Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/dtor/input.git manually
[linux-2.6] / arch / arm / mach-versatile / core.c
1 /*
2  *  linux/arch/arm/mach-versatile/core.c
3  *
4  *  Copyright (C) 1999 - 2003 ARM Limited
5  *  Copyright (C) 2000 Deep Blue Solutions Ltd
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27
28 #include <asm/system.h>
29 #include <asm/hardware.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/leds.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/icst307.h>
37
38 #include <asm/mach/arch.h>
39 #include <asm/mach/flash.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/mach/map.h>
43 #include <asm/mach/mmc.h>
44
45 #include "core.h"
46 #include "clock.h"
47
48 /*
49  * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
50  * is the (PA >> 12).
51  *
52  * Setup a VA for the Versatile Vectored Interrupt Controller.
53  */
54 #define VA_VIC_BASE              IO_ADDRESS(VERSATILE_VIC_BASE)
55 #define VA_SIC_BASE              IO_ADDRESS(VERSATILE_SIC_BASE)
56
57 static void vic_mask_irq(unsigned int irq)
58 {
59         irq -= IRQ_VIC_START;
60         writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
61 }
62
63 static void vic_unmask_irq(unsigned int irq)
64 {
65         irq -= IRQ_VIC_START;
66         writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
67 }
68
69 static struct irqchip vic_chip = {
70         .ack    = vic_mask_irq,
71         .mask   = vic_mask_irq,
72         .unmask = vic_unmask_irq,
73 };
74
75 static void sic_mask_irq(unsigned int irq)
76 {
77         irq -= IRQ_SIC_START;
78         writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
79 }
80
81 static void sic_unmask_irq(unsigned int irq)
82 {
83         irq -= IRQ_SIC_START;
84         writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
85 }
86
87 static struct irqchip sic_chip = {
88         .ack    = sic_mask_irq,
89         .mask   = sic_mask_irq,
90         .unmask = sic_unmask_irq,
91 };
92
93 static void
94 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
95 {
96         unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
97
98         if (status == 0) {
99                 do_bad_IRQ(irq, desc, regs);
100                 return;
101         }
102
103         do {
104                 irq = ffs(status) - 1;
105                 status &= ~(1 << irq);
106
107                 irq += IRQ_SIC_START;
108
109                 desc = irq_desc + irq;
110                 desc->handle(irq, desc, regs);
111         } while (status);
112 }
113
114 #if 1
115 #define IRQ_MMCI0A      IRQ_VICSOURCE22
116 #define IRQ_AACI        IRQ_VICSOURCE24
117 #define IRQ_ETH         IRQ_VICSOURCE25
118 #define PIC_MASK        0xFFD00000
119 #else
120 #define IRQ_MMCI0A      IRQ_SIC_MMCI0A
121 #define IRQ_AACI        IRQ_SIC_AACI
122 #define IRQ_ETH         IRQ_SIC_ETH
123 #define PIC_MASK        0
124 #endif
125
126 void __init versatile_init_irq(void)
127 {
128         unsigned int i, value;
129
130         /* Disable all interrupts initially. */
131
132         writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133         writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134         writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135         writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136         writel(0, VA_VIC_BASE + VIC_ITCR);
137         writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
138
139         /*
140          * Make sure we clear all existing interrupts
141          */
142         writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143         for (i = 0; i < 19; i++) {
144                 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145                 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
146         }
147
148         for (i = 0; i < 16; i++) {
149                 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150                 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
151         }
152
153         writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
154
155         for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156                 if (i != IRQ_VICSOURCE31) {
157                         set_irq_chip(i, &vic_chip);
158                         set_irq_handler(i, do_level_IRQ);
159                         set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
160                 }
161         }
162
163         set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164         vic_unmask_irq(IRQ_VICSOURCE31);
165
166         /* Do second interrupt controller */
167         writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
168
169         for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170                 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171                         set_irq_chip(i, &sic_chip);
172                         set_irq_handler(i, do_level_IRQ);
173                         set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
174                 }
175         }
176
177         /*
178          * Interrupts on secondary controller from 0 to 8 are routed to
179          * source 31 on PIC.
180          * Interrupts from 21 to 31 are routed directly to the VIC on
181          * the corresponding number on primary controller. This is controlled
182          * by setting PIC_ENABLEx.
183          */
184         writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
185 }
186
187 static struct map_desc versatile_io_desc[] __initdata = {
188  { IO_ADDRESS(VERSATILE_SYS_BASE),   VERSATILE_SYS_BASE,   SZ_4K,      MT_DEVICE },
189  { IO_ADDRESS(VERSATILE_SIC_BASE),   VERSATILE_SIC_BASE,   SZ_4K,      MT_DEVICE },
190  { IO_ADDRESS(VERSATILE_VIC_BASE),   VERSATILE_VIC_BASE,   SZ_4K,      MT_DEVICE },
191  { IO_ADDRESS(VERSATILE_SCTL_BASE),  VERSATILE_SCTL_BASE,  SZ_4K * 9,  MT_DEVICE },
192 #ifdef CONFIG_MACH_VERSATILE_AB
193  { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K,      MT_DEVICE },
194  { IO_ADDRESS(VERSATILE_IB2_BASE),   VERSATILE_IB2_BASE,   SZ_64M,     MT_DEVICE },
195 #endif
196 #ifdef CONFIG_DEBUG_LL
197  { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K,      MT_DEVICE },
198 #endif
199 #ifdef CONFIG_PCI
200  { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
201  { VERSATILE_PCI_VIRT_BASE,          VERSATILE_PCI_BASE,   VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
202  { VERSATILE_PCI_CFG_VIRT_BASE,      VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
203 #if 0
204  { VERSATILE_PCI_VIRT_MEM_BASE0,     VERSATILE_PCI_MEM_BASE0, SZ_16M,  MT_DEVICE },
205  { VERSATILE_PCI_VIRT_MEM_BASE1,     VERSATILE_PCI_MEM_BASE1, SZ_16M,  MT_DEVICE },
206  { VERSATILE_PCI_VIRT_MEM_BASE2,     VERSATILE_PCI_MEM_BASE2, SZ_16M,  MT_DEVICE },
207 #endif
208 #endif
209 };
210
211 void __init versatile_map_io(void)
212 {
213         iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
214 }
215
216 #define VERSATILE_REFCOUNTER    (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
217
218 /*
219  * This is the Versatile sched_clock implementation.  This has
220  * a resolution of 41.7ns, and a maximum value of about 179s.
221  */
222 unsigned long long sched_clock(void)
223 {
224         unsigned long long v;
225
226         v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
227         do_div(v, 3);
228
229         return v;
230 }
231
232
233 #define VERSATILE_FLASHCTRL    (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
234
235 static int versatile_flash_init(void)
236 {
237         u32 val;
238
239         val = __raw_readl(VERSATILE_FLASHCTRL);
240         val &= ~VERSATILE_FLASHPROG_FLVPPEN;
241         __raw_writel(val, VERSATILE_FLASHCTRL);
242
243         return 0;
244 }
245
246 static void versatile_flash_exit(void)
247 {
248         u32 val;
249
250         val = __raw_readl(VERSATILE_FLASHCTRL);
251         val &= ~VERSATILE_FLASHPROG_FLVPPEN;
252         __raw_writel(val, VERSATILE_FLASHCTRL);
253 }
254
255 static void versatile_flash_set_vpp(int on)
256 {
257         u32 val;
258
259         val = __raw_readl(VERSATILE_FLASHCTRL);
260         if (on)
261                 val |= VERSATILE_FLASHPROG_FLVPPEN;
262         else
263                 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
264         __raw_writel(val, VERSATILE_FLASHCTRL);
265 }
266
267 static struct flash_platform_data versatile_flash_data = {
268         .map_name               = "cfi_probe",
269         .width                  = 4,
270         .init                   = versatile_flash_init,
271         .exit                   = versatile_flash_exit,
272         .set_vpp                = versatile_flash_set_vpp,
273 };
274
275 static struct resource versatile_flash_resource = {
276         .start                  = VERSATILE_FLASH_BASE,
277         .end                    = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
278         .flags                  = IORESOURCE_MEM,
279 };
280
281 static struct platform_device versatile_flash_device = {
282         .name                   = "armflash",
283         .id                     = 0,
284         .dev                    = {
285                 .platform_data  = &versatile_flash_data,
286         },
287         .num_resources          = 1,
288         .resource               = &versatile_flash_resource,
289 };
290
291 static struct resource smc91x_resources[] = {
292         [0] = {
293                 .start          = VERSATILE_ETH_BASE,
294                 .end            = VERSATILE_ETH_BASE + SZ_64K - 1,
295                 .flags          = IORESOURCE_MEM,
296         },
297         [1] = {
298                 .start          = IRQ_ETH,
299                 .end            = IRQ_ETH,
300                 .flags          = IORESOURCE_IRQ,
301         },
302 };
303
304 static struct platform_device smc91x_device = {
305         .name           = "smc91x",
306         .id             = 0,
307         .num_resources  = ARRAY_SIZE(smc91x_resources),
308         .resource       = smc91x_resources,
309 };
310
311 #define VERSATILE_SYSMCI        (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
312
313 unsigned int mmc_status(struct device *dev)
314 {
315         struct amba_device *adev = container_of(dev, struct amba_device, dev);
316         u32 mask;
317
318         if (adev->res.start == VERSATILE_MMCI0_BASE)
319                 mask = 1;
320         else
321                 mask = 2;
322
323         return readl(VERSATILE_SYSMCI) & mask;
324 }
325
326 static struct mmc_platform_data mmc0_plat_data = {
327         .ocr_mask       = MMC_VDD_32_33|MMC_VDD_33_34,
328         .status         = mmc_status,
329 };
330
331 /*
332  * Clock handling
333  */
334 static const struct icst307_params versatile_oscvco_params = {
335         .ref            = 24000,
336         .vco_max        = 200000,
337         .vd_min         = 4 + 8,
338         .vd_max         = 511 + 8,
339         .rd_min         = 1 + 2,
340         .rd_max         = 127 + 2,
341 };
342
343 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
344 {
345         unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
346 #if defined(CONFIG_ARCH_VERSATILE_PB)
347         unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
348 #elif defined(CONFIG_MACH_VERSATILE_AB)
349         unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
350 #endif
351         u32 val;
352
353         val = readl(sys_osc) & ~0x7ffff;
354         val |= vco.v | (vco.r << 9) | (vco.s << 16);
355
356         writel(0xa05f, sys_lock);
357         writel(val, sys_osc);
358         writel(0, sys_lock);
359 }
360
361 static struct clk versatile_clcd_clk = {
362         .name   = "CLCDCLK",
363         .params = &versatile_oscvco_params,
364         .setvco = versatile_oscvco_set,
365 };
366
367 /*
368  * CLCD support.
369  */
370 #define SYS_CLCD_MODE_MASK      (3 << 0)
371 #define SYS_CLCD_MODE_888       (0 << 0)
372 #define SYS_CLCD_MODE_5551      (1 << 0)
373 #define SYS_CLCD_MODE_565_RLSB  (2 << 0)
374 #define SYS_CLCD_MODE_565_BLSB  (3 << 0)
375 #define SYS_CLCD_NLCDIOON       (1 << 2)
376 #define SYS_CLCD_VDDPOSSWITCH   (1 << 3)
377 #define SYS_CLCD_PWR3V5SWITCH   (1 << 4)
378 #define SYS_CLCD_ID_MASK        (0x1f << 8)
379 #define SYS_CLCD_ID_SANYO_3_8   (0x00 << 8)
380 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
381 #define SYS_CLCD_ID_EPSON_2_2   (0x02 << 8)
382 #define SYS_CLCD_ID_SANYO_2_5   (0x07 << 8)
383 #define SYS_CLCD_ID_VGA         (0x1f << 8)
384
385 static struct clcd_panel vga = {
386         .mode           = {
387                 .name           = "VGA",
388                 .refresh        = 60,
389                 .xres           = 640,
390                 .yres           = 480,
391                 .pixclock       = 39721,
392                 .left_margin    = 40,
393                 .right_margin   = 24,
394                 .upper_margin   = 32,
395                 .lower_margin   = 11,
396                 .hsync_len      = 96,
397                 .vsync_len      = 2,
398                 .sync           = 0,
399                 .vmode          = FB_VMODE_NONINTERLACED,
400         },
401         .width          = -1,
402         .height         = -1,
403         .tim2           = TIM2_BCD | TIM2_IPC,
404         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
405         .bpp            = 16,
406 };
407
408 static struct clcd_panel sanyo_3_8_in = {
409         .mode           = {
410                 .name           = "Sanyo QVGA",
411                 .refresh        = 116,
412                 .xres           = 320,
413                 .yres           = 240,
414                 .pixclock       = 100000,
415                 .left_margin    = 6,
416                 .right_margin   = 6,
417                 .upper_margin   = 5,
418                 .lower_margin   = 5,
419                 .hsync_len      = 6,
420                 .vsync_len      = 6,
421                 .sync           = 0,
422                 .vmode          = FB_VMODE_NONINTERLACED,
423         },
424         .width          = -1,
425         .height         = -1,
426         .tim2           = TIM2_BCD,
427         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
428         .bpp            = 16,
429 };
430
431 static struct clcd_panel sanyo_2_5_in = {
432         .mode           = {
433                 .name           = "Sanyo QVGA Portrait",
434                 .refresh        = 116,
435                 .xres           = 240,
436                 .yres           = 320,
437                 .pixclock       = 100000,
438                 .left_margin    = 20,
439                 .right_margin   = 10,
440                 .upper_margin   = 2,
441                 .lower_margin   = 2,
442                 .hsync_len      = 10,
443                 .vsync_len      = 2,
444                 .sync           = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
445                 .vmode          = FB_VMODE_NONINTERLACED,
446         },
447         .width          = -1,
448         .height         = -1,
449         .tim2           = TIM2_IVS | TIM2_IHS | TIM2_IPC,
450         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
451         .bpp            = 16,
452 };
453
454 static struct clcd_panel epson_2_2_in = {
455         .mode           = {
456                 .name           = "Epson QCIF",
457                 .refresh        = 390,
458                 .xres           = 176,
459                 .yres           = 220,
460                 .pixclock       = 62500,
461                 .left_margin    = 3,
462                 .right_margin   = 2,
463                 .upper_margin   = 1,
464                 .lower_margin   = 0,
465                 .hsync_len      = 3,
466                 .vsync_len      = 2,
467                 .sync           = 0,
468                 .vmode          = FB_VMODE_NONINTERLACED,
469         },
470         .width          = -1,
471         .height         = -1,
472         .tim2           = TIM2_BCD | TIM2_IPC,
473         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
474         .bpp            = 16,
475 };
476
477 /*
478  * Detect which LCD panel is connected, and return the appropriate
479  * clcd_panel structure.  Note: we do not have any information on
480  * the required timings for the 8.4in panel, so we presently assume
481  * VGA timings.
482  */
483 static struct clcd_panel *versatile_clcd_panel(void)
484 {
485         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
486         struct clcd_panel *panel = &vga;
487         u32 val;
488
489         val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
490         if (val == SYS_CLCD_ID_SANYO_3_8)
491                 panel = &sanyo_3_8_in;
492         else if (val == SYS_CLCD_ID_SANYO_2_5)
493                 panel = &sanyo_2_5_in;
494         else if (val == SYS_CLCD_ID_EPSON_2_2)
495                 panel = &epson_2_2_in;
496         else if (val == SYS_CLCD_ID_VGA)
497                 panel = &vga;
498         else {
499                 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
500                         val);
501                 panel = &vga;
502         }
503
504         return panel;
505 }
506
507 /*
508  * Disable all display connectors on the interface module.
509  */
510 static void versatile_clcd_disable(struct clcd_fb *fb)
511 {
512         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
513         u32 val;
514
515         val = readl(sys_clcd);
516         val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
517         writel(val, sys_clcd);
518
519 #ifdef CONFIG_MACH_VERSATILE_AB
520         /*
521          * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
522          */
523         if (fb->panel == &sanyo_2_5_in) {
524                 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
525                 unsigned long ctrl;
526
527                 ctrl = readl(versatile_ib2_ctrl);
528                 ctrl &= ~0x01;
529                 writel(ctrl, versatile_ib2_ctrl);
530         }
531 #endif
532 }
533
534 /*
535  * Enable the relevant connector on the interface module.
536  */
537 static void versatile_clcd_enable(struct clcd_fb *fb)
538 {
539         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
540         u32 val;
541
542         val = readl(sys_clcd);
543         val &= ~SYS_CLCD_MODE_MASK;
544
545         switch (fb->fb.var.green.length) {
546         case 5:
547                 val |= SYS_CLCD_MODE_5551;
548                 break;
549         case 6:
550                 val |= SYS_CLCD_MODE_565_RLSB;
551                 break;
552         case 8:
553                 val |= SYS_CLCD_MODE_888;
554                 break;
555         }
556
557         /*
558          * Set the MUX
559          */
560         writel(val, sys_clcd);
561
562         /*
563          * And now enable the PSUs
564          */
565         val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
566         writel(val, sys_clcd);
567
568 #ifdef CONFIG_MACH_VERSATILE_AB
569         /*
570          * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
571          */
572         if (fb->panel == &sanyo_2_5_in) {
573                 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
574                 unsigned long ctrl;
575
576                 ctrl = readl(versatile_ib2_ctrl);
577                 ctrl |= 0x01;
578                 writel(ctrl, versatile_ib2_ctrl);
579         }
580 #endif
581 }
582
583 static unsigned long framesize = SZ_1M;
584
585 static int versatile_clcd_setup(struct clcd_fb *fb)
586 {
587         dma_addr_t dma;
588
589         fb->panel               = versatile_clcd_panel();
590
591         fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
592                                                     &dma, GFP_KERNEL);
593         if (!fb->fb.screen_base) {
594                 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
595                 return -ENOMEM;
596         }
597
598         fb->fb.fix.smem_start   = dma;
599         fb->fb.fix.smem_len     = framesize;
600
601         return 0;
602 }
603
604 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
605 {
606         return dma_mmap_writecombine(&fb->dev->dev, vma,
607                                      fb->fb.screen_base,
608                                      fb->fb.fix.smem_start,
609                                      fb->fb.fix.smem_len);
610 }
611
612 static void versatile_clcd_remove(struct clcd_fb *fb)
613 {
614         dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
615                               fb->fb.screen_base, fb->fb.fix.smem_start);
616 }
617
618 static struct clcd_board clcd_plat_data = {
619         .name           = "Versatile",
620         .check          = clcdfb_check,
621         .decode         = clcdfb_decode,
622         .disable        = versatile_clcd_disable,
623         .enable         = versatile_clcd_enable,
624         .setup          = versatile_clcd_setup,
625         .mmap           = versatile_clcd_mmap,
626         .remove         = versatile_clcd_remove,
627 };
628
629 #define AACI_IRQ        { IRQ_AACI, NO_IRQ }
630 #define AACI_DMA        { 0x80, 0x81 }
631 #define MMCI0_IRQ       { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
632 #define MMCI0_DMA       { 0x84, 0 }
633 #define KMI0_IRQ        { IRQ_SIC_KMI0, NO_IRQ }
634 #define KMI0_DMA        { 0, 0 }
635 #define KMI1_IRQ        { IRQ_SIC_KMI1, NO_IRQ }
636 #define KMI1_DMA        { 0, 0 }
637
638 /*
639  * These devices are connected directly to the multi-layer AHB switch
640  */
641 #define SMC_IRQ         { NO_IRQ, NO_IRQ }
642 #define SMC_DMA         { 0, 0 }
643 #define MPMC_IRQ        { NO_IRQ, NO_IRQ }
644 #define MPMC_DMA        { 0, 0 }
645 #define CLCD_IRQ        { IRQ_CLCDINT, NO_IRQ }
646 #define CLCD_DMA        { 0, 0 }
647 #define DMAC_IRQ        { IRQ_DMAINT, NO_IRQ }
648 #define DMAC_DMA        { 0, 0 }
649
650 /*
651  * These devices are connected via the core APB bridge
652  */
653 #define SCTL_IRQ        { NO_IRQ, NO_IRQ }
654 #define SCTL_DMA        { 0, 0 }
655 #define WATCHDOG_IRQ    { IRQ_WDOGINT, NO_IRQ }
656 #define WATCHDOG_DMA    { 0, 0 }
657 #define GPIO0_IRQ       { IRQ_GPIOINT0, NO_IRQ }
658 #define GPIO0_DMA       { 0, 0 }
659 #define GPIO1_IRQ       { IRQ_GPIOINT1, NO_IRQ }
660 #define GPIO1_DMA       { 0, 0 }
661 #define RTC_IRQ         { IRQ_RTCINT, NO_IRQ }
662 #define RTC_DMA         { 0, 0 }
663
664 /*
665  * These devices are connected via the DMA APB bridge
666  */
667 #define SCI_IRQ         { IRQ_SCIINT, NO_IRQ }
668 #define SCI_DMA         { 7, 6 }
669 #define UART0_IRQ       { IRQ_UARTINT0, NO_IRQ }
670 #define UART0_DMA       { 15, 14 }
671 #define UART1_IRQ       { IRQ_UARTINT1, NO_IRQ }
672 #define UART1_DMA       { 13, 12 }
673 #define UART2_IRQ       { IRQ_UARTINT2, NO_IRQ }
674 #define UART2_DMA       { 11, 10 }
675 #define SSP_IRQ         { IRQ_SSPINT, NO_IRQ }
676 #define SSP_DMA         { 9, 8 }
677
678 /* FPGA Primecells */
679 AMBA_DEVICE(aaci,  "fpga:04", AACI,     NULL);
680 AMBA_DEVICE(mmc0,  "fpga:05", MMCI0,    &mmc0_plat_data);
681 AMBA_DEVICE(kmi0,  "fpga:06", KMI0,     NULL);
682 AMBA_DEVICE(kmi1,  "fpga:07", KMI1,     NULL);
683
684 /* DevChip Primecells */
685 AMBA_DEVICE(smc,   "dev:00",  SMC,      NULL);
686 AMBA_DEVICE(mpmc,  "dev:10",  MPMC,     NULL);
687 AMBA_DEVICE(clcd,  "dev:20",  CLCD,     &clcd_plat_data);
688 AMBA_DEVICE(dmac,  "dev:30",  DMAC,     NULL);
689 AMBA_DEVICE(sctl,  "dev:e0",  SCTL,     NULL);
690 AMBA_DEVICE(wdog,  "dev:e1",  WATCHDOG, NULL);
691 AMBA_DEVICE(gpio0, "dev:e4",  GPIO0,    NULL);
692 AMBA_DEVICE(gpio1, "dev:e5",  GPIO1,    NULL);
693 AMBA_DEVICE(rtc,   "dev:e8",  RTC,      NULL);
694 AMBA_DEVICE(sci0,  "dev:f0",  SCI,      NULL);
695 AMBA_DEVICE(uart0, "dev:f1",  UART0,    NULL);
696 AMBA_DEVICE(uart1, "dev:f2",  UART1,    NULL);
697 AMBA_DEVICE(uart2, "dev:f3",  UART2,    NULL);
698 AMBA_DEVICE(ssp0,  "dev:f4",  SSP,      NULL);
699
700 static struct amba_device *amba_devs[] __initdata = {
701         &dmac_device,
702         &uart0_device,
703         &uart1_device,
704         &uart2_device,
705         &smc_device,
706         &mpmc_device,
707         &clcd_device,
708         &sctl_device,
709         &wdog_device,
710         &gpio0_device,
711         &gpio1_device,
712         &rtc_device,
713         &sci0_device,
714         &ssp0_device,
715         &aaci_device,
716         &mmc0_device,
717         &kmi0_device,
718         &kmi1_device,
719 };
720
721 #ifdef CONFIG_LEDS
722 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
723
724 static void versatile_leds_event(led_event_t ledevt)
725 {
726         unsigned long flags;
727         u32 val;
728
729         local_irq_save(flags);
730         val = readl(VA_LEDS_BASE);
731
732         switch (ledevt) {
733         case led_idle_start:
734                 val = val & ~VERSATILE_SYS_LED0;
735                 break;
736
737         case led_idle_end:
738                 val = val | VERSATILE_SYS_LED0;
739                 break;
740
741         case led_timer:
742                 val = val ^ VERSATILE_SYS_LED1;
743                 break;
744
745         case led_halted:
746                 val = 0;
747                 break;
748
749         default:
750                 break;
751         }
752
753         writel(val, VA_LEDS_BASE);
754         local_irq_restore(flags);
755 }
756 #endif  /* CONFIG_LEDS */
757
758 void __init versatile_init(void)
759 {
760         int i;
761
762         clk_register(&versatile_clcd_clk);
763
764         platform_device_register(&versatile_flash_device);
765         platform_device_register(&smc91x_device);
766
767         for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
768                 struct amba_device *d = amba_devs[i];
769                 amba_device_register(d, &iomem_resource);
770         }
771
772 #ifdef CONFIG_LEDS
773         leds_event = versatile_leds_event;
774 #endif
775 }
776
777 /*
778  * Where is the timer (VA)?
779  */
780 #define TIMER0_VA_BASE           IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
781 #define TIMER1_VA_BASE          (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
782 #define TIMER2_VA_BASE           IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
783 #define TIMER3_VA_BASE          (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
784 #define VA_IC_BASE               IO_ADDRESS(VERSATILE_VIC_BASE) 
785
786 /*
787  * How long is the timer interval?
788  */
789 #define TIMER_INTERVAL  (TICKS_PER_uSEC * mSEC_10)
790 #if TIMER_INTERVAL >= 0x100000
791 #define TIMER_RELOAD    (TIMER_INTERVAL >> 8)           /* Divide by 256 */
792 #define TIMER_CTRL      0x88                            /* Enable, Clock / 256 */
793 #define TICKS2USECS(x)  (256 * (x) / TICKS_PER_uSEC)
794 #elif TIMER_INTERVAL >= 0x10000
795 #define TIMER_RELOAD    (TIMER_INTERVAL >> 4)           /* Divide by 16 */
796 #define TIMER_CTRL      0x84                            /* Enable, Clock / 16 */
797 #define TICKS2USECS(x)  (16 * (x) / TICKS_PER_uSEC)
798 #else
799 #define TIMER_RELOAD    (TIMER_INTERVAL)
800 #define TIMER_CTRL      0x80                            /* Enable */
801 #define TICKS2USECS(x)  ((x) / TICKS_PER_uSEC)
802 #endif
803
804 #define TIMER_CTRL_IE   (1 << 5)        /* Interrupt Enable */
805
806 /*
807  * What does it look like?
808  */
809 typedef struct TimerStruct {
810         unsigned long TimerLoad;
811         unsigned long TimerValue;
812         unsigned long TimerControl;
813         unsigned long TimerClear;
814 } TimerStruct_t;
815
816 /*
817  * Returns number of ms since last clock interrupt.  Note that interrupts
818  * will have been disabled by do_gettimeoffset()
819  */
820 static unsigned long versatile_gettimeoffset(void)
821 {
822         volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
823         unsigned long ticks1, ticks2, status;
824
825         /*
826          * Get the current number of ticks.  Note that there is a race
827          * condition between us reading the timer and checking for
828          * an interrupt.  We get around this by ensuring that the
829          * counter has not reloaded between our two reads.
830          */
831         ticks2 = timer0->TimerValue & 0xffff;
832         do {
833                 ticks1 = ticks2;
834                 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
835                 ticks2 = timer0->TimerValue & 0xffff;
836         } while (ticks2 > ticks1);
837
838         /*
839          * Number of ticks since last interrupt.
840          */
841         ticks1 = TIMER_RELOAD - ticks2;
842
843         /*
844          * Interrupt pending?  If so, we've reloaded once already.
845          *
846          * FIXME: Need to check this is effectively timer 0 that expires
847          */
848         if (status & IRQMASK_TIMERINT0_1)
849                 ticks1 += TIMER_RELOAD;
850
851         /*
852          * Convert the ticks to usecs
853          */
854         return TICKS2USECS(ticks1);
855 }
856
857 /*
858  * IRQ handler for the timer
859  */
860 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
861 {
862         volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
863
864         write_seqlock(&xtime_lock);
865
866         // ...clear the interrupt
867         timer0->TimerClear = 1;
868
869         timer_tick(regs);
870
871         write_sequnlock(&xtime_lock);
872
873         return IRQ_HANDLED;
874 }
875
876 static struct irqaction versatile_timer_irq = {
877         .name           = "Versatile Timer Tick",
878         .flags          = SA_INTERRUPT | SA_TIMER,
879         .handler        = versatile_timer_interrupt,
880 };
881
882 /*
883  * Set up timer interrupt, and return the current time in seconds.
884  */
885 static void __init versatile_timer_init(void)
886 {
887         volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
888         volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
889         volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
890         volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
891
892         /* 
893          * set clock frequency: 
894          *      VERSATILE_REFCLK is 32KHz
895          *      VERSATILE_TIMCLK is 1MHz
896          */
897         *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |= 
898           ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) | 
899            (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
900
901         /*
902          * Initialise to a known state (all timers off)
903          */
904         timer0->TimerControl = 0;
905         timer1->TimerControl = 0;
906         timer2->TimerControl = 0;
907         timer3->TimerControl = 0;
908
909         timer0->TimerLoad    = TIMER_RELOAD;
910         timer0->TimerValue   = TIMER_RELOAD;
911         timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE;  /* periodic + IE */
912
913         /* 
914          * Make irqs happen for the system timer
915          */
916         setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
917 }
918
919 struct sys_timer versatile_timer = {
920         .init           = versatile_timer_init,
921         .offset         = versatile_gettimeoffset,
922 };