[AVR32] Fix atomic_add_unless() and atomic_sub_unless()
[linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 /*
34  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
35  */
36 static DEFINE_SPINLOCK(hugetlb_lock);
37
38 static void clear_huge_page(struct page *page, unsigned long addr)
39 {
40         int i;
41
42         might_sleep();
43         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
44                 cond_resched();
45                 clear_user_highpage(page + i, addr);
46         }
47 }
48
49 static void copy_huge_page(struct page *dst, struct page *src,
50                            unsigned long addr, struct vm_area_struct *vma)
51 {
52         int i;
53
54         might_sleep();
55         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
56                 cond_resched();
57                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58         }
59 }
60
61 static void enqueue_huge_page(struct page *page)
62 {
63         int nid = page_to_nid(page);
64         list_add(&page->lru, &hugepage_freelists[nid]);
65         free_huge_pages++;
66         free_huge_pages_node[nid]++;
67 }
68
69 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
70                                 unsigned long address)
71 {
72         int nid;
73         struct page *page = NULL;
74         struct zonelist *zonelist = huge_zonelist(vma, address,
75                                                 htlb_alloc_mask);
76         struct zone **z;
77
78         for (z = zonelist->zones; *z; z++) {
79                 nid = zone_to_nid(*z);
80                 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
81                     !list_empty(&hugepage_freelists[nid]))
82                         break;
83         }
84
85         if (*z) {
86                 page = list_entry(hugepage_freelists[nid].next,
87                                   struct page, lru);
88                 list_del(&page->lru);
89                 free_huge_pages--;
90                 free_huge_pages_node[nid]--;
91         }
92         return page;
93 }
94
95 static void free_huge_page(struct page *page)
96 {
97         BUG_ON(page_count(page));
98
99         INIT_LIST_HEAD(&page->lru);
100
101         spin_lock(&hugetlb_lock);
102         enqueue_huge_page(page);
103         spin_unlock(&hugetlb_lock);
104 }
105
106 static int alloc_fresh_huge_page(void)
107 {
108         static int prev_nid;
109         struct page *page;
110         static DEFINE_SPINLOCK(nid_lock);
111         int nid;
112
113         spin_lock(&nid_lock);
114         nid = next_node(prev_nid, node_online_map);
115         if (nid == MAX_NUMNODES)
116                 nid = first_node(node_online_map);
117         prev_nid = nid;
118         spin_unlock(&nid_lock);
119
120         page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
121                                         HUGETLB_PAGE_ORDER);
122         if (page) {
123                 set_compound_page_dtor(page, free_huge_page);
124                 spin_lock(&hugetlb_lock);
125                 nr_huge_pages++;
126                 nr_huge_pages_node[page_to_nid(page)]++;
127                 spin_unlock(&hugetlb_lock);
128                 put_page(page); /* free it into the hugepage allocator */
129                 return 1;
130         }
131         return 0;
132 }
133
134 static struct page *alloc_huge_page(struct vm_area_struct *vma,
135                                     unsigned long addr)
136 {
137         struct page *page;
138
139         spin_lock(&hugetlb_lock);
140         if (vma->vm_flags & VM_MAYSHARE)
141                 resv_huge_pages--;
142         else if (free_huge_pages <= resv_huge_pages)
143                 goto fail;
144
145         page = dequeue_huge_page(vma, addr);
146         if (!page)
147                 goto fail;
148
149         spin_unlock(&hugetlb_lock);
150         set_page_refcounted(page);
151         return page;
152
153 fail:
154         if (vma->vm_flags & VM_MAYSHARE)
155                 resv_huge_pages++;
156         spin_unlock(&hugetlb_lock);
157         return NULL;
158 }
159
160 static int __init hugetlb_init(void)
161 {
162         unsigned long i;
163
164         if (HPAGE_SHIFT == 0)
165                 return 0;
166
167         for (i = 0; i < MAX_NUMNODES; ++i)
168                 INIT_LIST_HEAD(&hugepage_freelists[i]);
169
170         for (i = 0; i < max_huge_pages; ++i) {
171                 if (!alloc_fresh_huge_page())
172                         break;
173         }
174         max_huge_pages = free_huge_pages = nr_huge_pages = i;
175         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
176         return 0;
177 }
178 module_init(hugetlb_init);
179
180 static int __init hugetlb_setup(char *s)
181 {
182         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
183                 max_huge_pages = 0;
184         return 1;
185 }
186 __setup("hugepages=", hugetlb_setup);
187
188 static unsigned int cpuset_mems_nr(unsigned int *array)
189 {
190         int node;
191         unsigned int nr = 0;
192
193         for_each_node_mask(node, cpuset_current_mems_allowed)
194                 nr += array[node];
195
196         return nr;
197 }
198
199 #ifdef CONFIG_SYSCTL
200 static void update_and_free_page(struct page *page)
201 {
202         int i;
203         nr_huge_pages--;
204         nr_huge_pages_node[page_to_nid(page)]--;
205         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
206                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
207                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
208                                 1 << PG_private | 1<< PG_writeback);
209         }
210         page[1].lru.next = NULL;
211         set_page_refcounted(page);
212         __free_pages(page, HUGETLB_PAGE_ORDER);
213 }
214
215 #ifdef CONFIG_HIGHMEM
216 static void try_to_free_low(unsigned long count)
217 {
218         int i;
219
220         for (i = 0; i < MAX_NUMNODES; ++i) {
221                 struct page *page, *next;
222                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
223                         if (PageHighMem(page))
224                                 continue;
225                         list_del(&page->lru);
226                         update_and_free_page(page);
227                         free_huge_pages--;
228                         free_huge_pages_node[page_to_nid(page)]--;
229                         if (count >= nr_huge_pages)
230                                 return;
231                 }
232         }
233 }
234 #else
235 static inline void try_to_free_low(unsigned long count)
236 {
237 }
238 #endif
239
240 static unsigned long set_max_huge_pages(unsigned long count)
241 {
242         while (count > nr_huge_pages) {
243                 if (!alloc_fresh_huge_page())
244                         return nr_huge_pages;
245         }
246         if (count >= nr_huge_pages)
247                 return nr_huge_pages;
248
249         spin_lock(&hugetlb_lock);
250         count = max(count, resv_huge_pages);
251         try_to_free_low(count);
252         while (count < nr_huge_pages) {
253                 struct page *page = dequeue_huge_page(NULL, 0);
254                 if (!page)
255                         break;
256                 update_and_free_page(page);
257         }
258         spin_unlock(&hugetlb_lock);
259         return nr_huge_pages;
260 }
261
262 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
263                            struct file *file, void __user *buffer,
264                            size_t *length, loff_t *ppos)
265 {
266         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
267         max_huge_pages = set_max_huge_pages(max_huge_pages);
268         return 0;
269 }
270
271 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
272                         struct file *file, void __user *buffer,
273                         size_t *length, loff_t *ppos)
274 {
275         proc_dointvec(table, write, file, buffer, length, ppos);
276         if (hugepages_treat_as_movable)
277                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
278         else
279                 htlb_alloc_mask = GFP_HIGHUSER;
280         return 0;
281 }
282
283 #endif /* CONFIG_SYSCTL */
284
285 int hugetlb_report_meminfo(char *buf)
286 {
287         return sprintf(buf,
288                         "HugePages_Total: %5lu\n"
289                         "HugePages_Free:  %5lu\n"
290                         "HugePages_Rsvd:  %5lu\n"
291                         "Hugepagesize:    %5lu kB\n",
292                         nr_huge_pages,
293                         free_huge_pages,
294                         resv_huge_pages,
295                         HPAGE_SIZE/1024);
296 }
297
298 int hugetlb_report_node_meminfo(int nid, char *buf)
299 {
300         return sprintf(buf,
301                 "Node %d HugePages_Total: %5u\n"
302                 "Node %d HugePages_Free:  %5u\n",
303                 nid, nr_huge_pages_node[nid],
304                 nid, free_huge_pages_node[nid]);
305 }
306
307 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
308 unsigned long hugetlb_total_pages(void)
309 {
310         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
311 }
312
313 /*
314  * We cannot handle pagefaults against hugetlb pages at all.  They cause
315  * handle_mm_fault() to try to instantiate regular-sized pages in the
316  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
317  * this far.
318  */
319 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
320                                 unsigned long address, int *unused)
321 {
322         BUG();
323         return NULL;
324 }
325
326 struct vm_operations_struct hugetlb_vm_ops = {
327         .nopage = hugetlb_nopage,
328 };
329
330 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
331                                 int writable)
332 {
333         pte_t entry;
334
335         if (writable) {
336                 entry =
337                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
338         } else {
339                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
340         }
341         entry = pte_mkyoung(entry);
342         entry = pte_mkhuge(entry);
343
344         return entry;
345 }
346
347 static void set_huge_ptep_writable(struct vm_area_struct *vma,
348                                    unsigned long address, pte_t *ptep)
349 {
350         pte_t entry;
351
352         entry = pte_mkwrite(pte_mkdirty(*ptep));
353         if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
354                 update_mmu_cache(vma, address, entry);
355                 lazy_mmu_prot_update(entry);
356         }
357 }
358
359
360 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
361                             struct vm_area_struct *vma)
362 {
363         pte_t *src_pte, *dst_pte, entry;
364         struct page *ptepage;
365         unsigned long addr;
366         int cow;
367
368         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
369
370         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
371                 src_pte = huge_pte_offset(src, addr);
372                 if (!src_pte)
373                         continue;
374                 dst_pte = huge_pte_alloc(dst, addr);
375                 if (!dst_pte)
376                         goto nomem;
377                 spin_lock(&dst->page_table_lock);
378                 spin_lock(&src->page_table_lock);
379                 if (!pte_none(*src_pte)) {
380                         if (cow)
381                                 ptep_set_wrprotect(src, addr, src_pte);
382                         entry = *src_pte;
383                         ptepage = pte_page(entry);
384                         get_page(ptepage);
385                         set_huge_pte_at(dst, addr, dst_pte, entry);
386                 }
387                 spin_unlock(&src->page_table_lock);
388                 spin_unlock(&dst->page_table_lock);
389         }
390         return 0;
391
392 nomem:
393         return -ENOMEM;
394 }
395
396 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
397                             unsigned long end)
398 {
399         struct mm_struct *mm = vma->vm_mm;
400         unsigned long address;
401         pte_t *ptep;
402         pte_t pte;
403         struct page *page;
404         struct page *tmp;
405         /*
406          * A page gathering list, protected by per file i_mmap_lock. The
407          * lock is used to avoid list corruption from multiple unmapping
408          * of the same page since we are using page->lru.
409          */
410         LIST_HEAD(page_list);
411
412         WARN_ON(!is_vm_hugetlb_page(vma));
413         BUG_ON(start & ~HPAGE_MASK);
414         BUG_ON(end & ~HPAGE_MASK);
415
416         spin_lock(&mm->page_table_lock);
417         for (address = start; address < end; address += HPAGE_SIZE) {
418                 ptep = huge_pte_offset(mm, address);
419                 if (!ptep)
420                         continue;
421
422                 if (huge_pmd_unshare(mm, &address, ptep))
423                         continue;
424
425                 pte = huge_ptep_get_and_clear(mm, address, ptep);
426                 if (pte_none(pte))
427                         continue;
428
429                 page = pte_page(pte);
430                 if (pte_dirty(pte))
431                         set_page_dirty(page);
432                 list_add(&page->lru, &page_list);
433         }
434         spin_unlock(&mm->page_table_lock);
435         flush_tlb_range(vma, start, end);
436         list_for_each_entry_safe(page, tmp, &page_list, lru) {
437                 list_del(&page->lru);
438                 put_page(page);
439         }
440 }
441
442 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
443                           unsigned long end)
444 {
445         /*
446          * It is undesirable to test vma->vm_file as it should be non-null
447          * for valid hugetlb area. However, vm_file will be NULL in the error
448          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
449          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
450          * to clean up. Since no pte has actually been setup, it is safe to
451          * do nothing in this case.
452          */
453         if (vma->vm_file) {
454                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
455                 __unmap_hugepage_range(vma, start, end);
456                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
457         }
458 }
459
460 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
461                         unsigned long address, pte_t *ptep, pte_t pte)
462 {
463         struct page *old_page, *new_page;
464         int avoidcopy;
465
466         old_page = pte_page(pte);
467
468         /* If no-one else is actually using this page, avoid the copy
469          * and just make the page writable */
470         avoidcopy = (page_count(old_page) == 1);
471         if (avoidcopy) {
472                 set_huge_ptep_writable(vma, address, ptep);
473                 return VM_FAULT_MINOR;
474         }
475
476         page_cache_get(old_page);
477         new_page = alloc_huge_page(vma, address);
478
479         if (!new_page) {
480                 page_cache_release(old_page);
481                 return VM_FAULT_OOM;
482         }
483
484         spin_unlock(&mm->page_table_lock);
485         copy_huge_page(new_page, old_page, address, vma);
486         spin_lock(&mm->page_table_lock);
487
488         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
489         if (likely(pte_same(*ptep, pte))) {
490                 /* Break COW */
491                 set_huge_pte_at(mm, address, ptep,
492                                 make_huge_pte(vma, new_page, 1));
493                 /* Make the old page be freed below */
494                 new_page = old_page;
495         }
496         page_cache_release(new_page);
497         page_cache_release(old_page);
498         return VM_FAULT_MINOR;
499 }
500
501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
502                         unsigned long address, pte_t *ptep, int write_access)
503 {
504         int ret = VM_FAULT_SIGBUS;
505         unsigned long idx;
506         unsigned long size;
507         struct page *page;
508         struct address_space *mapping;
509         pte_t new_pte;
510
511         mapping = vma->vm_file->f_mapping;
512         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
513                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
514
515         /*
516          * Use page lock to guard against racing truncation
517          * before we get page_table_lock.
518          */
519 retry:
520         page = find_lock_page(mapping, idx);
521         if (!page) {
522                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
523                 if (idx >= size)
524                         goto out;
525                 if (hugetlb_get_quota(mapping))
526                         goto out;
527                 page = alloc_huge_page(vma, address);
528                 if (!page) {
529                         hugetlb_put_quota(mapping);
530                         ret = VM_FAULT_OOM;
531                         goto out;
532                 }
533                 clear_huge_page(page, address);
534
535                 if (vma->vm_flags & VM_SHARED) {
536                         int err;
537
538                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
539                         if (err) {
540                                 put_page(page);
541                                 hugetlb_put_quota(mapping);
542                                 if (err == -EEXIST)
543                                         goto retry;
544                                 goto out;
545                         }
546                 } else
547                         lock_page(page);
548         }
549
550         spin_lock(&mm->page_table_lock);
551         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
552         if (idx >= size)
553                 goto backout;
554
555         ret = VM_FAULT_MINOR;
556         if (!pte_none(*ptep))
557                 goto backout;
558
559         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
560                                 && (vma->vm_flags & VM_SHARED)));
561         set_huge_pte_at(mm, address, ptep, new_pte);
562
563         if (write_access && !(vma->vm_flags & VM_SHARED)) {
564                 /* Optimization, do the COW without a second fault */
565                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
566         }
567
568         spin_unlock(&mm->page_table_lock);
569         unlock_page(page);
570 out:
571         return ret;
572
573 backout:
574         spin_unlock(&mm->page_table_lock);
575         hugetlb_put_quota(mapping);
576         unlock_page(page);
577         put_page(page);
578         goto out;
579 }
580
581 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
582                         unsigned long address, int write_access)
583 {
584         pte_t *ptep;
585         pte_t entry;
586         int ret;
587         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
588
589         ptep = huge_pte_alloc(mm, address);
590         if (!ptep)
591                 return VM_FAULT_OOM;
592
593         /*
594          * Serialize hugepage allocation and instantiation, so that we don't
595          * get spurious allocation failures if two CPUs race to instantiate
596          * the same page in the page cache.
597          */
598         mutex_lock(&hugetlb_instantiation_mutex);
599         entry = *ptep;
600         if (pte_none(entry)) {
601                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
602                 mutex_unlock(&hugetlb_instantiation_mutex);
603                 return ret;
604         }
605
606         ret = VM_FAULT_MINOR;
607
608         spin_lock(&mm->page_table_lock);
609         /* Check for a racing update before calling hugetlb_cow */
610         if (likely(pte_same(entry, *ptep)))
611                 if (write_access && !pte_write(entry))
612                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
613         spin_unlock(&mm->page_table_lock);
614         mutex_unlock(&hugetlb_instantiation_mutex);
615
616         return ret;
617 }
618
619 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
620                         struct page **pages, struct vm_area_struct **vmas,
621                         unsigned long *position, int *length, int i)
622 {
623         unsigned long pfn_offset;
624         unsigned long vaddr = *position;
625         int remainder = *length;
626
627         spin_lock(&mm->page_table_lock);
628         while (vaddr < vma->vm_end && remainder) {
629                 pte_t *pte;
630                 struct page *page;
631
632                 /*
633                  * Some archs (sparc64, sh*) have multiple pte_ts to
634                  * each hugepage.  We have to make * sure we get the
635                  * first, for the page indexing below to work.
636                  */
637                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
638
639                 if (!pte || pte_none(*pte)) {
640                         int ret;
641
642                         spin_unlock(&mm->page_table_lock);
643                         ret = hugetlb_fault(mm, vma, vaddr, 0);
644                         spin_lock(&mm->page_table_lock);
645                         if (ret == VM_FAULT_MINOR)
646                                 continue;
647
648                         remainder = 0;
649                         if (!i)
650                                 i = -EFAULT;
651                         break;
652                 }
653
654                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
655                 page = pte_page(*pte);
656 same_page:
657                 if (pages) {
658                         get_page(page);
659                         pages[i] = page + pfn_offset;
660                 }
661
662                 if (vmas)
663                         vmas[i] = vma;
664
665                 vaddr += PAGE_SIZE;
666                 ++pfn_offset;
667                 --remainder;
668                 ++i;
669                 if (vaddr < vma->vm_end && remainder &&
670                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
671                         /*
672                          * We use pfn_offset to avoid touching the pageframes
673                          * of this compound page.
674                          */
675                         goto same_page;
676                 }
677         }
678         spin_unlock(&mm->page_table_lock);
679         *length = remainder;
680         *position = vaddr;
681
682         return i;
683 }
684
685 void hugetlb_change_protection(struct vm_area_struct *vma,
686                 unsigned long address, unsigned long end, pgprot_t newprot)
687 {
688         struct mm_struct *mm = vma->vm_mm;
689         unsigned long start = address;
690         pte_t *ptep;
691         pte_t pte;
692
693         BUG_ON(address >= end);
694         flush_cache_range(vma, address, end);
695
696         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
697         spin_lock(&mm->page_table_lock);
698         for (; address < end; address += HPAGE_SIZE) {
699                 ptep = huge_pte_offset(mm, address);
700                 if (!ptep)
701                         continue;
702                 if (huge_pmd_unshare(mm, &address, ptep))
703                         continue;
704                 if (!pte_none(*ptep)) {
705                         pte = huge_ptep_get_and_clear(mm, address, ptep);
706                         pte = pte_mkhuge(pte_modify(pte, newprot));
707                         set_huge_pte_at(mm, address, ptep, pte);
708                         lazy_mmu_prot_update(pte);
709                 }
710         }
711         spin_unlock(&mm->page_table_lock);
712         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
713
714         flush_tlb_range(vma, start, end);
715 }
716
717 struct file_region {
718         struct list_head link;
719         long from;
720         long to;
721 };
722
723 static long region_add(struct list_head *head, long f, long t)
724 {
725         struct file_region *rg, *nrg, *trg;
726
727         /* Locate the region we are either in or before. */
728         list_for_each_entry(rg, head, link)
729                 if (f <= rg->to)
730                         break;
731
732         /* Round our left edge to the current segment if it encloses us. */
733         if (f > rg->from)
734                 f = rg->from;
735
736         /* Check for and consume any regions we now overlap with. */
737         nrg = rg;
738         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
739                 if (&rg->link == head)
740                         break;
741                 if (rg->from > t)
742                         break;
743
744                 /* If this area reaches higher then extend our area to
745                  * include it completely.  If this is not the first area
746                  * which we intend to reuse, free it. */
747                 if (rg->to > t)
748                         t = rg->to;
749                 if (rg != nrg) {
750                         list_del(&rg->link);
751                         kfree(rg);
752                 }
753         }
754         nrg->from = f;
755         nrg->to = t;
756         return 0;
757 }
758
759 static long region_chg(struct list_head *head, long f, long t)
760 {
761         struct file_region *rg, *nrg;
762         long chg = 0;
763
764         /* Locate the region we are before or in. */
765         list_for_each_entry(rg, head, link)
766                 if (f <= rg->to)
767                         break;
768
769         /* If we are below the current region then a new region is required.
770          * Subtle, allocate a new region at the position but make it zero
771          * size such that we can guarentee to record the reservation. */
772         if (&rg->link == head || t < rg->from) {
773                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
774                 if (nrg == 0)
775                         return -ENOMEM;
776                 nrg->from = f;
777                 nrg->to   = f;
778                 INIT_LIST_HEAD(&nrg->link);
779                 list_add(&nrg->link, rg->link.prev);
780
781                 return t - f;
782         }
783
784         /* Round our left edge to the current segment if it encloses us. */
785         if (f > rg->from)
786                 f = rg->from;
787         chg = t - f;
788
789         /* Check for and consume any regions we now overlap with. */
790         list_for_each_entry(rg, rg->link.prev, link) {
791                 if (&rg->link == head)
792                         break;
793                 if (rg->from > t)
794                         return chg;
795
796                 /* We overlap with this area, if it extends futher than
797                  * us then we must extend ourselves.  Account for its
798                  * existing reservation. */
799                 if (rg->to > t) {
800                         chg += rg->to - t;
801                         t = rg->to;
802                 }
803                 chg -= rg->to - rg->from;
804         }
805         return chg;
806 }
807
808 static long region_truncate(struct list_head *head, long end)
809 {
810         struct file_region *rg, *trg;
811         long chg = 0;
812
813         /* Locate the region we are either in or before. */
814         list_for_each_entry(rg, head, link)
815                 if (end <= rg->to)
816                         break;
817         if (&rg->link == head)
818                 return 0;
819
820         /* If we are in the middle of a region then adjust it. */
821         if (end > rg->from) {
822                 chg = rg->to - end;
823                 rg->to = end;
824                 rg = list_entry(rg->link.next, typeof(*rg), link);
825         }
826
827         /* Drop any remaining regions. */
828         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
829                 if (&rg->link == head)
830                         break;
831                 chg += rg->to - rg->from;
832                 list_del(&rg->link);
833                 kfree(rg);
834         }
835         return chg;
836 }
837
838 static int hugetlb_acct_memory(long delta)
839 {
840         int ret = -ENOMEM;
841
842         spin_lock(&hugetlb_lock);
843         if ((delta + resv_huge_pages) <= free_huge_pages) {
844                 resv_huge_pages += delta;
845                 ret = 0;
846         }
847         spin_unlock(&hugetlb_lock);
848         return ret;
849 }
850
851 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
852 {
853         long ret, chg;
854
855         chg = region_chg(&inode->i_mapping->private_list, from, to);
856         if (chg < 0)
857                 return chg;
858         /*
859          * When cpuset is configured, it breaks the strict hugetlb page
860          * reservation as the accounting is done on a global variable. Such
861          * reservation is completely rubbish in the presence of cpuset because
862          * the reservation is not checked against page availability for the
863          * current cpuset. Application can still potentially OOM'ed by kernel
864          * with lack of free htlb page in cpuset that the task is in.
865          * Attempt to enforce strict accounting with cpuset is almost
866          * impossible (or too ugly) because cpuset is too fluid that
867          * task or memory node can be dynamically moved between cpusets.
868          *
869          * The change of semantics for shared hugetlb mapping with cpuset is
870          * undesirable. However, in order to preserve some of the semantics,
871          * we fall back to check against current free page availability as
872          * a best attempt and hopefully to minimize the impact of changing
873          * semantics that cpuset has.
874          */
875         if (chg > cpuset_mems_nr(free_huge_pages_node))
876                 return -ENOMEM;
877
878         ret = hugetlb_acct_memory(chg);
879         if (ret < 0)
880                 return ret;
881         region_add(&inode->i_mapping->private_list, from, to);
882         return 0;
883 }
884
885 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
886 {
887         long chg = region_truncate(&inode->i_mapping->private_list, offset);
888         hugetlb_acct_memory(freed - chg);
889 }