[PATCH] sched: multilevel sbe sbf
[linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 #define for_each_domain(cpu, domain) \
264         for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
267 #define this_rq()               (&__get_cpu_var(runqueues))
268 #define task_rq(p)              cpu_rq(task_cpu(p))
269 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
270
271 #ifndef prepare_arch_switch
272 # define prepare_arch_switch(next)      do { } while (0)
273 #endif
274 #ifndef finish_arch_switch
275 # define finish_arch_switch(prev)       do { } while (0)
276 #endif
277
278 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
279 static inline int task_running(runqueue_t *rq, task_t *p)
280 {
281         return rq->curr == p;
282 }
283
284 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
285 {
286 }
287
288 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
289 {
290         spin_unlock_irq(&rq->lock);
291 }
292
293 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
294 static inline int task_running(runqueue_t *rq, task_t *p)
295 {
296 #ifdef CONFIG_SMP
297         return p->oncpu;
298 #else
299         return rq->curr == p;
300 #endif
301 }
302
303 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304 {
305 #ifdef CONFIG_SMP
306         /*
307          * We can optimise this out completely for !SMP, because the
308          * SMP rebalancing from interrupt is the only thing that cares
309          * here.
310          */
311         next->oncpu = 1;
312 #endif
313 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
314         spin_unlock_irq(&rq->lock);
315 #else
316         spin_unlock(&rq->lock);
317 #endif
318 }
319
320 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
321 {
322 #ifdef CONFIG_SMP
323         /*
324          * After ->oncpu is cleared, the task can be moved to a different CPU.
325          * We must ensure this doesn't happen until the switch is completely
326          * finished.
327          */
328         smp_wmb();
329         prev->oncpu = 0;
330 #endif
331 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
332         local_irq_enable();
333 #endif
334 }
335 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
336
337 /*
338  * task_rq_lock - lock the runqueue a given task resides on and disable
339  * interrupts.  Note the ordering: we can safely lookup the task_rq without
340  * explicitly disabling preemption.
341  */
342 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
343         __acquires(rq->lock)
344 {
345         struct runqueue *rq;
346
347 repeat_lock_task:
348         local_irq_save(*flags);
349         rq = task_rq(p);
350         spin_lock(&rq->lock);
351         if (unlikely(rq != task_rq(p))) {
352                 spin_unlock_irqrestore(&rq->lock, *flags);
353                 goto repeat_lock_task;
354         }
355         return rq;
356 }
357
358 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
359         __releases(rq->lock)
360 {
361         spin_unlock_irqrestore(&rq->lock, *flags);
362 }
363
364 #ifdef CONFIG_SCHEDSTATS
365 /*
366  * bump this up when changing the output format or the meaning of an existing
367  * format, so that tools can adapt (or abort)
368  */
369 #define SCHEDSTAT_VERSION 12
370
371 static int show_schedstat(struct seq_file *seq, void *v)
372 {
373         int cpu;
374
375         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
376         seq_printf(seq, "timestamp %lu\n", jiffies);
377         for_each_online_cpu(cpu) {
378                 runqueue_t *rq = cpu_rq(cpu);
379 #ifdef CONFIG_SMP
380                 struct sched_domain *sd;
381                 int dcnt = 0;
382 #endif
383
384                 /* runqueue-specific stats */
385                 seq_printf(seq,
386                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
387                     cpu, rq->yld_both_empty,
388                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
389                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
390                     rq->ttwu_cnt, rq->ttwu_local,
391                     rq->rq_sched_info.cpu_time,
392                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
393
394                 seq_printf(seq, "\n");
395
396 #ifdef CONFIG_SMP
397                 /* domain-specific stats */
398                 for_each_domain(cpu, sd) {
399                         enum idle_type itype;
400                         char mask_str[NR_CPUS];
401
402                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
403                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
404                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
405                                         itype++) {
406                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
407                                     sd->lb_cnt[itype],
408                                     sd->lb_balanced[itype],
409                                     sd->lb_failed[itype],
410                                     sd->lb_imbalance[itype],
411                                     sd->lb_gained[itype],
412                                     sd->lb_hot_gained[itype],
413                                     sd->lb_nobusyq[itype],
414                                     sd->lb_nobusyg[itype]);
415                         }
416                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
417                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
418                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
419                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
420                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
421                 }
422 #endif
423         }
424         return 0;
425 }
426
427 static int schedstat_open(struct inode *inode, struct file *file)
428 {
429         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
430         char *buf = kmalloc(size, GFP_KERNEL);
431         struct seq_file *m;
432         int res;
433
434         if (!buf)
435                 return -ENOMEM;
436         res = single_open(file, show_schedstat, NULL);
437         if (!res) {
438                 m = file->private_data;
439                 m->buf = buf;
440                 m->size = size;
441         } else
442                 kfree(buf);
443         return res;
444 }
445
446 struct file_operations proc_schedstat_operations = {
447         .open    = schedstat_open,
448         .read    = seq_read,
449         .llseek  = seq_lseek,
450         .release = single_release,
451 };
452
453 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
454 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
455 #else /* !CONFIG_SCHEDSTATS */
456 # define schedstat_inc(rq, field)       do { } while (0)
457 # define schedstat_add(rq, field, amt)  do { } while (0)
458 #endif
459
460 /*
461  * rq_lock - lock a given runqueue and disable interrupts.
462  */
463 static inline runqueue_t *this_rq_lock(void)
464         __acquires(rq->lock)
465 {
466         runqueue_t *rq;
467
468         local_irq_disable();
469         rq = this_rq();
470         spin_lock(&rq->lock);
471
472         return rq;
473 }
474
475 #ifdef CONFIG_SCHEDSTATS
476 /*
477  * Called when a process is dequeued from the active array and given
478  * the cpu.  We should note that with the exception of interactive
479  * tasks, the expired queue will become the active queue after the active
480  * queue is empty, without explicitly dequeuing and requeuing tasks in the
481  * expired queue.  (Interactive tasks may be requeued directly to the
482  * active queue, thus delaying tasks in the expired queue from running;
483  * see scheduler_tick()).
484  *
485  * This function is only called from sched_info_arrive(), rather than
486  * dequeue_task(). Even though a task may be queued and dequeued multiple
487  * times as it is shuffled about, we're really interested in knowing how
488  * long it was from the *first* time it was queued to the time that it
489  * finally hit a cpu.
490  */
491 static inline void sched_info_dequeued(task_t *t)
492 {
493         t->sched_info.last_queued = 0;
494 }
495
496 /*
497  * Called when a task finally hits the cpu.  We can now calculate how
498  * long it was waiting to run.  We also note when it began so that we
499  * can keep stats on how long its timeslice is.
500  */
501 static inline void sched_info_arrive(task_t *t)
502 {
503         unsigned long now = jiffies, diff = 0;
504         struct runqueue *rq = task_rq(t);
505
506         if (t->sched_info.last_queued)
507                 diff = now - t->sched_info.last_queued;
508         sched_info_dequeued(t);
509         t->sched_info.run_delay += diff;
510         t->sched_info.last_arrival = now;
511         t->sched_info.pcnt++;
512
513         if (!rq)
514                 return;
515
516         rq->rq_sched_info.run_delay += diff;
517         rq->rq_sched_info.pcnt++;
518 }
519
520 /*
521  * Called when a process is queued into either the active or expired
522  * array.  The time is noted and later used to determine how long we
523  * had to wait for us to reach the cpu.  Since the expired queue will
524  * become the active queue after active queue is empty, without dequeuing
525  * and requeuing any tasks, we are interested in queuing to either. It
526  * is unusual but not impossible for tasks to be dequeued and immediately
527  * requeued in the same or another array: this can happen in sched_yield(),
528  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
529  * to runqueue.
530  *
531  * This function is only called from enqueue_task(), but also only updates
532  * the timestamp if it is already not set.  It's assumed that
533  * sched_info_dequeued() will clear that stamp when appropriate.
534  */
535 static inline void sched_info_queued(task_t *t)
536 {
537         if (!t->sched_info.last_queued)
538                 t->sched_info.last_queued = jiffies;
539 }
540
541 /*
542  * Called when a process ceases being the active-running process, either
543  * voluntarily or involuntarily.  Now we can calculate how long we ran.
544  */
545 static inline void sched_info_depart(task_t *t)
546 {
547         struct runqueue *rq = task_rq(t);
548         unsigned long diff = jiffies - t->sched_info.last_arrival;
549
550         t->sched_info.cpu_time += diff;
551
552         if (rq)
553                 rq->rq_sched_info.cpu_time += diff;
554 }
555
556 /*
557  * Called when tasks are switched involuntarily due, typically, to expiring
558  * their time slice.  (This may also be called when switching to or from
559  * the idle task.)  We are only called when prev != next.
560  */
561 static inline void sched_info_switch(task_t *prev, task_t *next)
562 {
563         struct runqueue *rq = task_rq(prev);
564
565         /*
566          * prev now departs the cpu.  It's not interesting to record
567          * stats about how efficient we were at scheduling the idle
568          * process, however.
569          */
570         if (prev != rq->idle)
571                 sched_info_depart(prev);
572
573         if (next != rq->idle)
574                 sched_info_arrive(next);
575 }
576 #else
577 #define sched_info_queued(t)            do { } while (0)
578 #define sched_info_switch(t, next)      do { } while (0)
579 #endif /* CONFIG_SCHEDSTATS */
580
581 /*
582  * Adding/removing a task to/from a priority array:
583  */
584 static void dequeue_task(struct task_struct *p, prio_array_t *array)
585 {
586         array->nr_active--;
587         list_del(&p->run_list);
588         if (list_empty(array->queue + p->prio))
589                 __clear_bit(p->prio, array->bitmap);
590 }
591
592 static void enqueue_task(struct task_struct *p, prio_array_t *array)
593 {
594         sched_info_queued(p);
595         list_add_tail(&p->run_list, array->queue + p->prio);
596         __set_bit(p->prio, array->bitmap);
597         array->nr_active++;
598         p->array = array;
599 }
600
601 /*
602  * Put task to the end of the run list without the overhead of dequeue
603  * followed by enqueue.
604  */
605 static void requeue_task(struct task_struct *p, prio_array_t *array)
606 {
607         list_move_tail(&p->run_list, array->queue + p->prio);
608 }
609
610 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
611 {
612         list_add(&p->run_list, array->queue + p->prio);
613         __set_bit(p->prio, array->bitmap);
614         array->nr_active++;
615         p->array = array;
616 }
617
618 /*
619  * effective_prio - return the priority that is based on the static
620  * priority but is modified by bonuses/penalties.
621  *
622  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
623  * into the -5 ... 0 ... +5 bonus/penalty range.
624  *
625  * We use 25% of the full 0...39 priority range so that:
626  *
627  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
628  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
629  *
630  * Both properties are important to certain workloads.
631  */
632 static int effective_prio(task_t *p)
633 {
634         int bonus, prio;
635
636         if (rt_task(p))
637                 return p->prio;
638
639         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
640
641         prio = p->static_prio - bonus;
642         if (prio < MAX_RT_PRIO)
643                 prio = MAX_RT_PRIO;
644         if (prio > MAX_PRIO-1)
645                 prio = MAX_PRIO-1;
646         return prio;
647 }
648
649 /*
650  * __activate_task - move a task to the runqueue.
651  */
652 static inline void __activate_task(task_t *p, runqueue_t *rq)
653 {
654         enqueue_task(p, rq->active);
655         rq->nr_running++;
656 }
657
658 /*
659  * __activate_idle_task - move idle task to the _front_ of runqueue.
660  */
661 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task_head(p, rq->active);
664         rq->nr_running++;
665 }
666
667 static void recalc_task_prio(task_t *p, unsigned long long now)
668 {
669         /* Caller must always ensure 'now >= p->timestamp' */
670         unsigned long long __sleep_time = now - p->timestamp;
671         unsigned long sleep_time;
672
673         if (__sleep_time > NS_MAX_SLEEP_AVG)
674                 sleep_time = NS_MAX_SLEEP_AVG;
675         else
676                 sleep_time = (unsigned long)__sleep_time;
677
678         if (likely(sleep_time > 0)) {
679                 /*
680                  * User tasks that sleep a long time are categorised as
681                  * idle and will get just interactive status to stay active &
682                  * prevent them suddenly becoming cpu hogs and starving
683                  * other processes.
684                  */
685                 if (p->mm && p->activated != -1 &&
686                         sleep_time > INTERACTIVE_SLEEP(p)) {
687                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
688                                                 DEF_TIMESLICE);
689                 } else {
690                         /*
691                          * The lower the sleep avg a task has the more
692                          * rapidly it will rise with sleep time.
693                          */
694                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
695
696                         /*
697                          * Tasks waking from uninterruptible sleep are
698                          * limited in their sleep_avg rise as they
699                          * are likely to be waiting on I/O
700                          */
701                         if (p->activated == -1 && p->mm) {
702                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
703                                         sleep_time = 0;
704                                 else if (p->sleep_avg + sleep_time >=
705                                                 INTERACTIVE_SLEEP(p)) {
706                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
707                                         sleep_time = 0;
708                                 }
709                         }
710
711                         /*
712                          * This code gives a bonus to interactive tasks.
713                          *
714                          * The boost works by updating the 'average sleep time'
715                          * value here, based on ->timestamp. The more time a
716                          * task spends sleeping, the higher the average gets -
717                          * and the higher the priority boost gets as well.
718                          */
719                         p->sleep_avg += sleep_time;
720
721                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
722                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
723                 }
724         }
725
726         p->prio = effective_prio(p);
727 }
728
729 /*
730  * activate_task - move a task to the runqueue and do priority recalculation
731  *
732  * Update all the scheduling statistics stuff. (sleep average
733  * calculation, priority modifiers, etc.)
734  */
735 static void activate_task(task_t *p, runqueue_t *rq, int local)
736 {
737         unsigned long long now;
738
739         now = sched_clock();
740 #ifdef CONFIG_SMP
741         if (!local) {
742                 /* Compensate for drifting sched_clock */
743                 runqueue_t *this_rq = this_rq();
744                 now = (now - this_rq->timestamp_last_tick)
745                         + rq->timestamp_last_tick;
746         }
747 #endif
748
749         recalc_task_prio(p, now);
750
751         /*
752          * This checks to make sure it's not an uninterruptible task
753          * that is now waking up.
754          */
755         if (!p->activated) {
756                 /*
757                  * Tasks which were woken up by interrupts (ie. hw events)
758                  * are most likely of interactive nature. So we give them
759                  * the credit of extending their sleep time to the period
760                  * of time they spend on the runqueue, waiting for execution
761                  * on a CPU, first time around:
762                  */
763                 if (in_interrupt())
764                         p->activated = 2;
765                 else {
766                         /*
767                          * Normal first-time wakeups get a credit too for
768                          * on-runqueue time, but it will be weighted down:
769                          */
770                         p->activated = 1;
771                 }
772         }
773         p->timestamp = now;
774
775         __activate_task(p, rq);
776 }
777
778 /*
779  * deactivate_task - remove a task from the runqueue.
780  */
781 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
782 {
783         rq->nr_running--;
784         dequeue_task(p, p->array);
785         p->array = NULL;
786 }
787
788 /*
789  * resched_task - mark a task 'to be rescheduled now'.
790  *
791  * On UP this means the setting of the need_resched flag, on SMP it
792  * might also involve a cross-CPU call to trigger the scheduler on
793  * the target CPU.
794  */
795 #ifdef CONFIG_SMP
796 static void resched_task(task_t *p)
797 {
798         int need_resched, nrpolling;
799
800         assert_spin_locked(&task_rq(p)->lock);
801
802         /* minimise the chance of sending an interrupt to poll_idle() */
803         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
804         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
805         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
806
807         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
808                 smp_send_reschedule(task_cpu(p));
809 }
810 #else
811 static inline void resched_task(task_t *p)
812 {
813         set_tsk_need_resched(p);
814 }
815 #endif
816
817 /**
818  * task_curr - is this task currently executing on a CPU?
819  * @p: the task in question.
820  */
821 inline int task_curr(const task_t *p)
822 {
823         return cpu_curr(task_cpu(p)) == p;
824 }
825
826 #ifdef CONFIG_SMP
827 enum request_type {
828         REQ_MOVE_TASK,
829         REQ_SET_DOMAIN,
830 };
831
832 typedef struct {
833         struct list_head list;
834         enum request_type type;
835
836         /* For REQ_MOVE_TASK */
837         task_t *task;
838         int dest_cpu;
839
840         /* For REQ_SET_DOMAIN */
841         struct sched_domain *sd;
842
843         struct completion done;
844 } migration_req_t;
845
846 /*
847  * The task's runqueue lock must be held.
848  * Returns true if you have to wait for migration thread.
849  */
850 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 {
852         runqueue_t *rq = task_rq(p);
853
854         /*
855          * If the task is not on a runqueue (and not running), then
856          * it is sufficient to simply update the task's cpu field.
857          */
858         if (!p->array && !task_running(rq, p)) {
859                 set_task_cpu(p, dest_cpu);
860                 return 0;
861         }
862
863         init_completion(&req->done);
864         req->type = REQ_MOVE_TASK;
865         req->task = p;
866         req->dest_cpu = dest_cpu;
867         list_add(&req->list, &rq->migration_queue);
868         return 1;
869 }
870
871 /*
872  * wait_task_inactive - wait for a thread to unschedule.
873  *
874  * The caller must ensure that the task *will* unschedule sometime soon,
875  * else this function might spin for a *long* time. This function can't
876  * be called with interrupts off, or it may introduce deadlock with
877  * smp_call_function() if an IPI is sent by the same process we are
878  * waiting to become inactive.
879  */
880 void wait_task_inactive(task_t * p)
881 {
882         unsigned long flags;
883         runqueue_t *rq;
884         int preempted;
885
886 repeat:
887         rq = task_rq_lock(p, &flags);
888         /* Must be off runqueue entirely, not preempted. */
889         if (unlikely(p->array || task_running(rq, p))) {
890                 /* If it's preempted, we yield.  It could be a while. */
891                 preempted = !task_running(rq, p);
892                 task_rq_unlock(rq, &flags);
893                 cpu_relax();
894                 if (preempted)
895                         yield();
896                 goto repeat;
897         }
898         task_rq_unlock(rq, &flags);
899 }
900
901 /***
902  * kick_process - kick a running thread to enter/exit the kernel
903  * @p: the to-be-kicked thread
904  *
905  * Cause a process which is running on another CPU to enter
906  * kernel-mode, without any delay. (to get signals handled.)
907  *
908  * NOTE: this function doesnt have to take the runqueue lock,
909  * because all it wants to ensure is that the remote task enters
910  * the kernel. If the IPI races and the task has been migrated
911  * to another CPU then no harm is done and the purpose has been
912  * achieved as well.
913  */
914 void kick_process(task_t *p)
915 {
916         int cpu;
917
918         preempt_disable();
919         cpu = task_cpu(p);
920         if ((cpu != smp_processor_id()) && task_curr(p))
921                 smp_send_reschedule(cpu);
922         preempt_enable();
923 }
924
925 /*
926  * Return a low guess at the load of a migration-source cpu.
927  *
928  * We want to under-estimate the load of migration sources, to
929  * balance conservatively.
930  */
931 static inline unsigned long source_load(int cpu, int type)
932 {
933         runqueue_t *rq = cpu_rq(cpu);
934         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
935         if (type == 0)
936                 return load_now;
937
938         return min(rq->cpu_load[type-1], load_now);
939 }
940
941 /*
942  * Return a high guess at the load of a migration-target cpu
943  */
944 static inline unsigned long target_load(int cpu, int type)
945 {
946         runqueue_t *rq = cpu_rq(cpu);
947         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
948         if (type == 0)
949                 return load_now;
950
951         return max(rq->cpu_load[type-1], load_now);
952 }
953
954 /*
955  * find_idlest_group finds and returns the least busy CPU group within the
956  * domain.
957  */
958 static struct sched_group *
959 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
960 {
961         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
962         unsigned long min_load = ULONG_MAX, this_load = 0;
963         int load_idx = sd->forkexec_idx;
964         int imbalance = 100 + (sd->imbalance_pct-100)/2;
965
966         do {
967                 unsigned long load, avg_load;
968                 int local_group;
969                 int i;
970
971                 local_group = cpu_isset(this_cpu, group->cpumask);
972                 /* XXX: put a cpus allowed check */
973
974                 /* Tally up the load of all CPUs in the group */
975                 avg_load = 0;
976
977                 for_each_cpu_mask(i, group->cpumask) {
978                         /* Bias balancing toward cpus of our domain */
979                         if (local_group)
980                                 load = source_load(i, load_idx);
981                         else
982                                 load = target_load(i, load_idx);
983
984                         avg_load += load;
985                 }
986
987                 /* Adjust by relative CPU power of the group */
988                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
989
990                 if (local_group) {
991                         this_load = avg_load;
992                         this = group;
993                 } else if (avg_load < min_load) {
994                         min_load = avg_load;
995                         idlest = group;
996                 }
997                 group = group->next;
998         } while (group != sd->groups);
999
1000         if (!idlest || 100*this_load < imbalance*min_load)
1001                 return NULL;
1002         return idlest;
1003 }
1004
1005 /*
1006  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1007  */
1008 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1009 {
1010         unsigned long load, min_load = ULONG_MAX;
1011         int idlest = -1;
1012         int i;
1013
1014         for_each_cpu_mask(i, group->cpumask) {
1015                 load = source_load(i, 0);
1016
1017                 if (load < min_load || (load == min_load && i == this_cpu)) {
1018                         min_load = load;
1019                         idlest = i;
1020                 }
1021         }
1022
1023         return idlest;
1024 }
1025
1026
1027 #endif
1028
1029 /*
1030  * wake_idle() will wake a task on an idle cpu if task->cpu is
1031  * not idle and an idle cpu is available.  The span of cpus to
1032  * search starts with cpus closest then further out as needed,
1033  * so we always favor a closer, idle cpu.
1034  *
1035  * Returns the CPU we should wake onto.
1036  */
1037 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1038 static int wake_idle(int cpu, task_t *p)
1039 {
1040         cpumask_t tmp;
1041         struct sched_domain *sd;
1042         int i;
1043
1044         if (idle_cpu(cpu))
1045                 return cpu;
1046
1047         for_each_domain(cpu, sd) {
1048                 if (sd->flags & SD_WAKE_IDLE) {
1049                         cpus_and(tmp, sd->span, p->cpus_allowed);
1050                         for_each_cpu_mask(i, tmp) {
1051                                 if (idle_cpu(i))
1052                                         return i;
1053                         }
1054                 }
1055                 else
1056                         break;
1057         }
1058         return cpu;
1059 }
1060 #else
1061 static inline int wake_idle(int cpu, task_t *p)
1062 {
1063         return cpu;
1064 }
1065 #endif
1066
1067 /***
1068  * try_to_wake_up - wake up a thread
1069  * @p: the to-be-woken-up thread
1070  * @state: the mask of task states that can be woken
1071  * @sync: do a synchronous wakeup?
1072  *
1073  * Put it on the run-queue if it's not already there. The "current"
1074  * thread is always on the run-queue (except when the actual
1075  * re-schedule is in progress), and as such you're allowed to do
1076  * the simpler "current->state = TASK_RUNNING" to mark yourself
1077  * runnable without the overhead of this.
1078  *
1079  * returns failure only if the task is already active.
1080  */
1081 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1082 {
1083         int cpu, this_cpu, success = 0;
1084         unsigned long flags;
1085         long old_state;
1086         runqueue_t *rq;
1087 #ifdef CONFIG_SMP
1088         unsigned long load, this_load;
1089         struct sched_domain *sd, *this_sd = NULL;
1090         int new_cpu;
1091 #endif
1092
1093         rq = task_rq_lock(p, &flags);
1094         old_state = p->state;
1095         if (!(old_state & state))
1096                 goto out;
1097
1098         if (p->array)
1099                 goto out_running;
1100
1101         cpu = task_cpu(p);
1102         this_cpu = smp_processor_id();
1103
1104 #ifdef CONFIG_SMP
1105         if (unlikely(task_running(rq, p)))
1106                 goto out_activate;
1107
1108         new_cpu = cpu;
1109
1110         schedstat_inc(rq, ttwu_cnt);
1111         if (cpu == this_cpu) {
1112                 schedstat_inc(rq, ttwu_local);
1113                 goto out_set_cpu;
1114         }
1115
1116         for_each_domain(this_cpu, sd) {
1117                 if (cpu_isset(cpu, sd->span)) {
1118                         schedstat_inc(sd, ttwu_wake_remote);
1119                         this_sd = sd;
1120                         break;
1121                 }
1122         }
1123
1124         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1125                 goto out_set_cpu;
1126
1127         /*
1128          * Check for affine wakeup and passive balancing possibilities.
1129          */
1130         if (this_sd) {
1131                 int idx = this_sd->wake_idx;
1132                 unsigned int imbalance;
1133
1134                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1135
1136                 load = source_load(cpu, idx);
1137                 this_load = target_load(this_cpu, idx);
1138
1139                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1140
1141                 if (this_sd->flags & SD_WAKE_AFFINE) {
1142                         unsigned long tl = this_load;
1143                         /*
1144                          * If sync wakeup then subtract the (maximum possible)
1145                          * effect of the currently running task from the load
1146                          * of the current CPU:
1147                          */
1148                         if (sync)
1149                                 tl -= SCHED_LOAD_SCALE;
1150
1151                         if ((tl <= load &&
1152                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1153                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1154                                 /*
1155                                  * This domain has SD_WAKE_AFFINE and
1156                                  * p is cache cold in this domain, and
1157                                  * there is no bad imbalance.
1158                                  */
1159                                 schedstat_inc(this_sd, ttwu_move_affine);
1160                                 goto out_set_cpu;
1161                         }
1162                 }
1163
1164                 /*
1165                  * Start passive balancing when half the imbalance_pct
1166                  * limit is reached.
1167                  */
1168                 if (this_sd->flags & SD_WAKE_BALANCE) {
1169                         if (imbalance*this_load <= 100*load) {
1170                                 schedstat_inc(this_sd, ttwu_move_balance);
1171                                 goto out_set_cpu;
1172                         }
1173                 }
1174         }
1175
1176         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1177 out_set_cpu:
1178         new_cpu = wake_idle(new_cpu, p);
1179         if (new_cpu != cpu) {
1180                 set_task_cpu(p, new_cpu);
1181                 task_rq_unlock(rq, &flags);
1182                 /* might preempt at this point */
1183                 rq = task_rq_lock(p, &flags);
1184                 old_state = p->state;
1185                 if (!(old_state & state))
1186                         goto out;
1187                 if (p->array)
1188                         goto out_running;
1189
1190                 this_cpu = smp_processor_id();
1191                 cpu = task_cpu(p);
1192         }
1193
1194 out_activate:
1195 #endif /* CONFIG_SMP */
1196         if (old_state == TASK_UNINTERRUPTIBLE) {
1197                 rq->nr_uninterruptible--;
1198                 /*
1199                  * Tasks on involuntary sleep don't earn
1200                  * sleep_avg beyond just interactive state.
1201                  */
1202                 p->activated = -1;
1203         }
1204
1205         /*
1206          * Sync wakeups (i.e. those types of wakeups where the waker
1207          * has indicated that it will leave the CPU in short order)
1208          * don't trigger a preemption, if the woken up task will run on
1209          * this cpu. (in this case the 'I will reschedule' promise of
1210          * the waker guarantees that the freshly woken up task is going
1211          * to be considered on this CPU.)
1212          */
1213         activate_task(p, rq, cpu == this_cpu);
1214         if (!sync || cpu != this_cpu) {
1215                 if (TASK_PREEMPTS_CURR(p, rq))
1216                         resched_task(rq->curr);
1217         }
1218         success = 1;
1219
1220 out_running:
1221         p->state = TASK_RUNNING;
1222 out:
1223         task_rq_unlock(rq, &flags);
1224
1225         return success;
1226 }
1227
1228 int fastcall wake_up_process(task_t * p)
1229 {
1230         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1231                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1232 }
1233
1234 EXPORT_SYMBOL(wake_up_process);
1235
1236 int fastcall wake_up_state(task_t *p, unsigned int state)
1237 {
1238         return try_to_wake_up(p, state, 0);
1239 }
1240
1241 /*
1242  * Perform scheduler related setup for a newly forked process p.
1243  * p is forked by current.
1244  */
1245 void fastcall sched_fork(task_t *p)
1246 {
1247         /*
1248          * We mark the process as running here, but have not actually
1249          * inserted it onto the runqueue yet. This guarantees that
1250          * nobody will actually run it, and a signal or other external
1251          * event cannot wake it up and insert it on the runqueue either.
1252          */
1253         p->state = TASK_RUNNING;
1254         INIT_LIST_HEAD(&p->run_list);
1255         p->array = NULL;
1256 #ifdef CONFIG_SCHEDSTATS
1257         memset(&p->sched_info, 0, sizeof(p->sched_info));
1258 #endif
1259 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1260         p->oncpu = 0;
1261 #endif
1262 #ifdef CONFIG_PREEMPT
1263         /* Want to start with kernel preemption disabled. */
1264         p->thread_info->preempt_count = 1;
1265 #endif
1266         /*
1267          * Share the timeslice between parent and child, thus the
1268          * total amount of pending timeslices in the system doesn't change,
1269          * resulting in more scheduling fairness.
1270          */
1271         local_irq_disable();
1272         p->time_slice = (current->time_slice + 1) >> 1;
1273         /*
1274          * The remainder of the first timeslice might be recovered by
1275          * the parent if the child exits early enough.
1276          */
1277         p->first_time_slice = 1;
1278         current->time_slice >>= 1;
1279         p->timestamp = sched_clock();
1280         if (unlikely(!current->time_slice)) {
1281                 /*
1282                  * This case is rare, it happens when the parent has only
1283                  * a single jiffy left from its timeslice. Taking the
1284                  * runqueue lock is not a problem.
1285                  */
1286                 current->time_slice = 1;
1287                 preempt_disable();
1288                 scheduler_tick();
1289                 local_irq_enable();
1290                 preempt_enable();
1291         } else
1292                 local_irq_enable();
1293 }
1294
1295 /*
1296  * wake_up_new_task - wake up a newly created task for the first time.
1297  *
1298  * This function will do some initial scheduler statistics housekeeping
1299  * that must be done for every newly created context, then puts the task
1300  * on the runqueue and wakes it.
1301  */
1302 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1303 {
1304         unsigned long flags;
1305         int this_cpu, cpu;
1306         runqueue_t *rq, *this_rq;
1307 #ifdef CONFIG_SMP
1308         struct sched_domain *tmp, *sd = NULL;
1309 #endif
1310
1311         rq = task_rq_lock(p, &flags);
1312         BUG_ON(p->state != TASK_RUNNING);
1313         this_cpu = smp_processor_id();
1314         cpu = task_cpu(p);
1315
1316 #ifdef CONFIG_SMP
1317         for_each_domain(cpu, tmp)
1318                 if (tmp->flags & SD_BALANCE_FORK)
1319                         sd = tmp;
1320
1321         if (sd) {
1322                 cpumask_t span;
1323                 int new_cpu;
1324                 struct sched_group *group;
1325
1326 again:
1327                 schedstat_inc(sd, sbf_cnt);
1328                 span = sd->span;
1329                 cpu = task_cpu(p);
1330                 group = find_idlest_group(sd, p, cpu);
1331                 if (!group) {
1332                         schedstat_inc(sd, sbf_balanced);
1333                         goto nextlevel;
1334                 }
1335
1336                 new_cpu = find_idlest_cpu(group, cpu);
1337                 if (new_cpu == -1 || new_cpu == cpu) {
1338                         schedstat_inc(sd, sbf_balanced);
1339                         goto nextlevel;
1340                 }
1341
1342                 if (cpu_isset(new_cpu, p->cpus_allowed)) {
1343                         schedstat_inc(sd, sbf_pushed);
1344                         set_task_cpu(p, new_cpu);
1345                         task_rq_unlock(rq, &flags);
1346                         rq = task_rq_lock(p, &flags);
1347                         cpu = task_cpu(p);
1348                 }
1349
1350                 /* Now try balancing at a lower domain level */
1351 nextlevel:
1352                 sd = NULL;
1353                 for_each_domain(cpu, tmp) {
1354                         if (cpus_subset(span, tmp->span))
1355                                 break;
1356                         if (tmp->flags & SD_BALANCE_FORK)
1357                                 sd = tmp;
1358                 }
1359
1360                 if (sd)
1361                         goto again;
1362         }
1363
1364 #endif
1365         /*
1366          * We decrease the sleep average of forking parents
1367          * and children as well, to keep max-interactive tasks
1368          * from forking tasks that are max-interactive. The parent
1369          * (current) is done further down, under its lock.
1370          */
1371         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1372                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1373
1374         p->prio = effective_prio(p);
1375
1376         if (likely(cpu == this_cpu)) {
1377                 if (!(clone_flags & CLONE_VM)) {
1378                         /*
1379                          * The VM isn't cloned, so we're in a good position to
1380                          * do child-runs-first in anticipation of an exec. This
1381                          * usually avoids a lot of COW overhead.
1382                          */
1383                         if (unlikely(!current->array))
1384                                 __activate_task(p, rq);
1385                         else {
1386                                 p->prio = current->prio;
1387                                 list_add_tail(&p->run_list, &current->run_list);
1388                                 p->array = current->array;
1389                                 p->array->nr_active++;
1390                                 rq->nr_running++;
1391                         }
1392                         set_need_resched();
1393                 } else
1394                         /* Run child last */
1395                         __activate_task(p, rq);
1396                 /*
1397                  * We skip the following code due to cpu == this_cpu
1398                  *
1399                  *   task_rq_unlock(rq, &flags);
1400                  *   this_rq = task_rq_lock(current, &flags);
1401                  */
1402                 this_rq = rq;
1403         } else {
1404                 this_rq = cpu_rq(this_cpu);
1405
1406                 /*
1407                  * Not the local CPU - must adjust timestamp. This should
1408                  * get optimised away in the !CONFIG_SMP case.
1409                  */
1410                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1411                                         + rq->timestamp_last_tick;
1412                 __activate_task(p, rq);
1413                 if (TASK_PREEMPTS_CURR(p, rq))
1414                         resched_task(rq->curr);
1415
1416                 /*
1417                  * Parent and child are on different CPUs, now get the
1418                  * parent runqueue to update the parent's ->sleep_avg:
1419                  */
1420                 task_rq_unlock(rq, &flags);
1421                 this_rq = task_rq_lock(current, &flags);
1422         }
1423         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1424                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1425         task_rq_unlock(this_rq, &flags);
1426 }
1427
1428 /*
1429  * Potentially available exiting-child timeslices are
1430  * retrieved here - this way the parent does not get
1431  * penalized for creating too many threads.
1432  *
1433  * (this cannot be used to 'generate' timeslices
1434  * artificially, because any timeslice recovered here
1435  * was given away by the parent in the first place.)
1436  */
1437 void fastcall sched_exit(task_t * p)
1438 {
1439         unsigned long flags;
1440         runqueue_t *rq;
1441
1442         /*
1443          * If the child was a (relative-) CPU hog then decrease
1444          * the sleep_avg of the parent as well.
1445          */
1446         rq = task_rq_lock(p->parent, &flags);
1447         if (p->first_time_slice) {
1448                 p->parent->time_slice += p->time_slice;
1449                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1450                         p->parent->time_slice = task_timeslice(p);
1451         }
1452         if (p->sleep_avg < p->parent->sleep_avg)
1453                 p->parent->sleep_avg = p->parent->sleep_avg /
1454                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1455                 (EXIT_WEIGHT + 1);
1456         task_rq_unlock(rq, &flags);
1457 }
1458
1459 /**
1460  * prepare_task_switch - prepare to switch tasks
1461  * @rq: the runqueue preparing to switch
1462  * @next: the task we are going to switch to.
1463  *
1464  * This is called with the rq lock held and interrupts off. It must
1465  * be paired with a subsequent finish_task_switch after the context
1466  * switch.
1467  *
1468  * prepare_task_switch sets up locking and calls architecture specific
1469  * hooks.
1470  */
1471 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1472 {
1473         prepare_lock_switch(rq, next);
1474         prepare_arch_switch(next);
1475 }
1476
1477 /**
1478  * finish_task_switch - clean up after a task-switch
1479  * @prev: the thread we just switched away from.
1480  *
1481  * finish_task_switch must be called after the context switch, paired
1482  * with a prepare_task_switch call before the context switch.
1483  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1484  * and do any other architecture-specific cleanup actions.
1485  *
1486  * Note that we may have delayed dropping an mm in context_switch(). If
1487  * so, we finish that here outside of the runqueue lock.  (Doing it
1488  * with the lock held can cause deadlocks; see schedule() for
1489  * details.)
1490  */
1491 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1492         __releases(rq->lock)
1493 {
1494         struct mm_struct *mm = rq->prev_mm;
1495         unsigned long prev_task_flags;
1496
1497         rq->prev_mm = NULL;
1498
1499         /*
1500          * A task struct has one reference for the use as "current".
1501          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1502          * calls schedule one last time. The schedule call will never return,
1503          * and the scheduled task must drop that reference.
1504          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1505          * still held, otherwise prev could be scheduled on another cpu, die
1506          * there before we look at prev->state, and then the reference would
1507          * be dropped twice.
1508          *              Manfred Spraul <manfred@colorfullife.com>
1509          */
1510         prev_task_flags = prev->flags;
1511         finish_arch_switch(prev);
1512         finish_lock_switch(rq, prev);
1513         if (mm)
1514                 mmdrop(mm);
1515         if (unlikely(prev_task_flags & PF_DEAD))
1516                 put_task_struct(prev);
1517 }
1518
1519 /**
1520  * schedule_tail - first thing a freshly forked thread must call.
1521  * @prev: the thread we just switched away from.
1522  */
1523 asmlinkage void schedule_tail(task_t *prev)
1524         __releases(rq->lock)
1525 {
1526         runqueue_t *rq = this_rq();
1527         finish_task_switch(rq, prev);
1528 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1529         /* In this case, finish_task_switch does not reenable preemption */
1530         preempt_enable();
1531 #endif
1532         if (current->set_child_tid)
1533                 put_user(current->pid, current->set_child_tid);
1534 }
1535
1536 /*
1537  * context_switch - switch to the new MM and the new
1538  * thread's register state.
1539  */
1540 static inline
1541 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1542 {
1543         struct mm_struct *mm = next->mm;
1544         struct mm_struct *oldmm = prev->active_mm;
1545
1546         if (unlikely(!mm)) {
1547                 next->active_mm = oldmm;
1548                 atomic_inc(&oldmm->mm_count);
1549                 enter_lazy_tlb(oldmm, next);
1550         } else
1551                 switch_mm(oldmm, mm, next);
1552
1553         if (unlikely(!prev->mm)) {
1554                 prev->active_mm = NULL;
1555                 WARN_ON(rq->prev_mm);
1556                 rq->prev_mm = oldmm;
1557         }
1558
1559         /* Here we just switch the register state and the stack. */
1560         switch_to(prev, next, prev);
1561
1562         return prev;
1563 }
1564
1565 /*
1566  * nr_running, nr_uninterruptible and nr_context_switches:
1567  *
1568  * externally visible scheduler statistics: current number of runnable
1569  * threads, current number of uninterruptible-sleeping threads, total
1570  * number of context switches performed since bootup.
1571  */
1572 unsigned long nr_running(void)
1573 {
1574         unsigned long i, sum = 0;
1575
1576         for_each_online_cpu(i)
1577                 sum += cpu_rq(i)->nr_running;
1578
1579         return sum;
1580 }
1581
1582 unsigned long nr_uninterruptible(void)
1583 {
1584         unsigned long i, sum = 0;
1585
1586         for_each_cpu(i)
1587                 sum += cpu_rq(i)->nr_uninterruptible;
1588
1589         /*
1590          * Since we read the counters lockless, it might be slightly
1591          * inaccurate. Do not allow it to go below zero though:
1592          */
1593         if (unlikely((long)sum < 0))
1594                 sum = 0;
1595
1596         return sum;
1597 }
1598
1599 unsigned long long nr_context_switches(void)
1600 {
1601         unsigned long long i, sum = 0;
1602
1603         for_each_cpu(i)
1604                 sum += cpu_rq(i)->nr_switches;
1605
1606         return sum;
1607 }
1608
1609 unsigned long nr_iowait(void)
1610 {
1611         unsigned long i, sum = 0;
1612
1613         for_each_cpu(i)
1614                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1615
1616         return sum;
1617 }
1618
1619 #ifdef CONFIG_SMP
1620
1621 /*
1622  * double_rq_lock - safely lock two runqueues
1623  *
1624  * Note this does not disable interrupts like task_rq_lock,
1625  * you need to do so manually before calling.
1626  */
1627 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1628         __acquires(rq1->lock)
1629         __acquires(rq2->lock)
1630 {
1631         if (rq1 == rq2) {
1632                 spin_lock(&rq1->lock);
1633                 __acquire(rq2->lock);   /* Fake it out ;) */
1634         } else {
1635                 if (rq1 < rq2) {
1636                         spin_lock(&rq1->lock);
1637                         spin_lock(&rq2->lock);
1638                 } else {
1639                         spin_lock(&rq2->lock);
1640                         spin_lock(&rq1->lock);
1641                 }
1642         }
1643 }
1644
1645 /*
1646  * double_rq_unlock - safely unlock two runqueues
1647  *
1648  * Note this does not restore interrupts like task_rq_unlock,
1649  * you need to do so manually after calling.
1650  */
1651 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1652         __releases(rq1->lock)
1653         __releases(rq2->lock)
1654 {
1655         spin_unlock(&rq1->lock);
1656         if (rq1 != rq2)
1657                 spin_unlock(&rq2->lock);
1658         else
1659                 __release(rq2->lock);
1660 }
1661
1662 /*
1663  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1664  */
1665 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1666         __releases(this_rq->lock)
1667         __acquires(busiest->lock)
1668         __acquires(this_rq->lock)
1669 {
1670         if (unlikely(!spin_trylock(&busiest->lock))) {
1671                 if (busiest < this_rq) {
1672                         spin_unlock(&this_rq->lock);
1673                         spin_lock(&busiest->lock);
1674                         spin_lock(&this_rq->lock);
1675                 } else
1676                         spin_lock(&busiest->lock);
1677         }
1678 }
1679
1680 /*
1681  * If dest_cpu is allowed for this process, migrate the task to it.
1682  * This is accomplished by forcing the cpu_allowed mask to only
1683  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1684  * the cpu_allowed mask is restored.
1685  */
1686 static void sched_migrate_task(task_t *p, int dest_cpu)
1687 {
1688         migration_req_t req;
1689         runqueue_t *rq;
1690         unsigned long flags;
1691
1692         rq = task_rq_lock(p, &flags);
1693         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1694             || unlikely(cpu_is_offline(dest_cpu)))
1695                 goto out;
1696
1697         /* force the process onto the specified CPU */
1698         if (migrate_task(p, dest_cpu, &req)) {
1699                 /* Need to wait for migration thread (might exit: take ref). */
1700                 struct task_struct *mt = rq->migration_thread;
1701                 get_task_struct(mt);
1702                 task_rq_unlock(rq, &flags);
1703                 wake_up_process(mt);
1704                 put_task_struct(mt);
1705                 wait_for_completion(&req.done);
1706                 return;
1707         }
1708 out:
1709         task_rq_unlock(rq, &flags);
1710 }
1711
1712 /*
1713  * sched_exec(): find the highest-level, exec-balance-capable
1714  * domain and try to migrate the task to the least loaded CPU.
1715  *
1716  * execve() is a valuable balancing opportunity, because at this point
1717  * the task has the smallest effective memory and cache footprint.
1718  */
1719 void sched_exec(void)
1720 {
1721         struct sched_domain *tmp, *sd = NULL;
1722         int new_cpu, this_cpu = get_cpu();
1723
1724         for_each_domain(this_cpu, tmp)
1725                 if (tmp->flags & SD_BALANCE_EXEC)
1726                         sd = tmp;
1727
1728         if (sd) {
1729                 cpumask_t span;
1730                 struct sched_group *group;
1731 again:
1732                 schedstat_inc(sd, sbe_cnt);
1733                 span = sd->span;
1734                 group = find_idlest_group(sd, current, this_cpu);
1735                 if (!group) {
1736                         schedstat_inc(sd, sbe_balanced);
1737                         goto nextlevel;
1738                 }
1739                 new_cpu = find_idlest_cpu(group, this_cpu);
1740                 if (new_cpu == -1 || new_cpu == this_cpu) {
1741                         schedstat_inc(sd, sbe_balanced);
1742                         goto nextlevel;
1743                 }
1744
1745                 schedstat_inc(sd, sbe_pushed);
1746                 put_cpu();
1747                 sched_migrate_task(current, new_cpu);
1748
1749                 /* Now try balancing at a lower domain level */
1750                 this_cpu = get_cpu();
1751 nextlevel:
1752                 sd = NULL;
1753                 for_each_domain(this_cpu, tmp) {
1754                         if (cpus_subset(span, tmp->span))
1755                                 break;
1756                         if (tmp->flags & SD_BALANCE_EXEC)
1757                                 sd = tmp;
1758                 }
1759
1760                 if (sd)
1761                         goto again;
1762         }
1763
1764         put_cpu();
1765 }
1766
1767 /*
1768  * pull_task - move a task from a remote runqueue to the local runqueue.
1769  * Both runqueues must be locked.
1770  */
1771 static inline
1772 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1773                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1774 {
1775         dequeue_task(p, src_array);
1776         src_rq->nr_running--;
1777         set_task_cpu(p, this_cpu);
1778         this_rq->nr_running++;
1779         enqueue_task(p, this_array);
1780         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1781                                 + this_rq->timestamp_last_tick;
1782         /*
1783          * Note that idle threads have a prio of MAX_PRIO, for this test
1784          * to be always true for them.
1785          */
1786         if (TASK_PREEMPTS_CURR(p, this_rq))
1787                 resched_task(this_rq->curr);
1788 }
1789
1790 /*
1791  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1792  */
1793 static inline
1794 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1795              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1796 {
1797         /*
1798          * We do not migrate tasks that are:
1799          * 1) running (obviously), or
1800          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1801          * 3) are cache-hot on their current CPU.
1802          */
1803         if (!cpu_isset(this_cpu, p->cpus_allowed))
1804                 return 0;
1805         *all_pinned = 0;
1806
1807         if (task_running(rq, p))
1808                 return 0;
1809
1810         /*
1811          * Aggressive migration if:
1812          * 1) task is cache cold, or
1813          * 2) too many balance attempts have failed.
1814          */
1815
1816         if (sd->nr_balance_failed > sd->cache_nice_tries)
1817                 return 1;
1818
1819         if (task_hot(p, rq->timestamp_last_tick, sd))
1820                 return 0;
1821         return 1;
1822 }
1823
1824 /*
1825  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1826  * as part of a balancing operation within "domain". Returns the number of
1827  * tasks moved.
1828  *
1829  * Called with both runqueues locked.
1830  */
1831 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1832                       unsigned long max_nr_move, struct sched_domain *sd,
1833                       enum idle_type idle, int *all_pinned)
1834 {
1835         prio_array_t *array, *dst_array;
1836         struct list_head *head, *curr;
1837         int idx, pulled = 0, pinned = 0;
1838         task_t *tmp;
1839
1840         if (max_nr_move == 0)
1841                 goto out;
1842
1843         pinned = 1;
1844
1845         /*
1846          * We first consider expired tasks. Those will likely not be
1847          * executed in the near future, and they are most likely to
1848          * be cache-cold, thus switching CPUs has the least effect
1849          * on them.
1850          */
1851         if (busiest->expired->nr_active) {
1852                 array = busiest->expired;
1853                 dst_array = this_rq->expired;
1854         } else {
1855                 array = busiest->active;
1856                 dst_array = this_rq->active;
1857         }
1858
1859 new_array:
1860         /* Start searching at priority 0: */
1861         idx = 0;
1862 skip_bitmap:
1863         if (!idx)
1864                 idx = sched_find_first_bit(array->bitmap);
1865         else
1866                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1867         if (idx >= MAX_PRIO) {
1868                 if (array == busiest->expired && busiest->active->nr_active) {
1869                         array = busiest->active;
1870                         dst_array = this_rq->active;
1871                         goto new_array;
1872                 }
1873                 goto out;
1874         }
1875
1876         head = array->queue + idx;
1877         curr = head->prev;
1878 skip_queue:
1879         tmp = list_entry(curr, task_t, run_list);
1880
1881         curr = curr->prev;
1882
1883         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1884                 if (curr != head)
1885                         goto skip_queue;
1886                 idx++;
1887                 goto skip_bitmap;
1888         }
1889
1890 #ifdef CONFIG_SCHEDSTATS
1891         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1892                 schedstat_inc(sd, lb_hot_gained[idle]);
1893 #endif
1894
1895         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1896         pulled++;
1897
1898         /* We only want to steal up to the prescribed number of tasks. */
1899         if (pulled < max_nr_move) {
1900                 if (curr != head)
1901                         goto skip_queue;
1902                 idx++;
1903                 goto skip_bitmap;
1904         }
1905 out:
1906         /*
1907          * Right now, this is the only place pull_task() is called,
1908          * so we can safely collect pull_task() stats here rather than
1909          * inside pull_task().
1910          */
1911         schedstat_add(sd, lb_gained[idle], pulled);
1912
1913         if (all_pinned)
1914                 *all_pinned = pinned;
1915         return pulled;
1916 }
1917
1918 /*
1919  * find_busiest_group finds and returns the busiest CPU group within the
1920  * domain. It calculates and returns the number of tasks which should be
1921  * moved to restore balance via the imbalance parameter.
1922  */
1923 static struct sched_group *
1924 find_busiest_group(struct sched_domain *sd, int this_cpu,
1925                    unsigned long *imbalance, enum idle_type idle)
1926 {
1927         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1928         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1929         int load_idx;
1930
1931         max_load = this_load = total_load = total_pwr = 0;
1932         if (idle == NOT_IDLE)
1933                 load_idx = sd->busy_idx;
1934         else if (idle == NEWLY_IDLE)
1935                 load_idx = sd->newidle_idx;
1936         else
1937                 load_idx = sd->idle_idx;
1938
1939         do {
1940                 unsigned long load;
1941                 int local_group;
1942                 int i;
1943
1944                 local_group = cpu_isset(this_cpu, group->cpumask);
1945
1946                 /* Tally up the load of all CPUs in the group */
1947                 avg_load = 0;
1948
1949                 for_each_cpu_mask(i, group->cpumask) {
1950                         /* Bias balancing toward cpus of our domain */
1951                         if (local_group)
1952                                 load = target_load(i, load_idx);
1953                         else
1954                                 load = source_load(i, load_idx);
1955
1956                         avg_load += load;
1957                 }
1958
1959                 total_load += avg_load;
1960                 total_pwr += group->cpu_power;
1961
1962                 /* Adjust by relative CPU power of the group */
1963                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1964
1965                 if (local_group) {
1966                         this_load = avg_load;
1967                         this = group;
1968                 } else if (avg_load > max_load) {
1969                         max_load = avg_load;
1970                         busiest = group;
1971                 }
1972                 group = group->next;
1973         } while (group != sd->groups);
1974
1975         if (!busiest || this_load >= max_load)
1976                 goto out_balanced;
1977
1978         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1979
1980         if (this_load >= avg_load ||
1981                         100*max_load <= sd->imbalance_pct*this_load)
1982                 goto out_balanced;
1983
1984         /*
1985          * We're trying to get all the cpus to the average_load, so we don't
1986          * want to push ourselves above the average load, nor do we wish to
1987          * reduce the max loaded cpu below the average load, as either of these
1988          * actions would just result in more rebalancing later, and ping-pong
1989          * tasks around. Thus we look for the minimum possible imbalance.
1990          * Negative imbalances (*we* are more loaded than anyone else) will
1991          * be counted as no imbalance for these purposes -- we can't fix that
1992          * by pulling tasks to us.  Be careful of negative numbers as they'll
1993          * appear as very large values with unsigned longs.
1994          */
1995         /* How much load to actually move to equalise the imbalance */
1996         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1997                                 (avg_load - this_load) * this->cpu_power)
1998                         / SCHED_LOAD_SCALE;
1999
2000         if (*imbalance < SCHED_LOAD_SCALE) {
2001                 unsigned long pwr_now = 0, pwr_move = 0;
2002                 unsigned long tmp;
2003
2004                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2005                         *imbalance = 1;
2006                         return busiest;
2007                 }
2008
2009                 /*
2010                  * OK, we don't have enough imbalance to justify moving tasks,
2011                  * however we may be able to increase total CPU power used by
2012                  * moving them.
2013                  */
2014
2015                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2016                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2017                 pwr_now /= SCHED_LOAD_SCALE;
2018
2019                 /* Amount of load we'd subtract */
2020                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2021                 if (max_load > tmp)
2022                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2023                                                         max_load - tmp);
2024
2025                 /* Amount of load we'd add */
2026                 if (max_load*busiest->cpu_power <
2027                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2028                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2029                 else
2030                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2031                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2032                 pwr_move /= SCHED_LOAD_SCALE;
2033
2034                 /* Move if we gain throughput */
2035                 if (pwr_move <= pwr_now)
2036                         goto out_balanced;
2037
2038                 *imbalance = 1;
2039                 return busiest;
2040         }
2041
2042         /* Get rid of the scaling factor, rounding down as we divide */
2043         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2044         return busiest;
2045
2046 out_balanced:
2047
2048         *imbalance = 0;
2049         return NULL;
2050 }
2051
2052 /*
2053  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2054  */
2055 static runqueue_t *find_busiest_queue(struct sched_group *group)
2056 {
2057         unsigned long load, max_load = 0;
2058         runqueue_t *busiest = NULL;
2059         int i;
2060
2061         for_each_cpu_mask(i, group->cpumask) {
2062                 load = source_load(i, 0);
2063
2064                 if (load > max_load) {
2065                         max_load = load;
2066                         busiest = cpu_rq(i);
2067                 }
2068         }
2069
2070         return busiest;
2071 }
2072
2073 /*
2074  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2075  * tasks if there is an imbalance.
2076  *
2077  * Called with this_rq unlocked.
2078  */
2079 static int load_balance(int this_cpu, runqueue_t *this_rq,
2080                         struct sched_domain *sd, enum idle_type idle)
2081 {
2082         struct sched_group *group;
2083         runqueue_t *busiest;
2084         unsigned long imbalance;
2085         int nr_moved, all_pinned;
2086         int active_balance = 0;
2087
2088         spin_lock(&this_rq->lock);
2089         schedstat_inc(sd, lb_cnt[idle]);
2090
2091         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2092         if (!group) {
2093                 schedstat_inc(sd, lb_nobusyg[idle]);
2094                 goto out_balanced;
2095         }
2096
2097         busiest = find_busiest_queue(group);
2098         if (!busiest) {
2099                 schedstat_inc(sd, lb_nobusyq[idle]);
2100                 goto out_balanced;
2101         }
2102
2103         BUG_ON(busiest == this_rq);
2104
2105         schedstat_add(sd, lb_imbalance[idle], imbalance);
2106
2107         nr_moved = 0;
2108         if (busiest->nr_running > 1) {
2109                 /*
2110                  * Attempt to move tasks. If find_busiest_group has found
2111                  * an imbalance but busiest->nr_running <= 1, the group is
2112                  * still unbalanced. nr_moved simply stays zero, so it is
2113                  * correctly treated as an imbalance.
2114                  */
2115                 double_lock_balance(this_rq, busiest);
2116                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2117                                                 imbalance, sd, idle,
2118                                                 &all_pinned);
2119                 spin_unlock(&busiest->lock);
2120
2121                 /* All tasks on this runqueue were pinned by CPU affinity */
2122                 if (unlikely(all_pinned))
2123                         goto out_balanced;
2124         }
2125
2126         spin_unlock(&this_rq->lock);
2127
2128         if (!nr_moved) {
2129                 schedstat_inc(sd, lb_failed[idle]);
2130                 sd->nr_balance_failed++;
2131
2132                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2133
2134                         spin_lock(&busiest->lock);
2135                         if (!busiest->active_balance) {
2136                                 busiest->active_balance = 1;
2137                                 busiest->push_cpu = this_cpu;
2138                                 active_balance = 1;
2139                         }
2140                         spin_unlock(&busiest->lock);
2141                         if (active_balance)
2142                                 wake_up_process(busiest->migration_thread);
2143
2144                         /*
2145                          * We've kicked active balancing, reset the failure
2146                          * counter.
2147                          */
2148                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2149                 }
2150         } else
2151                 sd->nr_balance_failed = 0;
2152
2153         if (likely(!active_balance)) {
2154                 /* We were unbalanced, so reset the balancing interval */
2155                 sd->balance_interval = sd->min_interval;
2156         } else {
2157                 /*
2158                  * If we've begun active balancing, start to back off. This
2159                  * case may not be covered by the all_pinned logic if there
2160                  * is only 1 task on the busy runqueue (because we don't call
2161                  * move_tasks).
2162                  */
2163                 if (sd->balance_interval < sd->max_interval)
2164                         sd->balance_interval *= 2;
2165         }
2166
2167         return nr_moved;
2168
2169 out_balanced:
2170         spin_unlock(&this_rq->lock);
2171
2172         schedstat_inc(sd, lb_balanced[idle]);
2173
2174         sd->nr_balance_failed = 0;
2175         /* tune up the balancing interval */
2176         if (sd->balance_interval < sd->max_interval)
2177                 sd->balance_interval *= 2;
2178
2179         return 0;
2180 }
2181
2182 /*
2183  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2184  * tasks if there is an imbalance.
2185  *
2186  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2187  * this_rq is locked.
2188  */
2189 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2190                                 struct sched_domain *sd)
2191 {
2192         struct sched_group *group;
2193         runqueue_t *busiest = NULL;
2194         unsigned long imbalance;
2195         int nr_moved = 0;
2196
2197         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2198         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2199         if (!group) {
2200                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2201                 goto out_balanced;
2202         }
2203
2204         busiest = find_busiest_queue(group);
2205         if (!busiest) {
2206                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2207                 goto out_balanced;
2208         }
2209
2210         BUG_ON(busiest == this_rq);
2211
2212         /* Attempt to move tasks */
2213         double_lock_balance(this_rq, busiest);
2214
2215         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2216         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2217                                         imbalance, sd, NEWLY_IDLE, NULL);
2218         if (!nr_moved)
2219                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2220         else
2221                 sd->nr_balance_failed = 0;
2222
2223         spin_unlock(&busiest->lock);
2224         return nr_moved;
2225
2226 out_balanced:
2227         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2228         sd->nr_balance_failed = 0;
2229         return 0;
2230 }
2231
2232 /*
2233  * idle_balance is called by schedule() if this_cpu is about to become
2234  * idle. Attempts to pull tasks from other CPUs.
2235  */
2236 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2237 {
2238         struct sched_domain *sd;
2239
2240         for_each_domain(this_cpu, sd) {
2241                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2242                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2243                                 /* We've pulled tasks over so stop searching */
2244                                 break;
2245                         }
2246                 }
2247         }
2248 }
2249
2250 /*
2251  * active_load_balance is run by migration threads. It pushes running tasks
2252  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2253  * running on each physical CPU where possible, and avoids physical /
2254  * logical imbalances.
2255  *
2256  * Called with busiest_rq locked.
2257  */
2258 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2259 {
2260         struct sched_domain *sd;
2261         runqueue_t *target_rq;
2262         int target_cpu = busiest_rq->push_cpu;
2263
2264         if (busiest_rq->nr_running <= 1)
2265                 /* no task to move */
2266                 return;
2267
2268         target_rq = cpu_rq(target_cpu);
2269
2270         /*
2271          * This condition is "impossible", if it occurs
2272          * we need to fix it.  Originally reported by
2273          * Bjorn Helgaas on a 128-cpu setup.
2274          */
2275         BUG_ON(busiest_rq == target_rq);
2276
2277         /* move a task from busiest_rq to target_rq */
2278         double_lock_balance(busiest_rq, target_rq);
2279
2280         /* Search for an sd spanning us and the target CPU. */
2281         for_each_domain(target_cpu, sd)
2282                 if ((sd->flags & SD_LOAD_BALANCE) &&
2283                         cpu_isset(busiest_cpu, sd->span))
2284                                 break;
2285
2286         if (unlikely(sd == NULL))
2287                 goto out;
2288
2289         schedstat_inc(sd, alb_cnt);
2290
2291         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2292                 schedstat_inc(sd, alb_pushed);
2293         else
2294                 schedstat_inc(sd, alb_failed);
2295 out:
2296         spin_unlock(&target_rq->lock);
2297 }
2298
2299 /*
2300  * rebalance_tick will get called every timer tick, on every CPU.
2301  *
2302  * It checks each scheduling domain to see if it is due to be balanced,
2303  * and initiates a balancing operation if so.
2304  *
2305  * Balancing parameters are set up in arch_init_sched_domains.
2306  */
2307
2308 /* Don't have all balancing operations going off at once */
2309 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2310
2311 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2312                            enum idle_type idle)
2313 {
2314         unsigned long old_load, this_load;
2315         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2316         struct sched_domain *sd;
2317         int i;
2318
2319         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2320         /* Update our load */
2321         for (i = 0; i < 3; i++) {
2322                 unsigned long new_load = this_load;
2323                 int scale = 1 << i;
2324                 old_load = this_rq->cpu_load[i];
2325                 /*
2326                  * Round up the averaging division if load is increasing. This
2327                  * prevents us from getting stuck on 9 if the load is 10, for
2328                  * example.
2329                  */
2330                 if (new_load > old_load)
2331                         new_load += scale-1;
2332                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2333         }
2334
2335         for_each_domain(this_cpu, sd) {
2336                 unsigned long interval;
2337
2338                 if (!(sd->flags & SD_LOAD_BALANCE))
2339                         continue;
2340
2341                 interval = sd->balance_interval;
2342                 if (idle != SCHED_IDLE)
2343                         interval *= sd->busy_factor;
2344
2345                 /* scale ms to jiffies */
2346                 interval = msecs_to_jiffies(interval);
2347                 if (unlikely(!interval))
2348                         interval = 1;
2349
2350                 if (j - sd->last_balance >= interval) {
2351                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2352                                 /* We've pulled tasks over so no longer idle */
2353                                 idle = NOT_IDLE;
2354                         }
2355                         sd->last_balance += interval;
2356                 }
2357         }
2358 }
2359 #else
2360 /*
2361  * on UP we do not need to balance between CPUs:
2362  */
2363 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2364 {
2365 }
2366 static inline void idle_balance(int cpu, runqueue_t *rq)
2367 {
2368 }
2369 #endif
2370
2371 static inline int wake_priority_sleeper(runqueue_t *rq)
2372 {
2373         int ret = 0;
2374 #ifdef CONFIG_SCHED_SMT
2375         spin_lock(&rq->lock);
2376         /*
2377          * If an SMT sibling task has been put to sleep for priority
2378          * reasons reschedule the idle task to see if it can now run.
2379          */
2380         if (rq->nr_running) {
2381                 resched_task(rq->idle);
2382                 ret = 1;
2383         }
2384         spin_unlock(&rq->lock);
2385 #endif
2386         return ret;
2387 }
2388
2389 DEFINE_PER_CPU(struct kernel_stat, kstat);
2390
2391 EXPORT_PER_CPU_SYMBOL(kstat);
2392
2393 /*
2394  * This is called on clock ticks and on context switches.
2395  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2396  */
2397 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2398                                     unsigned long long now)
2399 {
2400         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2401         p->sched_time += now - last;
2402 }
2403
2404 /*
2405  * Return current->sched_time plus any more ns on the sched_clock
2406  * that have not yet been banked.
2407  */
2408 unsigned long long current_sched_time(const task_t *tsk)
2409 {
2410         unsigned long long ns;
2411         unsigned long flags;
2412         local_irq_save(flags);
2413         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2414         ns = tsk->sched_time + (sched_clock() - ns);
2415         local_irq_restore(flags);
2416         return ns;
2417 }
2418
2419 /*
2420  * We place interactive tasks back into the active array, if possible.
2421  *
2422  * To guarantee that this does not starve expired tasks we ignore the
2423  * interactivity of a task if the first expired task had to wait more
2424  * than a 'reasonable' amount of time. This deadline timeout is
2425  * load-dependent, as the frequency of array switched decreases with
2426  * increasing number of running tasks. We also ignore the interactivity
2427  * if a better static_prio task has expired:
2428  */
2429 #define EXPIRED_STARVING(rq) \
2430         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2431                 (jiffies - (rq)->expired_timestamp >= \
2432                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2433                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2434
2435 /*
2436  * Account user cpu time to a process.
2437  * @p: the process that the cpu time gets accounted to
2438  * @hardirq_offset: the offset to subtract from hardirq_count()
2439  * @cputime: the cpu time spent in user space since the last update
2440  */
2441 void account_user_time(struct task_struct *p, cputime_t cputime)
2442 {
2443         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2444         cputime64_t tmp;
2445
2446         p->utime = cputime_add(p->utime, cputime);
2447
2448         /* Add user time to cpustat. */
2449         tmp = cputime_to_cputime64(cputime);
2450         if (TASK_NICE(p) > 0)
2451                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2452         else
2453                 cpustat->user = cputime64_add(cpustat->user, tmp);
2454 }
2455
2456 /*
2457  * Account system cpu time to a process.
2458  * @p: the process that the cpu time gets accounted to
2459  * @hardirq_offset: the offset to subtract from hardirq_count()
2460  * @cputime: the cpu time spent in kernel space since the last update
2461  */
2462 void account_system_time(struct task_struct *p, int hardirq_offset,
2463                          cputime_t cputime)
2464 {
2465         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2466         runqueue_t *rq = this_rq();
2467         cputime64_t tmp;
2468
2469         p->stime = cputime_add(p->stime, cputime);
2470
2471         /* Add system time to cpustat. */
2472         tmp = cputime_to_cputime64(cputime);
2473         if (hardirq_count() - hardirq_offset)
2474                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2475         else if (softirq_count())
2476                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2477         else if (p != rq->idle)
2478                 cpustat->system = cputime64_add(cpustat->system, tmp);
2479         else if (atomic_read(&rq->nr_iowait) > 0)
2480                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2481         else
2482                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2483         /* Account for system time used */
2484         acct_update_integrals(p);
2485         /* Update rss highwater mark */
2486         update_mem_hiwater(p);
2487 }
2488
2489 /*
2490  * Account for involuntary wait time.
2491  * @p: the process from which the cpu time has been stolen
2492  * @steal: the cpu time spent in involuntary wait
2493  */
2494 void account_steal_time(struct task_struct *p, cputime_t steal)
2495 {
2496         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2497         cputime64_t tmp = cputime_to_cputime64(steal);
2498         runqueue_t *rq = this_rq();
2499
2500         if (p == rq->idle) {
2501                 p->stime = cputime_add(p->stime, steal);
2502                 if (atomic_read(&rq->nr_iowait) > 0)
2503                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2504                 else
2505                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2506         } else
2507                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2508 }
2509
2510 /*
2511  * This function gets called by the timer code, with HZ frequency.
2512  * We call it with interrupts disabled.
2513  *
2514  * It also gets called by the fork code, when changing the parent's
2515  * timeslices.
2516  */
2517 void scheduler_tick(void)
2518 {
2519         int cpu = smp_processor_id();
2520         runqueue_t *rq = this_rq();
2521         task_t *p = current;
2522         unsigned long long now = sched_clock();
2523
2524         update_cpu_clock(p, rq, now);
2525
2526         rq->timestamp_last_tick = now;
2527
2528         if (p == rq->idle) {
2529                 if (wake_priority_sleeper(rq))
2530                         goto out;
2531                 rebalance_tick(cpu, rq, SCHED_IDLE);
2532                 return;
2533         }
2534
2535         /* Task might have expired already, but not scheduled off yet */
2536         if (p->array != rq->active) {
2537                 set_tsk_need_resched(p);
2538                 goto out;
2539         }
2540         spin_lock(&rq->lock);
2541         /*
2542          * The task was running during this tick - update the
2543          * time slice counter. Note: we do not update a thread's
2544          * priority until it either goes to sleep or uses up its
2545          * timeslice. This makes it possible for interactive tasks
2546          * to use up their timeslices at their highest priority levels.
2547          */
2548         if (rt_task(p)) {
2549                 /*
2550                  * RR tasks need a special form of timeslice management.
2551                  * FIFO tasks have no timeslices.
2552                  */
2553                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2554                         p->time_slice = task_timeslice(p);
2555                         p->first_time_slice = 0;
2556                         set_tsk_need_resched(p);
2557
2558                         /* put it at the end of the queue: */
2559                         requeue_task(p, rq->active);
2560                 }
2561                 goto out_unlock;
2562         }
2563         if (!--p->time_slice) {
2564                 dequeue_task(p, rq->active);
2565                 set_tsk_need_resched(p);
2566                 p->prio = effective_prio(p);
2567                 p->time_slice = task_timeslice(p);
2568                 p->first_time_slice = 0;
2569
2570                 if (!rq->expired_timestamp)
2571                         rq->expired_timestamp = jiffies;
2572                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2573                         enqueue_task(p, rq->expired);
2574                         if (p->static_prio < rq->best_expired_prio)
2575                                 rq->best_expired_prio = p->static_prio;
2576                 } else
2577                         enqueue_task(p, rq->active);
2578         } else {
2579                 /*
2580                  * Prevent a too long timeslice allowing a task to monopolize
2581                  * the CPU. We do this by splitting up the timeslice into
2582                  * smaller pieces.
2583                  *
2584                  * Note: this does not mean the task's timeslices expire or
2585                  * get lost in any way, they just might be preempted by
2586                  * another task of equal priority. (one with higher
2587                  * priority would have preempted this task already.) We
2588                  * requeue this task to the end of the list on this priority
2589                  * level, which is in essence a round-robin of tasks with
2590                  * equal priority.
2591                  *
2592                  * This only applies to tasks in the interactive
2593                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2594                  */
2595                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2596                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2597                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2598                         (p->array == rq->active)) {
2599
2600                         requeue_task(p, rq->active);
2601                         set_tsk_need_resched(p);
2602                 }
2603         }
2604 out_unlock:
2605         spin_unlock(&rq->lock);
2606 out:
2607         rebalance_tick(cpu, rq, NOT_IDLE);
2608 }
2609
2610 #ifdef CONFIG_SCHED_SMT
2611 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2612 {
2613         struct sched_domain *tmp, *sd = NULL;
2614         cpumask_t sibling_map;
2615         int i;
2616
2617         for_each_domain(this_cpu, tmp)
2618                 if (tmp->flags & SD_SHARE_CPUPOWER)
2619                         sd = tmp;
2620
2621         if (!sd)
2622                 return;
2623
2624         /*
2625          * Unlock the current runqueue because we have to lock in
2626          * CPU order to avoid deadlocks. Caller knows that we might
2627          * unlock. We keep IRQs disabled.
2628          */
2629         spin_unlock(&this_rq->lock);
2630
2631         sibling_map = sd->span;
2632
2633         for_each_cpu_mask(i, sibling_map)
2634                 spin_lock(&cpu_rq(i)->lock);
2635         /*
2636          * We clear this CPU from the mask. This both simplifies the
2637          * inner loop and keps this_rq locked when we exit:
2638          */
2639         cpu_clear(this_cpu, sibling_map);
2640
2641         for_each_cpu_mask(i, sibling_map) {
2642                 runqueue_t *smt_rq = cpu_rq(i);
2643
2644                 /*
2645                  * If an SMT sibling task is sleeping due to priority
2646                  * reasons wake it up now.
2647                  */
2648                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2649                         resched_task(smt_rq->idle);
2650         }
2651
2652         for_each_cpu_mask(i, sibling_map)
2653                 spin_unlock(&cpu_rq(i)->lock);
2654         /*
2655          * We exit with this_cpu's rq still held and IRQs
2656          * still disabled:
2657          */
2658 }
2659
2660 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2661 {
2662         struct sched_domain *tmp, *sd = NULL;
2663         cpumask_t sibling_map;
2664         prio_array_t *array;
2665         int ret = 0, i;
2666         task_t *p;
2667
2668         for_each_domain(this_cpu, tmp)
2669                 if (tmp->flags & SD_SHARE_CPUPOWER)
2670                         sd = tmp;
2671
2672         if (!sd)
2673                 return 0;
2674
2675         /*
2676          * The same locking rules and details apply as for
2677          * wake_sleeping_dependent():
2678          */
2679         spin_unlock(&this_rq->lock);
2680         sibling_map = sd->span;
2681         for_each_cpu_mask(i, sibling_map)
2682                 spin_lock(&cpu_rq(i)->lock);
2683         cpu_clear(this_cpu, sibling_map);
2684
2685         /*
2686          * Establish next task to be run - it might have gone away because
2687          * we released the runqueue lock above:
2688          */
2689         if (!this_rq->nr_running)
2690                 goto out_unlock;
2691         array = this_rq->active;
2692         if (!array->nr_active)
2693                 array = this_rq->expired;
2694         BUG_ON(!array->nr_active);
2695
2696         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2697                 task_t, run_list);
2698
2699         for_each_cpu_mask(i, sibling_map) {
2700                 runqueue_t *smt_rq = cpu_rq(i);
2701                 task_t *smt_curr = smt_rq->curr;
2702
2703                 /*
2704                  * If a user task with lower static priority than the
2705                  * running task on the SMT sibling is trying to schedule,
2706                  * delay it till there is proportionately less timeslice
2707                  * left of the sibling task to prevent a lower priority
2708                  * task from using an unfair proportion of the
2709                  * physical cpu's resources. -ck
2710                  */
2711                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2712                         task_timeslice(p) || rt_task(smt_curr)) &&
2713                         p->mm && smt_curr->mm && !rt_task(p))
2714                                 ret = 1;
2715
2716                 /*
2717                  * Reschedule a lower priority task on the SMT sibling,
2718                  * or wake it up if it has been put to sleep for priority
2719                  * reasons.
2720                  */
2721                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2722                         task_timeslice(smt_curr) || rt_task(p)) &&
2723                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2724                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2725                                 resched_task(smt_curr);
2726         }
2727 out_unlock:
2728         for_each_cpu_mask(i, sibling_map)
2729                 spin_unlock(&cpu_rq(i)->lock);
2730         return ret;
2731 }
2732 #else
2733 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2734 {
2735 }
2736
2737 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2738 {
2739         return 0;
2740 }
2741 #endif
2742
2743 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2744
2745 void fastcall add_preempt_count(int val)
2746 {
2747         /*
2748          * Underflow?
2749          */
2750         BUG_ON((preempt_count() < 0));
2751         preempt_count() += val;
2752         /*
2753          * Spinlock count overflowing soon?
2754          */
2755         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2756 }
2757 EXPORT_SYMBOL(add_preempt_count);
2758
2759 void fastcall sub_preempt_count(int val)
2760 {
2761         /*
2762          * Underflow?
2763          */
2764         BUG_ON(val > preempt_count());
2765         /*
2766          * Is the spinlock portion underflowing?
2767          */
2768         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2769         preempt_count() -= val;
2770 }
2771 EXPORT_SYMBOL(sub_preempt_count);
2772
2773 #endif
2774
2775 /*
2776  * schedule() is the main scheduler function.
2777  */
2778 asmlinkage void __sched schedule(void)
2779 {
2780         long *switch_count;
2781         task_t *prev, *next;
2782         runqueue_t *rq;
2783         prio_array_t *array;
2784         struct list_head *queue;
2785         unsigned long long now;
2786         unsigned long run_time;
2787         int cpu, idx;
2788
2789         /*
2790          * Test if we are atomic.  Since do_exit() needs to call into
2791          * schedule() atomically, we ignore that path for now.
2792          * Otherwise, whine if we are scheduling when we should not be.
2793          */
2794         if (likely(!current->exit_state)) {
2795                 if (unlikely(in_atomic())) {
2796                         printk(KERN_ERR "scheduling while atomic: "
2797                                 "%s/0x%08x/%d\n",
2798                                 current->comm, preempt_count(), current->pid);
2799                         dump_stack();
2800                 }
2801         }
2802         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2803
2804 need_resched:
2805         preempt_disable();
2806         prev = current;
2807         release_kernel_lock(prev);
2808 need_resched_nonpreemptible:
2809         rq = this_rq();
2810
2811         /*
2812          * The idle thread is not allowed to schedule!
2813          * Remove this check after it has been exercised a bit.
2814          */
2815         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2816                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2817                 dump_stack();
2818         }
2819
2820         schedstat_inc(rq, sched_cnt);
2821         now = sched_clock();
2822         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2823                 run_time = now - prev->timestamp;
2824                 if (unlikely((long long)(now - prev->timestamp) < 0))
2825                         run_time = 0;
2826         } else
2827                 run_time = NS_MAX_SLEEP_AVG;
2828
2829         /*
2830          * Tasks charged proportionately less run_time at high sleep_avg to
2831          * delay them losing their interactive status
2832          */
2833         run_time /= (CURRENT_BONUS(prev) ? : 1);
2834
2835         spin_lock_irq(&rq->lock);
2836
2837         if (unlikely(prev->flags & PF_DEAD))
2838                 prev->state = EXIT_DEAD;
2839
2840         switch_count = &prev->nivcsw;
2841         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2842                 switch_count = &prev->nvcsw;
2843                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2844                                 unlikely(signal_pending(prev))))
2845                         prev->state = TASK_RUNNING;
2846                 else {
2847                         if (prev->state == TASK_UNINTERRUPTIBLE)
2848                                 rq->nr_uninterruptible++;
2849                         deactivate_task(prev, rq);
2850                 }
2851         }
2852
2853         cpu = smp_processor_id();
2854         if (unlikely(!rq->nr_running)) {
2855 go_idle:
2856                 idle_balance(cpu, rq);
2857                 if (!rq->nr_running) {
2858                         next = rq->idle;
2859                         rq->expired_timestamp = 0;
2860                         wake_sleeping_dependent(cpu, rq);
2861                         /*
2862                          * wake_sleeping_dependent() might have released
2863                          * the runqueue, so break out if we got new
2864                          * tasks meanwhile:
2865                          */
2866                         if (!rq->nr_running)
2867                                 goto switch_tasks;
2868                 }
2869         } else {
2870                 if (dependent_sleeper(cpu, rq)) {
2871                         next = rq->idle;
2872                         goto switch_tasks;
2873                 }
2874                 /*
2875                  * dependent_sleeper() releases and reacquires the runqueue
2876                  * lock, hence go into the idle loop if the rq went
2877                  * empty meanwhile:
2878                  */
2879                 if (unlikely(!rq->nr_running))
2880                         goto go_idle;
2881         }
2882
2883         array = rq->active;
2884         if (unlikely(!array->nr_active)) {
2885                 /*
2886                  * Switch the active and expired arrays.
2887                  */
2888                 schedstat_inc(rq, sched_switch);
2889                 rq->active = rq->expired;
2890                 rq->expired = array;
2891                 array = rq->active;
2892                 rq->expired_timestamp = 0;
2893                 rq->best_expired_prio = MAX_PRIO;
2894         }
2895
2896         idx = sched_find_first_bit(array->bitmap);
2897         queue = array->queue + idx;
2898         next = list_entry(queue->next, task_t, run_list);
2899
2900         if (!rt_task(next) && next->activated > 0) {
2901                 unsigned long long delta = now - next->timestamp;
2902                 if (unlikely((long long)(now - next->timestamp) < 0))
2903                         delta = 0;
2904
2905                 if (next->activated == 1)
2906                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2907
2908                 array = next->array;
2909                 dequeue_task(next, array);
2910                 recalc_task_prio(next, next->timestamp + delta);
2911                 enqueue_task(next, array);
2912         }
2913         next->activated = 0;
2914 switch_tasks:
2915         if (next == rq->idle)
2916                 schedstat_inc(rq, sched_goidle);
2917         prefetch(next);
2918         clear_tsk_need_resched(prev);
2919         rcu_qsctr_inc(task_cpu(prev));
2920
2921         update_cpu_clock(prev, rq, now);
2922
2923         prev->sleep_avg -= run_time;
2924         if ((long)prev->sleep_avg <= 0)
2925                 prev->sleep_avg = 0;
2926         prev->timestamp = prev->last_ran = now;
2927
2928         sched_info_switch(prev, next);
2929         if (likely(prev != next)) {
2930                 next->timestamp = now;
2931                 rq->nr_switches++;
2932                 rq->curr = next;
2933                 ++*switch_count;
2934
2935                 prepare_task_switch(rq, next);
2936                 prev = context_switch(rq, prev, next);
2937                 barrier();
2938                 /*
2939                  * this_rq must be evaluated again because prev may have moved
2940                  * CPUs since it called schedule(), thus the 'rq' on its stack
2941                  * frame will be invalid.
2942                  */
2943                 finish_task_switch(this_rq(), prev);
2944         } else
2945                 spin_unlock_irq(&rq->lock);
2946
2947         prev = current;
2948         if (unlikely(reacquire_kernel_lock(prev) < 0))
2949                 goto need_resched_nonpreemptible;
2950         preempt_enable_no_resched();
2951         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2952                 goto need_resched;
2953 }
2954
2955 EXPORT_SYMBOL(schedule);
2956
2957 #ifdef CONFIG_PREEMPT
2958 /*
2959  * this is is the entry point to schedule() from in-kernel preemption
2960  * off of preempt_enable.  Kernel preemptions off return from interrupt
2961  * occur there and call schedule directly.
2962  */
2963 asmlinkage void __sched preempt_schedule(void)
2964 {
2965         struct thread_info *ti = current_thread_info();
2966 #ifdef CONFIG_PREEMPT_BKL
2967         struct task_struct *task = current;
2968         int saved_lock_depth;
2969 #endif
2970         /*
2971          * If there is a non-zero preempt_count or interrupts are disabled,
2972          * we do not want to preempt the current task.  Just return..
2973          */
2974         if (unlikely(ti->preempt_count || irqs_disabled()))
2975                 return;
2976
2977 need_resched:
2978         add_preempt_count(PREEMPT_ACTIVE);
2979         /*
2980          * We keep the big kernel semaphore locked, but we
2981          * clear ->lock_depth so that schedule() doesnt
2982          * auto-release the semaphore:
2983          */
2984 #ifdef CONFIG_PREEMPT_BKL
2985         saved_lock_depth = task->lock_depth;
2986         task->lock_depth = -1;
2987 #endif
2988         schedule();
2989 #ifdef CONFIG_PREEMPT_BKL
2990         task->lock_depth = saved_lock_depth;
2991 #endif
2992         sub_preempt_count(PREEMPT_ACTIVE);
2993
2994         /* we could miss a preemption opportunity between schedule and now */
2995         barrier();
2996         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2997                 goto need_resched;
2998 }
2999
3000 EXPORT_SYMBOL(preempt_schedule);
3001
3002 /*
3003  * this is is the entry point to schedule() from kernel preemption
3004  * off of irq context.
3005  * Note, that this is called and return with irqs disabled. This will
3006  * protect us against recursive calling from irq.
3007  */
3008 asmlinkage void __sched preempt_schedule_irq(void)
3009 {
3010         struct thread_info *ti = current_thread_info();
3011 #ifdef CONFIG_PREEMPT_BKL
3012         struct task_struct *task = current;
3013         int saved_lock_depth;
3014 #endif
3015         /* Catch callers which need to be fixed*/
3016         BUG_ON(ti->preempt_count || !irqs_disabled());
3017
3018 need_resched:
3019         add_preempt_count(PREEMPT_ACTIVE);
3020         /*
3021          * We keep the big kernel semaphore locked, but we
3022          * clear ->lock_depth so that schedule() doesnt
3023          * auto-release the semaphore:
3024          */
3025 #ifdef CONFIG_PREEMPT_BKL
3026         saved_lock_depth = task->lock_depth;
3027         task->lock_depth = -1;
3028 #endif
3029         local_irq_enable();
3030         schedule();
3031         local_irq_disable();
3032 #ifdef CONFIG_PREEMPT_BKL
3033         task->lock_depth = saved_lock_depth;
3034 #endif
3035         sub_preempt_count(PREEMPT_ACTIVE);
3036
3037         /* we could miss a preemption opportunity between schedule and now */
3038         barrier();
3039         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3040                 goto need_resched;
3041 }
3042
3043 #endif /* CONFIG_PREEMPT */
3044
3045 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3046 {
3047         task_t *p = curr->private;
3048         return try_to_wake_up(p, mode, sync);
3049 }
3050
3051 EXPORT_SYMBOL(default_wake_function);
3052
3053 /*
3054  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3055  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3056  * number) then we wake all the non-exclusive tasks and one exclusive task.
3057  *
3058  * There are circumstances in which we can try to wake a task which has already
3059  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3060  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3061  */
3062 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3063                              int nr_exclusive, int sync, void *key)
3064 {
3065         struct list_head *tmp, *next;
3066
3067         list_for_each_safe(tmp, next, &q->task_list) {
3068                 wait_queue_t *curr;
3069                 unsigned flags;
3070                 curr = list_entry(tmp, wait_queue_t, task_list);
3071                 flags = curr->flags;
3072                 if (curr->func(curr, mode, sync, key) &&
3073                     (flags & WQ_FLAG_EXCLUSIVE) &&
3074                     !--nr_exclusive)
3075                         break;
3076         }
3077 }
3078
3079 /**
3080  * __wake_up - wake up threads blocked on a waitqueue.
3081  * @q: the waitqueue
3082  * @mode: which threads
3083  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3084  * @key: is directly passed to the wakeup function
3085  */
3086 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3087                                 int nr_exclusive, void *key)
3088 {
3089         unsigned long flags;
3090
3091         spin_lock_irqsave(&q->lock, flags);
3092         __wake_up_common(q, mode, nr_exclusive, 0, key);
3093         spin_unlock_irqrestore(&q->lock, flags);
3094 }
3095
3096 EXPORT_SYMBOL(__wake_up);
3097
3098 /*
3099  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3100  */
3101 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3102 {
3103         __wake_up_common(q, mode, 1, 0, NULL);
3104 }
3105
3106 /**
3107  * __wake_up_sync - wake up threads blocked on a waitqueue.
3108  * @q: the waitqueue
3109  * @mode: which threads
3110  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3111  *
3112  * The sync wakeup differs that the waker knows that it will schedule
3113  * away soon, so while the target thread will be woken up, it will not
3114  * be migrated to another CPU - ie. the two threads are 'synchronized'
3115  * with each other. This can prevent needless bouncing between CPUs.
3116  *
3117  * On UP it can prevent extra preemption.
3118  */
3119 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3120 {
3121         unsigned long flags;
3122         int sync = 1;
3123
3124         if (unlikely(!q))
3125                 return;
3126
3127         if (unlikely(!nr_exclusive))
3128                 sync = 0;
3129
3130         spin_lock_irqsave(&q->lock, flags);
3131         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3132         spin_unlock_irqrestore(&q->lock, flags);
3133 }
3134 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3135
3136 void fastcall complete(struct completion *x)
3137 {
3138         unsigned long flags;
3139
3140         spin_lock_irqsave(&x->wait.lock, flags);
3141         x->done++;
3142         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3143                          1, 0, NULL);
3144         spin_unlock_irqrestore(&x->wait.lock, flags);
3145 }
3146 EXPORT_SYMBOL(complete);
3147
3148 void fastcall complete_all(struct completion *x)
3149 {
3150         unsigned long flags;
3151
3152         spin_lock_irqsave(&x->wait.lock, flags);
3153         x->done += UINT_MAX/2;
3154         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3155                          0, 0, NULL);
3156         spin_unlock_irqrestore(&x->wait.lock, flags);
3157 }
3158 EXPORT_SYMBOL(complete_all);
3159
3160 void fastcall __sched wait_for_completion(struct completion *x)
3161 {
3162         might_sleep();
3163         spin_lock_irq(&x->wait.lock);
3164         if (!x->done) {
3165                 DECLARE_WAITQUEUE(wait, current);
3166
3167                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3168                 __add_wait_queue_tail(&x->wait, &wait);
3169                 do {
3170                         __set_current_state(TASK_UNINTERRUPTIBLE);
3171                         spin_unlock_irq(&x->wait.lock);
3172                         schedule();
3173                         spin_lock_irq(&x->wait.lock);
3174                 } while (!x->done);
3175                 __remove_wait_queue(&x->wait, &wait);
3176         }
3177         x->done--;
3178         spin_unlock_irq(&x->wait.lock);
3179 }
3180 EXPORT_SYMBOL(wait_for_completion);
3181
3182 unsigned long fastcall __sched
3183 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3184 {
3185         might_sleep();
3186
3187         spin_lock_irq(&x->wait.lock);
3188         if (!x->done) {
3189                 DECLARE_WAITQUEUE(wait, current);
3190
3191                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3192                 __add_wait_queue_tail(&x->wait, &wait);
3193                 do {
3194                         __set_current_state(TASK_UNINTERRUPTIBLE);
3195                         spin_unlock_irq(&x->wait.lock);
3196                         timeout = schedule_timeout(timeout);
3197                         spin_lock_irq(&x->wait.lock);
3198                         if (!timeout) {
3199                                 __remove_wait_queue(&x->wait, &wait);
3200                                 goto out;
3201                         }
3202                 } while (!x->done);
3203                 __remove_wait_queue(&x->wait, &wait);
3204         }
3205         x->done--;
3206 out:
3207         spin_unlock_irq(&x->wait.lock);
3208         return timeout;
3209 }
3210 EXPORT_SYMBOL(wait_for_completion_timeout);
3211
3212 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3213 {
3214         int ret = 0;
3215
3216         might_sleep();
3217
3218         spin_lock_irq(&x->wait.lock);
3219         if (!x->done) {
3220                 DECLARE_WAITQUEUE(wait, current);
3221
3222                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3223                 __add_wait_queue_tail(&x->wait, &wait);
3224                 do {
3225                         if (signal_pending(current)) {
3226                                 ret = -ERESTARTSYS;
3227                                 __remove_wait_queue(&x->wait, &wait);
3228                                 goto out;
3229                         }
3230                         __set_current_state(TASK_INTERRUPTIBLE);
3231                         spin_unlock_irq(&x->wait.lock);
3232                         schedule();
3233                         spin_lock_irq(&x->wait.lock);
3234                 } while (!x->done);
3235                 __remove_wait_queue(&x->wait, &wait);
3236         }
3237         x->done--;
3238 out:
3239         spin_unlock_irq(&x->wait.lock);
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL(wait_for_completion_interruptible);
3244
3245 unsigned long fastcall __sched
3246 wait_for_completion_interruptible_timeout(struct completion *x,
3247                                           unsigned long timeout)
3248 {
3249         might_sleep();
3250
3251         spin_lock_irq(&x->wait.lock);
3252         if (!x->done) {
3253                 DECLARE_WAITQUEUE(wait, current);
3254
3255                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3256                 __add_wait_queue_tail(&x->wait, &wait);
3257                 do {
3258                         if (signal_pending(current)) {
3259                                 timeout = -ERESTARTSYS;
3260                                 __remove_wait_queue(&x->wait, &wait);
3261                                 goto out;
3262                         }
3263                         __set_current_state(TASK_INTERRUPTIBLE);
3264                         spin_unlock_irq(&x->wait.lock);
3265                         timeout = schedule_timeout(timeout);
3266                         spin_lock_irq(&x->wait.lock);
3267                         if (!timeout) {
3268                                 __remove_wait_queue(&x->wait, &wait);
3269                                 goto out;
3270                         }
3271                 } while (!x->done);
3272                 __remove_wait_queue(&x->wait, &wait);
3273         }
3274         x->done--;
3275 out:
3276         spin_unlock_irq(&x->wait.lock);
3277         return timeout;
3278 }
3279 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3280
3281
3282 #define SLEEP_ON_VAR                                    \
3283         unsigned long flags;                            \
3284         wait_queue_t wait;                              \
3285         init_waitqueue_entry(&wait, current);
3286
3287 #define SLEEP_ON_HEAD                                   \
3288         spin_lock_irqsave(&q->lock,flags);              \
3289         __add_wait_queue(q, &wait);                     \
3290         spin_unlock(&q->lock);
3291
3292 #define SLEEP_ON_TAIL                                   \
3293         spin_lock_irq(&q->lock);                        \
3294         __remove_wait_queue(q, &wait);                  \
3295         spin_unlock_irqrestore(&q->lock, flags);
3296
3297 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3298 {
3299         SLEEP_ON_VAR
3300
3301         current->state = TASK_INTERRUPTIBLE;
3302
3303         SLEEP_ON_HEAD
3304         schedule();
3305         SLEEP_ON_TAIL
3306 }
3307
3308 EXPORT_SYMBOL(interruptible_sleep_on);
3309
3310 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3311 {
3312         SLEEP_ON_VAR
3313
3314         current->state = TASK_INTERRUPTIBLE;
3315
3316         SLEEP_ON_HEAD
3317         timeout = schedule_timeout(timeout);
3318         SLEEP_ON_TAIL
3319
3320         return timeout;
3321 }
3322
3323 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3324
3325 void fastcall __sched sleep_on(wait_queue_head_t *q)
3326 {
3327         SLEEP_ON_VAR
3328
3329         current->state = TASK_UNINTERRUPTIBLE;
3330
3331         SLEEP_ON_HEAD
3332         schedule();
3333         SLEEP_ON_TAIL
3334 }
3335
3336 EXPORT_SYMBOL(sleep_on);
3337
3338 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3339 {
3340         SLEEP_ON_VAR
3341
3342         current->state = TASK_UNINTERRUPTIBLE;
3343
3344         SLEEP_ON_HEAD
3345         timeout = schedule_timeout(timeout);
3346         SLEEP_ON_TAIL
3347
3348         return timeout;
3349 }
3350
3351 EXPORT_SYMBOL(sleep_on_timeout);
3352
3353 void set_user_nice(task_t *p, long nice)
3354 {
3355         unsigned long flags;
3356         prio_array_t *array;
3357         runqueue_t *rq;
3358         int old_prio, new_prio, delta;
3359
3360         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3361                 return;
3362         /*
3363          * We have to be careful, if called from sys_setpriority(),
3364          * the task might be in the middle of scheduling on another CPU.
3365          */
3366         rq = task_rq_lock(p, &flags);
3367         /*
3368          * The RT priorities are set via sched_setscheduler(), but we still
3369          * allow the 'normal' nice value to be set - but as expected
3370          * it wont have any effect on scheduling until the task is
3371          * not SCHED_NORMAL:
3372          */
3373         if (rt_task(p)) {
3374                 p->static_prio = NICE_TO_PRIO(nice);
3375                 goto out_unlock;
3376         }
3377         array = p->array;
3378         if (array)
3379                 dequeue_task(p, array);
3380
3381         old_prio = p->prio;
3382         new_prio = NICE_TO_PRIO(nice);
3383         delta = new_prio - old_prio;
3384         p->static_prio = NICE_TO_PRIO(nice);
3385         p->prio += delta;
3386
3387         if (array) {
3388                 enqueue_task(p, array);
3389                 /*
3390                  * If the task increased its priority or is running and
3391                  * lowered its priority, then reschedule its CPU:
3392                  */
3393                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3394                         resched_task(rq->curr);
3395         }
3396 out_unlock:
3397         task_rq_unlock(rq, &flags);
3398 }
3399
3400 EXPORT_SYMBOL(set_user_nice);
3401
3402 /*
3403  * can_nice - check if a task can reduce its nice value
3404  * @p: task
3405  * @nice: nice value
3406  */
3407 int can_nice(const task_t *p, const int nice)
3408 {
3409         /* convert nice value [19,-20] to rlimit style value [0,39] */
3410         int nice_rlim = 19 - nice;
3411         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3412                 capable(CAP_SYS_NICE));
3413 }
3414
3415 #ifdef __ARCH_WANT_SYS_NICE
3416
3417 /*
3418  * sys_nice - change the priority of the current process.
3419  * @increment: priority increment
3420  *
3421  * sys_setpriority is a more generic, but much slower function that
3422  * does similar things.
3423  */
3424 asmlinkage long sys_nice(int increment)
3425 {
3426         int retval;
3427         long nice;
3428
3429         /*
3430          * Setpriority might change our priority at the same moment.
3431          * We don't have to worry. Conceptually one call occurs first
3432          * and we have a single winner.
3433          */
3434         if (increment < -40)
3435                 increment = -40;
3436         if (increment > 40)
3437                 increment = 40;
3438
3439         nice = PRIO_TO_NICE(current->static_prio) + increment;
3440         if (nice < -20)
3441                 nice = -20;
3442         if (nice > 19)
3443                 nice = 19;
3444
3445         if (increment < 0 && !can_nice(current, nice))
3446                 return -EPERM;
3447
3448         retval = security_task_setnice(current, nice);
3449         if (retval)
3450                 return retval;
3451
3452         set_user_nice(current, nice);
3453         return 0;
3454 }
3455
3456 #endif
3457
3458 /**
3459  * task_prio - return the priority value of a given task.
3460  * @p: the task in question.
3461  *
3462  * This is the priority value as seen by users in /proc.
3463  * RT tasks are offset by -200. Normal tasks are centered
3464  * around 0, value goes from -16 to +15.
3465  */
3466 int task_prio(const task_t *p)
3467 {
3468         return p->prio - MAX_RT_PRIO;
3469 }
3470
3471 /**
3472  * task_nice - return the nice value of a given task.
3473  * @p: the task in question.
3474  */
3475 int task_nice(const task_t *p)
3476 {
3477         return TASK_NICE(p);
3478 }
3479
3480 /*
3481  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3482  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3483  * Therefore, task_nice is needed if there is a compat_mode.
3484  */
3485 #ifdef CONFIG_COMPAT
3486 EXPORT_SYMBOL_GPL(task_nice);
3487 #endif
3488
3489 /**
3490  * idle_cpu - is a given cpu idle currently?
3491  * @cpu: the processor in question.
3492  */
3493 int idle_cpu(int cpu)
3494 {
3495         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3496 }
3497
3498 EXPORT_SYMBOL_GPL(idle_cpu);
3499
3500 /**
3501  * idle_task - return the idle task for a given cpu.
3502  * @cpu: the processor in question.
3503  */
3504 task_t *idle_task(int cpu)
3505 {
3506         return cpu_rq(cpu)->idle;
3507 }
3508
3509 /**
3510  * find_process_by_pid - find a process with a matching PID value.
3511  * @pid: the pid in question.
3512  */
3513 static inline task_t *find_process_by_pid(pid_t pid)
3514 {
3515         return pid ? find_task_by_pid(pid) : current;
3516 }
3517
3518 /* Actually do priority change: must hold rq lock. */
3519 static void __setscheduler(struct task_struct *p, int policy, int prio)
3520 {
3521         BUG_ON(p->array);
3522         p->policy = policy;
3523         p->rt_priority = prio;
3524         if (policy != SCHED_NORMAL)
3525                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3526         else
3527                 p->prio = p->static_prio;
3528 }
3529
3530 /**
3531  * sched_setscheduler - change the scheduling policy and/or RT priority of
3532  * a thread.
3533  * @p: the task in question.
3534  * @policy: new policy.
3535  * @param: structure containing the new RT priority.
3536  */
3537 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3538 {
3539         int retval;
3540         int oldprio, oldpolicy = -1;
3541         prio_array_t *array;
3542         unsigned long flags;
3543         runqueue_t *rq;
3544
3545 recheck:
3546         /* double check policy once rq lock held */
3547         if (policy < 0)
3548                 policy = oldpolicy = p->policy;
3549         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3550                                 policy != SCHED_NORMAL)
3551                         return -EINVAL;
3552         /*
3553          * Valid priorities for SCHED_FIFO and SCHED_RR are
3554          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3555          */
3556         if (param->sched_priority < 0 ||
3557             param->sched_priority > MAX_USER_RT_PRIO-1)
3558                 return -EINVAL;
3559         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3560                 return -EINVAL;
3561
3562         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3563             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3564             !capable(CAP_SYS_NICE))
3565                 return -EPERM;
3566         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3567             !capable(CAP_SYS_NICE))
3568                 return -EPERM;
3569
3570         retval = security_task_setscheduler(p, policy, param);
3571         if (retval)
3572                 return retval;
3573         /*
3574          * To be able to change p->policy safely, the apropriate
3575          * runqueue lock must be held.
3576          */
3577         rq = task_rq_lock(p, &flags);
3578         /* recheck policy now with rq lock held */
3579         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3580                 policy = oldpolicy = -1;
3581                 task_rq_unlock(rq, &flags);
3582                 goto recheck;
3583         }
3584         array = p->array;
3585         if (array)
3586                 deactivate_task(p, rq);
3587         oldprio = p->prio;
3588         __setscheduler(p, policy, param->sched_priority);
3589         if (array) {
3590                 __activate_task(p, rq);
3591                 /*
3592                  * Reschedule if we are currently running on this runqueue and
3593                  * our priority decreased, or if we are not currently running on
3594                  * this runqueue and our priority is higher than the current's
3595                  */
3596                 if (task_running(rq, p)) {
3597                         if (p->prio > oldprio)
3598                                 resched_task(rq->curr);
3599                 } else if (TASK_PREEMPTS_CURR(p, rq))
3600                         resched_task(rq->curr);
3601         }
3602         task_rq_unlock(rq, &flags);
3603         return 0;
3604 }
3605 EXPORT_SYMBOL_GPL(sched_setscheduler);
3606
3607 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3608 {
3609         int retval;
3610         struct sched_param lparam;
3611         struct task_struct *p;
3612
3613         if (!param || pid < 0)
3614                 return -EINVAL;
3615         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3616                 return -EFAULT;
3617         read_lock_irq(&tasklist_lock);
3618         p = find_process_by_pid(pid);
3619         if (!p) {
3620                 read_unlock_irq(&tasklist_lock);
3621                 return -ESRCH;
3622         }
3623         retval = sched_setscheduler(p, policy, &lparam);
3624         read_unlock_irq(&tasklist_lock);
3625         return retval;
3626 }
3627
3628 /**
3629  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3630  * @pid: the pid in question.
3631  * @policy: new policy.
3632  * @param: structure containing the new RT priority.
3633  */
3634 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3635                                        struct sched_param __user *param)
3636 {
3637         return do_sched_setscheduler(pid, policy, param);
3638 }
3639
3640 /**
3641  * sys_sched_setparam - set/change the RT priority of a thread
3642  * @pid: the pid in question.
3643  * @param: structure containing the new RT priority.
3644  */
3645 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3646 {
3647         return do_sched_setscheduler(pid, -1, param);
3648 }
3649
3650 /**
3651  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3652  * @pid: the pid in question.
3653  */
3654 asmlinkage long sys_sched_getscheduler(pid_t pid)
3655 {
3656         int retval = -EINVAL;
3657         task_t *p;
3658
3659         if (pid < 0)
3660                 goto out_nounlock;
3661
3662         retval = -ESRCH;
3663         read_lock(&tasklist_lock);
3664         p = find_process_by_pid(pid);
3665         if (p) {
3666                 retval = security_task_getscheduler(p);
3667                 if (!retval)
3668                         retval = p->policy;
3669         }
3670         read_unlock(&tasklist_lock);
3671
3672 out_nounlock:
3673         return retval;
3674 }
3675
3676 /**
3677  * sys_sched_getscheduler - get the RT priority of a thread
3678  * @pid: the pid in question.
3679  * @param: structure containing the RT priority.
3680  */
3681 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3682 {
3683         struct sched_param lp;
3684         int retval = -EINVAL;
3685         task_t *p;
3686
3687         if (!param || pid < 0)
3688                 goto out_nounlock;
3689
3690         read_lock(&tasklist_lock);
3691         p = find_process_by_pid(pid);
3692         retval = -ESRCH;
3693         if (!p)
3694                 goto out_unlock;
3695
3696         retval = security_task_getscheduler(p);
3697         if (retval)
3698                 goto out_unlock;
3699
3700         lp.sched_priority = p->rt_priority;
3701         read_unlock(&tasklist_lock);
3702
3703         /*
3704          * This one might sleep, we cannot do it with a spinlock held ...
3705          */
3706         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3707
3708 out_nounlock:
3709         return retval;
3710
3711 out_unlock:
3712         read_unlock(&tasklist_lock);
3713         return retval;
3714 }
3715
3716 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3717 {
3718         task_t *p;
3719         int retval;
3720         cpumask_t cpus_allowed;
3721
3722         lock_cpu_hotplug();
3723         read_lock(&tasklist_lock);
3724
3725         p = find_process_by_pid(pid);
3726         if (!p) {
3727                 read_unlock(&tasklist_lock);
3728                 unlock_cpu_hotplug();
3729                 return -ESRCH;
3730         }
3731
3732         /*
3733          * It is not safe to call set_cpus_allowed with the
3734          * tasklist_lock held.  We will bump the task_struct's
3735          * usage count and then drop tasklist_lock.
3736          */
3737         get_task_struct(p);
3738         read_unlock(&tasklist_lock);
3739
3740         retval = -EPERM;
3741         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3742                         !capable(CAP_SYS_NICE))
3743                 goto out_unlock;
3744
3745         cpus_allowed = cpuset_cpus_allowed(p);
3746         cpus_and(new_mask, new_mask, cpus_allowed);
3747         retval = set_cpus_allowed(p, new_mask);
3748
3749 out_unlock:
3750         put_task_struct(p);
3751         unlock_cpu_hotplug();
3752         return retval;
3753 }
3754
3755 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3756                              cpumask_t *new_mask)
3757 {
3758         if (len < sizeof(cpumask_t)) {
3759                 memset(new_mask, 0, sizeof(cpumask_t));
3760         } else if (len > sizeof(cpumask_t)) {
3761                 len = sizeof(cpumask_t);
3762         }
3763         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3764 }
3765
3766 /**
3767  * sys_sched_setaffinity - set the cpu affinity of a process
3768  * @pid: pid of the process
3769  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3770  * @user_mask_ptr: user-space pointer to the new cpu mask
3771  */
3772 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3773                                       unsigned long __user *user_mask_ptr)
3774 {
3775         cpumask_t new_mask;
3776         int retval;
3777
3778         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3779         if (retval)
3780                 return retval;
3781
3782         return sched_setaffinity(pid, new_mask);
3783 }
3784
3785 /*
3786  * Represents all cpu's present in the system
3787  * In systems capable of hotplug, this map could dynamically grow
3788  * as new cpu's are detected in the system via any platform specific
3789  * method, such as ACPI for e.g.
3790  */
3791
3792 cpumask_t cpu_present_map;
3793 EXPORT_SYMBOL(cpu_present_map);
3794
3795 #ifndef CONFIG_SMP
3796 cpumask_t cpu_online_map = CPU_MASK_ALL;
3797 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3798 #endif
3799
3800 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3801 {
3802         int retval;
3803         task_t *p;
3804
3805         lock_cpu_hotplug();
3806         read_lock(&tasklist_lock);
3807
3808         retval = -ESRCH;
3809         p = find_process_by_pid(pid);
3810         if (!p)
3811                 goto out_unlock;
3812
3813         retval = 0;
3814         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3815
3816 out_unlock:
3817         read_unlock(&tasklist_lock);
3818         unlock_cpu_hotplug();
3819         if (retval)
3820                 return retval;
3821
3822         return 0;
3823 }
3824
3825 /**
3826  * sys_sched_getaffinity - get the cpu affinity of a process
3827  * @pid: pid of the process
3828  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3829  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3830  */
3831 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3832                                       unsigned long __user *user_mask_ptr)
3833 {
3834         int ret;
3835         cpumask_t mask;
3836
3837         if (len < sizeof(cpumask_t))
3838                 return -EINVAL;
3839
3840         ret = sched_getaffinity(pid, &mask);
3841         if (ret < 0)
3842                 return ret;
3843
3844         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3845                 return -EFAULT;
3846
3847         return sizeof(cpumask_t);
3848 }
3849
3850 /**
3851  * sys_sched_yield - yield the current processor to other threads.
3852  *
3853  * this function yields the current CPU by moving the calling thread
3854  * to the expired array. If there are no other threads running on this
3855  * CPU then this function will return.
3856  */
3857 asmlinkage long sys_sched_yield(void)
3858 {
3859         runqueue_t *rq = this_rq_lock();
3860         prio_array_t *array = current->array;
3861         prio_array_t *target = rq->expired;
3862
3863         schedstat_inc(rq, yld_cnt);
3864         /*
3865          * We implement yielding by moving the task into the expired
3866          * queue.
3867          *
3868          * (special rule: RT tasks will just roundrobin in the active
3869          *  array.)
3870          */
3871         if (rt_task(current))
3872                 target = rq->active;
3873
3874         if (current->array->nr_active == 1) {
3875                 schedstat_inc(rq, yld_act_empty);
3876                 if (!rq->expired->nr_active)
3877                         schedstat_inc(rq, yld_both_empty);
3878         } else if (!rq->expired->nr_active)
3879                 schedstat_inc(rq, yld_exp_empty);
3880
3881         if (array != target) {
3882                 dequeue_task(current, array);
3883                 enqueue_task(current, target);
3884         } else
3885                 /*
3886                  * requeue_task is cheaper so perform that if possible.
3887                  */
3888                 requeue_task(current, array);
3889
3890         /*
3891          * Since we are going to call schedule() anyway, there's
3892          * no need to preempt or enable interrupts:
3893          */
3894         __release(rq->lock);
3895         _raw_spin_unlock(&rq->lock);
3896         preempt_enable_no_resched();
3897
3898         schedule();
3899
3900         return 0;
3901 }
3902
3903 static inline void __cond_resched(void)
3904 {
3905         do {
3906                 add_preempt_count(PREEMPT_ACTIVE);
3907                 schedule();
3908                 sub_preempt_count(PREEMPT_ACTIVE);
3909         } while (need_resched());
3910 }
3911
3912 int __sched cond_resched(void)
3913 {
3914         if (need_resched()) {
3915                 __cond_resched();
3916                 return 1;
3917         }
3918         return 0;
3919 }
3920
3921 EXPORT_SYMBOL(cond_resched);
3922
3923 /*
3924  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3925  * call schedule, and on return reacquire the lock.
3926  *
3927  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3928  * operations here to prevent schedule() from being called twice (once via
3929  * spin_unlock(), once by hand).
3930  */
3931 int cond_resched_lock(spinlock_t * lock)
3932 {
3933         int ret = 0;
3934
3935         if (need_lockbreak(lock)) {
3936                 spin_unlock(lock);
3937                 cpu_relax();
3938                 ret = 1;
3939                 spin_lock(lock);
3940         }
3941         if (need_resched()) {
3942                 _raw_spin_unlock(lock);
3943                 preempt_enable_no_resched();
3944                 __cond_resched();
3945                 ret = 1;
3946                 spin_lock(lock);
3947         }
3948         return ret;
3949 }
3950
3951 EXPORT_SYMBOL(cond_resched_lock);
3952
3953 int __sched cond_resched_softirq(void)
3954 {
3955         BUG_ON(!in_softirq());
3956
3957         if (need_resched()) {
3958                 __local_bh_enable();
3959                 __cond_resched();
3960                 local_bh_disable();
3961                 return 1;
3962         }
3963         return 0;
3964 }
3965
3966 EXPORT_SYMBOL(cond_resched_softirq);
3967
3968
3969 /**
3970  * yield - yield the current processor to other threads.
3971  *
3972  * this is a shortcut for kernel-space yielding - it marks the
3973  * thread runnable and calls sys_sched_yield().
3974  */
3975 void __sched yield(void)
3976 {
3977         set_current_state(TASK_RUNNING);
3978         sys_sched_yield();
3979 }
3980
3981 EXPORT_SYMBOL(yield);
3982
3983 /*
3984  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3985  * that process accounting knows that this is a task in IO wait state.
3986  *
3987  * But don't do that if it is a deliberate, throttling IO wait (this task
3988  * has set its backing_dev_info: the queue against which it should throttle)
3989  */
3990 void __sched io_schedule(void)
3991 {
3992         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3993
3994         atomic_inc(&rq->nr_iowait);
3995         schedule();
3996         atomic_dec(&rq->nr_iowait);
3997 }
3998
3999 EXPORT_SYMBOL(io_schedule);
4000
4001 long __sched io_schedule_timeout(long timeout)
4002 {
4003         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4004         long ret;
4005
4006         atomic_inc(&rq->nr_iowait);
4007         ret = schedule_timeout(timeout);
4008         atomic_dec(&rq->nr_iowait);
4009         return ret;
4010 }
4011
4012 /**
4013  * sys_sched_get_priority_max - return maximum RT priority.
4014  * @policy: scheduling class.
4015  *
4016  * this syscall returns the maximum rt_priority that can be used
4017  * by a given scheduling class.
4018  */
4019 asmlinkage long sys_sched_get_priority_max(int policy)
4020 {
4021         int ret = -EINVAL;
4022
4023         switch (policy) {
4024         case SCHED_FIFO:
4025         case SCHED_RR:
4026                 ret = MAX_USER_RT_PRIO-1;
4027                 break;
4028         case SCHED_NORMAL:
4029                 ret = 0;
4030                 break;
4031         }
4032         return ret;
4033 }
4034
4035 /**
4036  * sys_sched_get_priority_min - return minimum RT priority.
4037  * @policy: scheduling class.
4038  *
4039  * this syscall returns the minimum rt_priority that can be used
4040  * by a given scheduling class.
4041  */
4042 asmlinkage long sys_sched_get_priority_min(int policy)
4043 {
4044         int ret = -EINVAL;
4045
4046         switch (policy) {
4047         case SCHED_FIFO:
4048         case SCHED_RR:
4049                 ret = 1;
4050                 break;
4051         case SCHED_NORMAL:
4052                 ret = 0;
4053         }
4054         return ret;
4055 }
4056
4057 /**
4058  * sys_sched_rr_get_interval - return the default timeslice of a process.
4059  * @pid: pid of the process.
4060  * @interval: userspace pointer to the timeslice value.
4061  *
4062  * this syscall writes the default timeslice value of a given process
4063  * into the user-space timespec buffer. A value of '0' means infinity.
4064  */
4065 asmlinkage
4066 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4067 {
4068         int retval = -EINVAL;
4069         struct timespec t;
4070         task_t *p;
4071
4072         if (pid < 0)
4073                 goto out_nounlock;
4074
4075         retval = -ESRCH;
4076         read_lock(&tasklist_lock);
4077         p = find_process_by_pid(pid);
4078         if (!p)
4079                 goto out_unlock;
4080
4081         retval = security_task_getscheduler(p);
4082         if (retval)
4083                 goto out_unlock;
4084
4085         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4086                                 0 : task_timeslice(p), &t);
4087         read_unlock(&tasklist_lock);
4088         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4089 out_nounlock:
4090         return retval;
4091 out_unlock:
4092         read_unlock(&tasklist_lock);
4093         return retval;
4094 }
4095
4096 static inline struct task_struct *eldest_child(struct task_struct *p)
4097 {
4098         if (list_empty(&p->children)) return NULL;
4099         return list_entry(p->children.next,struct task_struct,sibling);
4100 }
4101
4102 static inline struct task_struct *older_sibling(struct task_struct *p)
4103 {
4104         if (p->sibling.prev==&p->parent->children) return NULL;
4105         return list_entry(p->sibling.prev,struct task_struct,sibling);
4106 }
4107
4108 static inline struct task_struct *younger_sibling(struct task_struct *p)
4109 {
4110         if (p->sibling.next==&p->parent->children) return NULL;
4111         return list_entry(p->sibling.next,struct task_struct,sibling);
4112 }
4113
4114 static void show_task(task_t * p)
4115 {
4116         task_t *relative;
4117         unsigned state;
4118         unsigned long free = 0;
4119         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4120
4121         printk("%-13.13s ", p->comm);
4122         state = p->state ? __ffs(p->state) + 1 : 0;
4123         if (state < ARRAY_SIZE(stat_nam))
4124                 printk(stat_nam[state]);
4125         else
4126                 printk("?");
4127 #if (BITS_PER_LONG == 32)
4128         if (state == TASK_RUNNING)
4129                 printk(" running ");
4130         else
4131                 printk(" %08lX ", thread_saved_pc(p));
4132 #else
4133         if (state == TASK_RUNNING)
4134                 printk("  running task   ");
4135         else
4136                 printk(" %016lx ", thread_saved_pc(p));
4137 #endif
4138 #ifdef CONFIG_DEBUG_STACK_USAGE
4139         {
4140                 unsigned long * n = (unsigned long *) (p->thread_info+1);
4141                 while (!*n)
4142                         n++;
4143                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4144         }
4145 #endif
4146         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4147         if ((relative = eldest_child(p)))
4148                 printk("%5d ", relative->pid);
4149         else
4150                 printk("      ");
4151         if ((relative = younger_sibling(p)))
4152                 printk("%7d", relative->pid);
4153         else
4154                 printk("       ");
4155         if ((relative = older_sibling(p)))
4156                 printk(" %5d", relative->pid);
4157         else
4158                 printk("      ");
4159         if (!p->mm)
4160                 printk(" (L-TLB)\n");
4161         else
4162                 printk(" (NOTLB)\n");
4163
4164         if (state != TASK_RUNNING)
4165                 show_stack(p, NULL);
4166 }
4167
4168 void show_state(void)
4169 {
4170         task_t *g, *p;
4171
4172 #if (BITS_PER_LONG == 32)
4173         printk("\n"
4174                "                                               sibling\n");
4175         printk("  task             PC      pid father child younger older\n");
4176 #else
4177         printk("\n"
4178                "                                                       sibling\n");
4179         printk("  task                 PC          pid father child younger older\n");
4180 #endif
4181         read_lock(&tasklist_lock);
4182         do_each_thread(g, p) {
4183                 /*
4184                  * reset the NMI-timeout, listing all files on a slow
4185                  * console might take alot of time:
4186                  */
4187                 touch_nmi_watchdog();
4188                 show_task(p);
4189         } while_each_thread(g, p);
4190
4191         read_unlock(&tasklist_lock);
4192 }
4193
4194 void __devinit init_idle(task_t *idle, int cpu)
4195 {
4196         runqueue_t *rq = cpu_rq(cpu);
4197         unsigned long flags;
4198
4199         idle->sleep_avg = 0;
4200         idle->array = NULL;
4201         idle->prio = MAX_PRIO;
4202         idle->state = TASK_RUNNING;
4203         idle->cpus_allowed = cpumask_of_cpu(cpu);
4204         set_task_cpu(idle, cpu);
4205
4206         spin_lock_irqsave(&rq->lock, flags);
4207         rq->curr = rq->idle = idle;
4208 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4209         idle->oncpu = 1;
4210 #endif
4211         set_tsk_need_resched(idle);
4212         spin_unlock_irqrestore(&rq->lock, flags);
4213
4214         /* Set the preempt count _outside_ the spinlocks! */
4215 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4216         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4217 #else
4218         idle->thread_info->preempt_count = 0;
4219 #endif
4220 }
4221
4222 /*
4223  * In a system that switches off the HZ timer nohz_cpu_mask
4224  * indicates which cpus entered this state. This is used
4225  * in the rcu update to wait only for active cpus. For system
4226  * which do not switch off the HZ timer nohz_cpu_mask should
4227  * always be CPU_MASK_NONE.
4228  */
4229 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4230
4231 #ifdef CONFIG_SMP
4232 /*
4233  * This is how migration works:
4234  *
4235  * 1) we queue a migration_req_t structure in the source CPU's
4236  *    runqueue and wake up that CPU's migration thread.
4237  * 2) we down() the locked semaphore => thread blocks.
4238  * 3) migration thread wakes up (implicitly it forces the migrated
4239  *    thread off the CPU)
4240  * 4) it gets the migration request and checks whether the migrated
4241  *    task is still in the wrong runqueue.
4242  * 5) if it's in the wrong runqueue then the migration thread removes
4243  *    it and puts it into the right queue.
4244  * 6) migration thread up()s the semaphore.
4245  * 7) we wake up and the migration is done.
4246  */
4247
4248 /*
4249  * Change a given task's CPU affinity. Migrate the thread to a
4250  * proper CPU and schedule it away if the CPU it's executing on
4251  * is removed from the allowed bitmask.
4252  *
4253  * NOTE: the caller must have a valid reference to the task, the
4254  * task must not exit() & deallocate itself prematurely.  The
4255  * call is not atomic; no spinlocks may be held.
4256  */
4257 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4258 {
4259         unsigned long flags;
4260         int ret = 0;
4261         migration_req_t req;
4262         runqueue_t *rq;
4263
4264         rq = task_rq_lock(p, &flags);
4265         if (!cpus_intersects(new_mask, cpu_online_map)) {
4266                 ret = -EINVAL;
4267                 goto out;
4268         }
4269
4270         p->cpus_allowed = new_mask;
4271         /* Can the task run on the task's current CPU? If so, we're done */
4272         if (cpu_isset(task_cpu(p), new_mask))
4273                 goto out;
4274
4275         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4276                 /* Need help from migration thread: drop lock and wait. */
4277                 task_rq_unlock(rq, &flags);
4278                 wake_up_process(rq->migration_thread);
4279                 wait_for_completion(&req.done);
4280                 tlb_migrate_finish(p->mm);
4281                 return 0;
4282         }
4283 out:
4284         task_rq_unlock(rq, &flags);
4285         return ret;
4286 }
4287
4288 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4289
4290 /*
4291  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4292  * this because either it can't run here any more (set_cpus_allowed()
4293  * away from this CPU, or CPU going down), or because we're
4294  * attempting to rebalance this task on exec (sched_exec).
4295  *
4296  * So we race with normal scheduler movements, but that's OK, as long
4297  * as the task is no longer on this CPU.
4298  */
4299 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4300 {
4301         runqueue_t *rq_dest, *rq_src;
4302
4303         if (unlikely(cpu_is_offline(dest_cpu)))
4304                 return;
4305
4306         rq_src = cpu_rq(src_cpu);
4307         rq_dest = cpu_rq(dest_cpu);
4308
4309         double_rq_lock(rq_src, rq_dest);
4310         /* Already moved. */
4311         if (task_cpu(p) != src_cpu)
4312                 goto out;
4313         /* Affinity changed (again). */
4314         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4315                 goto out;
4316
4317         set_task_cpu(p, dest_cpu);
4318         if (p->array) {
4319                 /*
4320                  * Sync timestamp with rq_dest's before activating.
4321                  * The same thing could be achieved by doing this step
4322                  * afterwards, and pretending it was a local activate.
4323                  * This way is cleaner and logically correct.
4324                  */
4325                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4326                                 + rq_dest->timestamp_last_tick;
4327                 deactivate_task(p, rq_src);
4328                 activate_task(p, rq_dest, 0);
4329                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4330                         resched_task(rq_dest->curr);
4331         }
4332
4333 out:
4334         double_rq_unlock(rq_src, rq_dest);
4335 }
4336
4337 /*
4338  * migration_thread - this is a highprio system thread that performs
4339  * thread migration by bumping thread off CPU then 'pushing' onto
4340  * another runqueue.
4341  */
4342 static int migration_thread(void * data)
4343 {
4344         runqueue_t *rq;
4345         int cpu = (long)data;
4346
4347         rq = cpu_rq(cpu);
4348         BUG_ON(rq->migration_thread != current);
4349
4350         set_current_state(TASK_INTERRUPTIBLE);
4351         while (!kthread_should_stop()) {
4352                 struct list_head *head;
4353                 migration_req_t *req;
4354
4355                 if (current->flags & PF_FREEZE)
4356                         refrigerator(PF_FREEZE);
4357
4358                 spin_lock_irq(&rq->lock);
4359
4360                 if (cpu_is_offline(cpu)) {
4361                         spin_unlock_irq(&rq->lock);
4362                         goto wait_to_die;
4363                 }
4364
4365                 if (rq->active_balance) {
4366                         active_load_balance(rq, cpu);
4367                         rq->active_balance = 0;
4368                 }
4369
4370                 head = &rq->migration_queue;
4371
4372                 if (list_empty(head)) {
4373                         spin_unlock_irq(&rq->lock);
4374                         schedule();
4375                         set_current_state(TASK_INTERRUPTIBLE);
4376                         continue;
4377                 }
4378                 req = list_entry(head->next, migration_req_t, list);
4379                 list_del_init(head->next);
4380
4381                 if (req->type == REQ_MOVE_TASK) {
4382                         spin_unlock(&rq->lock);
4383                         __migrate_task(req->task, cpu, req->dest_cpu);
4384                         local_irq_enable();
4385                 } else if (req->type == REQ_SET_DOMAIN) {
4386                         rq->sd = req->sd;
4387                         spin_unlock_irq(&rq->lock);
4388                 } else {
4389                         spin_unlock_irq(&rq->lock);
4390                         WARN_ON(1);
4391                 }
4392
4393                 complete(&req->done);
4394         }
4395         __set_current_state(TASK_RUNNING);
4396         return 0;
4397
4398 wait_to_die:
4399         /* Wait for kthread_stop */
4400         set_current_state(TASK_INTERRUPTIBLE);
4401         while (!kthread_should_stop()) {
4402                 schedule();
4403                 set_current_state(TASK_INTERRUPTIBLE);
4404         }
4405         __set_current_state(TASK_RUNNING);
4406         return 0;
4407 }
4408
4409 #ifdef CONFIG_HOTPLUG_CPU
4410 /* Figure out where task on dead CPU should go, use force if neccessary. */
4411 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4412 {
4413         int dest_cpu;
4414         cpumask_t mask;
4415
4416         /* On same node? */
4417         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4418         cpus_and(mask, mask, tsk->cpus_allowed);
4419         dest_cpu = any_online_cpu(mask);
4420
4421         /* On any allowed CPU? */
4422         if (dest_cpu == NR_CPUS)
4423                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4424
4425         /* No more Mr. Nice Guy. */
4426         if (dest_cpu == NR_CPUS) {
4427                 cpus_setall(tsk->cpus_allowed);
4428                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4429
4430                 /*
4431                  * Don't tell them about moving exiting tasks or
4432                  * kernel threads (both mm NULL), since they never
4433                  * leave kernel.
4434                  */
4435                 if (tsk->mm && printk_ratelimit())
4436                         printk(KERN_INFO "process %d (%s) no "
4437                                "longer affine to cpu%d\n",
4438                                tsk->pid, tsk->comm, dead_cpu);
4439         }
4440         __migrate_task(tsk, dead_cpu, dest_cpu);
4441 }
4442
4443 /*
4444  * While a dead CPU has no uninterruptible tasks queued at this point,
4445  * it might still have a nonzero ->nr_uninterruptible counter, because
4446  * for performance reasons the counter is not stricly tracking tasks to
4447  * their home CPUs. So we just add the counter to another CPU's counter,
4448  * to keep the global sum constant after CPU-down:
4449  */
4450 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4451 {
4452         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4453         unsigned long flags;
4454
4455         local_irq_save(flags);
4456         double_rq_lock(rq_src, rq_dest);
4457         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4458         rq_src->nr_uninterruptible = 0;
4459         double_rq_unlock(rq_src, rq_dest);
4460         local_irq_restore(flags);
4461 }
4462
4463 /* Run through task list and migrate tasks from the dead cpu. */
4464 static void migrate_live_tasks(int src_cpu)
4465 {
4466         struct task_struct *tsk, *t;
4467
4468         write_lock_irq(&tasklist_lock);
4469
4470         do_each_thread(t, tsk) {
4471                 if (tsk == current)
4472                         continue;
4473
4474                 if (task_cpu(tsk) == src_cpu)
4475                         move_task_off_dead_cpu(src_cpu, tsk);
4476         } while_each_thread(t, tsk);
4477
4478         write_unlock_irq(&tasklist_lock);
4479 }
4480
4481 /* Schedules idle task to be the next runnable task on current CPU.
4482  * It does so by boosting its priority to highest possible and adding it to
4483  * the _front_ of runqueue. Used by CPU offline code.
4484  */
4485 void sched_idle_next(void)
4486 {
4487         int cpu = smp_processor_id();
4488         runqueue_t *rq = this_rq();
4489         struct task_struct *p = rq->idle;
4490         unsigned long flags;
4491
4492         /* cpu has to be offline */
4493         BUG_ON(cpu_online(cpu));
4494
4495         /* Strictly not necessary since rest of the CPUs are stopped by now
4496          * and interrupts disabled on current cpu.
4497          */
4498         spin_lock_irqsave(&rq->lock, flags);
4499
4500         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4501         /* Add idle task to _front_ of it's priority queue */
4502         __activate_idle_task(p, rq);
4503
4504         spin_unlock_irqrestore(&rq->lock, flags);
4505 }
4506
4507 /* Ensures that the idle task is using init_mm right before its cpu goes
4508  * offline.
4509  */
4510 void idle_task_exit(void)
4511 {
4512         struct mm_struct *mm = current->active_mm;
4513
4514         BUG_ON(cpu_online(smp_processor_id()));
4515
4516         if (mm != &init_mm)
4517                 switch_mm(mm, &init_mm, current);
4518         mmdrop(mm);
4519 }
4520
4521 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4522 {
4523         struct runqueue *rq = cpu_rq(dead_cpu);
4524
4525         /* Must be exiting, otherwise would be on tasklist. */
4526         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4527
4528         /* Cannot have done final schedule yet: would have vanished. */
4529         BUG_ON(tsk->flags & PF_DEAD);
4530
4531         get_task_struct(tsk);
4532
4533         /*
4534          * Drop lock around migration; if someone else moves it,
4535          * that's OK.  No task can be added to this CPU, so iteration is
4536          * fine.
4537          */
4538         spin_unlock_irq(&rq->lock);
4539         move_task_off_dead_cpu(dead_cpu, tsk);
4540         spin_lock_irq(&rq->lock);
4541
4542         put_task_struct(tsk);
4543 }
4544
4545 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4546 static void migrate_dead_tasks(unsigned int dead_cpu)
4547 {
4548         unsigned arr, i;
4549         struct runqueue *rq = cpu_rq(dead_cpu);
4550
4551         for (arr = 0; arr < 2; arr++) {
4552                 for (i = 0; i < MAX_PRIO; i++) {
4553                         struct list_head *list = &rq->arrays[arr].queue[i];
4554                         while (!list_empty(list))
4555                                 migrate_dead(dead_cpu,
4556                                              list_entry(list->next, task_t,
4557                                                         run_list));
4558                 }
4559         }
4560 }
4561 #endif /* CONFIG_HOTPLUG_CPU */
4562
4563 /*
4564  * migration_call - callback that gets triggered when a CPU is added.
4565  * Here we can start up the necessary migration thread for the new CPU.
4566  */
4567 static int migration_call(struct notifier_block *nfb, unsigned long action,
4568                           void *hcpu)
4569 {
4570         int cpu = (long)hcpu;
4571         struct task_struct *p;
4572         struct runqueue *rq;
4573         unsigned long flags;
4574
4575         switch (action) {
4576         case CPU_UP_PREPARE:
4577                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4578                 if (IS_ERR(p))
4579                         return NOTIFY_BAD;
4580                 p->flags |= PF_NOFREEZE;
4581                 kthread_bind(p, cpu);
4582                 /* Must be high prio: stop_machine expects to yield to it. */
4583                 rq = task_rq_lock(p, &flags);
4584                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4585                 task_rq_unlock(rq, &flags);
4586                 cpu_rq(cpu)->migration_thread = p;
4587                 break;
4588         case CPU_ONLINE:
4589                 /* Strictly unneccessary, as first user will wake it. */
4590                 wake_up_process(cpu_rq(cpu)->migration_thread);
4591                 break;
4592 #ifdef CONFIG_HOTPLUG_CPU
4593         case CPU_UP_CANCELED:
4594                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4595                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4596                 kthread_stop(cpu_rq(cpu)->migration_thread);
4597                 cpu_rq(cpu)->migration_thread = NULL;
4598                 break;
4599         case CPU_DEAD:
4600                 migrate_live_tasks(cpu);
4601                 rq = cpu_rq(cpu);
4602                 kthread_stop(rq->migration_thread);
4603                 rq->migration_thread = NULL;
4604                 /* Idle task back to normal (off runqueue, low prio) */
4605                 rq = task_rq_lock(rq->idle, &flags);
4606                 deactivate_task(rq->idle, rq);
4607                 rq->idle->static_prio = MAX_PRIO;
4608                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4609                 migrate_dead_tasks(cpu);
4610                 task_rq_unlock(rq, &flags);
4611                 migrate_nr_uninterruptible(rq);
4612                 BUG_ON(rq->nr_running != 0);
4613
4614                 /* No need to migrate the tasks: it was best-effort if
4615                  * they didn't do lock_cpu_hotplug().  Just wake up
4616                  * the requestors. */
4617                 spin_lock_irq(&rq->lock);
4618                 while (!list_empty(&rq->migration_queue)) {
4619                         migration_req_t *req;
4620                         req = list_entry(rq->migration_queue.next,
4621                                          migration_req_t, list);
4622                         BUG_ON(req->type != REQ_MOVE_TASK);
4623                         list_del_init(&req->list);
4624                         complete(&req->done);
4625                 }
4626                 spin_unlock_irq(&rq->lock);
4627                 break;
4628 #endif
4629         }
4630         return NOTIFY_OK;
4631 }
4632
4633 /* Register at highest priority so that task migration (migrate_all_tasks)
4634  * happens before everything else.
4635  */
4636 static struct notifier_block __devinitdata migration_notifier = {
4637         .notifier_call = migration_call,
4638         .priority = 10
4639 };
4640
4641 int __init migration_init(void)
4642 {
4643         void *cpu = (void *)(long)smp_processor_id();
4644         /* Start one for boot CPU. */
4645         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4646         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4647         register_cpu_notifier(&migration_notifier);
4648         return 0;
4649 }
4650 #endif
4651
4652 #ifdef CONFIG_SMP
4653 #define SCHED_DOMAIN_DEBUG
4654 #ifdef SCHED_DOMAIN_DEBUG
4655 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4656 {
4657         int level = 0;
4658
4659         if (!sd) {
4660                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4661                 return;
4662         }
4663
4664         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4665
4666         do {
4667                 int i;
4668                 char str[NR_CPUS];
4669                 struct sched_group *group = sd->groups;
4670                 cpumask_t groupmask;
4671
4672                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4673                 cpus_clear(groupmask);
4674
4675                 printk(KERN_DEBUG);
4676                 for (i = 0; i < level + 1; i++)
4677                         printk(" ");
4678                 printk("domain %d: ", level);
4679
4680                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4681                         printk("does not load-balance\n");
4682                         if (sd->parent)
4683                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4684                         break;
4685                 }
4686
4687                 printk("span %s\n", str);
4688
4689                 if (!cpu_isset(cpu, sd->span))
4690                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4691                 if (!cpu_isset(cpu, group->cpumask))
4692                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4693
4694                 printk(KERN_DEBUG);
4695                 for (i = 0; i < level + 2; i++)
4696                         printk(" ");
4697                 printk("groups:");
4698                 do {
4699                         if (!group) {
4700                                 printk("\n");
4701                                 printk(KERN_ERR "ERROR: group is NULL\n");
4702                                 break;
4703                         }
4704
4705                         if (!group->cpu_power) {
4706                                 printk("\n");
4707                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4708                         }
4709
4710                         if (!cpus_weight(group->cpumask)) {
4711                                 printk("\n");
4712                                 printk(KERN_ERR "ERROR: empty group\n");
4713                         }
4714
4715                         if (cpus_intersects(groupmask, group->cpumask)) {
4716                                 printk("\n");
4717                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4718                         }
4719
4720                         cpus_or(groupmask, groupmask, group->cpumask);
4721
4722                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4723                         printk(" %s", str);
4724
4725                         group = group->next;
4726                 } while (group != sd->groups);
4727                 printk("\n");
4728
4729                 if (!cpus_equal(sd->span, groupmask))
4730                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4731
4732                 level++;
4733                 sd = sd->parent;
4734
4735                 if (sd) {
4736                         if (!cpus_subset(groupmask, sd->span))
4737                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4738                 }
4739
4740         } while (sd);
4741 }
4742 #else
4743 #define sched_domain_debug(sd, cpu) {}
4744 #endif
4745
4746 static int __devinit sd_degenerate(struct sched_domain *sd)
4747 {
4748         if (cpus_weight(sd->span) == 1)
4749                 return 1;
4750
4751         /* Following flags need at least 2 groups */
4752         if (sd->flags & (SD_LOAD_BALANCE |
4753                          SD_BALANCE_NEWIDLE |
4754                          SD_BALANCE_FORK |
4755                          SD_BALANCE_EXEC)) {
4756                 if (sd->groups != sd->groups->next)
4757                         return 0;
4758         }
4759
4760         /* Following flags don't use groups */
4761         if (sd->flags & (SD_WAKE_IDLE |
4762                          SD_WAKE_AFFINE |
4763                          SD_WAKE_BALANCE))
4764                 return 0;
4765
4766         return 1;
4767 }
4768
4769 static int __devinit sd_parent_degenerate(struct sched_domain *sd,
4770                                                 struct sched_domain *parent)
4771 {
4772         unsigned long cflags = sd->flags, pflags = parent->flags;
4773
4774         if (sd_degenerate(parent))
4775                 return 1;
4776
4777         if (!cpus_equal(sd->span, parent->span))
4778                 return 0;
4779
4780         /* Does parent contain flags not in child? */
4781         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4782         if (cflags & SD_WAKE_AFFINE)
4783                 pflags &= ~SD_WAKE_BALANCE;
4784         /* Flags needing groups don't count if only 1 group in parent */
4785         if (parent->groups == parent->groups->next) {
4786                 pflags &= ~(SD_LOAD_BALANCE |
4787                                 SD_BALANCE_NEWIDLE |
4788                                 SD_BALANCE_FORK |
4789                                 SD_BALANCE_EXEC);
4790         }
4791         if (~cflags & pflags)
4792                 return 0;
4793
4794         return 1;
4795 }
4796
4797 /*
4798  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4799  * hold the hotplug lock.
4800  */
4801 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4802 {
4803         migration_req_t req;
4804         unsigned long flags;
4805         runqueue_t *rq = cpu_rq(cpu);
4806         int local = 1;
4807         struct sched_domain *tmp;
4808
4809         /* Remove the sched domains which do not contribute to scheduling. */
4810         for (tmp = sd; tmp; tmp = tmp->parent) {
4811                 struct sched_domain *parent = tmp->parent;
4812                 if (!parent)
4813                         break;
4814                 if (sd_parent_degenerate(tmp, parent))
4815                         tmp->parent = parent->parent;
4816         }
4817
4818         if (sd && sd_degenerate(sd))
4819                 sd = sd->parent;
4820
4821         sched_domain_debug(sd, cpu);
4822
4823         spin_lock_irqsave(&rq->lock, flags);
4824
4825         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4826                 rq->sd = sd;
4827         } else {
4828                 init_completion(&req.done);
4829                 req.type = REQ_SET_DOMAIN;
4830                 req.sd = sd;
4831                 list_add(&req.list, &rq->migration_queue);
4832                 local = 0;
4833         }
4834
4835         spin_unlock_irqrestore(&rq->lock, flags);
4836
4837         if (!local) {
4838                 wake_up_process(rq->migration_thread);
4839                 wait_for_completion(&req.done);
4840         }
4841 }
4842
4843 /* cpus with isolated domains */
4844 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4845
4846 /* Setup the mask of cpus configured for isolated domains */
4847 static int __init isolated_cpu_setup(char *str)
4848 {
4849         int ints[NR_CPUS], i;
4850
4851         str = get_options(str, ARRAY_SIZE(ints), ints);
4852         cpus_clear(cpu_isolated_map);
4853         for (i = 1; i <= ints[0]; i++)
4854                 if (ints[i] < NR_CPUS)
4855                         cpu_set(ints[i], cpu_isolated_map);
4856         return 1;
4857 }
4858
4859 __setup ("isolcpus=", isolated_cpu_setup);
4860
4861 /*
4862  * init_sched_build_groups takes an array of groups, the cpumask we wish
4863  * to span, and a pointer to a function which identifies what group a CPU
4864  * belongs to. The return value of group_fn must be a valid index into the
4865  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4866  * keep track of groups covered with a cpumask_t).
4867  *
4868  * init_sched_build_groups will build a circular linked list of the groups
4869  * covered by the given span, and will set each group's ->cpumask correctly,
4870  * and ->cpu_power to 0.
4871  */
4872 void __devinit init_sched_build_groups(struct sched_group groups[],
4873                         cpumask_t span, int (*group_fn)(int cpu))
4874 {
4875         struct sched_group *first = NULL, *last = NULL;
4876         cpumask_t covered = CPU_MASK_NONE;
4877         int i;
4878
4879         for_each_cpu_mask(i, span) {
4880                 int group = group_fn(i);
4881                 struct sched_group *sg = &groups[group];
4882                 int j;
4883
4884                 if (cpu_isset(i, covered))
4885                         continue;
4886
4887                 sg->cpumask = CPU_MASK_NONE;
4888                 sg->cpu_power = 0;
4889
4890                 for_each_cpu_mask(j, span) {
4891                         if (group_fn(j) != group)
4892                                 continue;
4893
4894                         cpu_set(j, covered);
4895                         cpu_set(j, sg->cpumask);
4896                 }
4897                 if (!first)
4898                         first = sg;
4899                 if (last)
4900                         last->next = sg;
4901                 last = sg;
4902         }
4903         last->next = first;
4904 }
4905
4906
4907 #ifdef ARCH_HAS_SCHED_DOMAIN
4908 extern void __devinit arch_init_sched_domains(void);
4909 extern void __devinit arch_destroy_sched_domains(void);
4910 #else
4911 #ifdef CONFIG_SCHED_SMT
4912 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4913 static struct sched_group sched_group_cpus[NR_CPUS];
4914 static int __devinit cpu_to_cpu_group(int cpu)
4915 {
4916         return cpu;
4917 }
4918 #endif
4919
4920 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4921 static struct sched_group sched_group_phys[NR_CPUS];
4922 static int __devinit cpu_to_phys_group(int cpu)
4923 {
4924 #ifdef CONFIG_SCHED_SMT
4925         return first_cpu(cpu_sibling_map[cpu]);
4926 #else
4927         return cpu;
4928 #endif
4929 }
4930
4931 #ifdef CONFIG_NUMA
4932
4933 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4934 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4935 static int __devinit cpu_to_node_group(int cpu)
4936 {
4937         return cpu_to_node(cpu);
4938 }
4939 #endif
4940
4941 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4942 /*
4943  * The domains setup code relies on siblings not spanning
4944  * multiple nodes. Make sure the architecture has a proper
4945  * siblings map:
4946  */
4947 static void check_sibling_maps(void)
4948 {
4949         int i, j;
4950
4951         for_each_online_cpu(i) {
4952                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4953                         if (cpu_to_node(i) != cpu_to_node(j)) {
4954                                 printk(KERN_INFO "warning: CPU %d siblings map "
4955                                         "to different node - isolating "
4956                                         "them.\n", i);
4957                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4958                                 break;
4959                         }
4960                 }
4961         }
4962 }
4963 #endif
4964
4965 /*
4966  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4967  */
4968 static void __devinit arch_init_sched_domains(void)
4969 {
4970         int i;
4971         cpumask_t cpu_default_map;
4972
4973 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4974         check_sibling_maps();
4975 #endif
4976         /*
4977          * Setup mask for cpus without special case scheduling requirements.
4978          * For now this just excludes isolated cpus, but could be used to
4979          * exclude other special cases in the future.
4980          */
4981         cpus_complement(cpu_default_map, cpu_isolated_map);
4982         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4983
4984         /*
4985          * Set up domains. Isolated domains just stay on the NULL domain.
4986          */
4987         for_each_cpu_mask(i, cpu_default_map) {
4988                 int group;
4989                 struct sched_domain *sd = NULL, *p;
4990                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4991
4992                 cpus_and(nodemask, nodemask, cpu_default_map);
4993
4994 #ifdef CONFIG_NUMA
4995                 sd = &per_cpu(node_domains, i);
4996                 group = cpu_to_node_group(i);
4997                 *sd = SD_NODE_INIT;
4998                 sd->span = cpu_default_map;
4999                 sd->groups = &sched_group_nodes[group];
5000 #endif
5001
5002                 p = sd;
5003                 sd = &per_cpu(phys_domains, i);
5004                 group = cpu_to_phys_group(i);
5005                 *sd = SD_CPU_INIT;
5006                 sd->span = nodemask;
5007                 sd->parent = p;
5008                 sd->groups = &sched_group_phys[group];
5009
5010 #ifdef CONFIG_SCHED_SMT
5011                 p = sd;
5012                 sd = &per_cpu(cpu_domains, i);
5013                 group = cpu_to_cpu_group(i);
5014                 *sd = SD_SIBLING_INIT;
5015                 sd->span = cpu_sibling_map[i];
5016                 cpus_and(sd->span, sd->span, cpu_default_map);
5017                 sd->parent = p;
5018                 sd->groups = &sched_group_cpus[group];
5019 #endif
5020         }
5021
5022 #ifdef CONFIG_SCHED_SMT
5023         /* Set up CPU (sibling) groups */
5024         for_each_online_cpu(i) {
5025                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5026                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
5027                 if (i != first_cpu(this_sibling_map))
5028                         continue;
5029
5030                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5031                                                 &cpu_to_cpu_group);
5032         }
5033 #endif
5034
5035         /* Set up physical groups */
5036         for (i = 0; i < MAX_NUMNODES; i++) {
5037                 cpumask_t nodemask = node_to_cpumask(i);
5038
5039                 cpus_and(nodemask, nodemask, cpu_default_map);
5040                 if (cpus_empty(nodemask))
5041                         continue;
5042
5043                 init_sched_build_groups(sched_group_phys, nodemask,
5044                                                 &cpu_to_phys_group);
5045         }
5046
5047 #ifdef CONFIG_NUMA
5048         /* Set up node groups */
5049         init_sched_build_groups(sched_group_nodes, cpu_default_map,
5050                                         &cpu_to_node_group);
5051 #endif
5052
5053         /* Calculate CPU power for physical packages and nodes */
5054         for_each_cpu_mask(i, cpu_default_map) {
5055                 int power;
5056                 struct sched_domain *sd;
5057 #ifdef CONFIG_SCHED_SMT
5058                 sd = &per_cpu(cpu_domains, i);
5059                 power = SCHED_LOAD_SCALE;
5060                 sd->groups->cpu_power = power;
5061 #endif
5062
5063                 sd = &per_cpu(phys_domains, i);
5064                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5065                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5066                 sd->groups->cpu_power = power;
5067
5068 #ifdef CONFIG_NUMA
5069                 if (i == first_cpu(sd->groups->cpumask)) {
5070                         /* Only add "power" once for each physical package. */
5071                         sd = &per_cpu(node_domains, i);
5072                         sd->groups->cpu_power += power;
5073                 }
5074 #endif
5075         }
5076
5077         /* Attach the domains */
5078         for_each_online_cpu(i) {
5079                 struct sched_domain *sd;
5080 #ifdef CONFIG_SCHED_SMT
5081                 sd = &per_cpu(cpu_domains, i);
5082 #else
5083                 sd = &per_cpu(phys_domains, i);
5084 #endif
5085                 cpu_attach_domain(sd, i);
5086         }
5087 }
5088
5089 #ifdef CONFIG_HOTPLUG_CPU
5090 static void __devinit arch_destroy_sched_domains(void)
5091 {
5092         /* Do nothing: everything is statically allocated. */
5093 }
5094 #endif
5095
5096 #endif /* ARCH_HAS_SCHED_DOMAIN */
5097
5098 #ifdef CONFIG_HOTPLUG_CPU
5099 /*
5100  * Force a reinitialization of the sched domains hierarchy.  The domains
5101  * and groups cannot be updated in place without racing with the balancing
5102  * code, so we temporarily attach all running cpus to the NULL domain
5103  * which will prevent rebalancing while the sched domains are recalculated.
5104  */
5105 static int update_sched_domains(struct notifier_block *nfb,
5106                                 unsigned long action, void *hcpu)
5107 {
5108         int i;
5109
5110         switch (action) {
5111         case CPU_UP_PREPARE:
5112         case CPU_DOWN_PREPARE:
5113                 for_each_online_cpu(i)
5114                         cpu_attach_domain(NULL, i);
5115                 arch_destroy_sched_domains();
5116                 return NOTIFY_OK;
5117
5118         case CPU_UP_CANCELED:
5119         case CPU_DOWN_FAILED:
5120         case CPU_ONLINE:
5121         case CPU_DEAD:
5122                 /*
5123                  * Fall through and re-initialise the domains.
5124                  */
5125                 break;
5126         default:
5127                 return NOTIFY_DONE;
5128         }
5129
5130         /* The hotplug lock is already held by cpu_up/cpu_down */
5131         arch_init_sched_domains();
5132
5133         return NOTIFY_OK;
5134 }
5135 #endif
5136
5137 void __init sched_init_smp(void)
5138 {
5139         lock_cpu_hotplug();
5140         arch_init_sched_domains();
5141         unlock_cpu_hotplug();
5142         /* XXX: Theoretical race here - CPU may be hotplugged now */
5143         hotcpu_notifier(update_sched_domains, 0);
5144 }
5145 #else
5146 void __init sched_init_smp(void)
5147 {
5148 }
5149 #endif /* CONFIG_SMP */
5150
5151 int in_sched_functions(unsigned long addr)
5152 {
5153         /* Linker adds these: start and end of __sched functions */
5154         extern char __sched_text_start[], __sched_text_end[];
5155         return in_lock_functions(addr) ||
5156                 (addr >= (unsigned long)__sched_text_start
5157                 && addr < (unsigned long)__sched_text_end);
5158 }
5159
5160 void __init sched_init(void)
5161 {
5162         runqueue_t *rq;
5163         int i, j, k;
5164
5165         for (i = 0; i < NR_CPUS; i++) {
5166                 prio_array_t *array;
5167
5168                 rq = cpu_rq(i);
5169                 spin_lock_init(&rq->lock);
5170                 rq->nr_running = 0;
5171                 rq->active = rq->arrays;
5172                 rq->expired = rq->arrays + 1;
5173                 rq->best_expired_prio = MAX_PRIO;
5174
5175 #ifdef CONFIG_SMP
5176                 rq->sd = NULL;
5177                 for (j = 1; j < 3; j++)
5178                         rq->cpu_load[j] = 0;
5179                 rq->active_balance = 0;
5180                 rq->push_cpu = 0;
5181                 rq->migration_thread = NULL;
5182                 INIT_LIST_HEAD(&rq->migration_queue);
5183 #endif
5184                 atomic_set(&rq->nr_iowait, 0);
5185
5186                 for (j = 0; j < 2; j++) {
5187                         array = rq->arrays + j;
5188                         for (k = 0; k < MAX_PRIO; k++) {
5189                                 INIT_LIST_HEAD(array->queue + k);
5190                                 __clear_bit(k, array->bitmap);
5191                         }
5192                         // delimiter for bitsearch
5193                         __set_bit(MAX_PRIO, array->bitmap);
5194                 }
5195         }
5196
5197         /*
5198          * The boot idle thread does lazy MMU switching as well:
5199          */
5200         atomic_inc(&init_mm.mm_count);
5201         enter_lazy_tlb(&init_mm, current);
5202
5203         /*
5204          * Make us the idle thread. Technically, schedule() should not be
5205          * called from this thread, however somewhere below it might be,
5206          * but because we are the idle thread, we just pick up running again
5207          * when this runqueue becomes "idle".
5208          */
5209         init_idle(current, smp_processor_id());
5210 }
5211
5212 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5213 void __might_sleep(char *file, int line)
5214 {
5215 #if defined(in_atomic)
5216         static unsigned long prev_jiffy;        /* ratelimiting */
5217
5218         if ((in_atomic() || irqs_disabled()) &&
5219             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5220                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5221                         return;
5222                 prev_jiffy = jiffies;
5223                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5224                                 " context at %s:%d\n", file, line);
5225                 printk("in_atomic():%d, irqs_disabled():%d\n",
5226                         in_atomic(), irqs_disabled());
5227                 dump_stack();
5228         }
5229 #endif
5230 }
5231 EXPORT_SYMBOL(__might_sleep);
5232 #endif
5233
5234 #ifdef CONFIG_MAGIC_SYSRQ
5235 void normalize_rt_tasks(void)
5236 {
5237         struct task_struct *p;
5238         prio_array_t *array;
5239         unsigned long flags;
5240         runqueue_t *rq;
5241
5242         read_lock_irq(&tasklist_lock);
5243         for_each_process (p) {
5244                 if (!rt_task(p))
5245                         continue;
5246
5247                 rq = task_rq_lock(p, &flags);
5248
5249                 array = p->array;
5250                 if (array)
5251                         deactivate_task(p, task_rq(p));
5252                 __setscheduler(p, SCHED_NORMAL, 0);
5253                 if (array) {
5254                         __activate_task(p, task_rq(p));
5255                         resched_task(rq->curr);
5256                 }
5257
5258                 task_rq_unlock(rq, &flags);
5259         }
5260         read_unlock_irq(&tasklist_lock);
5261 }
5262
5263 #endif /* CONFIG_MAGIC_SYSRQ */