2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
28 #include <asm/system.h>
29 #include <asm/hardware.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/icst307.h>
38 #include <asm/mach/arch.h>
39 #include <asm/mach/flash.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/mach/map.h>
43 #include <asm/mach/mmc.h>
49 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
52 * Setup a VA for the Versatile Vectored Interrupt Controller.
54 #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
55 #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
57 static void vic_mask_irq(unsigned int irq)
60 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
63 static void vic_unmask_irq(unsigned int irq)
66 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
69 static struct irqchip vic_chip = {
72 .unmask = vic_unmask_irq,
75 static void sic_mask_irq(unsigned int irq)
78 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
81 static void sic_unmask_irq(unsigned int irq)
84 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
87 static struct irqchip sic_chip = {
90 .unmask = sic_unmask_irq,
94 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
96 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
99 do_bad_IRQ(irq, desc, regs);
104 irq = ffs(status) - 1;
105 status &= ~(1 << irq);
107 irq += IRQ_SIC_START;
109 desc = irq_desc + irq;
110 desc->handle(irq, desc, regs);
115 #define IRQ_MMCI0A IRQ_VICSOURCE22
116 #define IRQ_AACI IRQ_VICSOURCE24
117 #define IRQ_ETH IRQ_VICSOURCE25
118 #define PIC_MASK 0xFFD00000
120 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
121 #define IRQ_AACI IRQ_SIC_AACI
122 #define IRQ_ETH IRQ_SIC_ETH
126 void __init versatile_init_irq(void)
128 unsigned int i, value;
130 /* Disable all interrupts initially. */
132 writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133 writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134 writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135 writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136 writel(0, VA_VIC_BASE + VIC_ITCR);
137 writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
140 * Make sure we clear all existing interrupts
142 writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143 for (i = 0; i < 19; i++) {
144 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
148 for (i = 0; i < 16; i++) {
149 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
153 writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
155 for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156 if (i != IRQ_VICSOURCE31) {
157 set_irq_chip(i, &vic_chip);
158 set_irq_handler(i, do_level_IRQ);
159 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
163 set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164 vic_unmask_irq(IRQ_VICSOURCE31);
166 /* Do second interrupt controller */
167 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
169 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171 set_irq_chip(i, &sic_chip);
172 set_irq_handler(i, do_level_IRQ);
173 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
178 * Interrupts on secondary controller from 0 to 8 are routed to
180 * Interrupts from 21 to 31 are routed directly to the VIC on
181 * the corresponding number on primary controller. This is controlled
182 * by setting PIC_ENABLEx.
184 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
187 static struct map_desc versatile_io_desc[] __initdata = {
188 { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
189 { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
190 { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
191 { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
192 #ifdef CONFIG_MACH_VERSATILE_AB
193 { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
194 { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
196 #ifdef CONFIG_DEBUG_LL
197 { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
200 { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
201 { VERSATILE_PCI_VIRT_BASE, VERSATILE_PCI_BASE, VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
202 { VERSATILE_PCI_CFG_VIRT_BASE, VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
204 { VERSATILE_PCI_VIRT_MEM_BASE0, VERSATILE_PCI_MEM_BASE0, SZ_16M, MT_DEVICE },
205 { VERSATILE_PCI_VIRT_MEM_BASE1, VERSATILE_PCI_MEM_BASE1, SZ_16M, MT_DEVICE },
206 { VERSATILE_PCI_VIRT_MEM_BASE2, VERSATILE_PCI_MEM_BASE2, SZ_16M, MT_DEVICE },
211 void __init versatile_map_io(void)
213 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
216 #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
219 * This is the Versatile sched_clock implementation. This has
220 * a resolution of 41.7ns, and a maximum value of about 179s.
222 unsigned long long sched_clock(void)
224 unsigned long long v;
226 v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
233 #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
235 static int versatile_flash_init(void)
239 val = __raw_readl(VERSATILE_FLASHCTRL);
240 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
241 __raw_writel(val, VERSATILE_FLASHCTRL);
246 static void versatile_flash_exit(void)
250 val = __raw_readl(VERSATILE_FLASHCTRL);
251 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
252 __raw_writel(val, VERSATILE_FLASHCTRL);
255 static void versatile_flash_set_vpp(int on)
259 val = __raw_readl(VERSATILE_FLASHCTRL);
261 val |= VERSATILE_FLASHPROG_FLVPPEN;
263 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
264 __raw_writel(val, VERSATILE_FLASHCTRL);
267 static struct flash_platform_data versatile_flash_data = {
268 .map_name = "cfi_probe",
270 .init = versatile_flash_init,
271 .exit = versatile_flash_exit,
272 .set_vpp = versatile_flash_set_vpp,
275 static struct resource versatile_flash_resource = {
276 .start = VERSATILE_FLASH_BASE,
277 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
278 .flags = IORESOURCE_MEM,
281 static struct platform_device versatile_flash_device = {
285 .platform_data = &versatile_flash_data,
288 .resource = &versatile_flash_resource,
291 static struct resource smc91x_resources[] = {
293 .start = VERSATILE_ETH_BASE,
294 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
295 .flags = IORESOURCE_MEM,
300 .flags = IORESOURCE_IRQ,
304 static struct platform_device smc91x_device = {
307 .num_resources = ARRAY_SIZE(smc91x_resources),
308 .resource = smc91x_resources,
311 #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
313 unsigned int mmc_status(struct device *dev)
315 struct amba_device *adev = container_of(dev, struct amba_device, dev);
318 if (adev->res.start == VERSATILE_MMCI0_BASE)
323 return readl(VERSATILE_SYSMCI) & mask;
326 static struct mmc_platform_data mmc0_plat_data = {
327 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
328 .status = mmc_status,
334 static const struct icst307_params versatile_oscvco_params = {
343 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
345 unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
346 #if defined(CONFIG_ARCH_VERSATILE_PB)
347 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
348 #elif defined(CONFIG_MACH_VERSATILE_AB)
349 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
353 val = readl(sys_osc) & ~0x7ffff;
354 val |= vco.v | (vco.r << 9) | (vco.s << 16);
356 writel(0xa05f, sys_lock);
357 writel(val, sys_osc);
361 static struct clk versatile_clcd_clk = {
363 .params = &versatile_oscvco_params,
364 .setvco = versatile_oscvco_set,
370 #define SYS_CLCD_MODE_MASK (3 << 0)
371 #define SYS_CLCD_MODE_888 (0 << 0)
372 #define SYS_CLCD_MODE_5551 (1 << 0)
373 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
374 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
375 #define SYS_CLCD_NLCDIOON (1 << 2)
376 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
377 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
378 #define SYS_CLCD_ID_MASK (0x1f << 8)
379 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
380 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
381 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
382 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
383 #define SYS_CLCD_ID_VGA (0x1f << 8)
385 static struct clcd_panel vga = {
399 .vmode = FB_VMODE_NONINTERLACED,
403 .tim2 = TIM2_BCD | TIM2_IPC,
404 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
408 static struct clcd_panel sanyo_3_8_in = {
410 .name = "Sanyo QVGA",
422 .vmode = FB_VMODE_NONINTERLACED,
427 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
431 static struct clcd_panel sanyo_2_5_in = {
433 .name = "Sanyo QVGA Portrait",
444 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
445 .vmode = FB_VMODE_NONINTERLACED,
449 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
450 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
454 static struct clcd_panel epson_2_2_in = {
456 .name = "Epson QCIF",
468 .vmode = FB_VMODE_NONINTERLACED,
472 .tim2 = TIM2_BCD | TIM2_IPC,
473 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
478 * Detect which LCD panel is connected, and return the appropriate
479 * clcd_panel structure. Note: we do not have any information on
480 * the required timings for the 8.4in panel, so we presently assume
483 static struct clcd_panel *versatile_clcd_panel(void)
485 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
486 struct clcd_panel *panel = &vga;
489 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
490 if (val == SYS_CLCD_ID_SANYO_3_8)
491 panel = &sanyo_3_8_in;
492 else if (val == SYS_CLCD_ID_SANYO_2_5)
493 panel = &sanyo_2_5_in;
494 else if (val == SYS_CLCD_ID_EPSON_2_2)
495 panel = &epson_2_2_in;
496 else if (val == SYS_CLCD_ID_VGA)
499 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
508 * Disable all display connectors on the interface module.
510 static void versatile_clcd_disable(struct clcd_fb *fb)
512 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
515 val = readl(sys_clcd);
516 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
517 writel(val, sys_clcd);
519 #ifdef CONFIG_MACH_VERSATILE_AB
521 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
523 if (fb->panel == &sanyo_2_5_in) {
524 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
527 ctrl = readl(versatile_ib2_ctrl);
529 writel(ctrl, versatile_ib2_ctrl);
535 * Enable the relevant connector on the interface module.
537 static void versatile_clcd_enable(struct clcd_fb *fb)
539 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
542 val = readl(sys_clcd);
543 val &= ~SYS_CLCD_MODE_MASK;
545 switch (fb->fb.var.green.length) {
547 val |= SYS_CLCD_MODE_5551;
550 val |= SYS_CLCD_MODE_565_RLSB;
553 val |= SYS_CLCD_MODE_888;
560 writel(val, sys_clcd);
563 * And now enable the PSUs
565 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
566 writel(val, sys_clcd);
568 #ifdef CONFIG_MACH_VERSATILE_AB
570 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
572 if (fb->panel == &sanyo_2_5_in) {
573 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
576 ctrl = readl(versatile_ib2_ctrl);
578 writel(ctrl, versatile_ib2_ctrl);
583 static unsigned long framesize = SZ_1M;
585 static int versatile_clcd_setup(struct clcd_fb *fb)
589 fb->panel = versatile_clcd_panel();
591 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
593 if (!fb->fb.screen_base) {
594 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
598 fb->fb.fix.smem_start = dma;
599 fb->fb.fix.smem_len = framesize;
604 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
606 return dma_mmap_writecombine(&fb->dev->dev, vma,
608 fb->fb.fix.smem_start,
609 fb->fb.fix.smem_len);
612 static void versatile_clcd_remove(struct clcd_fb *fb)
614 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
615 fb->fb.screen_base, fb->fb.fix.smem_start);
618 static struct clcd_board clcd_plat_data = {
620 .check = clcdfb_check,
621 .decode = clcdfb_decode,
622 .disable = versatile_clcd_disable,
623 .enable = versatile_clcd_enable,
624 .setup = versatile_clcd_setup,
625 .mmap = versatile_clcd_mmap,
626 .remove = versatile_clcd_remove,
629 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
630 #define AACI_DMA { 0x80, 0x81 }
631 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
632 #define MMCI0_DMA { 0x84, 0 }
633 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
634 #define KMI0_DMA { 0, 0 }
635 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
636 #define KMI1_DMA { 0, 0 }
639 * These devices are connected directly to the multi-layer AHB switch
641 #define SMC_IRQ { NO_IRQ, NO_IRQ }
642 #define SMC_DMA { 0, 0 }
643 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
644 #define MPMC_DMA { 0, 0 }
645 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
646 #define CLCD_DMA { 0, 0 }
647 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
648 #define DMAC_DMA { 0, 0 }
651 * These devices are connected via the core APB bridge
653 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
654 #define SCTL_DMA { 0, 0 }
655 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
656 #define WATCHDOG_DMA { 0, 0 }
657 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
658 #define GPIO0_DMA { 0, 0 }
659 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
660 #define GPIO1_DMA { 0, 0 }
661 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
662 #define RTC_DMA { 0, 0 }
665 * These devices are connected via the DMA APB bridge
667 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
668 #define SCI_DMA { 7, 6 }
669 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
670 #define UART0_DMA { 15, 14 }
671 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
672 #define UART1_DMA { 13, 12 }
673 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
674 #define UART2_DMA { 11, 10 }
675 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
676 #define SSP_DMA { 9, 8 }
678 /* FPGA Primecells */
679 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
680 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
681 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
682 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
684 /* DevChip Primecells */
685 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
686 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
687 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
688 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
689 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
690 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
691 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
692 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
693 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
694 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
695 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
696 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
697 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
698 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
700 static struct amba_device *amba_devs[] __initdata = {
722 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
724 static void versatile_leds_event(led_event_t ledevt)
729 local_irq_save(flags);
730 val = readl(VA_LEDS_BASE);
734 val = val & ~VERSATILE_SYS_LED0;
738 val = val | VERSATILE_SYS_LED0;
742 val = val ^ VERSATILE_SYS_LED1;
753 writel(val, VA_LEDS_BASE);
754 local_irq_restore(flags);
756 #endif /* CONFIG_LEDS */
758 void __init versatile_init(void)
762 clk_register(&versatile_clcd_clk);
764 platform_device_register(&versatile_flash_device);
765 platform_device_register(&smc91x_device);
767 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
768 struct amba_device *d = amba_devs[i];
769 amba_device_register(d, &iomem_resource);
773 leds_event = versatile_leds_event;
778 * Where is the timer (VA)?
780 #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
781 #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
782 #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
783 #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
784 #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
787 * How long is the timer interval?
789 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
790 #if TIMER_INTERVAL >= 0x100000
791 #define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
792 #define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
793 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
794 #elif TIMER_INTERVAL >= 0x10000
795 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
796 #define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
797 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
799 #define TIMER_RELOAD (TIMER_INTERVAL)
800 #define TIMER_CTRL 0x80 /* Enable */
801 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
804 #define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
807 * What does it look like?
809 typedef struct TimerStruct {
810 unsigned long TimerLoad;
811 unsigned long TimerValue;
812 unsigned long TimerControl;
813 unsigned long TimerClear;
817 * Returns number of ms since last clock interrupt. Note that interrupts
818 * will have been disabled by do_gettimeoffset()
820 static unsigned long versatile_gettimeoffset(void)
822 volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
823 unsigned long ticks1, ticks2, status;
826 * Get the current number of ticks. Note that there is a race
827 * condition between us reading the timer and checking for
828 * an interrupt. We get around this by ensuring that the
829 * counter has not reloaded between our two reads.
831 ticks2 = timer0->TimerValue & 0xffff;
834 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
835 ticks2 = timer0->TimerValue & 0xffff;
836 } while (ticks2 > ticks1);
839 * Number of ticks since last interrupt.
841 ticks1 = TIMER_RELOAD - ticks2;
844 * Interrupt pending? If so, we've reloaded once already.
846 * FIXME: Need to check this is effectively timer 0 that expires
848 if (status & IRQMASK_TIMERINT0_1)
849 ticks1 += TIMER_RELOAD;
852 * Convert the ticks to usecs
854 return TICKS2USECS(ticks1);
858 * IRQ handler for the timer
860 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
862 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
864 write_seqlock(&xtime_lock);
866 // ...clear the interrupt
867 timer0->TimerClear = 1;
871 write_sequnlock(&xtime_lock);
876 static struct irqaction versatile_timer_irq = {
877 .name = "Versatile Timer Tick",
878 .flags = SA_INTERRUPT | SA_TIMER,
879 .handler = versatile_timer_interrupt,
883 * Set up timer interrupt, and return the current time in seconds.
885 static void __init versatile_timer_init(void)
887 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
888 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
889 volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
890 volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
893 * set clock frequency:
894 * VERSATILE_REFCLK is 32KHz
895 * VERSATILE_TIMCLK is 1MHz
897 *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
898 ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
899 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
902 * Initialise to a known state (all timers off)
904 timer0->TimerControl = 0;
905 timer1->TimerControl = 0;
906 timer2->TimerControl = 0;
907 timer3->TimerControl = 0;
909 timer0->TimerLoad = TIMER_RELOAD;
910 timer0->TimerValue = TIMER_RELOAD;
911 timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
914 * Make irqs happen for the system timer
916 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
919 struct sys_timer versatile_timer = {
920 .init = versatile_timer_init,
921 .offset = versatile_gettimeoffset,