mlx4_en: Coalescing target is equal for all mtu's
[linux-2.6] / drivers / net / bnx2x_init_ops.h
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2009 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14 #ifndef BNX2X_INIT_OPS_H
15 #define BNX2X_INIT_OPS_H
16
17 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
19
20 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
21                               u32 len)
22 {
23         int i;
24
25         for (i = 0; i < len; i++) {
26                 REG_WR(bp, addr + i*4, data[i]);
27                 if (!(i % 10000)) {
28                         touch_softlockup_watchdog();
29                         cpu_relax();
30                 }
31         }
32 }
33
34 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
35                               u16 len)
36 {
37         int i;
38
39         for (i = 0; i < len; i++) {
40                 REG_WR_IND(bp, addr + i*4, data[i]);
41                 if (!(i % 10000)) {
42                         touch_softlockup_watchdog();
43                         cpu_relax();
44                 }
45         }
46 }
47
48 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
49 {
50         int offset = 0;
51
52         if (bp->dmae_ready) {
53                 while (len > DMAE_LEN32_WR_MAX) {
54                         bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
55                                          addr + offset, DMAE_LEN32_WR_MAX);
56                         offset += DMAE_LEN32_WR_MAX * 4;
57                         len -= DMAE_LEN32_WR_MAX;
58                 }
59                 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
60                                  addr + offset, len);
61         } else
62                 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
63 }
64
65 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
66 {
67         u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
68         u32 buf_len32 = buf_len / 4;
69         int i;
70
71         memset(bp->gunzip_buf, fill, buf_len);
72
73         for (i = 0; i < len; i += buf_len32) {
74                 u32 cur_len = min(buf_len32, len - i);
75
76                 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
77         }
78 }
79
80 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
81                              u32 len64)
82 {
83         u32 buf_len32 = FW_BUF_SIZE / 4;
84         u32 len = len64 * 2;
85         u64 data64 = 0;
86         int i;
87
88         /* 64 bit value is in a blob: first low DWORD, then high DWORD */
89         data64 = HILO_U64((*(data + 1)), (*data));
90         len64 = min((u32)(FW_BUF_SIZE/8), len64);
91         for (i = 0; i < len64; i++) {
92                 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
93
94                 *pdata = data64;
95         }
96
97         for (i = 0; i < len; i += buf_len32) {
98                 u32 cur_len = min(buf_len32, len - i);
99
100                 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
101         }
102 }
103
104 /*********************************************************
105    There are different blobs for each PRAM section.
106    In addition, each blob write operation is divided into a few operations
107    in order to decrease the amount of phys. contiguous buffer needed.
108    Thus, when we select a blob the address may be with some offset
109    from the beginning of PRAM section.
110    The same holds for the INT_TABLE sections.
111 **********************************************************/
112 #define IF_IS_INT_TABLE_ADDR(base, addr) \
113                         if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
114
115 #define IF_IS_PRAM_ADDR(base, addr) \
116                         if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
117
118 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
119 {
120         IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
121                 data = bp->tsem_int_table_data;
122         else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
123                 data = bp->csem_int_table_data;
124         else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
125                 data = bp->usem_int_table_data;
126         else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
127                 data = bp->xsem_int_table_data;
128         else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
129                 data = bp->tsem_pram_data;
130         else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
131                 data = bp->csem_pram_data;
132         else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
133                 data = bp->usem_pram_data;
134         else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
135                 data = bp->xsem_pram_data;
136
137         return data;
138 }
139
140 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
141 {
142         int offset = 0;
143
144         if (bp->dmae_ready) {
145                 while (len > DMAE_LEN32_WR_MAX) {
146                         bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
147                                          addr + offset, DMAE_LEN32_WR_MAX);
148                         offset += DMAE_LEN32_WR_MAX * 4;
149                         len -= DMAE_LEN32_WR_MAX;
150                 }
151                 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
152                                  addr + offset, len);
153         } else
154                 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
155 }
156
157 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
158                              u32 len)
159 {
160         /* This is needed for NO_ZIP mode, currently supported
161            in little endian mode only */
162         data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data);
163
164         if ((len * 4) > FW_BUF_SIZE) {
165                 BNX2X_ERR("LARGE DMAE OPERATION ! "
166                           "addr 0x%x  len 0x%x\n", addr, len*4);
167                 return;
168         }
169         memcpy(bp->gunzip_buf, data, len * 4);
170
171         bnx2x_write_big_buf_wb(bp, addr, len);
172 }
173
174 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr,
175                              u32 len, u32 blob_off)
176 {
177         int rc, i;
178         const u8 *data = NULL;
179
180         data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off;
181
182         if (data == NULL) {
183                 panic("Blob not found for addr 0x%x\n", addr);
184                 return;
185         }
186
187         rc = bnx2x_gunzip(bp, data, len);
188         if (rc) {
189                 BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc);
190                 BNX2X_ERR("blob_offset=0x%x\n", blob_off);
191                 return;
192         }
193
194         /* gunzip_outlen is in dwords */
195         len = bp->gunzip_outlen;
196         for (i = 0; i < len; i++)
197                 ((u32 *)bp->gunzip_buf)[i] =
198                         cpu_to_le32(((u32 *)bp->gunzip_buf)[i]);
199
200         bnx2x_write_big_buf_wb(bp, addr, len);
201 }
202
203 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
204 {
205         int hw_wr, i;
206         u16 op_start =
207                 bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)];
208         u16 op_end =
209                 bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)];
210         union init_op *op;
211         u32 op_type, addr, len;
212         const u32 *data, *data_base;
213
214         /* If empty block */
215         if (op_start == op_end)
216                 return;
217
218         if (CHIP_REV_IS_FPGA(bp))
219                 hw_wr = OP_WR_FPGA;
220         else if (CHIP_REV_IS_EMUL(bp))
221                 hw_wr = OP_WR_EMUL;
222         else
223                 hw_wr = OP_WR_ASIC;
224
225         data_base = bp->init_data;
226
227         for (i = op_start; i < op_end; i++) {
228
229                 op = (union init_op *)&(bp->init_ops[i]);
230
231                 op_type = op->str_wr.op;
232                 addr = op->str_wr.offset;
233                 len = op->str_wr.data_len;
234                 data = data_base + op->str_wr.data_off;
235
236                 /* HW/EMUL specific */
237                 if (unlikely((op_type > OP_WB) && (op_type == hw_wr)))
238                         op_type = OP_WR;
239
240                 switch (op_type) {
241                 case OP_RD:
242                         REG_RD(bp, addr);
243                         break;
244                 case OP_WR:
245                         REG_WR(bp, addr, op->write.val);
246                         break;
247                 case OP_SW:
248                         bnx2x_init_str_wr(bp, addr, data, len);
249                         break;
250                 case OP_WB:
251                         bnx2x_init_wr_wb(bp, addr, data, len);
252                         break;
253                 case OP_SI:
254                         bnx2x_init_ind_wr(bp, addr, data, len);
255                         break;
256                 case OP_ZR:
257                         bnx2x_init_fill(bp, addr, 0, op->zero.len);
258                         break;
259                 case OP_ZP:
260                         bnx2x_init_wr_zp(bp, addr, len,
261                                          op->str_wr.data_off);
262                         break;
263                 case OP_WR_64:
264                         bnx2x_init_wr_64(bp, addr, data, len);
265                         break;
266                 default:
267                         /* happens whenever an op is of a diff HW */
268 #if 0
269                         DP(NETIF_MSG_HW, "skipping init operation  "
270                            "index %d[%d:%d]: type %d  addr 0x%x  "
271                            "len %d(0x%x)\n",
272                            i, op_start, op_end, op_type, addr, len, len);
273 #endif
274                         break;
275                 }
276         }
277 }
278
279 /* PXP */
280 static void bnx2x_init_pxp(struct bnx2x *bp)
281 {
282         u16 devctl;
283         int r_order, w_order;
284         u32 val, i;
285
286         pci_read_config_word(bp->pdev,
287                              bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
288         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
289         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
290         if (bp->mrrs == -1)
291                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
292         else {
293                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
294                 r_order = bp->mrrs;
295         }
296
297         if (r_order > MAX_RD_ORD) {
298                 DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
299                    r_order, MAX_RD_ORD);
300                 r_order = MAX_RD_ORD;
301         }
302         if (w_order > MAX_WR_ORD) {
303                 DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
304                    w_order, MAX_WR_ORD);
305                 w_order = MAX_WR_ORD;
306         }
307         if (CHIP_REV_IS_FPGA(bp)) {
308                 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
309                 w_order = 0;
310         }
311         DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
312
313         for (i = 0; i < NUM_RD_Q-1; i++) {
314                 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
315                 REG_WR(bp, read_arb_addr[i].add,
316                        read_arb_data[i][r_order].add);
317                 REG_WR(bp, read_arb_addr[i].ubound,
318                        read_arb_data[i][r_order].ubound);
319         }
320
321         for (i = 0; i < NUM_WR_Q-1; i++) {
322                 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
323                     (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
324
325                         REG_WR(bp, write_arb_addr[i].l,
326                                write_arb_data[i][w_order].l);
327
328                         REG_WR(bp, write_arb_addr[i].add,
329                                write_arb_data[i][w_order].add);
330
331                         REG_WR(bp, write_arb_addr[i].ubound,
332                                write_arb_data[i][w_order].ubound);
333                 } else {
334
335                         val = REG_RD(bp, write_arb_addr[i].l);
336                         REG_WR(bp, write_arb_addr[i].l,
337                                val | (write_arb_data[i][w_order].l << 10));
338
339                         val = REG_RD(bp, write_arb_addr[i].add);
340                         REG_WR(bp, write_arb_addr[i].add,
341                                val | (write_arb_data[i][w_order].add << 10));
342
343                         val = REG_RD(bp, write_arb_addr[i].ubound);
344                         REG_WR(bp, write_arb_addr[i].ubound,
345                                val | (write_arb_data[i][w_order].ubound << 7));
346                 }
347         }
348
349         val =  write_arb_data[NUM_WR_Q-1][w_order].add;
350         val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
351         val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
352         REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
353
354         val =  read_arb_data[NUM_RD_Q-1][r_order].add;
355         val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
356         val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
357         REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
358
359         REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
360         REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
361         REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
362         REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
363
364         if (r_order == MAX_RD_ORD)
365                 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
366
367         REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
368
369         if (CHIP_IS_E1H(bp)) {
370                 val = ((w_order == 0) ? 2 : 3);
371                 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
372                 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
373                 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
374                 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
375                 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
376                 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
377                 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
378                 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
379                 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
380                 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
381                 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
382         }
383 }
384
385 /*****************************************************************************
386  * Description:
387  *         Calculates crc 8 on a word value: polynomial 0-1-2-8
388  *         Code was translated from Verilog.
389  ****************************************************************************/
390 static u8 calc_crc8(u32 data, u8 crc)
391 {
392         u8 D[32];
393         u8 NewCRC[8];
394         u8 C[8];
395         u8 crc_res;
396         u8 i;
397
398         /* split the data into 31 bits */
399         for (i = 0; i < 32; i++) {
400                 D[i] = data & 1;
401                 data = data >> 1;
402         }
403
404         /* split the crc into 8 bits */
405         for (i = 0; i < 8; i++) {
406                 C[i] = crc & 1;
407                 crc = crc >> 1;
408         }
409
410         NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
411                 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
412                 C[6] ^ C[7];
413         NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
414                 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
415                 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
416         NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
417                 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
418                 C[0] ^ C[1] ^ C[4] ^ C[5];
419         NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
420                 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
421                 C[1] ^ C[2] ^ C[5] ^ C[6];
422         NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
423                 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
424                 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
425         NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
426                 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
427                 C[3] ^ C[4] ^ C[7];
428         NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
429                 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
430                 C[5];
431         NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
432                 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
433                 C[6];
434
435         crc_res = 0;
436         for (i = 0; i < 8; i++)
437                 crc_res |= (NewCRC[i] << i);
438
439         return crc_res;
440 }
441
442 #endif /* BNX2X_INIT_OPS_H */