1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #include "workarounds.h"
34 #define EFX_MAX_MTU (9 * 1024)
36 /* RX slow fill workqueue. If memory allocation fails in the fast path,
37 * a work item is pushed onto this work queue to retry the allocation later,
38 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
39 * workqueue, there is nothing to be gained in making it per NIC
41 static struct workqueue_struct *refill_workqueue;
43 /**************************************************************************
47 *************************************************************************/
50 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
52 * This sets the default for new devices. It can be controlled later
56 module_param(lro, int, 0644);
57 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
60 * Use separate channels for TX and RX events
62 * Set this to 1 to use separate channels for TX and RX. It allows us to
63 * apply a higher level of interrupt moderation to TX events.
65 * This is forced to 0 for MSI interrupt mode as the interrupt vector
68 static unsigned int separate_tx_and_rx_channels = 1;
70 /* This is the weight assigned to each of the (per-channel) virtual
73 static int napi_weight = 64;
75 /* This is the time (in jiffies) between invocations of the hardware
76 * monitor, which checks for known hardware bugs and resets the
77 * hardware and driver as necessary.
79 unsigned int efx_monitor_interval = 1 * HZ;
81 /* This controls whether or not the hardware monitor will trigger a
82 * reset when it detects an error condition.
84 static unsigned int monitor_reset = 1;
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
93 static unsigned int allow_bad_hwaddr;
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
101 static unsigned int rx_irq_mod_usec = 60;
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
112 static unsigned int tx_irq_mod_usec = 150;
114 /* This is the first interrupt mode to try out of:
119 static unsigned int interrupt_mode;
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132 /**************************************************************************
134 * Utility functions and prototypes
136 *************************************************************************/
137 static void efx_remove_channel(struct efx_channel *channel);
138 static void efx_remove_port(struct efx_nic *efx);
139 static void efx_fini_napi(struct efx_nic *efx);
140 static void efx_fini_channels(struct efx_nic *efx);
142 #define EFX_ASSERT_RESET_SERIALISED(efx) \
144 if ((efx->state == STATE_RUNNING) || \
145 (efx->state == STATE_RESETTING)) \
149 /**************************************************************************
151 * Event queue processing
153 *************************************************************************/
155 /* Process channel's event queue
157 * This function is responsible for processing the event queue of a
158 * single channel. The caller must guarantee that this function will
159 * never be concurrently called more than once on the same channel,
160 * though different channels may be being processed concurrently.
162 static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
165 struct efx_rx_queue *rx_queue;
167 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
171 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
173 /* Deliver last RX packet. */
174 if (channel->rx_pkt) {
175 __efx_rx_packet(channel, channel->rx_pkt,
176 channel->rx_pkt_csummed);
177 channel->rx_pkt = NULL;
180 efx_flush_lro(channel);
181 efx_rx_strategy(channel);
183 /* Refill descriptor rings as necessary */
184 rx_queue = &channel->efx->rx_queue[0];
187 efx_fast_push_rx_descriptors(rx_queue);
195 /* Mark channel as finished processing
197 * Note that since we will not receive further interrupts for this
198 * channel before we finish processing and call the eventq_read_ack()
199 * method, there is no need to use the interrupt hold-off timers.
201 static inline void efx_channel_processed(struct efx_channel *channel)
203 /* The interrupt handler for this channel may set work_pending
204 * as soon as we acknowledge the events we've seen. Make sure
205 * it's cleared before then. */
206 channel->work_pending = 0;
209 falcon_eventq_read_ack(channel);
214 * NAPI guarantees serialisation of polls of the same device, which
215 * provides the guarantee required by efx_process_channel().
217 static int efx_poll(struct napi_struct *napi, int budget)
219 struct efx_channel *channel =
220 container_of(napi, struct efx_channel, napi_str);
221 struct net_device *napi_dev = channel->napi_dev;
225 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
226 channel->channel, raw_smp_processor_id());
228 unused = efx_process_channel(channel, budget);
229 rx_packets = (budget - unused);
231 if (rx_packets < budget) {
232 /* There is no race here; although napi_disable() will
233 * only wait for netif_rx_complete(), this isn't a problem
234 * since efx_channel_processed() will have no effect if
235 * interrupts have already been disabled.
237 netif_rx_complete(napi_dev, napi);
238 efx_channel_processed(channel);
244 /* Process the eventq of the specified channel immediately on this CPU
246 * Disable hardware generated interrupts, wait for any existing
247 * processing to finish, then directly poll (and ack ) the eventq.
248 * Finally reenable NAPI and interrupts.
250 * Since we are touching interrupts the caller should hold the suspend lock
252 void efx_process_channel_now(struct efx_channel *channel)
254 struct efx_nic *efx = channel->efx;
256 BUG_ON(!channel->used_flags);
257 BUG_ON(!channel->enabled);
259 /* Disable interrupts and wait for ISRs to complete */
260 falcon_disable_interrupts(efx);
262 synchronize_irq(efx->legacy_irq);
263 if (channel->has_interrupt && channel->irq)
264 synchronize_irq(channel->irq);
266 /* Wait for any NAPI processing to complete */
267 napi_disable(&channel->napi_str);
269 /* Poll the channel */
270 efx_process_channel(channel, efx->type->evq_size);
272 /* Ack the eventq. This may cause an interrupt to be generated
273 * when they are reenabled */
274 efx_channel_processed(channel);
276 napi_enable(&channel->napi_str);
277 falcon_enable_interrupts(efx);
280 /* Create event queue
281 * Event queue memory allocations are done only once. If the channel
282 * is reset, the memory buffer will be reused; this guards against
283 * errors during channel reset and also simplifies interrupt handling.
285 static int efx_probe_eventq(struct efx_channel *channel)
287 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
289 return falcon_probe_eventq(channel);
292 /* Prepare channel's event queue */
293 static int efx_init_eventq(struct efx_channel *channel)
295 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
297 channel->eventq_read_ptr = 0;
299 return falcon_init_eventq(channel);
302 static void efx_fini_eventq(struct efx_channel *channel)
304 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
306 falcon_fini_eventq(channel);
309 static void efx_remove_eventq(struct efx_channel *channel)
311 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
313 falcon_remove_eventq(channel);
316 /**************************************************************************
320 *************************************************************************/
322 static int efx_probe_channel(struct efx_channel *channel)
324 struct efx_tx_queue *tx_queue;
325 struct efx_rx_queue *rx_queue;
328 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
330 rc = efx_probe_eventq(channel);
334 efx_for_each_channel_tx_queue(tx_queue, channel) {
335 rc = efx_probe_tx_queue(tx_queue);
340 efx_for_each_channel_rx_queue(rx_queue, channel) {
341 rc = efx_probe_rx_queue(rx_queue);
346 channel->n_rx_frm_trunc = 0;
351 efx_for_each_channel_rx_queue(rx_queue, channel)
352 efx_remove_rx_queue(rx_queue);
354 efx_for_each_channel_tx_queue(tx_queue, channel)
355 efx_remove_tx_queue(tx_queue);
361 /* Channels are shutdown and reinitialised whilst the NIC is running
362 * to propagate configuration changes (mtu, checksum offload), or
363 * to clear hardware error conditions
365 static int efx_init_channels(struct efx_nic *efx)
367 struct efx_tx_queue *tx_queue;
368 struct efx_rx_queue *rx_queue;
369 struct efx_channel *channel;
372 /* Calculate the rx buffer allocation parameters required to
373 * support the current MTU, including padding for header
374 * alignment and overruns.
376 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
377 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
378 efx->type->rx_buffer_padding);
379 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
381 /* Initialise the channels */
382 efx_for_each_channel(channel, efx) {
383 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
385 rc = efx_init_eventq(channel);
389 efx_for_each_channel_tx_queue(tx_queue, channel) {
390 rc = efx_init_tx_queue(tx_queue);
395 /* The rx buffer allocation strategy is MTU dependent */
396 efx_rx_strategy(channel);
398 efx_for_each_channel_rx_queue(rx_queue, channel) {
399 rc = efx_init_rx_queue(rx_queue);
404 WARN_ON(channel->rx_pkt != NULL);
405 efx_rx_strategy(channel);
411 EFX_ERR(efx, "failed to initialise channel %d\n",
412 channel ? channel->channel : -1);
413 efx_fini_channels(efx);
417 /* This enables event queue processing and packet transmission.
419 * Note that this function is not allowed to fail, since that would
420 * introduce too much complexity into the suspend/resume path.
422 static void efx_start_channel(struct efx_channel *channel)
424 struct efx_rx_queue *rx_queue;
426 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
428 if (!(channel->efx->net_dev->flags & IFF_UP))
429 netif_napi_add(channel->napi_dev, &channel->napi_str,
430 efx_poll, napi_weight);
432 /* The interrupt handler for this channel may set work_pending
433 * as soon as we enable it. Make sure it's cleared before
434 * then. Similarly, make sure it sees the enabled flag set. */
435 channel->work_pending = 0;
436 channel->enabled = 1;
439 napi_enable(&channel->napi_str);
441 /* Load up RX descriptors */
442 efx_for_each_channel_rx_queue(rx_queue, channel)
443 efx_fast_push_rx_descriptors(rx_queue);
446 /* This disables event queue processing and packet transmission.
447 * This function does not guarantee that all queue processing
448 * (e.g. RX refill) is complete.
450 static void efx_stop_channel(struct efx_channel *channel)
452 struct efx_rx_queue *rx_queue;
454 if (!channel->enabled)
457 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
459 channel->enabled = 0;
460 napi_disable(&channel->napi_str);
462 /* Ensure that any worker threads have exited or will be no-ops */
463 efx_for_each_channel_rx_queue(rx_queue, channel) {
464 spin_lock_bh(&rx_queue->add_lock);
465 spin_unlock_bh(&rx_queue->add_lock);
469 static void efx_fini_channels(struct efx_nic *efx)
471 struct efx_channel *channel;
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
475 EFX_ASSERT_RESET_SERIALISED(efx);
476 BUG_ON(efx->port_enabled);
478 efx_for_each_channel(channel, efx) {
479 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
481 efx_for_each_channel_rx_queue(rx_queue, channel)
482 efx_fini_rx_queue(rx_queue);
483 efx_for_each_channel_tx_queue(tx_queue, channel)
484 efx_fini_tx_queue(tx_queue);
487 /* Do the event queues last so that we can handle flush events
488 * for all DMA queues. */
489 efx_for_each_channel(channel, efx) {
490 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
492 efx_fini_eventq(channel);
496 static void efx_remove_channel(struct efx_channel *channel)
498 struct efx_tx_queue *tx_queue;
499 struct efx_rx_queue *rx_queue;
501 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
503 efx_for_each_channel_rx_queue(rx_queue, channel)
504 efx_remove_rx_queue(rx_queue);
505 efx_for_each_channel_tx_queue(tx_queue, channel)
506 efx_remove_tx_queue(tx_queue);
507 efx_remove_eventq(channel);
509 channel->used_flags = 0;
512 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
514 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
517 /**************************************************************************
521 **************************************************************************/
523 /* This ensures that the kernel is kept informed (via
524 * netif_carrier_on/off) of the link status, and also maintains the
525 * link status's stop on the port's TX queue.
527 static void efx_link_status_changed(struct efx_nic *efx)
531 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
532 * that no events are triggered between unregister_netdev() and the
533 * driver unloading. A more general condition is that NETDEV_CHANGE
534 * can only be generated between NETDEV_UP and NETDEV_DOWN */
535 if (!netif_running(efx->net_dev))
538 carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
539 if (efx->link_up != carrier_ok) {
540 efx->n_link_state_changes++;
543 netif_carrier_on(efx->net_dev);
545 netif_carrier_off(efx->net_dev);
548 /* Status message for kernel log */
550 struct mii_if_info *gmii = &efx->mii;
552 /* NONE here means direct XAUI from the controller, with no
553 * MDIO-attached device we can query. */
554 if (efx->phy_type != PHY_TYPE_NONE) {
555 adv = gmii_advertised(gmii);
556 lpa = gmii_lpa(gmii);
558 lpa = GM_LPA_10000 | LPA_DUPLEX;
561 EFX_INFO(efx, "link up at %dMbps %s-duplex "
562 "(adv %04x lpa %04x) (MTU %d)%s\n",
563 (efx->link_options & GM_LPA_10000 ? 10000 :
564 (efx->link_options & GM_LPA_1000 ? 1000 :
565 (efx->link_options & GM_LPA_100 ? 100 :
567 (efx->link_options & GM_LPA_DUPLEX ?
571 (efx->promiscuous ? " [PROMISC]" : ""));
573 EFX_INFO(efx, "link down\n");
578 /* This call reinitialises the MAC to pick up new PHY settings. The
579 * caller must hold the mac_lock */
580 static void __efx_reconfigure_port(struct efx_nic *efx)
582 WARN_ON(!mutex_is_locked(&efx->mac_lock));
584 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
585 raw_smp_processor_id());
587 falcon_reconfigure_xmac(efx);
589 /* Inform kernel of loss/gain of carrier */
590 efx_link_status_changed(efx);
593 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
595 void efx_reconfigure_port(struct efx_nic *efx)
597 EFX_ASSERT_RESET_SERIALISED(efx);
599 mutex_lock(&efx->mac_lock);
600 __efx_reconfigure_port(efx);
601 mutex_unlock(&efx->mac_lock);
604 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
605 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
606 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
607 static void efx_reconfigure_work(struct work_struct *data)
609 struct efx_nic *efx = container_of(data, struct efx_nic,
612 mutex_lock(&efx->mac_lock);
613 if (efx->port_enabled)
614 __efx_reconfigure_port(efx);
615 mutex_unlock(&efx->mac_lock);
618 static int efx_probe_port(struct efx_nic *efx)
622 EFX_LOG(efx, "create port\n");
624 /* Connect up MAC/PHY operations table and read MAC address */
625 rc = falcon_probe_port(efx);
629 /* Sanity check MAC address */
630 if (is_valid_ether_addr(efx->mac_address)) {
631 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
633 DECLARE_MAC_BUF(mac);
635 EFX_ERR(efx, "invalid MAC address %s\n",
636 print_mac(mac, efx->mac_address));
637 if (!allow_bad_hwaddr) {
641 random_ether_addr(efx->net_dev->dev_addr);
642 EFX_INFO(efx, "using locally-generated MAC %s\n",
643 print_mac(mac, efx->net_dev->dev_addr));
649 efx_remove_port(efx);
653 static int efx_init_port(struct efx_nic *efx)
657 EFX_LOG(efx, "init port\n");
659 /* Initialise the MAC and PHY */
660 rc = falcon_init_xmac(efx);
664 efx->port_initialized = 1;
666 /* Reconfigure port to program MAC registers */
667 falcon_reconfigure_xmac(efx);
672 /* Allow efx_reconfigure_port() to be scheduled, and close the window
673 * between efx_stop_port and efx_flush_all whereby a previously scheduled
674 * efx_reconfigure_port() may have been cancelled */
675 static void efx_start_port(struct efx_nic *efx)
677 EFX_LOG(efx, "start port\n");
678 BUG_ON(efx->port_enabled);
680 mutex_lock(&efx->mac_lock);
681 efx->port_enabled = 1;
682 __efx_reconfigure_port(efx);
683 mutex_unlock(&efx->mac_lock);
686 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
687 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
688 * efx_reconfigure_work can still be scheduled via NAPI processing
689 * until efx_flush_all() is called */
690 static void efx_stop_port(struct efx_nic *efx)
692 EFX_LOG(efx, "stop port\n");
694 mutex_lock(&efx->mac_lock);
695 efx->port_enabled = 0;
696 mutex_unlock(&efx->mac_lock);
698 /* Serialise against efx_set_multicast_list() */
699 if (efx_dev_registered(efx)) {
700 netif_addr_lock_bh(efx->net_dev);
701 netif_addr_unlock_bh(efx->net_dev);
705 static void efx_fini_port(struct efx_nic *efx)
707 EFX_LOG(efx, "shut down port\n");
709 if (!efx->port_initialized)
712 falcon_fini_xmac(efx);
713 efx->port_initialized = 0;
716 efx_link_status_changed(efx);
719 static void efx_remove_port(struct efx_nic *efx)
721 EFX_LOG(efx, "destroying port\n");
723 falcon_remove_port(efx);
726 /**************************************************************************
730 **************************************************************************/
732 /* This configures the PCI device to enable I/O and DMA. */
733 static int efx_init_io(struct efx_nic *efx)
735 struct pci_dev *pci_dev = efx->pci_dev;
736 dma_addr_t dma_mask = efx->type->max_dma_mask;
739 EFX_LOG(efx, "initialising I/O\n");
741 rc = pci_enable_device(pci_dev);
743 EFX_ERR(efx, "failed to enable PCI device\n");
747 pci_set_master(pci_dev);
749 /* Set the PCI DMA mask. Try all possibilities from our
750 * genuine mask down to 32 bits, because some architectures
751 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
752 * masks event though they reject 46 bit masks.
754 while (dma_mask > 0x7fffffffUL) {
755 if (pci_dma_supported(pci_dev, dma_mask) &&
756 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
761 EFX_ERR(efx, "could not find a suitable DMA mask\n");
764 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
765 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
767 /* pci_set_consistent_dma_mask() is not *allowed* to
768 * fail with a mask that pci_set_dma_mask() accepted,
769 * but just in case...
771 EFX_ERR(efx, "failed to set consistent DMA mask\n");
775 efx->membase_phys = pci_resource_start(efx->pci_dev,
777 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
779 EFX_ERR(efx, "request for memory BAR failed\n");
783 efx->membase = ioremap_nocache(efx->membase_phys,
784 efx->type->mem_map_size);
786 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
788 (unsigned long long)efx->membase_phys,
789 efx->type->mem_map_size);
793 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
794 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
795 efx->type->mem_map_size, efx->membase);
800 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
802 efx->membase_phys = 0;
804 pci_disable_device(efx->pci_dev);
809 static void efx_fini_io(struct efx_nic *efx)
811 EFX_LOG(efx, "shutting down I/O\n");
814 iounmap(efx->membase);
818 if (efx->membase_phys) {
819 pci_release_region(efx->pci_dev, efx->type->mem_bar);
820 efx->membase_phys = 0;
823 pci_disable_device(efx->pci_dev);
826 /* Probe the number and type of interrupts we are able to obtain. */
827 static void efx_probe_interrupts(struct efx_nic *efx)
829 int max_channel = efx->type->phys_addr_channels - 1;
830 struct msix_entry xentries[EFX_MAX_CHANNELS];
833 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
834 BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
840 cpus_clear(core_mask);
842 for_each_online_cpu(cpu) {
843 if (!cpu_isset(cpu, core_mask)) {
845 cpus_or(core_mask, core_mask,
846 topology_core_siblings(cpu));
850 efx->rss_queues = rss_cpus;
853 efx->rss_queues = min(efx->rss_queues, max_channel + 1);
854 efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
856 /* Request maximum number of MSI interrupts, and fill out
857 * the channel interrupt information the allowed allocation */
858 for (i = 0; i < efx->rss_queues; i++)
859 xentries[i].entry = i;
860 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
862 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
863 efx->rss_queues = rc;
864 rc = pci_enable_msix(efx->pci_dev, xentries,
869 for (i = 0; i < efx->rss_queues; i++) {
870 efx->channel[i].has_interrupt = 1;
871 efx->channel[i].irq = xentries[i].vector;
874 /* Fall back to single channel MSI */
875 efx->interrupt_mode = EFX_INT_MODE_MSI;
876 EFX_ERR(efx, "could not enable MSI-X\n");
880 /* Try single interrupt MSI */
881 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
883 rc = pci_enable_msi(efx->pci_dev);
885 efx->channel[0].irq = efx->pci_dev->irq;
886 efx->channel[0].has_interrupt = 1;
888 EFX_ERR(efx, "could not enable MSI\n");
889 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
893 /* Assume legacy interrupts */
894 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
896 /* Every channel is interruptible */
897 for (i = 0; i < EFX_MAX_CHANNELS; i++)
898 efx->channel[i].has_interrupt = 1;
899 efx->legacy_irq = efx->pci_dev->irq;
903 static void efx_remove_interrupts(struct efx_nic *efx)
905 struct efx_channel *channel;
907 /* Remove MSI/MSI-X interrupts */
908 efx_for_each_channel_with_interrupt(channel, efx)
910 pci_disable_msi(efx->pci_dev);
911 pci_disable_msix(efx->pci_dev);
913 /* Remove legacy interrupt */
917 /* Select number of used resources
918 * Should be called after probe_interrupts()
920 static void efx_select_used(struct efx_nic *efx)
922 struct efx_tx_queue *tx_queue;
923 struct efx_rx_queue *rx_queue;
926 /* TX queues. One per port per channel with TX capability
927 * (more than one per port won't work on Linux, due to out
928 * of order issues... but will be fine on Solaris)
930 tx_queue = &efx->tx_queue[0];
932 /* Perform this for each channel with TX capabilities.
933 * At the moment, we only support a single TX queue
936 if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
937 tx_queue->channel = &efx->channel[1];
939 tx_queue->channel = &efx->channel[0];
940 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
943 /* RX queues. Each has a dedicated channel. */
944 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
945 rx_queue = &efx->rx_queue[i];
947 if (i < efx->rss_queues) {
949 /* If we allow multiple RX queues per channel
950 * we need to decide that here
952 rx_queue->channel = &efx->channel[rx_queue->queue];
953 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
959 static int efx_probe_nic(struct efx_nic *efx)
963 EFX_LOG(efx, "creating NIC\n");
965 /* Carry out hardware-type specific initialisation */
966 rc = falcon_probe_nic(efx);
970 /* Determine the number of channels and RX queues by trying to hook
971 * in MSI-X interrupts. */
972 efx_probe_interrupts(efx);
974 /* Determine number of RX queues and TX queues */
975 efx_select_used(efx);
977 /* Initialise the interrupt moderation settings */
978 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
983 static void efx_remove_nic(struct efx_nic *efx)
985 EFX_LOG(efx, "destroying NIC\n");
987 efx_remove_interrupts(efx);
988 falcon_remove_nic(efx);
991 /**************************************************************************
993 * NIC startup/shutdown
995 *************************************************************************/
997 static int efx_probe_all(struct efx_nic *efx)
999 struct efx_channel *channel;
1003 rc = efx_probe_nic(efx);
1005 EFX_ERR(efx, "failed to create NIC\n");
1010 rc = efx_probe_port(efx);
1012 EFX_ERR(efx, "failed to create port\n");
1016 /* Create channels */
1017 efx_for_each_channel(channel, efx) {
1018 rc = efx_probe_channel(channel);
1020 EFX_ERR(efx, "failed to create channel %d\n",
1029 efx_for_each_channel(channel, efx)
1030 efx_remove_channel(channel);
1031 efx_remove_port(efx);
1033 efx_remove_nic(efx);
1038 /* Called after previous invocation(s) of efx_stop_all, restarts the
1039 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1040 * and ensures that the port is scheduled to be reconfigured.
1041 * This function is safe to call multiple times when the NIC is in any
1043 static void efx_start_all(struct efx_nic *efx)
1045 struct efx_channel *channel;
1047 EFX_ASSERT_RESET_SERIALISED(efx);
1049 /* Check that it is appropriate to restart the interface. All
1050 * of these flags are safe to read under just the rtnl lock */
1051 if (efx->port_enabled)
1053 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1055 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1058 /* Mark the port as enabled so port reconfigurations can start, then
1059 * restart the transmit interface early so the watchdog timer stops */
1060 efx_start_port(efx);
1061 efx_wake_queue(efx);
1063 efx_for_each_channel(channel, efx)
1064 efx_start_channel(channel);
1066 falcon_enable_interrupts(efx);
1068 /* Start hardware monitor if we're in RUNNING */
1069 if (efx->state == STATE_RUNNING)
1070 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1071 efx_monitor_interval);
1074 /* Flush all delayed work. Should only be called when no more delayed work
1075 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1076 * since we're holding the rtnl_lock at this point. */
1077 static void efx_flush_all(struct efx_nic *efx)
1079 struct efx_rx_queue *rx_queue;
1081 /* Make sure the hardware monitor is stopped */
1082 cancel_delayed_work_sync(&efx->monitor_work);
1084 /* Ensure that all RX slow refills are complete. */
1085 efx_for_each_rx_queue(rx_queue, efx)
1086 cancel_delayed_work_sync(&rx_queue->work);
1088 /* Stop scheduled port reconfigurations */
1089 cancel_work_sync(&efx->reconfigure_work);
1093 /* Quiesce hardware and software without bringing the link down.
1094 * Safe to call multiple times, when the nic and interface is in any
1095 * state. The caller is guaranteed to subsequently be in a position
1096 * to modify any hardware and software state they see fit without
1098 static void efx_stop_all(struct efx_nic *efx)
1100 struct efx_channel *channel;
1102 EFX_ASSERT_RESET_SERIALISED(efx);
1104 /* port_enabled can be read safely under the rtnl lock */
1105 if (!efx->port_enabled)
1108 /* Disable interrupts and wait for ISR to complete */
1109 falcon_disable_interrupts(efx);
1110 if (efx->legacy_irq)
1111 synchronize_irq(efx->legacy_irq);
1112 efx_for_each_channel_with_interrupt(channel, efx) {
1114 synchronize_irq(channel->irq);
1117 /* Stop all NAPI processing and synchronous rx refills */
1118 efx_for_each_channel(channel, efx)
1119 efx_stop_channel(channel);
1121 /* Stop all asynchronous port reconfigurations. Since all
1122 * event processing has already been stopped, there is no
1123 * window to loose phy events */
1126 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1129 /* Isolate the MAC from the TX and RX engines, so that queue
1130 * flushes will complete in a timely fashion. */
1131 falcon_deconfigure_mac_wrapper(efx);
1132 falcon_drain_tx_fifo(efx);
1134 /* Stop the kernel transmit interface late, so the watchdog
1135 * timer isn't ticking over the flush */
1136 efx_stop_queue(efx);
1137 if (efx_dev_registered(efx)) {
1138 netif_tx_lock_bh(efx->net_dev);
1139 netif_tx_unlock_bh(efx->net_dev);
1143 static void efx_remove_all(struct efx_nic *efx)
1145 struct efx_channel *channel;
1147 efx_for_each_channel(channel, efx)
1148 efx_remove_channel(channel);
1149 efx_remove_port(efx);
1150 efx_remove_nic(efx);
1153 /* A convinience function to safely flush all the queues */
1154 int efx_flush_queues(struct efx_nic *efx)
1158 EFX_ASSERT_RESET_SERIALISED(efx);
1162 efx_fini_channels(efx);
1163 rc = efx_init_channels(efx);
1165 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1174 /**************************************************************************
1176 * Interrupt moderation
1178 **************************************************************************/
1180 /* Set interrupt moderation parameters */
1181 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1183 struct efx_tx_queue *tx_queue;
1184 struct efx_rx_queue *rx_queue;
1186 EFX_ASSERT_RESET_SERIALISED(efx);
1188 efx_for_each_tx_queue(tx_queue, efx)
1189 tx_queue->channel->irq_moderation = tx_usecs;
1191 efx_for_each_rx_queue(rx_queue, efx)
1192 rx_queue->channel->irq_moderation = rx_usecs;
1195 /**************************************************************************
1199 **************************************************************************/
1201 /* Run periodically off the general workqueue. Serialised against
1202 * efx_reconfigure_port via the mac_lock */
1203 static void efx_monitor(struct work_struct *data)
1205 struct efx_nic *efx = container_of(data, struct efx_nic,
1209 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1210 raw_smp_processor_id());
1213 /* If the mac_lock is already held then it is likely a port
1214 * reconfiguration is already in place, which will likely do
1215 * most of the work of check_hw() anyway. */
1216 if (!mutex_trylock(&efx->mac_lock)) {
1217 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1218 efx_monitor_interval);
1222 if (efx->port_enabled)
1223 rc = falcon_check_xmac(efx);
1224 mutex_unlock(&efx->mac_lock);
1227 if (monitor_reset) {
1228 EFX_ERR(efx, "hardware monitor detected a fault: "
1229 "triggering reset\n");
1230 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1232 EFX_ERR(efx, "hardware monitor detected a fault, "
1233 "skipping reset\n");
1237 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1238 efx_monitor_interval);
1241 /**************************************************************************
1245 *************************************************************************/
1248 * Context: process, rtnl_lock() held.
1250 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1252 struct efx_nic *efx = net_dev->priv;
1254 EFX_ASSERT_RESET_SERIALISED(efx);
1256 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1259 /**************************************************************************
1263 **************************************************************************/
1265 static int efx_init_napi(struct efx_nic *efx)
1267 struct efx_channel *channel;
1270 efx_for_each_channel(channel, efx) {
1271 channel->napi_dev = efx->net_dev;
1272 rc = efx_lro_init(&channel->lro_mgr, efx);
1282 static void efx_fini_napi(struct efx_nic *efx)
1284 struct efx_channel *channel;
1286 efx_for_each_channel(channel, efx) {
1287 efx_lro_fini(&channel->lro_mgr);
1288 channel->napi_dev = NULL;
1292 /**************************************************************************
1294 * Kernel netpoll interface
1296 *************************************************************************/
1298 #ifdef CONFIG_NET_POLL_CONTROLLER
1300 /* Although in the common case interrupts will be disabled, this is not
1301 * guaranteed. However, all our work happens inside the NAPI callback,
1302 * so no locking is required.
1304 static void efx_netpoll(struct net_device *net_dev)
1306 struct efx_nic *efx = net_dev->priv;
1307 struct efx_channel *channel;
1309 efx_for_each_channel_with_interrupt(channel, efx)
1310 efx_schedule_channel(channel);
1315 /**************************************************************************
1317 * Kernel net device interface
1319 *************************************************************************/
1321 /* Context: process, rtnl_lock() held. */
1322 static int efx_net_open(struct net_device *net_dev)
1324 struct efx_nic *efx = net_dev->priv;
1325 EFX_ASSERT_RESET_SERIALISED(efx);
1327 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1328 raw_smp_processor_id());
1334 /* Context: process, rtnl_lock() held.
1335 * Note that the kernel will ignore our return code; this method
1336 * should really be a void.
1338 static int efx_net_stop(struct net_device *net_dev)
1340 struct efx_nic *efx = net_dev->priv;
1343 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1344 raw_smp_processor_id());
1346 /* Stop the device and flush all the channels */
1348 efx_fini_channels(efx);
1349 rc = efx_init_channels(efx);
1351 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1356 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1357 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1359 struct efx_nic *efx = net_dev->priv;
1360 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1361 struct net_device_stats *stats = &net_dev->stats;
1363 /* Update stats if possible, but do not wait if another thread
1364 * is updating them (or resetting the NIC); slightly stale
1365 * stats are acceptable.
1367 if (!spin_trylock(&efx->stats_lock))
1369 if (efx->state == STATE_RUNNING) {
1370 falcon_update_stats_xmac(efx);
1371 falcon_update_nic_stats(efx);
1373 spin_unlock(&efx->stats_lock);
1375 stats->rx_packets = mac_stats->rx_packets;
1376 stats->tx_packets = mac_stats->tx_packets;
1377 stats->rx_bytes = mac_stats->rx_bytes;
1378 stats->tx_bytes = mac_stats->tx_bytes;
1379 stats->multicast = mac_stats->rx_multicast;
1380 stats->collisions = mac_stats->tx_collision;
1381 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1382 mac_stats->rx_length_error);
1383 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1384 stats->rx_crc_errors = mac_stats->rx_bad;
1385 stats->rx_frame_errors = mac_stats->rx_align_error;
1386 stats->rx_fifo_errors = mac_stats->rx_overflow;
1387 stats->rx_missed_errors = mac_stats->rx_missed;
1388 stats->tx_window_errors = mac_stats->tx_late_collision;
1390 stats->rx_errors = (stats->rx_length_errors +
1391 stats->rx_over_errors +
1392 stats->rx_crc_errors +
1393 stats->rx_frame_errors +
1394 stats->rx_fifo_errors +
1395 stats->rx_missed_errors +
1396 mac_stats->rx_symbol_error);
1397 stats->tx_errors = (stats->tx_window_errors +
1403 /* Context: netif_tx_lock held, BHs disabled. */
1404 static void efx_watchdog(struct net_device *net_dev)
1406 struct efx_nic *efx = net_dev->priv;
1408 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1409 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1410 monitor_reset ? "resetting channels" : "skipping reset");
1413 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1417 /* Context: process, rtnl_lock() held. */
1418 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1420 struct efx_nic *efx = net_dev->priv;
1423 EFX_ASSERT_RESET_SERIALISED(efx);
1425 if (new_mtu > EFX_MAX_MTU)
1430 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1432 efx_fini_channels(efx);
1433 net_dev->mtu = new_mtu;
1434 rc = efx_init_channels(efx);
1442 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1446 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1448 struct efx_nic *efx = net_dev->priv;
1449 struct sockaddr *addr = data;
1450 char *new_addr = addr->sa_data;
1452 EFX_ASSERT_RESET_SERIALISED(efx);
1454 if (!is_valid_ether_addr(new_addr)) {
1455 DECLARE_MAC_BUF(mac);
1456 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1457 print_mac(mac, new_addr));
1461 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1463 /* Reconfigure the MAC */
1464 efx_reconfigure_port(efx);
1469 /* Context: netif_tx_lock held, BHs disabled. */
1470 static void efx_set_multicast_list(struct net_device *net_dev)
1472 struct efx_nic *efx = net_dev->priv;
1473 struct dev_mc_list *mc_list = net_dev->mc_list;
1474 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1480 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1481 promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
1482 if (efx->promiscuous != promiscuous) {
1483 efx->promiscuous = promiscuous;
1484 /* Close the window between efx_stop_port() and efx_flush_all()
1485 * by only queuing work when the port is enabled. */
1486 if (efx->port_enabled)
1487 queue_work(efx->workqueue, &efx->reconfigure_work);
1490 /* Build multicast hash table */
1491 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1492 memset(mc_hash, 0xff, sizeof(*mc_hash));
1494 memset(mc_hash, 0x00, sizeof(*mc_hash));
1495 for (i = 0; i < net_dev->mc_count; i++) {
1496 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1497 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1498 set_bit_le(bit, mc_hash->byte);
1499 mc_list = mc_list->next;
1503 /* Create and activate new global multicast hash table */
1504 falcon_set_multicast_hash(efx);
1507 static int efx_netdev_event(struct notifier_block *this,
1508 unsigned long event, void *ptr)
1510 struct net_device *net_dev = ptr;
1512 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1513 struct efx_nic *efx = net_dev->priv;
1515 strcpy(efx->name, net_dev->name);
1521 static struct notifier_block efx_netdev_notifier = {
1522 .notifier_call = efx_netdev_event,
1525 static int efx_register_netdev(struct efx_nic *efx)
1527 struct net_device *net_dev = efx->net_dev;
1530 net_dev->watchdog_timeo = 5 * HZ;
1531 net_dev->irq = efx->pci_dev->irq;
1532 net_dev->open = efx_net_open;
1533 net_dev->stop = efx_net_stop;
1534 net_dev->get_stats = efx_net_stats;
1535 net_dev->tx_timeout = &efx_watchdog;
1536 net_dev->hard_start_xmit = efx_hard_start_xmit;
1537 net_dev->do_ioctl = efx_ioctl;
1538 net_dev->change_mtu = efx_change_mtu;
1539 net_dev->set_mac_address = efx_set_mac_address;
1540 net_dev->set_multicast_list = efx_set_multicast_list;
1541 #ifdef CONFIG_NET_POLL_CONTROLLER
1542 net_dev->poll_controller = efx_netpoll;
1544 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1545 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1547 /* Always start with carrier off; PHY events will detect the link */
1548 netif_carrier_off(efx->net_dev);
1550 /* Clear MAC statistics */
1551 falcon_update_stats_xmac(efx);
1552 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1554 rc = register_netdev(net_dev);
1556 EFX_ERR(efx, "could not register net dev\n");
1559 strcpy(efx->name, net_dev->name);
1564 static void efx_unregister_netdev(struct efx_nic *efx)
1566 struct efx_tx_queue *tx_queue;
1571 BUG_ON(efx->net_dev->priv != efx);
1573 /* Free up any skbs still remaining. This has to happen before
1574 * we try to unregister the netdev as running their destructors
1575 * may be needed to get the device ref. count to 0. */
1576 efx_for_each_tx_queue(tx_queue, efx)
1577 efx_release_tx_buffers(tx_queue);
1579 if (efx_dev_registered(efx)) {
1580 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1581 unregister_netdev(efx->net_dev);
1585 /**************************************************************************
1587 * Device reset and suspend
1589 **************************************************************************/
1591 /* The final hardware and software finalisation before reset. */
1592 static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1596 EFX_ASSERT_RESET_SERIALISED(efx);
1598 rc = falcon_xmac_get_settings(efx, ecmd);
1600 EFX_ERR(efx, "could not back up PHY settings\n");
1604 efx_fini_channels(efx);
1611 /* The first part of software initialisation after a hardware reset
1612 * This function does not handle serialisation with the kernel, it
1613 * assumes the caller has done this */
1614 static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1618 rc = efx_init_channels(efx);
1622 /* Restore MAC and PHY settings. */
1623 rc = falcon_xmac_set_settings(efx, ecmd);
1625 EFX_ERR(efx, "could not restore PHY settings\n");
1632 efx_fini_channels(efx);
1637 /* Reset the NIC as transparently as possible. Do not reset the PHY
1638 * Note that the reset may fail, in which case the card will be left
1639 * in a most-probably-unusable state.
1641 * This function will sleep. You cannot reset from within an atomic
1642 * state; use efx_schedule_reset() instead.
1644 * Grabs the rtnl_lock.
1646 static int efx_reset(struct efx_nic *efx)
1648 struct ethtool_cmd ecmd;
1649 enum reset_type method = efx->reset_pending;
1652 /* Serialise with kernel interfaces */
1655 /* If we're not RUNNING then don't reset. Leave the reset_pending
1656 * flag set so that efx_pci_probe_main will be retried */
1657 if (efx->state != STATE_RUNNING) {
1658 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1662 efx->state = STATE_RESETTING;
1663 EFX_INFO(efx, "resetting (%d)\n", method);
1665 /* The net_dev->get_stats handler is quite slow, and will fail
1666 * if a fetch is pending over reset. Serialise against it. */
1667 spin_lock(&efx->stats_lock);
1668 spin_unlock(&efx->stats_lock);
1671 mutex_lock(&efx->mac_lock);
1673 rc = efx_reset_down(efx, &ecmd);
1677 rc = falcon_reset_hw(efx, method);
1679 EFX_ERR(efx, "failed to reset hardware\n");
1683 /* Allow resets to be rescheduled. */
1684 efx->reset_pending = RESET_TYPE_NONE;
1686 /* Reinitialise bus-mastering, which may have been turned off before
1687 * the reset was scheduled. This is still appropriate, even in the
1688 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1689 * can respond to requests. */
1690 pci_set_master(efx->pci_dev);
1692 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1693 * case so the driver can talk to external SRAM */
1694 rc = falcon_init_nic(efx);
1696 EFX_ERR(efx, "failed to initialise NIC\n");
1700 /* Leave device stopped if necessary */
1701 if (method == RESET_TYPE_DISABLE) {
1702 /* Reinitialise the device anyway so the driver unload sequence
1703 * can talk to the external SRAM */
1704 falcon_init_nic(efx);
1709 rc = efx_reset_up(efx, &ecmd);
1713 mutex_unlock(&efx->mac_lock);
1714 EFX_LOG(efx, "reset complete\n");
1716 efx->state = STATE_RUNNING;
1728 EFX_ERR(efx, "has been disabled\n");
1729 efx->state = STATE_DISABLED;
1731 mutex_unlock(&efx->mac_lock);
1733 efx_unregister_netdev(efx);
1738 /* The worker thread exists so that code that cannot sleep can
1739 * schedule a reset for later.
1741 static void efx_reset_work(struct work_struct *data)
1743 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1748 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1750 enum reset_type method;
1752 if (efx->reset_pending != RESET_TYPE_NONE) {
1753 EFX_INFO(efx, "quenching already scheduled reset\n");
1758 case RESET_TYPE_INVISIBLE:
1759 case RESET_TYPE_ALL:
1760 case RESET_TYPE_WORLD:
1761 case RESET_TYPE_DISABLE:
1764 case RESET_TYPE_RX_RECOVERY:
1765 case RESET_TYPE_RX_DESC_FETCH:
1766 case RESET_TYPE_TX_DESC_FETCH:
1767 case RESET_TYPE_TX_SKIP:
1768 method = RESET_TYPE_INVISIBLE;
1771 method = RESET_TYPE_ALL;
1776 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1778 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1780 efx->reset_pending = method;
1782 queue_work(efx->reset_workqueue, &efx->reset_work);
1785 /**************************************************************************
1787 * List of NICs we support
1789 **************************************************************************/
1791 /* PCI device ID table */
1792 static struct pci_device_id efx_pci_table[] __devinitdata = {
1793 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1794 .driver_data = (unsigned long) &falcon_a_nic_type},
1795 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1796 .driver_data = (unsigned long) &falcon_b_nic_type},
1797 {0} /* end of list */
1800 /**************************************************************************
1802 * Dummy PHY/MAC/Board operations
1804 * Can be used where the MAC does not implement this operation
1805 * Needed so all function pointers are valid and do not have to be tested
1808 **************************************************************************/
1809 int efx_port_dummy_op_int(struct efx_nic *efx)
1813 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1814 void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
1816 static struct efx_phy_operations efx_dummy_phy_operations = {
1817 .init = efx_port_dummy_op_int,
1818 .reconfigure = efx_port_dummy_op_void,
1819 .check_hw = efx_port_dummy_op_int,
1820 .fini = efx_port_dummy_op_void,
1821 .clear_interrupt = efx_port_dummy_op_void,
1822 .reset_xaui = efx_port_dummy_op_void,
1825 /* Dummy board operations */
1826 static int efx_nic_dummy_op_int(struct efx_nic *nic)
1831 static struct efx_board efx_dummy_board_info = {
1832 .init = efx_nic_dummy_op_int,
1833 .init_leds = efx_port_dummy_op_int,
1834 .set_fault_led = efx_port_dummy_op_blink,
1835 .fini = efx_port_dummy_op_void,
1838 /**************************************************************************
1842 **************************************************************************/
1844 /* This zeroes out and then fills in the invariants in a struct
1845 * efx_nic (including all sub-structures).
1847 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1848 struct pci_dev *pci_dev, struct net_device *net_dev)
1850 struct efx_channel *channel;
1851 struct efx_tx_queue *tx_queue;
1852 struct efx_rx_queue *rx_queue;
1855 /* Initialise common structures */
1856 memset(efx, 0, sizeof(*efx));
1857 spin_lock_init(&efx->biu_lock);
1858 spin_lock_init(&efx->phy_lock);
1859 INIT_WORK(&efx->reset_work, efx_reset_work);
1860 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1861 efx->pci_dev = pci_dev;
1862 efx->state = STATE_INIT;
1863 efx->reset_pending = RESET_TYPE_NONE;
1864 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1865 efx->board_info = efx_dummy_board_info;
1867 efx->net_dev = net_dev;
1868 efx->rx_checksum_enabled = 1;
1869 spin_lock_init(&efx->netif_stop_lock);
1870 spin_lock_init(&efx->stats_lock);
1871 mutex_init(&efx->mac_lock);
1872 efx->phy_op = &efx_dummy_phy_operations;
1873 efx->mii.dev = net_dev;
1874 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1875 atomic_set(&efx->netif_stop_count, 1);
1877 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1878 channel = &efx->channel[i];
1880 channel->channel = i;
1881 channel->evqnum = i;
1882 channel->work_pending = 0;
1884 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
1885 tx_queue = &efx->tx_queue[i];
1886 tx_queue->efx = efx;
1887 tx_queue->queue = i;
1888 tx_queue->buffer = NULL;
1889 tx_queue->channel = &efx->channel[0]; /* for safety */
1890 tx_queue->tso_headers_free = NULL;
1892 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1893 rx_queue = &efx->rx_queue[i];
1894 rx_queue->efx = efx;
1895 rx_queue->queue = i;
1896 rx_queue->channel = &efx->channel[0]; /* for safety */
1897 rx_queue->buffer = NULL;
1898 spin_lock_init(&rx_queue->add_lock);
1899 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1904 /* Sanity-check NIC type */
1905 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1906 (efx->type->txd_ring_mask + 1));
1907 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1908 (efx->type->rxd_ring_mask + 1));
1909 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1910 (efx->type->evq_size - 1));
1911 /* As close as we can get to guaranteeing that we don't overflow */
1912 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1913 (efx->type->txd_ring_mask + 1 +
1914 efx->type->rxd_ring_mask + 1));
1915 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1917 /* Higher numbered interrupt modes are less capable! */
1918 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1921 efx->workqueue = create_singlethread_workqueue("sfc_work");
1922 if (!efx->workqueue) {
1927 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1928 if (!efx->reset_workqueue) {
1936 destroy_workqueue(efx->workqueue);
1937 efx->workqueue = NULL;
1943 static void efx_fini_struct(struct efx_nic *efx)
1945 if (efx->reset_workqueue) {
1946 destroy_workqueue(efx->reset_workqueue);
1947 efx->reset_workqueue = NULL;
1949 if (efx->workqueue) {
1950 destroy_workqueue(efx->workqueue);
1951 efx->workqueue = NULL;
1955 /**************************************************************************
1959 **************************************************************************/
1961 /* Main body of final NIC shutdown code
1962 * This is called only at module unload (or hotplug removal).
1964 static void efx_pci_remove_main(struct efx_nic *efx)
1966 EFX_ASSERT_RESET_SERIALISED(efx);
1968 /* Skip everything if we never obtained a valid membase */
1972 efx_fini_channels(efx);
1975 /* Shutdown the board, then the NIC and board state */
1976 efx->board_info.fini(efx);
1977 falcon_fini_interrupt(efx);
1980 efx_remove_all(efx);
1983 /* Final NIC shutdown
1984 * This is called only at module unload (or hotplug removal).
1986 static void efx_pci_remove(struct pci_dev *pci_dev)
1988 struct efx_nic *efx;
1990 efx = pci_get_drvdata(pci_dev);
1994 /* Mark the NIC as fini, then stop the interface */
1996 efx->state = STATE_FINI;
1997 dev_close(efx->net_dev);
1999 /* Allow any queued efx_resets() to complete */
2002 if (efx->membase == NULL)
2005 efx_unregister_netdev(efx);
2007 /* Wait for any scheduled resets to complete. No more will be
2008 * scheduled from this point because efx_stop_all() has been
2009 * called, we are no longer registered with driverlink, and
2010 * the net_device's have been removed. */
2011 flush_workqueue(efx->reset_workqueue);
2013 efx_pci_remove_main(efx);
2017 EFX_LOG(efx, "shutdown successful\n");
2019 pci_set_drvdata(pci_dev, NULL);
2020 efx_fini_struct(efx);
2021 free_netdev(efx->net_dev);
2024 /* Main body of NIC initialisation
2025 * This is called at module load (or hotplug insertion, theoretically).
2027 static int efx_pci_probe_main(struct efx_nic *efx)
2031 /* Do start-of-day initialisation */
2032 rc = efx_probe_all(efx);
2036 rc = efx_init_napi(efx);
2040 /* Initialise the board */
2041 rc = efx->board_info.init(efx);
2043 EFX_ERR(efx, "failed to initialise board\n");
2047 rc = falcon_init_nic(efx);
2049 EFX_ERR(efx, "failed to initialise NIC\n");
2053 rc = efx_init_port(efx);
2055 EFX_ERR(efx, "failed to initialise port\n");
2059 rc = efx_init_channels(efx);
2063 rc = falcon_init_interrupt(efx);
2070 efx_fini_channels(efx);
2078 efx_remove_all(efx);
2083 /* NIC initialisation
2085 * This is called at module load (or hotplug insertion,
2086 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2087 * sets up and registers the network devices with the kernel and hooks
2088 * the interrupt service routine. It does not prepare the device for
2089 * transmission; this is left to the first time one of the network
2090 * interfaces is brought up (i.e. efx_net_open).
2092 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2093 const struct pci_device_id *entry)
2095 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2096 struct net_device *net_dev;
2097 struct efx_nic *efx;
2100 /* Allocate and initialise a struct net_device and struct efx_nic */
2101 net_dev = alloc_etherdev(sizeof(*efx));
2104 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2105 NETIF_F_HIGHDMA | NETIF_F_TSO);
2107 net_dev->features |= NETIF_F_LRO;
2108 efx = net_dev->priv;
2109 pci_set_drvdata(pci_dev, efx);
2110 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2114 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2116 /* Set up basic I/O (BAR mappings etc) */
2117 rc = efx_init_io(efx);
2121 /* No serialisation is required with the reset path because
2122 * we're in STATE_INIT. */
2123 for (i = 0; i < 5; i++) {
2124 rc = efx_pci_probe_main(efx);
2128 /* Serialise against efx_reset(). No more resets will be
2129 * scheduled since efx_stop_all() has been called, and we
2130 * have not and never have been registered with either
2131 * the rtnetlink or driverlink layers. */
2132 flush_workqueue(efx->reset_workqueue);
2134 /* Retry if a recoverably reset event has been scheduled */
2135 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2136 (efx->reset_pending != RESET_TYPE_ALL))
2139 efx->reset_pending = RESET_TYPE_NONE;
2143 EFX_ERR(efx, "Could not reset NIC\n");
2147 /* Switch to the running state before we expose the device to
2148 * the OS. This is to ensure that the initial gathering of
2149 * MAC stats succeeds. */
2151 efx->state = STATE_RUNNING;
2154 rc = efx_register_netdev(efx);
2158 EFX_LOG(efx, "initialisation successful\n");
2163 efx_pci_remove_main(efx);
2168 efx_fini_struct(efx);
2170 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2171 free_netdev(net_dev);
2175 static struct pci_driver efx_pci_driver = {
2176 .name = EFX_DRIVER_NAME,
2177 .id_table = efx_pci_table,
2178 .probe = efx_pci_probe,
2179 .remove = efx_pci_remove,
2182 /**************************************************************************
2184 * Kernel module interface
2186 *************************************************************************/
2188 module_param(interrupt_mode, uint, 0444);
2189 MODULE_PARM_DESC(interrupt_mode,
2190 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2192 static int __init efx_init_module(void)
2196 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2198 rc = register_netdevice_notifier(&efx_netdev_notifier);
2202 refill_workqueue = create_workqueue("sfc_refill");
2203 if (!refill_workqueue) {
2208 rc = pci_register_driver(&efx_pci_driver);
2215 destroy_workqueue(refill_workqueue);
2217 unregister_netdevice_notifier(&efx_netdev_notifier);
2222 static void __exit efx_exit_module(void)
2224 printk(KERN_INFO "Solarflare NET driver unloading\n");
2226 pci_unregister_driver(&efx_pci_driver);
2227 destroy_workqueue(refill_workqueue);
2228 unregister_netdevice_notifier(&efx_netdev_notifier);
2232 module_init(efx_init_module);
2233 module_exit(efx_exit_module);
2235 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2236 "Solarflare Communications");
2237 MODULE_DESCRIPTION("Solarflare Communications network driver");
2238 MODULE_LICENSE("GPL");
2239 MODULE_DEVICE_TABLE(pci, efx_pci_table);