data->nrg_silence_idx = 0;
189 /* Find max silence rssi across 20 beacon history */
190 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
191 val = data->nrg_silence_rssi[i];
192 silence_ref = max(silence_ref, val);
194 IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
195 silence_rssi_a, silence_rssi_b, silence_rssi_c,
198 /* Find max rx energy (min value!) among all 3 receivers,
199 * measured during beacon frame.
200 * Save it in 10-beacon history table. */
201 i = data->nrg_energy_idx;
202 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
203 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
205 data->nrg_energy_idx++;
206 if (data->nrg_energy_idx >= 10)
207 data->nrg_energy_idx = 0;
209 /* Find min rx energy (max value) across 10 beacon history.
210 * This is the minimum signal level that we want to receive well.
211 * Add backoff (margin so we don't miss slightly lower energy frames).
212 * This establishes an upper bound (min value) for energy threshold. */
213 max_nrg_cck = data->nrg_value[0];
214 for (i = 1; i < 10; i++)
215 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
218 IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
219 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
220 rx_info->beacon_energy_c, max_nrg_cck - 6);
222 /* Count number of consecutive beacons with fewer-than-desired
224 if (false_alarms < min_false_alarms)
225 data->num_in_cck_no_fa++;
227 data->num_in_cck_no_fa = 0;
228 IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
229 data->num_in_cck_no_fa);
231 /* If we got too many false alarms this time, reduce sensitivity */
232 if ((false_alarms > max_false_alarms) &&
233 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
234 IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
235 false_alarms, max_false_alarms);
236 IWL_DEBUG_CALIB("... reducing sensitivity\n");
237 data->nrg_curr_state = IWL_FA_TOO_MANY;
238 /* Store for "fewer than desired" on later beacon */
239 data->nrg_silence_ref = silence_ref;
241 /* increase energy threshold (reduce nrg value)
242 * to decrease sensitivity */
243 if (data->nrg_th_cck >
244 (ranges->max_nrg_cck + NRG_STEP_CCK))
245 data->nrg_th_cck = data->nrg_th_cck
248 data->nrg_th_cck = ranges->max_nrg_cck;
249 /* Else if we got fewer than desired, increase sensitivity */
250 } else if (false_alarms < min_false_alarms) {
251 data->nrg_curr_state = IWL_FA_TOO_FEW;
253 /* Compare silence level with silence level for most recent
254 * healthy number or too many false alarms */
255 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
258 IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
259 false_alarms, min_false_alarms,
260 data->nrg_auto_corr_silence_diff);
262 /* Increase value to increase sensitivity, but only if:
263 * 1a) previous beacon did *not* have *too many* false alarms
264 * 1b) AND there's a significant difference in Rx levels
265 * from a previous beacon with too many, or healthy # FAs
266 * OR 2) We've seen a lot of beacons (100) with too few
268 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
269 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
270 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
272 IWL_DEBUG_CALIB("... increasing sensitivity\n");
273 /* Increase nrg value to increase sensitivity */
274 val = data->nrg_th_cck + NRG_STEP_CCK;
275 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
277 IWL_DEBUG_CALIB("... but not changing sensitivity\n");
280 /* Else we got a healthy number of false alarms, keep status quo */
282 IWL_DEBUG_CALIB(" FA in safe zone\n");
283 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
285 /* Store for use in "fewer than desired" with later beacon */
286 data->nrg_silence_ref = silence_ref;
288 /* If previous beacon had too many false alarms,
289 * give it some extra margin by reducing sensitivity again
290 * (but don't go below measured energy of desired Rx) */
291 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
292 IWL_DEBUG_CALIB("... increasing margin\n");
293 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
294 data->nrg_th_cck -= NRG_MARGIN;
296 data->nrg_th_cck = max_nrg_cck;
300 /* Make sure the energy threshold does not go above the measured
301 * energy of the desired Rx signals (reduced by backoff margin),
302 * or else we might start missing Rx frames.
303 * Lower value is higher energy, so we use max()!
305 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
306 IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
308 data->nrg_prev_state = data->nrg_curr_state;
310 /* Auto-correlation CCK algorithm */
311 if (false_alarms > min_false_alarms) {
313 /* increase auto_corr values to decrease sensitivity
314 * so the DSP won't be disturbed by the noise
316 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
317 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
319 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
320 data->auto_corr_cck =
321 min((u32)ranges->auto_corr_max_cck, val);
323 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
324 data->auto_corr_cck_mrc =
325 min((u32)ranges->auto_corr_max_cck_mrc, val);
326 } else if ((false_alarms < min_false_alarms) &&
327 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
328 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
330 /* Decrease auto_corr values to increase sensitivity */
331 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
332 data->auto_corr_cck =
333 max((u32)ranges->auto_corr_min_cck, val);
334 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
335 data->auto_corr_cck_mrc =
336 max((u32)ranges->auto_corr_min_cck_mrc, val);
343 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
348 u32 false_alarms = norm_fa * 200 * 1024;
349 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
350 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
351 struct iwl_sensitivity_data *data = NULL;
352 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
354 data = &(priv->sensitivity_data);
356 /* If we got too many false alarms this time, reduce sensitivity */
357 if (false_alarms > max_false_alarms) {
359 IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
360 false_alarms, max_false_alarms);
362 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
363 data->auto_corr_ofdm =
364 min((u32)ranges->auto_corr_max_ofdm, val);
366 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
367 data->auto_corr_ofdm_mrc =
368 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
370 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
371 data->auto_corr_ofdm_x1 =
372 min((u32)ranges->auto_corr_max_ofdm_x1, val);
374 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
375 data->auto_corr_ofdm_mrc_x1 =
376 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
379 /* Else if we got fewer than desired, increase sensitivity */
380 else if (false_alarms < min_false_alarms) {
382 IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
383 false_alarms, min_false_alarms);
385 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
386 data->auto_corr_ofdm =
387 max((u32)ranges->auto_corr_min_ofdm, val);
389 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
390 data->auto_corr_ofdm_mrc =
391 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
393 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
394 data->auto_corr_ofdm_x1 =
395 max((u32)ranges->auto_corr_min_ofdm_x1, val);
397 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
398 data->auto_corr_ofdm_mrc_x1 =
399 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
401 IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
402 min_false_alarms, false_alarms, max_false_alarms);
407 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
408 static int iwl_sensitivity_write(struct iwl_priv *priv)
411 struct iwl_sensitivity_cmd cmd ;
412 struct iwl_sensitivity_data *data = NULL;
413 struct iwl_host_cmd cmd_out = {
414 .id = SENSITIVITY_CMD,
415 .len = sizeof(struct iwl_sensitivity_cmd),
416 .meta.flags = CMD_ASYNC,
420 data = &(priv->sensitivity_data);
422 memset(&cmd, 0, sizeof(cmd));
424 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
425 cpu_to_le16((u16)data->auto_corr_ofdm);
426 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
427 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
428 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
429 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
430 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
431 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
433 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
434 cpu_to_le16((u16)data->auto_corr_cck);
435 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
436 cpu_to_le16((u16)data->auto_corr_cck_mrc);
438 cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
439 cpu_to_le16((u16)data->nrg_th_cck);
440 cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
441 cpu_to_le16((u16)data->nrg_th_ofdm);
443 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
444 __constant_cpu_to_le16(190);
445 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
446 __constant_cpu_to_le16(390);
447 cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
448 __constant_cpu_to_le16(62);
450 IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
451 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
452 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
455 IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
456 data->auto_corr_cck, data->auto_corr_cck_mrc,
459 /* Update uCode's "work" table, and copy it to DSP */
460 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
462 /* Don't send command to uCode if nothing has changed */
463 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
464 sizeof(u16)*HD_TABLE_SIZE)) {
465 IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
469 /* Copy table for comparison next time */
470 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
471 sizeof(u16)*HD_TABLE_SIZE);
473 ret = iwl_send_cmd(priv, &cmd_out);
475 IWL_ERROR("SENSITIVITY_CMD failed\n");
480 void iwl_init_sensitivity(struct iwl_priv *priv)
484 struct iwl_sensitivity_data *data = NULL;
485 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
487 if (priv->disable_sens_cal)
490 IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
492 /* Clear driver's sensitivity algo data */
493 data = &(priv->sensitivity_data);
498 memset(data, 0, sizeof(struct iwl_sensitivity_data));
500 data->num_in_cck_no_fa = 0;
501 data->nrg_curr_state = IWL_FA_TOO_MANY;
502 data->nrg_prev_state = IWL_FA_TOO_MANY;
503 data->nrg_silence_ref = 0;
504 data->nrg_silence_idx = 0;
505 data->nrg_energy_idx = 0;
507 for (i = 0; i < 10; i++)
508 data->nrg_value[i] = 0;
510 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
511 data->nrg_silence_rssi[i] = 0;
513 data->auto_corr_ofdm = 90;
514 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
515 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
516 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
517 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
518 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
519 data->nrg_th_cck = ranges->nrg_th_cck;
520 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
522 data->last_bad_plcp_cnt_ofdm = 0;
523 data->last_fa_cnt_ofdm = 0;
524 data->last_bad_plcp_cnt_cck = 0;
525 data->last_fa_cnt_cck = 0;
527 ret |= iwl_sensitivity_write(priv);
528 IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
530 EXPORT_SYMBOL(iwl_init_sensitivity);
532 void iwl_sensitivity_calibration(struct iwl_priv *priv,
533 struct iwl_notif_statistics *resp)
542 struct iwl_sensitivity_data *data = NULL;
543 struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
544 struct statistics_rx *statistics = &(resp->rx);
546 struct statistics_general_data statis;
548 if (priv->disable_sens_cal)
551 data = &(priv->sensitivity_data);
553 if (!iwl_is_associated(priv)) {
554 IWL_DEBUG_CALIB("<< - not associated\n");
558 spin_lock_irqsave(&priv->lock, flags);
559 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
560 IWL_DEBUG_CALIB("<< invalid data.\n");
561 spin_unlock_irqrestore(&priv->lock, flags);
565 /* Extract Statistics: */
566 rx_enable_time = le32_to_cpu(rx_info->channel_load);
567 fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
568 fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
569 bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
570 bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
572 statis.beacon_silence_rssi_a =
573 le32_to_cpu(statistics->general.beacon_silence_rssi_a);
574 statis.beacon_silence_rssi_b =
575 le32_to_cpu(statistics->general.beacon_silence_rssi_b);
576 statis.beacon_silence_rssi_c =
577 le32_to_cpu(statistics->general.beacon_silence_rssi_c);
578 statis.beacon_energy_a =
579 le32_to_cpu(statistics->general.beacon_energy_a);
580 statis.beacon_energy_b =
581 le32_to_cpu(statistics->general.beacon_energy_b);
582 statis.beacon_energy_c =
583 le32_to_cpu(statistics->general.beacon_energy_c);
585 spin_unlock_irqrestore(&priv->lock, flags);
587 IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
589 if (!rx_enable_time) {
590 IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
594 /* These statistics increase monotonically, and do not reset
595 * at each beacon. Calculate difference from last value, or just
596 * use the new statistics value if it has reset or wrapped around. */
597 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
598 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
600 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
601 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
604 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
605 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
607 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
608 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
611 if (data->last_fa_cnt_ofdm > fa_ofdm)
612 data->last_fa_cnt_ofdm = fa_ofdm;
614 fa_ofdm -= data->last_fa_cnt_ofdm;
615 data->last_fa_cnt_ofdm += fa_ofdm;
618 if (data->last_fa_cnt_cck > fa_cck)
619 data->last_fa_cnt_cck = fa_cck;
621 fa_cck -= data->last_fa_cnt_cck;
622 data->last_fa_cnt_cck += fa_cck;
625 /* Total aborted signal locks */
626 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
627 norm_fa_cck = fa_cck + bad_plcp_cck;
629 IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
630 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
632 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
633 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
634 iwl_sensitivity_write(priv);
638 EXPORT_SYMBOL(iwl_sensitivity_calibration);
641 * Accumulate 20 beacons of signal and noise statistics for each of
642 * 3 receivers/antennas/rx-chains, then figure out:
643 * 1) Which antennas are connected.
644 * 2) Differential rx gain settings to balance the 3 receivers.
646 void iwl_chain_noise_calibration(struct iwl_priv *priv,
647 struct iwl_notif_statistics *stat_resp)
649 struct iwl_chain_noise_data *data = NULL;
657 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
658 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
660 u16 max_average_sig_antenna_i;
661 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
662 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
664 u16 rxon_chnum = INITIALIZATION_VALUE;
665 u16 stat_chnum = INITIALIZATION_VALUE;
668 u32 active_chains = 0;
671 struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
673 if (priv->disable_chain_noise_cal)
676 data = &(priv->chain_noise_data);
678 /* Accumulate just the first 20 beacons after the first association,
679 * then we're done forever. */
680 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
681 if (data->state == IWL_CHAIN_NOISE_ALIVE)
682 IWL_DEBUG_CALIB("Wait for noise calib reset\n");
686 spin_lock_irqsave(&priv->lock, flags);
687 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
688 IWL_DEBUG_CALIB(" << Interference data unavailable\n");
689 spin_unlock_irqrestore(&priv->lock, flags);
693 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
694 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
695 stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
696 stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
698 /* Make sure we accumulate data for just the associated channel
699 * (even if scanning). */
700 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
701 IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
702 rxon_chnum, rxon_band24);
703 spin_unlock_irqrestore(&priv->lock, flags);
707 /* Accumulate beacon statistics values across 20 beacons */
708 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
710 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
712 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
715 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
716 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
717 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
719 spin_unlock_irqrestore(&priv->lock, flags);
721 data->beacon_count++;
723 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
724 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
725 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
727 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
728 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
729 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
731 IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
732 rxon_chnum, rxon_band24, data->beacon_count);
733 IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
734 chain_sig_a, chain_sig_b, chain_sig_c);
735 IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
736 chain_noise_a, chain_noise_b, chain_noise_c);
738 /* If this is the 20th beacon, determine:
739 * 1) Disconnected antennas (using signal strengths)
740 * 2) Differential gain (using silence noise) to balance receivers */
741 if (data->beacon_count != CAL_NUM_OF_BEACONS)
744 /* Analyze signal for disconnected antenna */
745 average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
746 average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
747 average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
749 if (average_sig[0] >= average_sig[1]) {
750 max_average_sig = average_sig[0];
751 max_average_sig_antenna_i = 0;
752 active_chains = (1 << max_average_sig_antenna_i);
754 max_average_sig = average_sig[1];
755 max_average_sig_antenna_i = 1;
756 active_chains = (1 << max_average_sig_antenna_i);
759 if (average_sig[2] >= max_average_sig) {
760 max_average_sig = average_sig[2];
761 max_average_sig_antenna_i = 2;
762 active_chains = (1 << max_average_sig_antenna_i);
765 IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
766 average_sig[0], average_sig[1], average_sig[2]);
767 IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
768 max_average_sig, max_average_sig_antenna_i);
770 /* Compare signal strengths for all 3 receivers. */
771 for (i = 0; i < NUM_RX_CHAINS; i++) {
772 if (i != max_average_sig_antenna_i) {
773 s32 rssi_delta = (max_average_sig - average_sig[i]);
775 /* If signal is very weak, compared with
776 * strongest, mark it as disconnected. */
777 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
778 data->disconn_array[i] = 1;
780 active_chains |= (1 << i);
781 IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
782 "disconn_array[i] = %d\n",
783 i, rssi_delta, data->disconn_array[i]);
788 for (i = 0; i < NUM_RX_CHAINS; i++) {
789 /* loops on all the bits of
790 * priv->hw_setting.valid_tx_ant */
791 u8 ant_msk = (1 << i);
792 if (!(priv->hw_params.valid_tx_ant & ant_msk))
796 if (data->disconn_array[i] == 0)
797 /* there is a Tx antenna connected */
799 if (num_tx_chains == priv->hw_params.tx_chains_num &&
800 data->disconn_array[i]) {
801 /* This is the last TX antenna and is also
802 * disconnected connect it anyway */
803 data->disconn_array[i] = 0;
804 active_chains |= ant_msk;
805 IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
806 "declare %d as connected\n", i);
811 /* Save for use within RXON, TX, SCAN commands, etc. */
812 priv->chain_noise_data.active_chains = active_chains;
813 IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
816 /* Analyze noise for rx balance */
817 average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
818 average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
819 average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
821 for (i = 0; i < NUM_RX_CHAINS; i++) {
822 if (!(data->disconn_array[i]) &&
823 (average_noise[i] <= min_average_noise)) {
824 /* This means that chain i is active and has
825 * lower noise values so far: */
826 min_average_noise = average_noise[i];
827 min_average_noise_antenna_i = i;
831 IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
832 average_noise[0], average_noise[1],
835 IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
836 min_average_noise, min_average_noise_antenna_i);
838 priv->cfg->ops->utils->gain_computation(priv, average_noise,
839 min_average_noise_antenna_i, min_average_noise);
841 /* Some power changes may have been made during the calibration.
842 * Update and commit the RXON
844 if (priv->cfg->ops->lib->update_chain_flags)
845 priv->cfg->ops->lib->update_chain_flags(priv);
847 data->state = IWL_CHAIN_NOISE_DONE;
848 iwl_power_enable_management(priv);
850 EXPORT_SYMBOL(iwl_chain_noise_calibration);
853 void iwl_reset_run_time_calib(struct iwl_priv *priv)
856 memset(&(priv->sensitivity_data), 0,
857 sizeof(struct iwl_sensitivity_data));
858 memset(&(priv->chain_noise_data), 0,
859 sizeof(struct iwl_chain_noise_data));
860 for (i = 0; i < NUM_RX_CHAINS; i++)
861 priv->chain_noise_data.delta_gain_code[i] =
862 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
864 /* Ask for statistics now, the uCode will send notification
865 * periodically after association */
866 iwl_send_statistics_request(priv, CMD_ASYNC);
868 EXPORT_SYMBOL(iwl_reset_run_time_calib);