Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@redhat.com>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
35
36 #include "internal.h"
37
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags)       (0)
40 #endif
41
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len)              (addr)
44 #endif
45
46 static void unmap_region(struct mm_struct *mm,
47                 struct vm_area_struct *vma, struct vm_area_struct *prev,
48                 unsigned long start, unsigned long end);
49
50 /*
51  * WARNING: the debugging will use recursive algorithms so never enable this
52  * unless you know what you are doing.
53  */
54 #undef DEBUG_MM_RB
55
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type     prot
61  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
62  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
63  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
64  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
65  *              
66  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78         return __pgprot(pgprot_val(protection_map[vm_flags &
79                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50;       /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
88
89 /*
90  * Check that a process has enough memory to allocate a new virtual
91  * mapping. 0 means there is enough memory for the allocation to
92  * succeed and -ENOMEM implies there is not.
93  *
94  * We currently support three overcommit policies, which are set via the
95  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
96  *
97  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98  * Additional code 2002 Jul 20 by Robert Love.
99  *
100  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
101  *
102  * Note this is a helper function intended to be used by LSMs which
103  * wish to use this logic.
104  */
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
106 {
107         unsigned long free, allowed;
108
109         vm_acct_memory(pages);
110
111         /*
112          * Sometimes we want to use more memory than we have
113          */
114         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115                 return 0;
116
117         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118                 unsigned long n;
119
120                 free = global_page_state(NR_FILE_PAGES);
121                 free += nr_swap_pages;
122
123                 /*
124                  * Any slabs which are created with the
125                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126                  * which are reclaimable, under pressure.  The dentry
127                  * cache and most inode caches should fall into this
128                  */
129                 free += global_page_state(NR_SLAB_RECLAIMABLE);
130
131                 /*
132                  * Leave the last 3% for root
133                  */
134                 if (!cap_sys_admin)
135                         free -= free / 32;
136
137                 if (free > pages)
138                         return 0;
139
140                 /*
141                  * nr_free_pages() is very expensive on large systems,
142                  * only call if we're about to fail.
143                  */
144                 n = nr_free_pages();
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (n <= totalreserve_pages)
150                         goto error;
151                 else
152                         n -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         n -= n / 32;
159                 free += n;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         allowed -= mm->total_vm / 32;
179
180         /*
181          * cast `allowed' as a signed long because vm_committed_space
182          * sometimes has a negative value
183          */
184         if (atomic_long_read(&vm_committed_space) < (long)allowed)
185                 return 0;
186 error:
187         vm_unacct_memory(pages);
188
189         return -ENOMEM;
190 }
191
192 /*
193  * Requires inode->i_mapping->i_mmap_lock
194  */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196                 struct file *file, struct address_space *mapping)
197 {
198         if (vma->vm_flags & VM_DENYWRITE)
199                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200         if (vma->vm_flags & VM_SHARED)
201                 mapping->i_mmap_writable--;
202
203         flush_dcache_mmap_lock(mapping);
204         if (unlikely(vma->vm_flags & VM_NONLINEAR))
205                 list_del_init(&vma->shared.vm_set.list);
206         else
207                 vma_prio_tree_remove(vma, &mapping->i_mmap);
208         flush_dcache_mmap_unlock(mapping);
209 }
210
211 /*
212  * Unlink a file-based vm structure from its prio_tree, to hide
213  * vma from rmap and vmtruncate before freeing its page tables.
214  */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217         struct file *file = vma->vm_file;
218
219         if (file) {
220                 struct address_space *mapping = file->f_mapping;
221                 spin_lock(&mapping->i_mmap_lock);
222                 __remove_shared_vm_struct(vma, file, mapping);
223                 spin_unlock(&mapping->i_mmap_lock);
224         }
225 }
226
227 /*
228  * Close a vm structure and free it, returning the next.
229  */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232         struct vm_area_struct *next = vma->vm_next;
233
234         might_sleep();
235         if (vma->vm_ops && vma->vm_ops->close)
236                 vma->vm_ops->close(vma);
237         if (vma->vm_file) {
238                 fput(vma->vm_file);
239                 if (vma->vm_flags & VM_EXECUTABLE)
240                         removed_exe_file_vma(vma->vm_mm);
241         }
242         mpol_put(vma_policy(vma));
243         kmem_cache_free(vm_area_cachep, vma);
244         return next;
245 }
246
247 asmlinkage unsigned long sys_brk(unsigned long brk)
248 {
249         unsigned long rlim, retval;
250         unsigned long newbrk, oldbrk;
251         struct mm_struct *mm = current->mm;
252         unsigned long min_brk;
253
254         down_write(&mm->mmap_sem);
255
256 #ifdef CONFIG_COMPAT_BRK
257         min_brk = mm->end_code;
258 #else
259         min_brk = mm->start_brk;
260 #endif
261         if (brk < min_brk)
262                 goto out;
263
264         /*
265          * Check against rlimit here. If this check is done later after the test
266          * of oldbrk with newbrk then it can escape the test and let the data
267          * segment grow beyond its set limit the in case where the limit is
268          * not page aligned -Ram Gupta
269          */
270         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272                         (mm->end_data - mm->start_data) > rlim)
273                 goto out;
274
275         newbrk = PAGE_ALIGN(brk);
276         oldbrk = PAGE_ALIGN(mm->brk);
277         if (oldbrk == newbrk)
278                 goto set_brk;
279
280         /* Always allow shrinking brk. */
281         if (brk <= mm->brk) {
282                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283                         goto set_brk;
284                 goto out;
285         }
286
287         /* Check against existing mmap mappings. */
288         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289                 goto out;
290
291         /* Ok, looks good - let it rip. */
292         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293                 goto out;
294 set_brk:
295         mm->brk = brk;
296 out:
297         retval = mm->brk;
298         up_write(&mm->mmap_sem);
299         return retval;
300 }
301
302 #ifdef DEBUG_MM_RB
303 static int browse_rb(struct rb_root *root)
304 {
305         int i = 0, j;
306         struct rb_node *nd, *pn = NULL;
307         unsigned long prev = 0, pend = 0;
308
309         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310                 struct vm_area_struct *vma;
311                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312                 if (vma->vm_start < prev)
313                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314                 if (vma->vm_start < pend)
315                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316                 if (vma->vm_start > vma->vm_end)
317                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318                 i++;
319                 pn = nd;
320                 prev = vma->vm_start;
321                 pend = vma->vm_end;
322         }
323         j = 0;
324         for (nd = pn; nd; nd = rb_prev(nd)) {
325                 j++;
326         }
327         if (i != j)
328                 printk("backwards %d, forwards %d\n", j, i), i = 0;
329         return i;
330 }
331
332 void validate_mm(struct mm_struct *mm)
333 {
334         int bug = 0;
335         int i = 0;
336         struct vm_area_struct *tmp = mm->mmap;
337         while (tmp) {
338                 tmp = tmp->vm_next;
339                 i++;
340         }
341         if (i != mm->map_count)
342                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343         i = browse_rb(&mm->mm_rb);
344         if (i != mm->map_count)
345                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346         BUG_ON(bug);
347 }
348 #else
349 #define validate_mm(mm) do { } while (0)
350 #endif
351
352 static struct vm_area_struct *
353 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
355                 struct rb_node ** rb_parent)
356 {
357         struct vm_area_struct * vma;
358         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359
360         __rb_link = &mm->mm_rb.rb_node;
361         rb_prev = __rb_parent = NULL;
362         vma = NULL;
363
364         while (*__rb_link) {
365                 struct vm_area_struct *vma_tmp;
366
367                 __rb_parent = *__rb_link;
368                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369
370                 if (vma_tmp->vm_end > addr) {
371                         vma = vma_tmp;
372                         if (vma_tmp->vm_start <= addr)
373                                 break;
374                         __rb_link = &__rb_parent->rb_left;
375                 } else {
376                         rb_prev = __rb_parent;
377                         __rb_link = &__rb_parent->rb_right;
378                 }
379         }
380
381         *pprev = NULL;
382         if (rb_prev)
383                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384         *rb_link = __rb_link;
385         *rb_parent = __rb_parent;
386         return vma;
387 }
388
389 static inline void
390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391                 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 {
393         if (prev) {
394                 vma->vm_next = prev->vm_next;
395                 prev->vm_next = vma;
396         } else {
397                 mm->mmap = vma;
398                 if (rb_parent)
399                         vma->vm_next = rb_entry(rb_parent,
400                                         struct vm_area_struct, vm_rb);
401                 else
402                         vma->vm_next = NULL;
403         }
404 }
405
406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407                 struct rb_node **rb_link, struct rb_node *rb_parent)
408 {
409         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 }
412
413 static void __vma_link_file(struct vm_area_struct *vma)
414 {
415         struct file * file;
416
417         file = vma->vm_file;
418         if (file) {
419                 struct address_space *mapping = file->f_mapping;
420
421                 if (vma->vm_flags & VM_DENYWRITE)
422                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423                 if (vma->vm_flags & VM_SHARED)
424                         mapping->i_mmap_writable++;
425
426                 flush_dcache_mmap_lock(mapping);
427                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
428                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429                 else
430                         vma_prio_tree_insert(vma, &mapping->i_mmap);
431                 flush_dcache_mmap_unlock(mapping);
432         }
433 }
434
435 static void
436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437         struct vm_area_struct *prev, struct rb_node **rb_link,
438         struct rb_node *rb_parent)
439 {
440         __vma_link_list(mm, vma, prev, rb_parent);
441         __vma_link_rb(mm, vma, rb_link, rb_parent);
442         __anon_vma_link(vma);
443 }
444
445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446                         struct vm_area_struct *prev, struct rb_node **rb_link,
447                         struct rb_node *rb_parent)
448 {
449         struct address_space *mapping = NULL;
450
451         if (vma->vm_file)
452                 mapping = vma->vm_file->f_mapping;
453
454         if (mapping) {
455                 spin_lock(&mapping->i_mmap_lock);
456                 vma->vm_truncate_count = mapping->truncate_count;
457         }
458         anon_vma_lock(vma);
459
460         __vma_link(mm, vma, prev, rb_link, rb_parent);
461         __vma_link_file(vma);
462
463         anon_vma_unlock(vma);
464         if (mapping)
465                 spin_unlock(&mapping->i_mmap_lock);
466
467         mm->map_count++;
468         validate_mm(mm);
469 }
470
471 /*
472  * Helper for vma_adjust in the split_vma insert case:
473  * insert vm structure into list and rbtree and anon_vma,
474  * but it has already been inserted into prio_tree earlier.
475  */
476 static void
477 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
478 {
479         struct vm_area_struct * __vma, * prev;
480         struct rb_node ** rb_link, * rb_parent;
481
482         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484         __vma_link(mm, vma, prev, rb_link, rb_parent);
485         mm->map_count++;
486 }
487
488 static inline void
489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490                 struct vm_area_struct *prev)
491 {
492         prev->vm_next = vma->vm_next;
493         rb_erase(&vma->vm_rb, &mm->mm_rb);
494         if (mm->mmap_cache == vma)
495                 mm->mmap_cache = prev;
496 }
497
498 /*
499  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
500  * is already present in an i_mmap tree without adjusting the tree.
501  * The following helper function should be used when such adjustments
502  * are necessary.  The "insert" vma (if any) is to be inserted
503  * before we drop the necessary locks.
504  */
505 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
506         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
507 {
508         struct mm_struct *mm = vma->vm_mm;
509         struct vm_area_struct *next = vma->vm_next;
510         struct vm_area_struct *importer = NULL;
511         struct address_space *mapping = NULL;
512         struct prio_tree_root *root = NULL;
513         struct file *file = vma->vm_file;
514         struct anon_vma *anon_vma = NULL;
515         long adjust_next = 0;
516         int remove_next = 0;
517
518         if (next && !insert) {
519                 if (end >= next->vm_end) {
520                         /*
521                          * vma expands, overlapping all the next, and
522                          * perhaps the one after too (mprotect case 6).
523                          */
524 again:                  remove_next = 1 + (end > next->vm_end);
525                         end = next->vm_end;
526                         anon_vma = next->anon_vma;
527                         importer = vma;
528                 } else if (end > next->vm_start) {
529                         /*
530                          * vma expands, overlapping part of the next:
531                          * mprotect case 5 shifting the boundary up.
532                          */
533                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
534                         anon_vma = next->anon_vma;
535                         importer = vma;
536                 } else if (end < vma->vm_end) {
537                         /*
538                          * vma shrinks, and !insert tells it's not
539                          * split_vma inserting another: so it must be
540                          * mprotect case 4 shifting the boundary down.
541                          */
542                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
543                         anon_vma = next->anon_vma;
544                         importer = next;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR))
551                         root = &mapping->i_mmap;
552                 spin_lock(&mapping->i_mmap_lock);
553                 if (importer &&
554                     vma->vm_truncate_count != next->vm_truncate_count) {
555                         /*
556                          * unmap_mapping_range might be in progress:
557                          * ensure that the expanding vma is rescanned.
558                          */
559                         importer->vm_truncate_count = 0;
560                 }
561                 if (insert) {
562                         insert->vm_truncate_count = vma->vm_truncate_count;
563                         /*
564                          * Put into prio_tree now, so instantiated pages
565                          * are visible to arm/parisc __flush_dcache_page
566                          * throughout; but we cannot insert into address
567                          * space until vma start or end is updated.
568                          */
569                         __vma_link_file(insert);
570                 }
571         }
572
573         /*
574          * When changing only vma->vm_end, we don't really need
575          * anon_vma lock: but is that case worth optimizing out?
576          */
577         if (vma->anon_vma)
578                 anon_vma = vma->anon_vma;
579         if (anon_vma) {
580                 spin_lock(&anon_vma->lock);
581                 /*
582                  * Easily overlooked: when mprotect shifts the boundary,
583                  * make sure the expanding vma has anon_vma set if the
584                  * shrinking vma had, to cover any anon pages imported.
585                  */
586                 if (importer && !importer->anon_vma) {
587                         importer->anon_vma = anon_vma;
588                         __anon_vma_link(importer);
589                 }
590         }
591
592         if (root) {
593                 flush_dcache_mmap_lock(mapping);
594                 vma_prio_tree_remove(vma, root);
595                 if (adjust_next)
596                         vma_prio_tree_remove(next, root);
597         }
598
599         vma->vm_start = start;
600         vma->vm_end = end;
601         vma->vm_pgoff = pgoff;
602         if (adjust_next) {
603                 next->vm_start += adjust_next << PAGE_SHIFT;
604                 next->vm_pgoff += adjust_next;
605         }
606
607         if (root) {
608                 if (adjust_next)
609                         vma_prio_tree_insert(next, root);
610                 vma_prio_tree_insert(vma, root);
611                 flush_dcache_mmap_unlock(mapping);
612         }
613
614         if (remove_next) {
615                 /*
616                  * vma_merge has merged next into vma, and needs
617                  * us to remove next before dropping the locks.
618                  */
619                 __vma_unlink(mm, next, vma);
620                 if (file)
621                         __remove_shared_vm_struct(next, file, mapping);
622                 if (next->anon_vma)
623                         __anon_vma_merge(vma, next);
624         } else if (insert) {
625                 /*
626                  * split_vma has split insert from vma, and needs
627                  * us to insert it before dropping the locks
628                  * (it may either follow vma or precede it).
629                  */
630                 __insert_vm_struct(mm, insert);
631         }
632
633         if (anon_vma)
634                 spin_unlock(&anon_vma->lock);
635         if (mapping)
636                 spin_unlock(&mapping->i_mmap_lock);
637
638         if (remove_next) {
639                 if (file) {
640                         fput(file);
641                         if (next->vm_flags & VM_EXECUTABLE)
642                                 removed_exe_file_vma(mm);
643                 }
644                 mm->map_count--;
645                 mpol_put(vma_policy(next));
646                 kmem_cache_free(vm_area_cachep, next);
647                 /*
648                  * In mprotect's case 6 (see comments on vma_merge),
649                  * we must remove another next too. It would clutter
650                  * up the code too much to do both in one go.
651                  */
652                 if (remove_next == 2) {
653                         next = vma->vm_next;
654                         goto again;
655                 }
656         }
657
658         validate_mm(mm);
659 }
660
661 /*
662  * If the vma has a ->close operation then the driver probably needs to release
663  * per-vma resources, so we don't attempt to merge those.
664  */
665 static inline int is_mergeable_vma(struct vm_area_struct *vma,
666                         struct file *file, unsigned long vm_flags)
667 {
668         if (vma->vm_flags != vm_flags)
669                 return 0;
670         if (vma->vm_file != file)
671                 return 0;
672         if (vma->vm_ops && vma->vm_ops->close)
673                 return 0;
674         return 1;
675 }
676
677 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
678                                         struct anon_vma *anon_vma2)
679 {
680         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
681 }
682
683 /*
684  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685  * in front of (at a lower virtual address and file offset than) the vma.
686  *
687  * We cannot merge two vmas if they have differently assigned (non-NULL)
688  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689  *
690  * We don't check here for the merged mmap wrapping around the end of pagecache
691  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692  * wrap, nor mmaps which cover the final page at index -1UL.
693  */
694 static int
695 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
696         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698         if (is_mergeable_vma(vma, file, vm_flags) &&
699             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700                 if (vma->vm_pgoff == vm_pgoff)
701                         return 1;
702         }
703         return 0;
704 }
705
706 /*
707  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708  * beyond (at a higher virtual address and file offset than) the vma.
709  *
710  * We cannot merge two vmas if they have differently assigned (non-NULL)
711  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712  */
713 static int
714 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
715         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 {
717         if (is_mergeable_vma(vma, file, vm_flags) &&
718             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
719                 pgoff_t vm_pglen;
720                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
721                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
722                         return 1;
723         }
724         return 0;
725 }
726
727 /*
728  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729  * whether that can be merged with its predecessor or its successor.
730  * Or both (it neatly fills a hole).
731  *
732  * In most cases - when called for mmap, brk or mremap - [addr,end) is
733  * certain not to be mapped by the time vma_merge is called; but when
734  * called for mprotect, it is certain to be already mapped (either at
735  * an offset within prev, or at the start of next), and the flags of
736  * this area are about to be changed to vm_flags - and the no-change
737  * case has already been eliminated.
738  *
739  * The following mprotect cases have to be considered, where AAAA is
740  * the area passed down from mprotect_fixup, never extending beyond one
741  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742  *
743  *     AAAA             AAAA                AAAA          AAAA
744  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
745  *    cannot merge    might become    might become    might become
746  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
747  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
748  *    mremap move:                                    PPPPNNNNNNNN 8
749  *        AAAA
750  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
751  *    might become    case 1 below    case 2 below    case 3 below
752  *
753  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755  */
756 struct vm_area_struct *vma_merge(struct mm_struct *mm,
757                         struct vm_area_struct *prev, unsigned long addr,
758                         unsigned long end, unsigned long vm_flags,
759                         struct anon_vma *anon_vma, struct file *file,
760                         pgoff_t pgoff, struct mempolicy *policy)
761 {
762         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
763         struct vm_area_struct *area, *next;
764
765         /*
766          * We later require that vma->vm_flags == vm_flags,
767          * so this tests vma->vm_flags & VM_SPECIAL, too.
768          */
769         if (vm_flags & VM_SPECIAL)
770                 return NULL;
771
772         if (prev)
773                 next = prev->vm_next;
774         else
775                 next = mm->mmap;
776         area = next;
777         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
778                 next = next->vm_next;
779
780         /*
781          * Can it merge with the predecessor?
782          */
783         if (prev && prev->vm_end == addr &&
784                         mpol_equal(vma_policy(prev), policy) &&
785                         can_vma_merge_after(prev, vm_flags,
786                                                 anon_vma, file, pgoff)) {
787                 /*
788                  * OK, it can.  Can we now merge in the successor as well?
789                  */
790                 if (next && end == next->vm_start &&
791                                 mpol_equal(policy, vma_policy(next)) &&
792                                 can_vma_merge_before(next, vm_flags,
793                                         anon_vma, file, pgoff+pglen) &&
794                                 is_mergeable_anon_vma(prev->anon_vma,
795                                                       next->anon_vma)) {
796                                                         /* cases 1, 6 */
797                         vma_adjust(prev, prev->vm_start,
798                                 next->vm_end, prev->vm_pgoff, NULL);
799                 } else                                  /* cases 2, 5, 7 */
800                         vma_adjust(prev, prev->vm_start,
801                                 end, prev->vm_pgoff, NULL);
802                 return prev;
803         }
804
805         /*
806          * Can this new request be merged in front of next?
807          */
808         if (next && end == next->vm_start &&
809                         mpol_equal(policy, vma_policy(next)) &&
810                         can_vma_merge_before(next, vm_flags,
811                                         anon_vma, file, pgoff+pglen)) {
812                 if (prev && addr < prev->vm_end)        /* case 4 */
813                         vma_adjust(prev, prev->vm_start,
814                                 addr, prev->vm_pgoff, NULL);
815                 else                                    /* cases 3, 8 */
816                         vma_adjust(area, addr, next->vm_end,
817                                 next->vm_pgoff - pglen, NULL);
818                 return area;
819         }
820
821         return NULL;
822 }
823
824 /*
825  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826  * neighbouring vmas for a suitable anon_vma, before it goes off
827  * to allocate a new anon_vma.  It checks because a repetitive
828  * sequence of mprotects and faults may otherwise lead to distinct
829  * anon_vmas being allocated, preventing vma merge in subsequent
830  * mprotect.
831  */
832 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 {
834         struct vm_area_struct *near;
835         unsigned long vm_flags;
836
837         near = vma->vm_next;
838         if (!near)
839                 goto try_prev;
840
841         /*
842          * Since only mprotect tries to remerge vmas, match flags
843          * which might be mprotected into each other later on.
844          * Neither mlock nor madvise tries to remerge at present,
845          * so leave their flags as obstructing a merge.
846          */
847         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849
850         if (near->anon_vma && vma->vm_end == near->vm_start &&
851                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
852                         can_vma_merge_before(near, vm_flags,
853                                 NULL, vma->vm_file, vma->vm_pgoff +
854                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
855                 return near->anon_vma;
856 try_prev:
857         /*
858          * It is potentially slow to have to call find_vma_prev here.
859          * But it's only on the first write fault on the vma, not
860          * every time, and we could devise a way to avoid it later
861          * (e.g. stash info in next's anon_vma_node when assigning
862          * an anon_vma, or when trying vma_merge).  Another time.
863          */
864         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
865         if (!near)
866                 goto none;
867
868         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
869         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870
871         if (near->anon_vma && near->vm_end == vma->vm_start &&
872                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
873                         can_vma_merge_after(near, vm_flags,
874                                 NULL, vma->vm_file, vma->vm_pgoff))
875                 return near->anon_vma;
876 none:
877         /*
878          * There's no absolute need to look only at touching neighbours:
879          * we could search further afield for "compatible" anon_vmas.
880          * But it would probably just be a waste of time searching,
881          * or lead to too many vmas hanging off the same anon_vma.
882          * We're trying to allow mprotect remerging later on,
883          * not trying to minimize memory used for anon_vmas.
884          */
885         return NULL;
886 }
887
888 #ifdef CONFIG_PROC_FS
889 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
890                                                 struct file *file, long pages)
891 {
892         const unsigned long stack_flags
893                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894
895         if (file) {
896                 mm->shared_vm += pages;
897                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
898                         mm->exec_vm += pages;
899         } else if (flags & stack_flags)
900                 mm->stack_vm += pages;
901         if (flags & (VM_RESERVED|VM_IO))
902                 mm->reserved_vm += pages;
903 }
904 #endif /* CONFIG_PROC_FS */
905
906 /*
907  * The caller must hold down_write(current->mm->mmap_sem).
908  */
909
910 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
911                         unsigned long len, unsigned long prot,
912                         unsigned long flags, unsigned long pgoff)
913 {
914         struct mm_struct * mm = current->mm;
915         struct inode *inode;
916         unsigned int vm_flags;
917         int error;
918         int accountable = 1;
919         unsigned long reqprot = prot;
920
921         /*
922          * Does the application expect PROT_READ to imply PROT_EXEC?
923          *
924          * (the exception is when the underlying filesystem is noexec
925          *  mounted, in which case we dont add PROT_EXEC.)
926          */
927         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
928                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
929                         prot |= PROT_EXEC;
930
931         if (!len)
932                 return -EINVAL;
933
934         if (!(flags & MAP_FIXED))
935                 addr = round_hint_to_min(addr);
936
937         error = arch_mmap_check(addr, len, flags);
938         if (error)
939                 return error;
940
941         /* Careful about overflows.. */
942         len = PAGE_ALIGN(len);
943         if (!len || len > TASK_SIZE)
944                 return -ENOMEM;
945
946         /* offset overflow? */
947         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
948                return -EOVERFLOW;
949
950         /* Too many mappings? */
951         if (mm->map_count > sysctl_max_map_count)
952                 return -ENOMEM;
953
954         /* Obtain the address to map to. we verify (or select) it and ensure
955          * that it represents a valid section of the address space.
956          */
957         addr = get_unmapped_area(file, addr, len, pgoff, flags);
958         if (addr & ~PAGE_MASK)
959                 return addr;
960
961         /* Do simple checking here so the lower-level routines won't have
962          * to. we assume access permissions have been handled by the open
963          * of the memory object, so we don't do any here.
964          */
965         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
966                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
967
968         if (flags & MAP_LOCKED) {
969                 if (!can_do_mlock())
970                         return -EPERM;
971                 vm_flags |= VM_LOCKED;
972         }
973
974         /* mlock MCL_FUTURE? */
975         if (vm_flags & VM_LOCKED) {
976                 unsigned long locked, lock_limit;
977                 locked = len >> PAGE_SHIFT;
978                 locked += mm->locked_vm;
979                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
980                 lock_limit >>= PAGE_SHIFT;
981                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
982                         return -EAGAIN;
983         }
984
985         inode = file ? file->f_path.dentry->d_inode : NULL;
986
987         if (file) {
988                 switch (flags & MAP_TYPE) {
989                 case MAP_SHARED:
990                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
991                                 return -EACCES;
992
993                         /*
994                          * Make sure we don't allow writing to an append-only
995                          * file..
996                          */
997                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
998                                 return -EACCES;
999
1000                         /*
1001                          * Make sure there are no mandatory locks on the file.
1002                          */
1003                         if (locks_verify_locked(inode))
1004                                 return -EAGAIN;
1005
1006                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1007                         if (!(file->f_mode & FMODE_WRITE))
1008                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1009
1010                         /* fall through */
1011                 case MAP_PRIVATE:
1012                         if (!(file->f_mode & FMODE_READ))
1013                                 return -EACCES;
1014                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015                                 if (vm_flags & VM_EXEC)
1016                                         return -EPERM;
1017                                 vm_flags &= ~VM_MAYEXEC;
1018                         }
1019                         if (is_file_hugepages(file))
1020                                 accountable = 0;
1021
1022                         if (!file->f_op || !file->f_op->mmap)
1023                                 return -ENODEV;
1024                         break;
1025
1026                 default:
1027                         return -EINVAL;
1028                 }
1029         } else {
1030                 switch (flags & MAP_TYPE) {
1031                 case MAP_SHARED:
1032                         /*
1033                          * Ignore pgoff.
1034                          */
1035                         pgoff = 0;
1036                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1037                         break;
1038                 case MAP_PRIVATE:
1039                         /*
1040                          * Set pgoff according to addr for anon_vma.
1041                          */
1042                         pgoff = addr >> PAGE_SHIFT;
1043                         break;
1044                 default:
1045                         return -EINVAL;
1046                 }
1047         }
1048
1049         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050         if (error)
1051                 return error;
1052
1053         return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1054                            accountable);
1055 }
1056 EXPORT_SYMBOL(do_mmap_pgoff);
1057
1058 /*
1059  * Some shared mappigns will want the pages marked read-only
1060  * to track write events. If so, we'll downgrade vm_page_prot
1061  * to the private version (using protection_map[] without the
1062  * VM_SHARED bit).
1063  */
1064 int vma_wants_writenotify(struct vm_area_struct *vma)
1065 {
1066         unsigned int vm_flags = vma->vm_flags;
1067
1068         /* If it was private or non-writable, the write bit is already clear */
1069         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1070                 return 0;
1071
1072         /* The backer wishes to know when pages are first written to? */
1073         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1074                 return 1;
1075
1076         /* The open routine did something to the protections already? */
1077         if (pgprot_val(vma->vm_page_prot) !=
1078             pgprot_val(vm_get_page_prot(vm_flags)))
1079                 return 0;
1080
1081         /* Specialty mapping? */
1082         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1083                 return 0;
1084
1085         /* Can the mapping track the dirty pages? */
1086         return vma->vm_file && vma->vm_file->f_mapping &&
1087                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1088 }
1089
1090 unsigned long mmap_region(struct file *file, unsigned long addr,
1091                           unsigned long len, unsigned long flags,
1092                           unsigned int vm_flags, unsigned long pgoff,
1093                           int accountable)
1094 {
1095         struct mm_struct *mm = current->mm;
1096         struct vm_area_struct *vma, *prev;
1097         int correct_wcount = 0;
1098         int error;
1099         struct rb_node **rb_link, *rb_parent;
1100         unsigned long charged = 0;
1101         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1102
1103         /* Clear old maps */
1104         error = -ENOMEM;
1105 munmap_back:
1106         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1107         if (vma && vma->vm_start < addr + len) {
1108                 if (do_munmap(mm, addr, len))
1109                         return -ENOMEM;
1110                 goto munmap_back;
1111         }
1112
1113         /* Check against address space limit. */
1114         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1115                 return -ENOMEM;
1116
1117         if (flags & MAP_NORESERVE)
1118                 vm_flags |= VM_NORESERVE;
1119
1120         if (accountable && (!(flags & MAP_NORESERVE) ||
1121                             sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1122                 if (vm_flags & VM_SHARED) {
1123                         /* Check memory availability in shmem_file_setup? */
1124                         vm_flags |= VM_ACCOUNT;
1125                 } else if (vm_flags & VM_WRITE) {
1126                         /*
1127                          * Private writable mapping: check memory availability
1128                          */
1129                         charged = len >> PAGE_SHIFT;
1130                         if (security_vm_enough_memory(charged))
1131                                 return -ENOMEM;
1132                         vm_flags |= VM_ACCOUNT;
1133                 }
1134         }
1135
1136         /*
1137          * Can we just expand an old private anonymous mapping?
1138          * The VM_SHARED test is necessary because shmem_zero_setup
1139          * will create the file object for a shared anonymous map below.
1140          */
1141         if (!file && !(vm_flags & VM_SHARED)) {
1142                 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1143                                         NULL, NULL, pgoff, NULL);
1144                 if (vma)
1145                         goto out;
1146         }
1147
1148         /*
1149          * Determine the object being mapped and call the appropriate
1150          * specific mapper. the address has already been validated, but
1151          * not unmapped, but the maps are removed from the list.
1152          */
1153         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1154         if (!vma) {
1155                 error = -ENOMEM;
1156                 goto unacct_error;
1157         }
1158
1159         vma->vm_mm = mm;
1160         vma->vm_start = addr;
1161         vma->vm_end = addr + len;
1162         vma->vm_flags = vm_flags;
1163         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1164         vma->vm_pgoff = pgoff;
1165
1166         if (file) {
1167                 error = -EINVAL;
1168                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1169                         goto free_vma;
1170                 if (vm_flags & VM_DENYWRITE) {
1171                         error = deny_write_access(file);
1172                         if (error)
1173                                 goto free_vma;
1174                         correct_wcount = 1;
1175                 }
1176                 vma->vm_file = file;
1177                 get_file(file);
1178                 error = file->f_op->mmap(file, vma);
1179                 if (error)
1180                         goto unmap_and_free_vma;
1181                 if (vm_flags & VM_EXECUTABLE)
1182                         added_exe_file_vma(mm);
1183         } else if (vm_flags & VM_SHARED) {
1184                 error = shmem_zero_setup(vma);
1185                 if (error)
1186                         goto free_vma;
1187         }
1188
1189         /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1190          * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1191          * that memory reservation must be checked; but that reservation
1192          * belongs to shared memory object, not to vma: so now clear it.
1193          */
1194         if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1195                 vma->vm_flags &= ~VM_ACCOUNT;
1196
1197         /* Can addr have changed??
1198          *
1199          * Answer: Yes, several device drivers can do it in their
1200          *         f_op->mmap method. -DaveM
1201          */
1202         addr = vma->vm_start;
1203         pgoff = vma->vm_pgoff;
1204         vm_flags = vma->vm_flags;
1205
1206         if (vma_wants_writenotify(vma))
1207                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1208
1209         if (file && vma_merge(mm, prev, addr, vma->vm_end,
1210                         vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1211                 mpol_put(vma_policy(vma));
1212                 kmem_cache_free(vm_area_cachep, vma);
1213                 fput(file);
1214                 if (vm_flags & VM_EXECUTABLE)
1215                         removed_exe_file_vma(mm);
1216         } else {
1217                 vma_link(mm, vma, prev, rb_link, rb_parent);
1218                 file = vma->vm_file;
1219         }
1220
1221         /* Once vma denies write, undo our temporary denial count */
1222         if (correct_wcount)
1223                 atomic_inc(&inode->i_writecount);
1224 out:
1225         mm->total_vm += len >> PAGE_SHIFT;
1226         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1227         if (vm_flags & VM_LOCKED) {
1228                 /*
1229                  * makes pages present; downgrades, drops, reacquires mmap_sem
1230                  */
1231                 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1232                 if (nr_pages < 0)
1233                         return nr_pages;        /* vma gone! */
1234                 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1235         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1236                 make_pages_present(addr, addr + len);
1237         return addr;
1238
1239 unmap_and_free_vma:
1240         if (correct_wcount)
1241                 atomic_inc(&inode->i_writecount);
1242         vma->vm_file = NULL;
1243         fput(file);
1244
1245         /* Undo any partial mapping done by a device driver. */
1246         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1247         charged = 0;
1248 free_vma:
1249         kmem_cache_free(vm_area_cachep, vma);
1250 unacct_error:
1251         if (charged)
1252                 vm_unacct_memory(charged);
1253         return error;
1254 }
1255
1256 /* Get an address range which is currently unmapped.
1257  * For shmat() with addr=0.
1258  *
1259  * Ugly calling convention alert:
1260  * Return value with the low bits set means error value,
1261  * ie
1262  *      if (ret & ~PAGE_MASK)
1263  *              error = ret;
1264  *
1265  * This function "knows" that -ENOMEM has the bits set.
1266  */
1267 #ifndef HAVE_ARCH_UNMAPPED_AREA
1268 unsigned long
1269 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1270                 unsigned long len, unsigned long pgoff, unsigned long flags)
1271 {
1272         struct mm_struct *mm = current->mm;
1273         struct vm_area_struct *vma;
1274         unsigned long start_addr;
1275
1276         if (len > TASK_SIZE)
1277                 return -ENOMEM;
1278
1279         if (flags & MAP_FIXED)
1280                 return addr;
1281
1282         if (addr) {
1283                 addr = PAGE_ALIGN(addr);
1284                 vma = find_vma(mm, addr);
1285                 if (TASK_SIZE - len >= addr &&
1286                     (!vma || addr + len <= vma->vm_start))
1287                         return addr;
1288         }
1289         if (len > mm->cached_hole_size) {
1290                 start_addr = addr = mm->free_area_cache;
1291         } else {
1292                 start_addr = addr = TASK_UNMAPPED_BASE;
1293                 mm->cached_hole_size = 0;
1294         }
1295
1296 full_search:
1297         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1298                 /* At this point:  (!vma || addr < vma->vm_end). */
1299                 if (TASK_SIZE - len < addr) {
1300                         /*
1301                          * Start a new search - just in case we missed
1302                          * some holes.
1303                          */
1304                         if (start_addr != TASK_UNMAPPED_BASE) {
1305                                 addr = TASK_UNMAPPED_BASE;
1306                                 start_addr = addr;
1307                                 mm->cached_hole_size = 0;
1308                                 goto full_search;
1309                         }
1310                         return -ENOMEM;
1311                 }
1312                 if (!vma || addr + len <= vma->vm_start) {
1313                         /*
1314                          * Remember the place where we stopped the search:
1315                          */
1316                         mm->free_area_cache = addr + len;
1317                         return addr;
1318                 }
1319                 if (addr + mm->cached_hole_size < vma->vm_start)
1320                         mm->cached_hole_size = vma->vm_start - addr;
1321                 addr = vma->vm_end;
1322         }
1323 }
1324 #endif  
1325
1326 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1327 {
1328         /*
1329          * Is this a new hole at the lowest possible address?
1330          */
1331         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1332                 mm->free_area_cache = addr;
1333                 mm->cached_hole_size = ~0UL;
1334         }
1335 }
1336
1337 /*
1338  * This mmap-allocator allocates new areas top-down from below the
1339  * stack's low limit (the base):
1340  */
1341 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1342 unsigned long
1343 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1344                           const unsigned long len, const unsigned long pgoff,
1345                           const unsigned long flags)
1346 {
1347         struct vm_area_struct *vma;
1348         struct mm_struct *mm = current->mm;
1349         unsigned long addr = addr0;
1350
1351         /* requested length too big for entire address space */
1352         if (len > TASK_SIZE)
1353                 return -ENOMEM;
1354
1355         if (flags & MAP_FIXED)
1356                 return addr;
1357
1358         /* requesting a specific address */
1359         if (addr) {
1360                 addr = PAGE_ALIGN(addr);
1361                 vma = find_vma(mm, addr);
1362                 if (TASK_SIZE - len >= addr &&
1363                                 (!vma || addr + len <= vma->vm_start))
1364                         return addr;
1365         }
1366
1367         /* check if free_area_cache is useful for us */
1368         if (len <= mm->cached_hole_size) {
1369                 mm->cached_hole_size = 0;
1370                 mm->free_area_cache = mm->mmap_base;
1371         }
1372
1373         /* either no address requested or can't fit in requested address hole */
1374         addr = mm->free_area_cache;
1375
1376         /* make sure it can fit in the remaining address space */
1377         if (addr > len) {
1378                 vma = find_vma(mm, addr-len);
1379                 if (!vma || addr <= vma->vm_start)
1380                         /* remember the address as a hint for next time */
1381                         return (mm->free_area_cache = addr-len);
1382         }
1383
1384         if (mm->mmap_base < len)
1385                 goto bottomup;
1386
1387         addr = mm->mmap_base-len;
1388
1389         do {
1390                 /*
1391                  * Lookup failure means no vma is above this address,
1392                  * else if new region fits below vma->vm_start,
1393                  * return with success:
1394                  */
1395                 vma = find_vma(mm, addr);
1396                 if (!vma || addr+len <= vma->vm_start)
1397                         /* remember the address as a hint for next time */
1398                         return (mm->free_area_cache = addr);
1399
1400                 /* remember the largest hole we saw so far */
1401                 if (addr + mm->cached_hole_size < vma->vm_start)
1402                         mm->cached_hole_size = vma->vm_start - addr;
1403
1404                 /* try just below the current vma->vm_start */
1405                 addr = vma->vm_start-len;
1406         } while (len < vma->vm_start);
1407
1408 bottomup:
1409         /*
1410          * A failed mmap() very likely causes application failure,
1411          * so fall back to the bottom-up function here. This scenario
1412          * can happen with large stack limits and large mmap()
1413          * allocations.
1414          */
1415         mm->cached_hole_size = ~0UL;
1416         mm->free_area_cache = TASK_UNMAPPED_BASE;
1417         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1418         /*
1419          * Restore the topdown base:
1420          */
1421         mm->free_area_cache = mm->mmap_base;
1422         mm->cached_hole_size = ~0UL;
1423
1424         return addr;
1425 }
1426 #endif
1427
1428 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1429 {
1430         /*
1431          * Is this a new hole at the highest possible address?
1432          */
1433         if (addr > mm->free_area_cache)
1434                 mm->free_area_cache = addr;
1435
1436         /* dont allow allocations above current base */
1437         if (mm->free_area_cache > mm->mmap_base)
1438                 mm->free_area_cache = mm->mmap_base;
1439 }
1440
1441 unsigned long
1442 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1443                 unsigned long pgoff, unsigned long flags)
1444 {
1445         unsigned long (*get_area)(struct file *, unsigned long,
1446                                   unsigned long, unsigned long, unsigned long);
1447
1448         get_area = current->mm->get_unmapped_area;
1449         if (file && file->f_op && file->f_op->get_unmapped_area)
1450                 get_area = file->f_op->get_unmapped_area;
1451         addr = get_area(file, addr, len, pgoff, flags);
1452         if (IS_ERR_VALUE(addr))
1453                 return addr;
1454
1455         if (addr > TASK_SIZE - len)
1456                 return -ENOMEM;
1457         if (addr & ~PAGE_MASK)
1458                 return -EINVAL;
1459
1460         return arch_rebalance_pgtables(addr, len);
1461 }
1462
1463 EXPORT_SYMBOL(get_unmapped_area);
1464
1465 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1466 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1467 {
1468         struct vm_area_struct *vma = NULL;
1469
1470         if (mm) {
1471                 /* Check the cache first. */
1472                 /* (Cache hit rate is typically around 35%.) */
1473                 vma = mm->mmap_cache;
1474                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1475                         struct rb_node * rb_node;
1476
1477                         rb_node = mm->mm_rb.rb_node;
1478                         vma = NULL;
1479
1480                         while (rb_node) {
1481                                 struct vm_area_struct * vma_tmp;
1482
1483                                 vma_tmp = rb_entry(rb_node,
1484                                                 struct vm_area_struct, vm_rb);
1485
1486                                 if (vma_tmp->vm_end > addr) {
1487                                         vma = vma_tmp;
1488                                         if (vma_tmp->vm_start <= addr)
1489                                                 break;
1490                                         rb_node = rb_node->rb_left;
1491                                 } else
1492                                         rb_node = rb_node->rb_right;
1493                         }
1494                         if (vma)
1495                                 mm->mmap_cache = vma;
1496                 }
1497         }
1498         return vma;
1499 }
1500
1501 EXPORT_SYMBOL(find_vma);
1502
1503 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1504 struct vm_area_struct *
1505 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1506                         struct vm_area_struct **pprev)
1507 {
1508         struct vm_area_struct *vma = NULL, *prev = NULL;
1509         struct rb_node * rb_node;
1510         if (!mm)
1511                 goto out;
1512
1513         /* Guard against addr being lower than the first VMA */
1514         vma = mm->mmap;
1515
1516         /* Go through the RB tree quickly. */
1517         rb_node = mm->mm_rb.rb_node;
1518
1519         while (rb_node) {
1520                 struct vm_area_struct *vma_tmp;
1521                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1522
1523                 if (addr < vma_tmp->vm_end) {
1524                         rb_node = rb_node->rb_left;
1525                 } else {
1526                         prev = vma_tmp;
1527                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1528                                 break;
1529                         rb_node = rb_node->rb_right;
1530                 }
1531         }
1532
1533 out:
1534         *pprev = prev;
1535         return prev ? prev->vm_next : vma;
1536 }
1537
1538 /*
1539  * Verify that the stack growth is acceptable and
1540  * update accounting. This is shared with both the
1541  * grow-up and grow-down cases.
1542  */
1543 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1544 {
1545         struct mm_struct *mm = vma->vm_mm;
1546         struct rlimit *rlim = current->signal->rlim;
1547         unsigned long new_start;
1548
1549         /* address space limit tests */
1550         if (!may_expand_vm(mm, grow))
1551                 return -ENOMEM;
1552
1553         /* Stack limit test */
1554         if (size > rlim[RLIMIT_STACK].rlim_cur)
1555                 return -ENOMEM;
1556
1557         /* mlock limit tests */
1558         if (vma->vm_flags & VM_LOCKED) {
1559                 unsigned long locked;
1560                 unsigned long limit;
1561                 locked = mm->locked_vm + grow;
1562                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1563                 if (locked > limit && !capable(CAP_IPC_LOCK))
1564                         return -ENOMEM;
1565         }
1566
1567         /* Check to ensure the stack will not grow into a hugetlb-only region */
1568         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1569                         vma->vm_end - size;
1570         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1571                 return -EFAULT;
1572
1573         /*
1574          * Overcommit..  This must be the final test, as it will
1575          * update security statistics.
1576          */
1577         if (security_vm_enough_memory(grow))
1578                 return -ENOMEM;
1579
1580         /* Ok, everything looks good - let it rip */
1581         mm->total_vm += grow;
1582         if (vma->vm_flags & VM_LOCKED)
1583                 mm->locked_vm += grow;
1584         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1585         return 0;
1586 }
1587
1588 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1589 /*
1590  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1591  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1592  */
1593 #ifndef CONFIG_IA64
1594 static
1595 #endif
1596 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1597 {
1598         int error;
1599
1600         if (!(vma->vm_flags & VM_GROWSUP))
1601                 return -EFAULT;
1602
1603         /*
1604          * We must make sure the anon_vma is allocated
1605          * so that the anon_vma locking is not a noop.
1606          */
1607         if (unlikely(anon_vma_prepare(vma)))
1608                 return -ENOMEM;
1609         anon_vma_lock(vma);
1610
1611         /*
1612          * vma->vm_start/vm_end cannot change under us because the caller
1613          * is required to hold the mmap_sem in read mode.  We need the
1614          * anon_vma lock to serialize against concurrent expand_stacks.
1615          * Also guard against wrapping around to address 0.
1616          */
1617         if (address < PAGE_ALIGN(address+4))
1618                 address = PAGE_ALIGN(address+4);
1619         else {
1620                 anon_vma_unlock(vma);
1621                 return -ENOMEM;
1622         }
1623         error = 0;
1624
1625         /* Somebody else might have raced and expanded it already */
1626         if (address > vma->vm_end) {
1627                 unsigned long size, grow;
1628
1629                 size = address - vma->vm_start;
1630                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1631
1632                 error = acct_stack_growth(vma, size, grow);
1633                 if (!error)
1634                         vma->vm_end = address;
1635         }
1636         anon_vma_unlock(vma);
1637         return error;
1638 }
1639 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1640
1641 /*
1642  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1643  */
1644 static int expand_downwards(struct vm_area_struct *vma,
1645                                    unsigned long address)
1646 {
1647         int error;
1648
1649         /*
1650          * We must make sure the anon_vma is allocated
1651          * so that the anon_vma locking is not a noop.
1652          */
1653         if (unlikely(anon_vma_prepare(vma)))
1654                 return -ENOMEM;
1655
1656         address &= PAGE_MASK;
1657         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1658         if (error)
1659                 return error;
1660
1661         anon_vma_lock(vma);
1662
1663         /*
1664          * vma->vm_start/vm_end cannot change under us because the caller
1665          * is required to hold the mmap_sem in read mode.  We need the
1666          * anon_vma lock to serialize against concurrent expand_stacks.
1667          */
1668
1669         /* Somebody else might have raced and expanded it already */
1670         if (address < vma->vm_start) {
1671                 unsigned long size, grow;
1672
1673                 size = vma->vm_end - address;
1674                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1675
1676                 error = acct_stack_growth(vma, size, grow);
1677                 if (!error) {
1678                         vma->vm_start = address;
1679                         vma->vm_pgoff -= grow;
1680                 }
1681         }
1682         anon_vma_unlock(vma);
1683         return error;
1684 }
1685
1686 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1687 {
1688         return expand_downwards(vma, address);
1689 }
1690
1691 #ifdef CONFIG_STACK_GROWSUP
1692 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1693 {
1694         return expand_upwards(vma, address);
1695 }
1696
1697 struct vm_area_struct *
1698 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1699 {
1700         struct vm_area_struct *vma, *prev;
1701
1702         addr &= PAGE_MASK;
1703         vma = find_vma_prev(mm, addr, &prev);
1704         if (vma && (vma->vm_start <= addr))
1705                 return vma;
1706         if (expand_stack(prev, addr))
1707                 return NULL;
1708         if (prev->vm_flags & VM_LOCKED) {
1709                 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1710                         return NULL;    /* vma gone! */
1711         }
1712         return prev;
1713 }
1714 #else
1715 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1716 {
1717         return expand_downwards(vma, address);
1718 }
1719
1720 struct vm_area_struct *
1721 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1722 {
1723         struct vm_area_struct * vma;
1724         unsigned long start;
1725
1726         addr &= PAGE_MASK;
1727         vma = find_vma(mm,addr);
1728         if (!vma)
1729                 return NULL;
1730         if (vma->vm_start <= addr)
1731                 return vma;
1732         if (!(vma->vm_flags & VM_GROWSDOWN))
1733                 return NULL;
1734         start = vma->vm_start;
1735         if (expand_stack(vma, addr))
1736                 return NULL;
1737         if (vma->vm_flags & VM_LOCKED) {
1738                 if (mlock_vma_pages_range(vma, addr, start) < 0)
1739                         return NULL;    /* vma gone! */
1740         }
1741         return vma;
1742 }
1743 #endif
1744
1745 /*
1746  * Ok - we have the memory areas we should free on the vma list,
1747  * so release them, and do the vma updates.
1748  *
1749  * Called with the mm semaphore held.
1750  */
1751 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1752 {
1753         /* Update high watermark before we lower total_vm */
1754         update_hiwater_vm(mm);
1755         do {
1756                 long nrpages = vma_pages(vma);
1757
1758                 mm->total_vm -= nrpages;
1759                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1760                 vma = remove_vma(vma);
1761         } while (vma);
1762         validate_mm(mm);
1763 }
1764
1765 /*
1766  * Get rid of page table information in the indicated region.
1767  *
1768  * Called with the mm semaphore held.
1769  */
1770 static void unmap_region(struct mm_struct *mm,
1771                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1772                 unsigned long start, unsigned long end)
1773 {
1774         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1775         struct mmu_gather *tlb;
1776         unsigned long nr_accounted = 0;
1777
1778         lru_add_drain();
1779         tlb = tlb_gather_mmu(mm, 0);
1780         update_hiwater_rss(mm);
1781         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1782         vm_unacct_memory(nr_accounted);
1783         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1784                                  next? next->vm_start: 0);
1785         tlb_finish_mmu(tlb, start, end);
1786 }
1787
1788 /*
1789  * Create a list of vma's touched by the unmap, removing them from the mm's
1790  * vma list as we go..
1791  */
1792 static void
1793 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1794         struct vm_area_struct *prev, unsigned long end)
1795 {
1796         struct vm_area_struct **insertion_point;
1797         struct vm_area_struct *tail_vma = NULL;
1798         unsigned long addr;
1799
1800         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1801         do {
1802                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1803                 mm->map_count--;
1804                 tail_vma = vma;
1805                 vma = vma->vm_next;
1806         } while (vma && vma->vm_start < end);
1807         *insertion_point = vma;
1808         tail_vma->vm_next = NULL;
1809         if (mm->unmap_area == arch_unmap_area)
1810                 addr = prev ? prev->vm_end : mm->mmap_base;
1811         else
1812                 addr = vma ?  vma->vm_start : mm->mmap_base;
1813         mm->unmap_area(mm, addr);
1814         mm->mmap_cache = NULL;          /* Kill the cache. */
1815 }
1816
1817 /*
1818  * Split a vma into two pieces at address 'addr', a new vma is allocated
1819  * either for the first part or the tail.
1820  */
1821 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1822               unsigned long addr, int new_below)
1823 {
1824         struct mempolicy *pol;
1825         struct vm_area_struct *new;
1826
1827         if (is_vm_hugetlb_page(vma) && (addr &
1828                                         ~(huge_page_mask(hstate_vma(vma)))))
1829                 return -EINVAL;
1830
1831         if (mm->map_count >= sysctl_max_map_count)
1832                 return -ENOMEM;
1833
1834         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1835         if (!new)
1836                 return -ENOMEM;
1837
1838         /* most fields are the same, copy all, and then fixup */
1839         *new = *vma;
1840
1841         if (new_below)
1842                 new->vm_end = addr;
1843         else {
1844                 new->vm_start = addr;
1845                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1846         }
1847
1848         pol = mpol_dup(vma_policy(vma));
1849         if (IS_ERR(pol)) {
1850                 kmem_cache_free(vm_area_cachep, new);
1851                 return PTR_ERR(pol);
1852         }
1853         vma_set_policy(new, pol);
1854
1855         if (new->vm_file) {
1856                 get_file(new->vm_file);
1857                 if (vma->vm_flags & VM_EXECUTABLE)
1858                         added_exe_file_vma(mm);
1859         }
1860
1861         if (new->vm_ops && new->vm_ops->open)
1862                 new->vm_ops->open(new);
1863
1864         if (new_below)
1865                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1866                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1867         else
1868                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1869
1870         return 0;
1871 }
1872
1873 /* Munmap is split into 2 main parts -- this part which finds
1874  * what needs doing, and the areas themselves, which do the
1875  * work.  This now handles partial unmappings.
1876  * Jeremy Fitzhardinge <jeremy@goop.org>
1877  */
1878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1879 {
1880         unsigned long end;
1881         struct vm_area_struct *vma, *prev, *last;
1882
1883         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1884                 return -EINVAL;
1885
1886         if ((len = PAGE_ALIGN(len)) == 0)
1887                 return -EINVAL;
1888
1889         /* Find the first overlapping VMA */
1890         vma = find_vma_prev(mm, start, &prev);
1891         if (!vma)
1892                 return 0;
1893         /* we have  start < vma->vm_end  */
1894
1895         /* if it doesn't overlap, we have nothing.. */
1896         end = start + len;
1897         if (vma->vm_start >= end)
1898                 return 0;
1899
1900         /*
1901          * If we need to split any vma, do it now to save pain later.
1902          *
1903          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1904          * unmapped vm_area_struct will remain in use: so lower split_vma
1905          * places tmp vma above, and higher split_vma places tmp vma below.
1906          */
1907         if (start > vma->vm_start) {
1908                 int error = split_vma(mm, vma, start, 0);
1909                 if (error)
1910                         return error;
1911                 prev = vma;
1912         }
1913
1914         /* Does it split the last one? */
1915         last = find_vma(mm, end);
1916         if (last && end > last->vm_start) {
1917                 int error = split_vma(mm, last, end, 1);
1918                 if (error)
1919                         return error;
1920         }
1921         vma = prev? prev->vm_next: mm->mmap;
1922
1923         /*
1924          * unlock any mlock()ed ranges before detaching vmas
1925          */
1926         if (mm->locked_vm) {
1927                 struct vm_area_struct *tmp = vma;
1928                 while (tmp && tmp->vm_start < end) {
1929                         if (tmp->vm_flags & VM_LOCKED) {
1930                                 mm->locked_vm -= vma_pages(tmp);
1931                                 munlock_vma_pages_all(tmp);
1932                         }
1933                         tmp = tmp->vm_next;
1934                 }
1935         }
1936
1937         /*
1938          * Remove the vma's, and unmap the actual pages
1939          */
1940         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1941         unmap_region(mm, vma, prev, start, end);
1942
1943         /* Fix up all other VM information */
1944         remove_vma_list(mm, vma);
1945
1946         return 0;
1947 }
1948
1949 EXPORT_SYMBOL(do_munmap);
1950
1951 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1952 {
1953         int ret;
1954         struct mm_struct *mm = current->mm;
1955
1956         profile_munmap(addr);
1957
1958         down_write(&mm->mmap_sem);
1959         ret = do_munmap(mm, addr, len);
1960         up_write(&mm->mmap_sem);
1961         return ret;
1962 }
1963
1964 static inline void verify_mm_writelocked(struct mm_struct *mm)
1965 {
1966 #ifdef CONFIG_DEBUG_VM
1967         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1968                 WARN_ON(1);
1969                 up_read(&mm->mmap_sem);
1970         }
1971 #endif
1972 }
1973
1974 /*
1975  *  this is really a simplified "do_mmap".  it only handles
1976  *  anonymous maps.  eventually we may be able to do some
1977  *  brk-specific accounting here.
1978  */
1979 unsigned long do_brk(unsigned long addr, unsigned long len)
1980 {
1981         struct mm_struct * mm = current->mm;
1982         struct vm_area_struct * vma, * prev;
1983         unsigned long flags;
1984         struct rb_node ** rb_link, * rb_parent;
1985         pgoff_t pgoff = addr >> PAGE_SHIFT;
1986         int error;
1987
1988         len = PAGE_ALIGN(len);
1989         if (!len)
1990                 return addr;
1991
1992         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1993                 return -EINVAL;
1994
1995         if (is_hugepage_only_range(mm, addr, len))
1996                 return -EINVAL;
1997
1998         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1999         if (error)
2000                 return error;
2001
2002         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2003
2004         error = arch_mmap_check(addr, len, flags);
2005         if (error)
2006                 return error;
2007
2008         /*
2009          * mlock MCL_FUTURE?
2010          */
2011         if (mm->def_flags & VM_LOCKED) {
2012                 unsigned long locked, lock_limit;
2013                 locked = len >> PAGE_SHIFT;
2014                 locked += mm->locked_vm;
2015                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2016                 lock_limit >>= PAGE_SHIFT;
2017                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2018                         return -EAGAIN;
2019         }
2020
2021         /*
2022          * mm->mmap_sem is required to protect against another thread
2023          * changing the mappings in case we sleep.
2024          */
2025         verify_mm_writelocked(mm);
2026
2027         /*
2028          * Clear old maps.  this also does some error checking for us
2029          */
2030  munmap_back:
2031         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2032         if (vma && vma->vm_start < addr + len) {
2033                 if (do_munmap(mm, addr, len))
2034                         return -ENOMEM;
2035                 goto munmap_back;
2036         }
2037
2038         /* Check against address space limits *after* clearing old maps... */
2039         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2040                 return -ENOMEM;
2041
2042         if (mm->map_count > sysctl_max_map_count)
2043                 return -ENOMEM;
2044
2045         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2046                 return -ENOMEM;
2047
2048         /* Can we just expand an old private anonymous mapping? */
2049         vma = vma_merge(mm, prev, addr, addr + len, flags,
2050                                         NULL, NULL, pgoff, NULL);
2051         if (vma)
2052                 goto out;
2053
2054         /*
2055          * create a vma struct for an anonymous mapping
2056          */
2057         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2058         if (!vma) {
2059                 vm_unacct_memory(len >> PAGE_SHIFT);
2060                 return -ENOMEM;
2061         }
2062
2063         vma->vm_mm = mm;
2064         vma->vm_start = addr;
2065         vma->vm_end = addr + len;
2066         vma->vm_pgoff = pgoff;
2067         vma->vm_flags = flags;
2068         vma->vm_page_prot = vm_get_page_prot(flags);
2069         vma_link(mm, vma, prev, rb_link, rb_parent);
2070 out:
2071         mm->total_vm += len >> PAGE_SHIFT;
2072         if (flags & VM_LOCKED) {
2073                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2074                         mm->locked_vm += (len >> PAGE_SHIFT);
2075         }
2076         return addr;
2077 }
2078
2079 EXPORT_SYMBOL(do_brk);
2080
2081 /* Release all mmaps. */
2082 void exit_mmap(struct mm_struct *mm)
2083 {
2084         struct mmu_gather *tlb;
2085         struct vm_area_struct *vma;
2086         unsigned long nr_accounted = 0;
2087         unsigned long end;
2088
2089         /* mm's last user has gone, and its about to be pulled down */
2090         arch_exit_mmap(mm);
2091         mmu_notifier_release(mm);
2092
2093         if (mm->locked_vm) {
2094                 vma = mm->mmap;
2095                 while (vma) {
2096                         if (vma->vm_flags & VM_LOCKED)
2097                                 munlock_vma_pages_all(vma);
2098                         vma = vma->vm_next;
2099                 }
2100         }
2101         vma = mm->mmap;
2102         lru_add_drain();
2103         flush_cache_mm(mm);
2104         tlb = tlb_gather_mmu(mm, 1);
2105         /* Don't update_hiwater_rss(mm) here, do_exit already did */
2106         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2107         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2108         vm_unacct_memory(nr_accounted);
2109         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2110         tlb_finish_mmu(tlb, 0, end);
2111
2112         /*
2113          * Walk the list again, actually closing and freeing it,
2114          * with preemption enabled, without holding any MM locks.
2115          */
2116         while (vma)
2117                 vma = remove_vma(vma);
2118
2119         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2120 }
2121
2122 /* Insert vm structure into process list sorted by address
2123  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2124  * then i_mmap_lock is taken here.
2125  */
2126 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2127 {
2128         struct vm_area_struct * __vma, * prev;
2129         struct rb_node ** rb_link, * rb_parent;
2130
2131         /*
2132          * The vm_pgoff of a purely anonymous vma should be irrelevant
2133          * until its first write fault, when page's anon_vma and index
2134          * are set.  But now set the vm_pgoff it will almost certainly
2135          * end up with (unless mremap moves it elsewhere before that
2136          * first wfault), so /proc/pid/maps tells a consistent story.
2137          *
2138          * By setting it to reflect the virtual start address of the
2139          * vma, merges and splits can happen in a seamless way, just
2140          * using the existing file pgoff checks and manipulations.
2141          * Similarly in do_mmap_pgoff and in do_brk.
2142          */
2143         if (!vma->vm_file) {
2144                 BUG_ON(vma->anon_vma);
2145                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2146         }
2147         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2148         if (__vma && __vma->vm_start < vma->vm_end)
2149                 return -ENOMEM;
2150         if ((vma->vm_flags & VM_ACCOUNT) &&
2151              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2152                 return -ENOMEM;
2153         vma_link(mm, vma, prev, rb_link, rb_parent);
2154         return 0;
2155 }
2156
2157 /*
2158  * Copy the vma structure to a new location in the same mm,
2159  * prior to moving page table entries, to effect an mremap move.
2160  */
2161 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2162         unsigned long addr, unsigned long len, pgoff_t pgoff)
2163 {
2164         struct vm_area_struct *vma = *vmap;
2165         unsigned long vma_start = vma->vm_start;
2166         struct mm_struct *mm = vma->vm_mm;
2167         struct vm_area_struct *new_vma, *prev;
2168         struct rb_node **rb_link, *rb_parent;
2169         struct mempolicy *pol;
2170
2171         /*
2172          * If anonymous vma has not yet been faulted, update new pgoff
2173          * to match new location, to increase its chance of merging.
2174          */
2175         if (!vma->vm_file && !vma->anon_vma)
2176                 pgoff = addr >> PAGE_SHIFT;
2177
2178         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2179         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2180                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2181         if (new_vma) {
2182                 /*
2183                  * Source vma may have been merged into new_vma
2184                  */
2185                 if (vma_start >= new_vma->vm_start &&
2186                     vma_start < new_vma->vm_end)
2187                         *vmap = new_vma;
2188         } else {
2189                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2190                 if (new_vma) {
2191                         *new_vma = *vma;
2192                         pol = mpol_dup(vma_policy(vma));
2193                         if (IS_ERR(pol)) {
2194                                 kmem_cache_free(vm_area_cachep, new_vma);
2195                                 return NULL;
2196                         }
2197                         vma_set_policy(new_vma, pol);
2198                         new_vma->vm_start = addr;
2199                         new_vma->vm_end = addr + len;
2200                         new_vma->vm_pgoff = pgoff;
2201                         if (new_vma->vm_file) {
2202                                 get_file(new_vma->vm_file);
2203                                 if (vma->vm_flags & VM_EXECUTABLE)
2204                                         added_exe_file_vma(mm);
2205                         }
2206                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2207                                 new_vma->vm_ops->open(new_vma);
2208                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2209                 }
2210         }
2211         return new_vma;
2212 }
2213
2214 /*
2215  * Return true if the calling process may expand its vm space by the passed
2216  * number of pages
2217  */
2218 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2219 {
2220         unsigned long cur = mm->total_vm;       /* pages */
2221         unsigned long lim;
2222
2223         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2224
2225         if (cur + npages > lim)
2226                 return 0;
2227         return 1;
2228 }
2229
2230
2231 static int special_mapping_fault(struct vm_area_struct *vma,
2232                                 struct vm_fault *vmf)
2233 {
2234         pgoff_t pgoff;
2235         struct page **pages;
2236
2237         /*
2238          * special mappings have no vm_file, and in that case, the mm
2239          * uses vm_pgoff internally. So we have to subtract it from here.
2240          * We are allowed to do this because we are the mm; do not copy
2241          * this code into drivers!
2242          */
2243         pgoff = vmf->pgoff - vma->vm_pgoff;
2244
2245         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2246                 pgoff--;
2247
2248         if (*pages) {
2249                 struct page *page = *pages;
2250                 get_page(page);
2251                 vmf->page = page;
2252                 return 0;
2253         }
2254
2255         return VM_FAULT_SIGBUS;
2256 }
2257
2258 /*
2259  * Having a close hook prevents vma merging regardless of flags.
2260  */
2261 static void special_mapping_close(struct vm_area_struct *vma)
2262 {
2263 }
2264
2265 static struct vm_operations_struct special_mapping_vmops = {
2266         .close = special_mapping_close,
2267         .fault = special_mapping_fault,
2268 };
2269
2270 /*
2271  * Called with mm->mmap_sem held for writing.
2272  * Insert a new vma covering the given region, with the given flags.
2273  * Its pages are supplied by the given array of struct page *.
2274  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2275  * The region past the last page supplied will always produce SIGBUS.
2276  * The array pointer and the pages it points to are assumed to stay alive
2277  * for as long as this mapping might exist.
2278  */
2279 int install_special_mapping(struct mm_struct *mm,
2280                             unsigned long addr, unsigned long len,
2281                             unsigned long vm_flags, struct page **pages)
2282 {
2283         struct vm_area_struct *vma;
2284
2285         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2286         if (unlikely(vma == NULL))
2287                 return -ENOMEM;
2288
2289         vma->vm_mm = mm;
2290         vma->vm_start = addr;
2291         vma->vm_end = addr + len;
2292
2293         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2294         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2295
2296         vma->vm_ops = &special_mapping_vmops;
2297         vma->vm_private_data = pages;
2298
2299         if (unlikely(insert_vm_struct(mm, vma))) {
2300                 kmem_cache_free(vm_area_cachep, vma);
2301                 return -ENOMEM;
2302         }
2303
2304         mm->total_vm += len >> PAGE_SHIFT;
2305
2306         return 0;
2307 }
2308
2309 static DEFINE_MUTEX(mm_all_locks_mutex);
2310
2311 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2312 {
2313         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2314                 /*
2315                  * The LSB of head.next can't change from under us
2316                  * because we hold the mm_all_locks_mutex.
2317                  */
2318                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2319                 /*
2320                  * We can safely modify head.next after taking the
2321                  * anon_vma->lock. If some other vma in this mm shares
2322                  * the same anon_vma we won't take it again.
2323                  *
2324                  * No need of atomic instructions here, head.next
2325                  * can't change from under us thanks to the
2326                  * anon_vma->lock.
2327                  */
2328                 if (__test_and_set_bit(0, (unsigned long *)
2329                                        &anon_vma->head.next))
2330                         BUG();
2331         }
2332 }
2333
2334 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2335 {
2336         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2337                 /*
2338                  * AS_MM_ALL_LOCKS can't change from under us because
2339                  * we hold the mm_all_locks_mutex.
2340                  *
2341                  * Operations on ->flags have to be atomic because
2342                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2343                  * mm_all_locks_mutex, there may be other cpus
2344                  * changing other bitflags in parallel to us.
2345                  */
2346                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2347                         BUG();
2348                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2349         }
2350 }
2351
2352 /*
2353  * This operation locks against the VM for all pte/vma/mm related
2354  * operations that could ever happen on a certain mm. This includes
2355  * vmtruncate, try_to_unmap, and all page faults.
2356  *
2357  * The caller must take the mmap_sem in write mode before calling
2358  * mm_take_all_locks(). The caller isn't allowed to release the
2359  * mmap_sem until mm_drop_all_locks() returns.
2360  *
2361  * mmap_sem in write mode is required in order to block all operations
2362  * that could modify pagetables and free pages without need of
2363  * altering the vma layout (for example populate_range() with
2364  * nonlinear vmas). It's also needed in write mode to avoid new
2365  * anon_vmas to be associated with existing vmas.
2366  *
2367  * A single task can't take more than one mm_take_all_locks() in a row
2368  * or it would deadlock.
2369  *
2370  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2371  * mapping->flags avoid to take the same lock twice, if more than one
2372  * vma in this mm is backed by the same anon_vma or address_space.
2373  *
2374  * We can take all the locks in random order because the VM code
2375  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2376  * takes more than one of them in a row. Secondly we're protected
2377  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2378  *
2379  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2380  * that may have to take thousand of locks.
2381  *
2382  * mm_take_all_locks() can fail if it's interrupted by signals.
2383  */
2384 int mm_take_all_locks(struct mm_struct *mm)
2385 {
2386         struct vm_area_struct *vma;
2387         int ret = -EINTR;
2388
2389         BUG_ON(down_read_trylock(&mm->mmap_sem));
2390
2391         mutex_lock(&mm_all_locks_mutex);
2392
2393         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2394                 if (signal_pending(current))
2395                         goto out_unlock;
2396                 if (vma->vm_file && vma->vm_file->f_mapping)
2397                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2398         }
2399
2400         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2401                 if (signal_pending(current))
2402                         goto out_unlock;
2403                 if (vma->anon_vma)
2404                         vm_lock_anon_vma(mm, vma->anon_vma);
2405         }
2406
2407         ret = 0;
2408
2409 out_unlock:
2410         if (ret)
2411                 mm_drop_all_locks(mm);
2412
2413         return ret;
2414 }
2415
2416 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2417 {
2418         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2419                 /*
2420                  * The LSB of head.next can't change to 0 from under
2421                  * us because we hold the mm_all_locks_mutex.
2422                  *
2423                  * We must however clear the bitflag before unlocking
2424                  * the vma so the users using the anon_vma->head will
2425                  * never see our bitflag.
2426                  *
2427                  * No need of atomic instructions here, head.next
2428                  * can't change from under us until we release the
2429                  * anon_vma->lock.
2430                  */
2431                 if (!__test_and_clear_bit(0, (unsigned long *)
2432                                           &anon_vma->head.next))
2433                         BUG();
2434                 spin_unlock(&anon_vma->lock);
2435         }
2436 }
2437
2438 static void vm_unlock_mapping(struct address_space *mapping)
2439 {
2440         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2441                 /*
2442                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2443                  * because we hold the mm_all_locks_mutex.
2444                  */
2445                 spin_unlock(&mapping->i_mmap_lock);
2446                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2447                                         &mapping->flags))
2448                         BUG();
2449         }
2450 }
2451
2452 /*
2453  * The mmap_sem cannot be released by the caller until
2454  * mm_drop_all_locks() returns.
2455  */
2456 void mm_drop_all_locks(struct mm_struct *mm)
2457 {
2458         struct vm_area_struct *vma;
2459
2460         BUG_ON(down_read_trylock(&mm->mmap_sem));
2461         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2462
2463         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2464                 if (vma->anon_vma)
2465                         vm_unlock_anon_vma(vma->anon_vma);
2466                 if (vma->vm_file && vma->vm_file->f_mapping)
2467                         vm_unlock_mapping(vma->vm_file->f_mapping);
2468         }
2469
2470         mutex_unlock(&mm_all_locks_mutex);
2471 }