2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
40 #include "xfs_trans.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_error.h"
46 #include "xfs_bmap_btree.h"
47 #include "xfs_alloc.h"
48 #include "xfs_attr_sf.h"
49 #include "xfs_dir_sf.h"
50 #include "xfs_dir2_sf.h"
51 #include "xfs_dinode.h"
53 #include "xfs_inode_item.h"
54 #include "xfs_inode.h"
55 #include "xfs_ialloc_btree.h"
56 #include "xfs_ialloc.h"
57 #include "xfs_log_priv.h"
58 #include "xfs_buf_item.h"
59 #include "xfs_alloc_btree.h"
60 #include "xfs_log_recover.h"
61 #include "xfs_extfree_item.h"
62 #include "xfs_trans_priv.h"
64 #include "xfs_quota.h"
67 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
68 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
69 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
70 xlog_recover_item_t *item);
72 STATIC void xlog_recover_check_summary(xlog_t *);
73 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
75 #define xlog_recover_check_summary(log)
76 #define xlog_recover_check_ail(mp, lip, gen)
81 * Sector aligned buffer routines for buffer create/read/write/access
84 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
85 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
86 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
87 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
94 ASSERT(num_bblks > 0);
96 if (log->l_sectbb_log) {
98 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
99 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
101 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
113 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
124 if (log->l_sectbb_log) {
125 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
126 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
130 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
133 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
136 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
137 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
139 xfsbdstrat(log->l_mp, bp);
140 if ((error = xfs_iowait(bp)))
141 xfs_ioerror_alert("xlog_bread", log->l_mp,
142 bp, XFS_BUF_ADDR(bp));
147 * Write out the buffer at the given block for the given number of blocks.
148 * The buffer is kept locked across the write and is returned locked.
149 * This can only be used for synchronous log writes.
160 if (log->l_sectbb_log) {
161 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
162 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
166 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
168 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
169 XFS_BUF_ZEROFLAGS(bp);
172 XFS_BUF_PSEMA(bp, PRIBIO);
173 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
174 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
176 if ((error = xfs_bwrite(log->l_mp, bp)))
177 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
178 bp, XFS_BUF_ADDR(bp));
191 if (!log->l_sectbb_log)
192 return XFS_BUF_PTR(bp);
194 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
195 ASSERT(XFS_BUF_SIZE(bp) >=
196 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
202 * dump debug superblock and log record information
205 xlog_header_check_dump(
207 xlog_rec_header_t *head)
211 printk("%s: SB : uuid = ", __FUNCTION__);
212 for (b = 0; b < 16; b++)
213 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
214 printk(", fmt = %d\n", XLOG_FMT);
215 printk(" log : uuid = ");
216 for (b = 0; b < 16; b++)
217 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
218 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
221 #define xlog_header_check_dump(mp, head)
225 * check log record header for recovery
228 xlog_header_check_recover(
230 xlog_rec_header_t *head)
232 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
235 * IRIX doesn't write the h_fmt field and leaves it zeroed
236 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
237 * a dirty log created in IRIX.
239 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
241 "XFS: dirty log written in incompatible format - can't recover");
242 xlog_header_check_dump(mp, head);
243 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
244 XFS_ERRLEVEL_HIGH, mp);
245 return XFS_ERROR(EFSCORRUPTED);
246 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
248 "XFS: dirty log entry has mismatched uuid - can't recover");
249 xlog_header_check_dump(mp, head);
250 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
251 XFS_ERRLEVEL_HIGH, mp);
252 return XFS_ERROR(EFSCORRUPTED);
258 * read the head block of the log and check the header
261 xlog_header_check_mount(
263 xlog_rec_header_t *head)
265 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
267 if (uuid_is_nil(&head->h_fs_uuid)) {
269 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
270 * h_fs_uuid is nil, we assume this log was last mounted
271 * by IRIX and continue.
273 xlog_warn("XFS: nil uuid in log - IRIX style log");
274 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
275 xlog_warn("XFS: log has mismatched uuid - can't recover");
276 xlog_header_check_dump(mp, head);
277 XFS_ERROR_REPORT("xlog_header_check_mount",
278 XFS_ERRLEVEL_HIGH, mp);
279 return XFS_ERROR(EFSCORRUPTED);
290 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
292 if (XFS_BUF_GETERROR(bp)) {
294 * We're not going to bother about retrying
295 * this during recovery. One strike!
297 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
298 xfs_ioerror_alert("xlog_recover_iodone",
299 mp, bp, XFS_BUF_ADDR(bp));
300 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
302 XFS_BUF_SET_FSPRIVATE(bp, NULL);
303 XFS_BUF_CLR_IODONE_FUNC(bp);
308 * This routine finds (to an approximation) the first block in the physical
309 * log which contains the given cycle. It uses a binary search algorithm.
310 * Note that the algorithm can not be perfect because the disk will not
311 * necessarily be perfect.
314 xlog_find_cycle_start(
317 xfs_daddr_t first_blk,
318 xfs_daddr_t *last_blk,
326 mid_blk = BLK_AVG(first_blk, *last_blk);
327 while (mid_blk != first_blk && mid_blk != *last_blk) {
328 if ((error = xlog_bread(log, mid_blk, 1, bp)))
330 offset = xlog_align(log, mid_blk, 1, bp);
331 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
332 if (mid_cycle == cycle) {
334 /* last_half_cycle == mid_cycle */
337 /* first_half_cycle == mid_cycle */
339 mid_blk = BLK_AVG(first_blk, *last_blk);
341 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
342 (mid_blk == *last_blk && mid_blk-1 == first_blk));
348 * Check that the range of blocks does not contain the cycle number
349 * given. The scan needs to occur from front to back and the ptr into the
350 * region must be updated since a later routine will need to perform another
351 * test. If the region is completely good, we end up returning the same
354 * Set blkno to -1 if we encounter no errors. This is an invalid block number
355 * since we don't ever expect logs to get this large.
358 xlog_find_verify_cycle(
360 xfs_daddr_t start_blk,
362 uint stop_on_cycle_no,
363 xfs_daddr_t *new_blk)
369 xfs_caddr_t buf = NULL;
372 bufblks = 1 << ffs(nbblks);
374 while (!(bp = xlog_get_bp(log, bufblks))) {
375 /* can't get enough memory to do everything in one big buffer */
377 if (bufblks <= log->l_sectbb_log)
381 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
384 bcount = min(bufblks, (start_blk + nbblks - i));
386 if ((error = xlog_bread(log, i, bcount, bp)))
389 buf = xlog_align(log, i, bcount, bp);
390 for (j = 0; j < bcount; j++) {
391 cycle = GET_CYCLE(buf, ARCH_CONVERT);
392 if (cycle == stop_on_cycle_no) {
409 * Potentially backup over partial log record write.
411 * In the typical case, last_blk is the number of the block directly after
412 * a good log record. Therefore, we subtract one to get the block number
413 * of the last block in the given buffer. extra_bblks contains the number
414 * of blocks we would have read on a previous read. This happens when the
415 * last log record is split over the end of the physical log.
417 * extra_bblks is the number of blocks potentially verified on a previous
418 * call to this routine.
421 xlog_find_verify_log_record(
423 xfs_daddr_t start_blk,
424 xfs_daddr_t *last_blk,
429 xfs_caddr_t offset = NULL;
430 xlog_rec_header_t *head = NULL;
433 int num_blks = *last_blk - start_blk;
436 ASSERT(start_blk != 0 || *last_blk != start_blk);
438 if (!(bp = xlog_get_bp(log, num_blks))) {
439 if (!(bp = xlog_get_bp(log, 1)))
443 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
445 offset = xlog_align(log, start_blk, num_blks, bp);
446 offset += ((num_blks - 1) << BBSHIFT);
449 for (i = (*last_blk) - 1; i >= 0; i--) {
451 /* valid log record not found */
453 "XFS: Log inconsistent (didn't find previous header)");
455 error = XFS_ERROR(EIO);
460 if ((error = xlog_bread(log, i, 1, bp)))
462 offset = xlog_align(log, i, 1, bp);
465 head = (xlog_rec_header_t *)offset;
467 if (XLOG_HEADER_MAGIC_NUM ==
468 INT_GET(head->h_magicno, ARCH_CONVERT))
476 * We hit the beginning of the physical log & still no header. Return
477 * to caller. If caller can handle a return of -1, then this routine
478 * will be called again for the end of the physical log.
486 * We have the final block of the good log (the first block
487 * of the log record _before_ the head. So we check the uuid.
489 if ((error = xlog_header_check_mount(log->l_mp, head)))
493 * We may have found a log record header before we expected one.
494 * last_blk will be the 1st block # with a given cycle #. We may end
495 * up reading an entire log record. In this case, we don't want to
496 * reset last_blk. Only when last_blk points in the middle of a log
497 * record do we update last_blk.
499 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
500 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
502 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
503 if (h_size % XLOG_HEADER_CYCLE_SIZE)
509 if (*last_blk - i + extra_bblks
510 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
519 * Head is defined to be the point of the log where the next log write
520 * write could go. This means that incomplete LR writes at the end are
521 * eliminated when calculating the head. We aren't guaranteed that previous
522 * LR have complete transactions. We only know that a cycle number of
523 * current cycle number -1 won't be present in the log if we start writing
524 * from our current block number.
526 * last_blk contains the block number of the first block with a given
529 * Return: zero if normal, non-zero if error.
534 xfs_daddr_t *return_head_blk)
538 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
540 uint first_half_cycle, last_half_cycle;
542 int error, log_bbnum = log->l_logBBsize;
544 /* Is the end of the log device zeroed? */
545 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
546 *return_head_blk = first_blk;
548 /* Is the whole lot zeroed? */
550 /* Linux XFS shouldn't generate totally zeroed logs -
551 * mkfs etc write a dummy unmount record to a fresh
552 * log so we can store the uuid in there
554 xlog_warn("XFS: totally zeroed log");
559 xlog_warn("XFS: empty log check failed");
563 first_blk = 0; /* get cycle # of 1st block */
564 bp = xlog_get_bp(log, 1);
567 if ((error = xlog_bread(log, 0, 1, bp)))
569 offset = xlog_align(log, 0, 1, bp);
570 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
572 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
573 if ((error = xlog_bread(log, last_blk, 1, bp)))
575 offset = xlog_align(log, last_blk, 1, bp);
576 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
577 ASSERT(last_half_cycle != 0);
580 * If the 1st half cycle number is equal to the last half cycle number,
581 * then the entire log is stamped with the same cycle number. In this
582 * case, head_blk can't be set to zero (which makes sense). The below
583 * math doesn't work out properly with head_blk equal to zero. Instead,
584 * we set it to log_bbnum which is an invalid block number, but this
585 * value makes the math correct. If head_blk doesn't changed through
586 * all the tests below, *head_blk is set to zero at the very end rather
587 * than log_bbnum. In a sense, log_bbnum and zero are the same block
588 * in a circular file.
590 if (first_half_cycle == last_half_cycle) {
592 * In this case we believe that the entire log should have
593 * cycle number last_half_cycle. We need to scan backwards
594 * from the end verifying that there are no holes still
595 * containing last_half_cycle - 1. If we find such a hole,
596 * then the start of that hole will be the new head. The
597 * simple case looks like
598 * x | x ... | x - 1 | x
599 * Another case that fits this picture would be
600 * x | x + 1 | x ... | x
601 * In this case the head really is somwhere at the end of the
602 * log, as one of the latest writes at the beginning was
605 * x | x + 1 | x ... | x - 1 | x
606 * This is really the combination of the above two cases, and
607 * the head has to end up at the start of the x-1 hole at the
610 * In the 256k log case, we will read from the beginning to the
611 * end of the log and search for cycle numbers equal to x-1.
612 * We don't worry about the x+1 blocks that we encounter,
613 * because we know that they cannot be the head since the log
616 head_blk = log_bbnum;
617 stop_on_cycle = last_half_cycle - 1;
620 * In this case we want to find the first block with cycle
621 * number matching last_half_cycle. We expect the log to be
624 * The first block with cycle number x (last_half_cycle) will
625 * be where the new head belongs. First we do a binary search
626 * for the first occurrence of last_half_cycle. The binary
627 * search may not be totally accurate, so then we scan back
628 * from there looking for occurrences of last_half_cycle before
629 * us. If that backwards scan wraps around the beginning of
630 * the log, then we look for occurrences of last_half_cycle - 1
631 * at the end of the log. The cases we're looking for look
633 * x + 1 ... | x | x + 1 | x ...
634 * ^ binary search stopped here
636 * x + 1 ... | x ... | x - 1 | x
637 * <---------> less than scan distance
639 stop_on_cycle = last_half_cycle;
640 if ((error = xlog_find_cycle_start(log, bp, first_blk,
641 &head_blk, last_half_cycle)))
646 * Now validate the answer. Scan back some number of maximum possible
647 * blocks and make sure each one has the expected cycle number. The
648 * maximum is determined by the total possible amount of buffering
649 * in the in-core log. The following number can be made tighter if
650 * we actually look at the block size of the filesystem.
652 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
653 if (head_blk >= num_scan_bblks) {
655 * We are guaranteed that the entire check can be performed
658 start_blk = head_blk - num_scan_bblks;
659 if ((error = xlog_find_verify_cycle(log,
660 start_blk, num_scan_bblks,
661 stop_on_cycle, &new_blk)))
665 } else { /* need to read 2 parts of log */
667 * We are going to scan backwards in the log in two parts.
668 * First we scan the physical end of the log. In this part
669 * of the log, we are looking for blocks with cycle number
670 * last_half_cycle - 1.
671 * If we find one, then we know that the log starts there, as
672 * we've found a hole that didn't get written in going around
673 * the end of the physical log. The simple case for this is
674 * x + 1 ... | x ... | x - 1 | x
675 * <---------> less than scan distance
676 * If all of the blocks at the end of the log have cycle number
677 * last_half_cycle, then we check the blocks at the start of
678 * the log looking for occurrences of last_half_cycle. If we
679 * find one, then our current estimate for the location of the
680 * first occurrence of last_half_cycle is wrong and we move
681 * back to the hole we've found. This case looks like
682 * x + 1 ... | x | x + 1 | x ...
683 * ^ binary search stopped here
684 * Another case we need to handle that only occurs in 256k
686 * x + 1 ... | x ... | x+1 | x ...
687 * ^ binary search stops here
688 * In a 256k log, the scan at the end of the log will see the
689 * x + 1 blocks. We need to skip past those since that is
690 * certainly not the head of the log. By searching for
691 * last_half_cycle-1 we accomplish that.
693 start_blk = log_bbnum - num_scan_bblks + head_blk;
694 ASSERT(head_blk <= INT_MAX &&
695 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
696 if ((error = xlog_find_verify_cycle(log, start_blk,
697 num_scan_bblks - (int)head_blk,
698 (stop_on_cycle - 1), &new_blk)))
706 * Scan beginning of log now. The last part of the physical
707 * log is good. This scan needs to verify that it doesn't find
708 * the last_half_cycle.
711 ASSERT(head_blk <= INT_MAX);
712 if ((error = xlog_find_verify_cycle(log,
713 start_blk, (int)head_blk,
714 stop_on_cycle, &new_blk)))
722 * Now we need to make sure head_blk is not pointing to a block in
723 * the middle of a log record.
725 num_scan_bblks = XLOG_REC_SHIFT(log);
726 if (head_blk >= num_scan_bblks) {
727 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
729 /* start ptr at last block ptr before head_blk */
730 if ((error = xlog_find_verify_log_record(log, start_blk,
731 &head_blk, 0)) == -1) {
732 error = XFS_ERROR(EIO);
738 ASSERT(head_blk <= INT_MAX);
739 if ((error = xlog_find_verify_log_record(log, start_blk,
740 &head_blk, 0)) == -1) {
741 /* We hit the beginning of the log during our search */
742 start_blk = log_bbnum - num_scan_bblks + head_blk;
744 ASSERT(start_blk <= INT_MAX &&
745 (xfs_daddr_t) log_bbnum-start_blk >= 0);
746 ASSERT(head_blk <= INT_MAX);
747 if ((error = xlog_find_verify_log_record(log,
749 (int)head_blk)) == -1) {
750 error = XFS_ERROR(EIO);
754 if (new_blk != log_bbnum)
761 if (head_blk == log_bbnum)
762 *return_head_blk = 0;
764 *return_head_blk = head_blk;
766 * When returning here, we have a good block number. Bad block
767 * means that during a previous crash, we didn't have a clean break
768 * from cycle number N to cycle number N-1. In this case, we need
769 * to find the first block with cycle number N-1.
777 xlog_warn("XFS: failed to find log head");
782 * Find the sync block number or the tail of the log.
784 * This will be the block number of the last record to have its
785 * associated buffers synced to disk. Every log record header has
786 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
787 * to get a sync block number. The only concern is to figure out which
788 * log record header to believe.
790 * The following algorithm uses the log record header with the largest
791 * lsn. The entire log record does not need to be valid. We only care
792 * that the header is valid.
794 * We could speed up search by using current head_blk buffer, but it is not
800 xfs_daddr_t *head_blk,
801 xfs_daddr_t *tail_blk,
804 xlog_rec_header_t *rhead;
805 xlog_op_header_t *op_head;
806 xfs_caddr_t offset = NULL;
809 xfs_daddr_t umount_data_blk;
810 xfs_daddr_t after_umount_blk;
817 * Find previous log record
819 if ((error = xlog_find_head(log, head_blk)))
822 bp = xlog_get_bp(log, 1);
825 if (*head_blk == 0) { /* special case */
826 if ((error = xlog_bread(log, 0, 1, bp)))
828 offset = xlog_align(log, 0, 1, bp);
829 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
831 /* leave all other log inited values alone */
837 * Search backwards looking for log record header block
839 ASSERT(*head_blk < INT_MAX);
840 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
841 if ((error = xlog_bread(log, i, 1, bp)))
843 offset = xlog_align(log, i, 1, bp);
844 if (XLOG_HEADER_MAGIC_NUM ==
845 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
851 * If we haven't found the log record header block, start looking
852 * again from the end of the physical log. XXXmiken: There should be
853 * a check here to make sure we didn't search more than N blocks in
857 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
858 if ((error = xlog_bread(log, i, 1, bp)))
860 offset = xlog_align(log, i, 1, bp);
861 if (XLOG_HEADER_MAGIC_NUM ==
862 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
869 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
871 return XFS_ERROR(EIO);
874 /* find blk_no of tail of log */
875 rhead = (xlog_rec_header_t *)offset;
876 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
879 * Reset log values according to the state of the log when we
880 * crashed. In the case where head_blk == 0, we bump curr_cycle
881 * one because the next write starts a new cycle rather than
882 * continuing the cycle of the last good log record. At this
883 * point we have guaranteed that all partial log records have been
884 * accounted for. Therefore, we know that the last good log record
885 * written was complete and ended exactly on the end boundary
886 * of the physical log.
888 log->l_prev_block = i;
889 log->l_curr_block = (int)*head_blk;
890 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
893 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
894 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
895 log->l_grant_reserve_cycle = log->l_curr_cycle;
896 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
897 log->l_grant_write_cycle = log->l_curr_cycle;
898 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
901 * Look for unmount record. If we find it, then we know there
902 * was a clean unmount. Since 'i' could be the last block in
903 * the physical log, we convert to a log block before comparing
906 * Save the current tail lsn to use to pass to
907 * xlog_clear_stale_blocks() below. We won't want to clear the
908 * unmount record if there is one, so we pass the lsn of the
909 * unmount record rather than the block after it.
911 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
912 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
913 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
915 if ((h_version & XLOG_VERSION_2) &&
916 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
917 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
918 if (h_size % XLOG_HEADER_CYCLE_SIZE)
926 after_umount_blk = (i + hblks + (int)
927 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
928 tail_lsn = log->l_tail_lsn;
929 if (*head_blk == after_umount_blk &&
930 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
931 umount_data_blk = (i + hblks) % log->l_logBBsize;
932 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
935 offset = xlog_align(log, umount_data_blk, 1, bp);
936 op_head = (xlog_op_header_t *)offset;
937 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
939 * Set tail and last sync so that newly written
940 * log records will point recovery to after the
941 * current unmount record.
943 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
945 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
947 *tail_blk = after_umount_blk;
952 * Make sure that there are no blocks in front of the head
953 * with the same cycle number as the head. This can happen
954 * because we allow multiple outstanding log writes concurrently,
955 * and the later writes might make it out before earlier ones.
957 * We use the lsn from before modifying it so that we'll never
958 * overwrite the unmount record after a clean unmount.
960 * Do this only if we are going to recover the filesystem
962 * NOTE: This used to say "if (!readonly)"
963 * However on Linux, we can & do recover a read-only filesystem.
964 * We only skip recovery if NORECOVERY is specified on mount,
965 * in which case we would not be here.
967 * But... if the -device- itself is readonly, just skip this.
968 * We can't recover this device anyway, so it won't matter.
970 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
971 error = xlog_clear_stale_blocks(log, tail_lsn);
979 xlog_warn("XFS: failed to locate log tail");
984 * Is the log zeroed at all?
986 * The last binary search should be changed to perform an X block read
987 * once X becomes small enough. You can then search linearly through
988 * the X blocks. This will cut down on the number of reads we need to do.
990 * If the log is partially zeroed, this routine will pass back the blkno
991 * of the first block with cycle number 0. It won't have a complete LR
995 * 0 => the log is completely written to
996 * -1 => use *blk_no as the first block of the log
997 * >0 => error has occurred
1002 xfs_daddr_t *blk_no)
1006 uint first_cycle, last_cycle;
1007 xfs_daddr_t new_blk, last_blk, start_blk;
1008 xfs_daddr_t num_scan_bblks;
1009 int error, log_bbnum = log->l_logBBsize;
1011 /* check totally zeroed log */
1012 bp = xlog_get_bp(log, 1);
1015 if ((error = xlog_bread(log, 0, 1, bp)))
1017 offset = xlog_align(log, 0, 1, bp);
1018 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1019 if (first_cycle == 0) { /* completely zeroed log */
1025 /* check partially zeroed log */
1026 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1028 offset = xlog_align(log, log_bbnum-1, 1, bp);
1029 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1030 if (last_cycle != 0) { /* log completely written to */
1033 } else if (first_cycle != 1) {
1035 * If the cycle of the last block is zero, the cycle of
1036 * the first block must be 1. If it's not, maybe we're
1037 * not looking at a log... Bail out.
1039 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1040 return XFS_ERROR(EINVAL);
1043 /* we have a partially zeroed log */
1044 last_blk = log_bbnum-1;
1045 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1049 * Validate the answer. Because there is no way to guarantee that
1050 * the entire log is made up of log records which are the same size,
1051 * we scan over the defined maximum blocks. At this point, the maximum
1052 * is not chosen to mean anything special. XXXmiken
1054 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1055 ASSERT(num_scan_bblks <= INT_MAX);
1057 if (last_blk < num_scan_bblks)
1058 num_scan_bblks = last_blk;
1059 start_blk = last_blk - num_scan_bblks;
1062 * We search for any instances of cycle number 0 that occur before
1063 * our current estimate of the head. What we're trying to detect is
1064 * 1 ... | 0 | 1 | 0...
1065 * ^ binary search ends here
1067 if ((error = xlog_find_verify_cycle(log, start_blk,
1068 (int)num_scan_bblks, 0, &new_blk)))
1074 * Potentially backup over partial log record write. We don't need
1075 * to search the end of the log because we know it is zero.
1077 if ((error = xlog_find_verify_log_record(log, start_blk,
1078 &last_blk, 0)) == -1) {
1079 error = XFS_ERROR(EIO);
1093 * These are simple subroutines used by xlog_clear_stale_blocks() below
1094 * to initialize a buffer full of empty log record headers and write
1095 * them into the log.
1106 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1108 memset(buf, 0, BBSIZE);
1109 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1110 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1111 INT_SET(recp->h_version, ARCH_CONVERT,
1112 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1113 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1114 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1115 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1116 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1120 xlog_write_log_records(
1131 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1132 int end_block = start_block + blocks;
1137 bufblks = 1 << ffs(blocks);
1138 while (!(bp = xlog_get_bp(log, bufblks))) {
1140 if (bufblks <= log->l_sectbb_log)
1144 /* We may need to do a read at the start to fill in part of
1145 * the buffer in the starting sector not covered by the first
1148 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1149 if (balign != start_block) {
1150 if ((error = xlog_bread(log, start_block, 1, bp))) {
1154 j = start_block - balign;
1157 for (i = start_block; i < end_block; i += bufblks) {
1158 int bcount, endcount;
1160 bcount = min(bufblks, end_block - start_block);
1161 endcount = bcount - j;
1163 /* We may need to do a read at the end to fill in part of
1164 * the buffer in the final sector not covered by the write.
1165 * If this is the same sector as the above read, skip it.
1167 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1168 if (j == 0 && (start_block + endcount > ealign)) {
1169 offset = XFS_BUF_PTR(bp);
1170 balign = BBTOB(ealign - start_block);
1171 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1172 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1174 XFS_BUF_SET_PTR(bp, offset, bufblks);
1177 offset = xlog_align(log, start_block, endcount, bp);
1178 for (; j < endcount; j++) {
1179 xlog_add_record(log, offset, cycle, i+j,
1180 tail_cycle, tail_block);
1183 error = xlog_bwrite(log, start_block, endcount, bp);
1186 start_block += endcount;
1194 * This routine is called to blow away any incomplete log writes out
1195 * in front of the log head. We do this so that we won't become confused
1196 * if we come up, write only a little bit more, and then crash again.
1197 * If we leave the partial log records out there, this situation could
1198 * cause us to think those partial writes are valid blocks since they
1199 * have the current cycle number. We get rid of them by overwriting them
1200 * with empty log records with the old cycle number rather than the
1203 * The tail lsn is passed in rather than taken from
1204 * the log so that we will not write over the unmount record after a
1205 * clean unmount in a 512 block log. Doing so would leave the log without
1206 * any valid log records in it until a new one was written. If we crashed
1207 * during that time we would not be able to recover.
1210 xlog_clear_stale_blocks(
1214 int tail_cycle, head_cycle;
1215 int tail_block, head_block;
1216 int tail_distance, max_distance;
1220 tail_cycle = CYCLE_LSN(tail_lsn);
1221 tail_block = BLOCK_LSN(tail_lsn);
1222 head_cycle = log->l_curr_cycle;
1223 head_block = log->l_curr_block;
1226 * Figure out the distance between the new head of the log
1227 * and the tail. We want to write over any blocks beyond the
1228 * head that we may have written just before the crash, but
1229 * we don't want to overwrite the tail of the log.
1231 if (head_cycle == tail_cycle) {
1233 * The tail is behind the head in the physical log,
1234 * so the distance from the head to the tail is the
1235 * distance from the head to the end of the log plus
1236 * the distance from the beginning of the log to the
1239 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1240 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1241 XFS_ERRLEVEL_LOW, log->l_mp);
1242 return XFS_ERROR(EFSCORRUPTED);
1244 tail_distance = tail_block + (log->l_logBBsize - head_block);
1247 * The head is behind the tail in the physical log,
1248 * so the distance from the head to the tail is just
1249 * the tail block minus the head block.
1251 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1252 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1253 XFS_ERRLEVEL_LOW, log->l_mp);
1254 return XFS_ERROR(EFSCORRUPTED);
1256 tail_distance = tail_block - head_block;
1260 * If the head is right up against the tail, we can't clear
1263 if (tail_distance <= 0) {
1264 ASSERT(tail_distance == 0);
1268 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1270 * Take the smaller of the maximum amount of outstanding I/O
1271 * we could have and the distance to the tail to clear out.
1272 * We take the smaller so that we don't overwrite the tail and
1273 * we don't waste all day writing from the head to the tail
1276 max_distance = MIN(max_distance, tail_distance);
1278 if ((head_block + max_distance) <= log->l_logBBsize) {
1280 * We can stomp all the blocks we need to without
1281 * wrapping around the end of the log. Just do it
1282 * in a single write. Use the cycle number of the
1283 * current cycle minus one so that the log will look like:
1286 error = xlog_write_log_records(log, (head_cycle - 1),
1287 head_block, max_distance, tail_cycle,
1293 * We need to wrap around the end of the physical log in
1294 * order to clear all the blocks. Do it in two separate
1295 * I/Os. The first write should be from the head to the
1296 * end of the physical log, and it should use the current
1297 * cycle number minus one just like above.
1299 distance = log->l_logBBsize - head_block;
1300 error = xlog_write_log_records(log, (head_cycle - 1),
1301 head_block, distance, tail_cycle,
1308 * Now write the blocks at the start of the physical log.
1309 * This writes the remainder of the blocks we want to clear.
1310 * It uses the current cycle number since we're now on the
1311 * same cycle as the head so that we get:
1312 * n ... n ... | n - 1 ...
1313 * ^^^^^ blocks we're writing
1315 distance = max_distance - (log->l_logBBsize - head_block);
1316 error = xlog_write_log_records(log, head_cycle, 0, distance,
1317 tail_cycle, tail_block);
1325 /******************************************************************************
1327 * Log recover routines
1329 ******************************************************************************
1332 STATIC xlog_recover_t *
1333 xlog_recover_find_tid(
1337 xlog_recover_t *p = q;
1340 if (p->r_log_tid == tid)
1348 xlog_recover_put_hashq(
1350 xlog_recover_t *trans)
1357 xlog_recover_add_item(
1358 xlog_recover_item_t **itemq)
1360 xlog_recover_item_t *item;
1362 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1363 xlog_recover_insert_item_backq(itemq, item);
1367 xlog_recover_add_to_cont_trans(
1368 xlog_recover_t *trans,
1372 xlog_recover_item_t *item;
1373 xfs_caddr_t ptr, old_ptr;
1376 item = trans->r_itemq;
1378 /* finish copying rest of trans header */
1379 xlog_recover_add_item(&trans->r_itemq);
1380 ptr = (xfs_caddr_t) &trans->r_theader +
1381 sizeof(xfs_trans_header_t) - len;
1382 memcpy(ptr, dp, len); /* d, s, l */
1385 item = item->ri_prev;
1387 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1388 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1390 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0);
1391 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1392 item->ri_buf[item->ri_cnt-1].i_len += len;
1393 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1398 * The next region to add is the start of a new region. It could be
1399 * a whole region or it could be the first part of a new region. Because
1400 * of this, the assumption here is that the type and size fields of all
1401 * format structures fit into the first 32 bits of the structure.
1403 * This works because all regions must be 32 bit aligned. Therefore, we
1404 * either have both fields or we have neither field. In the case we have
1405 * neither field, the data part of the region is zero length. We only have
1406 * a log_op_header and can throw away the header since a new one will appear
1407 * later. If we have at least 4 bytes, then we can determine how many regions
1408 * will appear in the current log item.
1411 xlog_recover_add_to_trans(
1412 xlog_recover_t *trans,
1416 xfs_inode_log_format_t *in_f; /* any will do */
1417 xlog_recover_item_t *item;
1422 item = trans->r_itemq;
1424 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1425 if (len == sizeof(xfs_trans_header_t))
1426 xlog_recover_add_item(&trans->r_itemq);
1427 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1431 ptr = kmem_alloc(len, KM_SLEEP);
1432 memcpy(ptr, dp, len);
1433 in_f = (xfs_inode_log_format_t *)ptr;
1435 if (item->ri_prev->ri_total != 0 &&
1436 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1437 xlog_recover_add_item(&trans->r_itemq);
1439 item = trans->r_itemq;
1440 item = item->ri_prev;
1442 if (item->ri_total == 0) { /* first region to be added */
1443 item->ri_total = in_f->ilf_size;
1444 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1445 item->ri_buf = kmem_zalloc((item->ri_total *
1446 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1448 ASSERT(item->ri_total > item->ri_cnt);
1449 /* Description region is ri_buf[0] */
1450 item->ri_buf[item->ri_cnt].i_addr = ptr;
1451 item->ri_buf[item->ri_cnt].i_len = len;
1457 xlog_recover_new_tid(
1462 xlog_recover_t *trans;
1464 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1465 trans->r_log_tid = tid;
1467 xlog_recover_put_hashq(q, trans);
1471 xlog_recover_unlink_tid(
1473 xlog_recover_t *trans)
1484 if (tp->r_next == trans) {
1492 "XFS: xlog_recover_unlink_tid: trans not found");
1494 return XFS_ERROR(EIO);
1496 tp->r_next = tp->r_next->r_next;
1502 xlog_recover_insert_item_backq(
1503 xlog_recover_item_t **q,
1504 xlog_recover_item_t *item)
1507 item->ri_prev = item->ri_next = item;
1511 item->ri_prev = (*q)->ri_prev;
1512 (*q)->ri_prev = item;
1513 item->ri_prev->ri_next = item;
1518 xlog_recover_insert_item_frontq(
1519 xlog_recover_item_t **q,
1520 xlog_recover_item_t *item)
1522 xlog_recover_insert_item_backq(q, item);
1527 xlog_recover_reorder_trans(
1529 xlog_recover_t *trans)
1531 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1532 xfs_buf_log_format_t *buf_f;
1533 xfs_buf_log_format_v1_t *obuf_f;
1536 first_item = itemq = trans->r_itemq;
1537 trans->r_itemq = NULL;
1539 itemq_next = itemq->ri_next;
1540 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1541 switch (ITEM_TYPE(itemq)) {
1543 flags = buf_f->blf_flags;
1545 case XFS_LI_6_1_BUF:
1546 case XFS_LI_5_3_BUF:
1547 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1548 flags = obuf_f->blf_flags;
1552 switch (ITEM_TYPE(itemq)) {
1554 case XFS_LI_6_1_BUF:
1555 case XFS_LI_5_3_BUF:
1556 if (!(flags & XFS_BLI_CANCEL)) {
1557 xlog_recover_insert_item_frontq(&trans->r_itemq,
1562 case XFS_LI_6_1_INODE:
1563 case XFS_LI_5_3_INODE:
1565 case XFS_LI_QUOTAOFF:
1568 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1572 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1574 return XFS_ERROR(EIO);
1577 } while (first_item != itemq);
1582 * Build up the table of buf cancel records so that we don't replay
1583 * cancelled data in the second pass. For buffer records that are
1584 * not cancel records, there is nothing to do here so we just return.
1586 * If we get a cancel record which is already in the table, this indicates
1587 * that the buffer was cancelled multiple times. In order to ensure
1588 * that during pass 2 we keep the record in the table until we reach its
1589 * last occurrence in the log, we keep a reference count in the cancel
1590 * record in the table to tell us how many times we expect to see this
1591 * record during the second pass.
1594 xlog_recover_do_buffer_pass1(
1596 xfs_buf_log_format_t *buf_f)
1598 xfs_buf_cancel_t *bcp;
1599 xfs_buf_cancel_t *nextp;
1600 xfs_buf_cancel_t *prevp;
1601 xfs_buf_cancel_t **bucket;
1602 xfs_buf_log_format_v1_t *obuf_f;
1603 xfs_daddr_t blkno = 0;
1607 switch (buf_f->blf_type) {
1609 blkno = buf_f->blf_blkno;
1610 len = buf_f->blf_len;
1611 flags = buf_f->blf_flags;
1613 case XFS_LI_6_1_BUF:
1614 case XFS_LI_5_3_BUF:
1615 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1616 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1617 len = obuf_f->blf_len;
1618 flags = obuf_f->blf_flags;
1623 * If this isn't a cancel buffer item, then just return.
1625 if (!(flags & XFS_BLI_CANCEL))
1629 * Insert an xfs_buf_cancel record into the hash table of
1630 * them. If there is already an identical record, bump
1631 * its reference count.
1633 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1634 XLOG_BC_TABLE_SIZE];
1636 * If the hash bucket is empty then just insert a new record into
1639 if (*bucket == NULL) {
1640 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1642 bcp->bc_blkno = blkno;
1644 bcp->bc_refcount = 1;
1645 bcp->bc_next = NULL;
1651 * The hash bucket is not empty, so search for duplicates of our
1652 * record. If we find one them just bump its refcount. If not
1653 * then add us at the end of the list.
1657 while (nextp != NULL) {
1658 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1659 nextp->bc_refcount++;
1663 nextp = nextp->bc_next;
1665 ASSERT(prevp != NULL);
1666 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1668 bcp->bc_blkno = blkno;
1670 bcp->bc_refcount = 1;
1671 bcp->bc_next = NULL;
1672 prevp->bc_next = bcp;
1676 * Check to see whether the buffer being recovered has a corresponding
1677 * entry in the buffer cancel record table. If it does then return 1
1678 * so that it will be cancelled, otherwise return 0. If the buffer is
1679 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1680 * the refcount on the entry in the table and remove it from the table
1681 * if this is the last reference.
1683 * We remove the cancel record from the table when we encounter its
1684 * last occurrence in the log so that if the same buffer is re-used
1685 * again after its last cancellation we actually replay the changes
1686 * made at that point.
1689 xlog_check_buffer_cancelled(
1695 xfs_buf_cancel_t *bcp;
1696 xfs_buf_cancel_t *prevp;
1697 xfs_buf_cancel_t **bucket;
1699 if (log->l_buf_cancel_table == NULL) {
1701 * There is nothing in the table built in pass one,
1702 * so this buffer must not be cancelled.
1704 ASSERT(!(flags & XFS_BLI_CANCEL));
1708 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1709 XLOG_BC_TABLE_SIZE];
1713 * There is no corresponding entry in the table built
1714 * in pass one, so this buffer has not been cancelled.
1716 ASSERT(!(flags & XFS_BLI_CANCEL));
1721 * Search for an entry in the buffer cancel table that
1722 * matches our buffer.
1725 while (bcp != NULL) {
1726 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1728 * We've go a match, so return 1 so that the
1729 * recovery of this buffer is cancelled.
1730 * If this buffer is actually a buffer cancel
1731 * log item, then decrement the refcount on the
1732 * one in the table and remove it if this is the
1735 if (flags & XFS_BLI_CANCEL) {
1737 if (bcp->bc_refcount == 0) {
1738 if (prevp == NULL) {
1739 *bucket = bcp->bc_next;
1741 prevp->bc_next = bcp->bc_next;
1744 sizeof(xfs_buf_cancel_t));
1753 * We didn't find a corresponding entry in the table, so
1754 * return 0 so that the buffer is NOT cancelled.
1756 ASSERT(!(flags & XFS_BLI_CANCEL));
1761 xlog_recover_do_buffer_pass2(
1763 xfs_buf_log_format_t *buf_f)
1765 xfs_buf_log_format_v1_t *obuf_f;
1766 xfs_daddr_t blkno = 0;
1770 switch (buf_f->blf_type) {
1772 blkno = buf_f->blf_blkno;
1773 flags = buf_f->blf_flags;
1774 len = buf_f->blf_len;
1776 case XFS_LI_6_1_BUF:
1777 case XFS_LI_5_3_BUF:
1778 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1779 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1780 flags = obuf_f->blf_flags;
1781 len = (xfs_daddr_t) obuf_f->blf_len;
1785 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1789 * Perform recovery for a buffer full of inodes. In these buffers,
1790 * the only data which should be recovered is that which corresponds
1791 * to the di_next_unlinked pointers in the on disk inode structures.
1792 * The rest of the data for the inodes is always logged through the
1793 * inodes themselves rather than the inode buffer and is recovered
1794 * in xlog_recover_do_inode_trans().
1796 * The only time when buffers full of inodes are fully recovered is
1797 * when the buffer is full of newly allocated inodes. In this case
1798 * the buffer will not be marked as an inode buffer and so will be
1799 * sent to xlog_recover_do_reg_buffer() below during recovery.
1802 xlog_recover_do_inode_buffer(
1804 xlog_recover_item_t *item,
1806 xfs_buf_log_format_t *buf_f)
1814 int next_unlinked_offset;
1816 xfs_agino_t *logged_nextp;
1817 xfs_agino_t *buffer_nextp;
1818 xfs_buf_log_format_v1_t *obuf_f;
1819 unsigned int *data_map = NULL;
1820 unsigned int map_size = 0;
1822 switch (buf_f->blf_type) {
1824 data_map = buf_f->blf_data_map;
1825 map_size = buf_f->blf_map_size;
1827 case XFS_LI_6_1_BUF:
1828 case XFS_LI_5_3_BUF:
1829 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1830 data_map = obuf_f->blf_data_map;
1831 map_size = obuf_f->blf_map_size;
1835 * Set the variables corresponding to the current region to
1836 * 0 so that we'll initialize them on the first pass through
1844 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1845 for (i = 0; i < inodes_per_buf; i++) {
1846 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1847 offsetof(xfs_dinode_t, di_next_unlinked);
1849 while (next_unlinked_offset >=
1850 (reg_buf_offset + reg_buf_bytes)) {
1852 * The next di_next_unlinked field is beyond
1853 * the current logged region. Find the next
1854 * logged region that contains or is beyond
1855 * the current di_next_unlinked field.
1858 bit = xfs_next_bit(data_map, map_size, bit);
1861 * If there are no more logged regions in the
1862 * buffer, then we're done.
1868 nbits = xfs_contig_bits(data_map, map_size,
1871 reg_buf_offset = bit << XFS_BLI_SHIFT;
1872 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1877 * If the current logged region starts after the current
1878 * di_next_unlinked field, then move on to the next
1879 * di_next_unlinked field.
1881 if (next_unlinked_offset < reg_buf_offset) {
1885 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1886 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1887 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1890 * The current logged region contains a copy of the
1891 * current di_next_unlinked field. Extract its value
1892 * and copy it to the buffer copy.
1894 logged_nextp = (xfs_agino_t *)
1895 ((char *)(item->ri_buf[item_index].i_addr) +
1896 (next_unlinked_offset - reg_buf_offset));
1897 if (unlikely(*logged_nextp == 0)) {
1898 xfs_fs_cmn_err(CE_ALERT, mp,
1899 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1901 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1902 XFS_ERRLEVEL_LOW, mp);
1903 return XFS_ERROR(EFSCORRUPTED);
1906 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1907 next_unlinked_offset);
1908 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1915 * Perform a 'normal' buffer recovery. Each logged region of the
1916 * buffer should be copied over the corresponding region in the
1917 * given buffer. The bitmap in the buf log format structure indicates
1918 * where to place the logged data.
1922 xlog_recover_do_reg_buffer(
1924 xlog_recover_item_t *item,
1926 xfs_buf_log_format_t *buf_f)
1931 xfs_buf_log_format_v1_t *obuf_f;
1932 unsigned int *data_map = NULL;
1933 unsigned int map_size = 0;
1936 switch (buf_f->blf_type) {
1938 data_map = buf_f->blf_data_map;
1939 map_size = buf_f->blf_map_size;
1941 case XFS_LI_6_1_BUF:
1942 case XFS_LI_5_3_BUF:
1943 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1944 data_map = obuf_f->blf_data_map;
1945 map_size = obuf_f->blf_map_size;
1949 i = 1; /* 0 is the buf format structure */
1951 bit = xfs_next_bit(data_map, map_size, bit);
1954 nbits = xfs_contig_bits(data_map, map_size, bit);
1956 ASSERT(item->ri_buf[i].i_addr != 0);
1957 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1958 ASSERT(XFS_BUF_COUNT(bp) >=
1959 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1962 * Do a sanity check if this is a dquot buffer. Just checking
1963 * the first dquot in the buffer should do. XXXThis is
1964 * probably a good thing to do for other buf types also.
1967 if (buf_f->blf_flags &
1968 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1969 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1970 item->ri_buf[i].i_addr,
1971 -1, 0, XFS_QMOPT_DOWARN,
1972 "dquot_buf_recover");
1975 memcpy(xfs_buf_offset(bp,
1976 (uint)bit << XFS_BLI_SHIFT), /* dest */
1977 item->ri_buf[i].i_addr, /* source */
1978 nbits<<XFS_BLI_SHIFT); /* length */
1983 /* Shouldn't be any more regions */
1984 ASSERT(i == item->ri_total);
1988 * Do some primitive error checking on ondisk dquot data structures.
1992 xfs_disk_dquot_t *ddq,
1994 uint type, /* used only when IO_dorepair is true */
1998 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2002 * We can encounter an uninitialized dquot buffer for 2 reasons:
2003 * 1. If we crash while deleting the quotainode(s), and those blks got
2004 * used for user data. This is because we take the path of regular
2005 * file deletion; however, the size field of quotainodes is never
2006 * updated, so all the tricks that we play in itruncate_finish
2007 * don't quite matter.
2009 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2010 * But the allocation will be replayed so we'll end up with an
2011 * uninitialized quota block.
2013 * This is all fine; things are still consistent, and we haven't lost
2014 * any quota information. Just don't complain about bad dquot blks.
2016 if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) {
2017 if (flags & XFS_QMOPT_DOWARN)
2019 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2021 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC);
2024 if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) {
2025 if (flags & XFS_QMOPT_DOWARN)
2027 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2029 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION);
2033 if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER &&
2034 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_PROJ &&
2035 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) {
2036 if (flags & XFS_QMOPT_DOWARN)
2038 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2039 str, id, INT_GET(ddq->d_flags, ARCH_CONVERT));
2043 if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) {
2044 if (flags & XFS_QMOPT_DOWARN)
2046 "%s : ondisk-dquot 0x%p, ID mismatch: "
2047 "0x%x expected, found id 0x%x",
2048 str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT));
2052 if (!errs && ddq->d_id) {
2053 if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) &&
2054 INT_GET(ddq->d_bcount, ARCH_CONVERT) >=
2055 INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) {
2056 if (!ddq->d_btimer) {
2057 if (flags & XFS_QMOPT_DOWARN)
2059 "%s : Dquot ID 0x%x (0x%p) "
2060 "BLK TIMER NOT STARTED",
2062 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2066 if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) &&
2067 INT_GET(ddq->d_icount, ARCH_CONVERT) >=
2068 INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) {
2069 if (!ddq->d_itimer) {
2070 if (flags & XFS_QMOPT_DOWARN)
2072 "%s : Dquot ID 0x%x (0x%p) "
2073 "INODE TIMER NOT STARTED",
2075 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2079 if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) &&
2080 INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >=
2081 INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) {
2082 if (!ddq->d_rtbtimer) {
2083 if (flags & XFS_QMOPT_DOWARN)
2085 "%s : Dquot ID 0x%x (0x%p) "
2086 "RTBLK TIMER NOT STARTED",
2088 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2094 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2097 if (flags & XFS_QMOPT_DOWARN)
2098 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2101 * Typically, a repair is only requested by quotacheck.
2104 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2105 memset(d, 0, sizeof(xfs_dqblk_t));
2106 INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC);
2107 INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION);
2108 INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id);
2109 INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type);
2115 * Perform a dquot buffer recovery.
2116 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2117 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2118 * Else, treat it as a regular buffer and do recovery.
2121 xlog_recover_do_dquot_buffer(
2124 xlog_recover_item_t *item,
2126 xfs_buf_log_format_t *buf_f)
2131 * Filesystems are required to send in quota flags at mount time.
2133 if (mp->m_qflags == 0) {
2138 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2139 type |= XFS_DQ_USER;
2140 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2141 type |= XFS_DQ_PROJ;
2142 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2143 type |= XFS_DQ_GROUP;
2145 * This type of quotas was turned off, so ignore this buffer
2147 if (log->l_quotaoffs_flag & type)
2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2154 * This routine replays a modification made to a buffer at runtime.
2155 * There are actually two types of buffer, regular and inode, which
2156 * are handled differently. Inode buffers are handled differently
2157 * in that we only recover a specific set of data from them, namely
2158 * the inode di_next_unlinked fields. This is because all other inode
2159 * data is actually logged via inode records and any data we replay
2160 * here which overlaps that may be stale.
2162 * When meta-data buffers are freed at run time we log a buffer item
2163 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2164 * of the buffer in the log should not be replayed at recovery time.
2165 * This is so that if the blocks covered by the buffer are reused for
2166 * file data before we crash we don't end up replaying old, freed
2167 * meta-data into a user's file.
2169 * To handle the cancellation of buffer log items, we make two passes
2170 * over the log during recovery. During the first we build a table of
2171 * those buffers which have been cancelled, and during the second we
2172 * only replay those buffers which do not have corresponding cancel
2173 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2174 * for more details on the implementation of the table of cancel records.
2177 xlog_recover_do_buffer_trans(
2179 xlog_recover_item_t *item,
2182 xfs_buf_log_format_t *buf_f;
2183 xfs_buf_log_format_v1_t *obuf_f;
2192 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2194 if (pass == XLOG_RECOVER_PASS1) {
2196 * In this pass we're only looking for buf items
2197 * with the XFS_BLI_CANCEL bit set.
2199 xlog_recover_do_buffer_pass1(log, buf_f);
2203 * In this pass we want to recover all the buffers
2204 * which have not been cancelled and are not
2205 * cancellation buffers themselves. The routine
2206 * we call here will tell us whether or not to
2207 * continue with the replay of this buffer.
2209 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2214 switch (buf_f->blf_type) {
2216 blkno = buf_f->blf_blkno;
2217 len = buf_f->blf_len;
2218 flags = buf_f->blf_flags;
2220 case XFS_LI_6_1_BUF:
2221 case XFS_LI_5_3_BUF:
2222 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2223 blkno = obuf_f->blf_blkno;
2224 len = obuf_f->blf_len;
2225 flags = obuf_f->blf_flags;
2228 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2229 "xfs_log_recover: unknown buffer type 0x%x, dev %s",
2230 buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ));
2231 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2232 XFS_ERRLEVEL_LOW, log->l_mp);
2233 return XFS_ERROR(EFSCORRUPTED);
2237 if (flags & XFS_BLI_INODE_BUF) {
2238 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2241 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2243 if (XFS_BUF_ISERROR(bp)) {
2244 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2246 error = XFS_BUF_GETERROR(bp);
2252 if (flags & XFS_BLI_INODE_BUF) {
2253 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2255 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2256 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2258 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2261 return XFS_ERROR(error);
2264 * Perform delayed write on the buffer. Asynchronous writes will be
2265 * slower when taking into account all the buffers to be flushed.
2267 * Also make sure that only inode buffers with good sizes stay in
2268 * the buffer cache. The kernel moves inodes in buffers of 1 block
2269 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2270 * buffers in the log can be a different size if the log was generated
2271 * by an older kernel using unclustered inode buffers or a newer kernel
2272 * running with a different inode cluster size. Regardless, if the
2273 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2274 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2275 * the buffer out of the buffer cache so that the buffer won't
2276 * overlap with future reads of those inodes.
2278 if (XFS_DINODE_MAGIC ==
2279 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2280 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2281 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2283 error = xfs_bwrite(mp, bp);
2285 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2286 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2287 XFS_BUF_SET_FSPRIVATE(bp, mp);
2288 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2289 xfs_bdwrite(mp, bp);
2296 xlog_recover_do_inode_trans(
2298 xlog_recover_item_t *item,
2301 xfs_inode_log_format_t *in_f;
2313 xfs_dinode_core_t *dicp;
2315 if (pass == XLOG_RECOVER_PASS1) {
2319 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2320 ino = in_f->ilf_ino;
2322 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2323 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2324 imap.im_len = in_f->ilf_len;
2325 imap.im_boffset = in_f->ilf_boffset;
2328 * It's an old inode format record. We don't know where
2329 * its cluster is located on disk, and we can't allow
2330 * xfs_imap() to figure it out because the inode btrees
2331 * are not ready to be used. Therefore do not pass the
2332 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2333 * us only the single block in which the inode lives
2334 * rather than its cluster, so we must make sure to
2335 * invalidate the buffer when we write it out below.
2338 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2342 * Inode buffers can be freed, look out for it,
2343 * and do not replay the inode.
2345 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2348 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2350 if (XFS_BUF_ISERROR(bp)) {
2351 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2353 error = XFS_BUF_GETERROR(bp);
2358 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2359 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2362 * Make sure the place we're flushing out to really looks
2365 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2367 xfs_fs_cmn_err(CE_ALERT, mp,
2368 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2370 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2371 XFS_ERRLEVEL_LOW, mp);
2372 return XFS_ERROR(EFSCORRUPTED);
2374 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2375 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2380 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2381 XFS_ERRLEVEL_LOW, mp);
2382 return XFS_ERROR(EFSCORRUPTED);
2385 /* Skip replay when the on disk inode is newer than the log one */
2386 if (dicp->di_flushiter <
2387 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2389 * Deal with the wrap case, DI_MAX_FLUSH is less
2390 * than smaller numbers
2392 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2394 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2401 /* Take the opportunity to reset the flush iteration count */
2402 dicp->di_flushiter = 0;
2404 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2405 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2406 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2408 XFS_ERRLEVEL_LOW, mp, dicp);
2410 xfs_fs_cmn_err(CE_ALERT, mp,
2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2412 item, dip, bp, ino);
2413 return XFS_ERROR(EFSCORRUPTED);
2415 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2416 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2417 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2418 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2419 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2420 XFS_ERRLEVEL_LOW, mp, dicp);
2422 xfs_fs_cmn_err(CE_ALERT, mp,
2423 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2424 item, dip, bp, ino);
2425 return XFS_ERROR(EFSCORRUPTED);
2428 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2429 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2430 XFS_ERRLEVEL_LOW, mp, dicp);
2432 xfs_fs_cmn_err(CE_ALERT, mp,
2433 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2435 dicp->di_nextents + dicp->di_anextents,
2437 return XFS_ERROR(EFSCORRUPTED);
2439 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2440 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2441 XFS_ERRLEVEL_LOW, mp, dicp);
2443 xfs_fs_cmn_err(CE_ALERT, mp,
2444 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2445 item, dip, bp, ino, dicp->di_forkoff);
2446 return XFS_ERROR(EFSCORRUPTED);
2448 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2450 XFS_ERRLEVEL_LOW, mp, dicp);
2452 xfs_fs_cmn_err(CE_ALERT, mp,
2453 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2454 item->ri_buf[1].i_len, item);
2455 return XFS_ERROR(EFSCORRUPTED);
2458 /* The core is in in-core format */
2459 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2460 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2462 /* the rest is in on-disk format */
2463 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2464 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2465 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2466 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2469 fields = in_f->ilf_fields;
2470 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2472 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2476 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2480 if (in_f->ilf_size == 2)
2481 goto write_inode_buffer;
2482 len = item->ri_buf[2].i_len;
2483 src = item->ri_buf[2].i_addr;
2484 ASSERT(in_f->ilf_size <= 4);
2485 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2486 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2487 (len == in_f->ilf_dsize));
2489 switch (fields & XFS_ILOG_DFORK) {
2490 case XFS_ILOG_DDATA:
2492 memcpy(&dip->di_u, src, len);
2495 case XFS_ILOG_DBROOT:
2496 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2497 &(dip->di_u.di_bmbt),
2498 XFS_DFORK_DSIZE(dip, mp));
2503 * There are no data fork flags set.
2505 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2510 * If we logged any attribute data, recover it. There may or
2511 * may not have been any other non-core data logged in this
2514 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2515 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2520 len = item->ri_buf[attr_index].i_len;
2521 src = item->ri_buf[attr_index].i_addr;
2522 ASSERT(len == in_f->ilf_asize);
2524 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2525 case XFS_ILOG_ADATA:
2527 dest = XFS_DFORK_APTR(dip);
2528 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2529 memcpy(dest, src, len);
2532 case XFS_ILOG_ABROOT:
2533 dest = XFS_DFORK_APTR(dip);
2534 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2535 (xfs_bmdr_block_t*)dest,
2536 XFS_DFORK_ASIZE(dip, mp));
2540 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2543 return XFS_ERROR(EIO);
2548 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2550 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2551 XFS_BUF_SET_FSPRIVATE(bp, mp);
2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553 xfs_bdwrite(mp, bp);
2556 error = xfs_bwrite(mp, bp);
2563 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2564 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2568 xlog_recover_do_quotaoff_trans(
2570 xlog_recover_item_t *item,
2573 xfs_qoff_logformat_t *qoff_f;
2575 if (pass == XLOG_RECOVER_PASS2) {
2579 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2583 * The logitem format's flag tells us if this was user quotaoff,
2584 * group quotaoff or both.
2586 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2587 log->l_quotaoffs_flag |= XFS_DQ_USER;
2588 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2589 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595 * Recover a dquot record
2598 xlog_recover_do_dquot_trans(
2600 xlog_recover_item_t *item,
2605 struct xfs_disk_dquot *ddq, *recddq;
2607 xfs_dq_logformat_t *dq_f;
2610 if (pass == XLOG_RECOVER_PASS1) {
2616 * Filesystems are required to send in quota flags at mount time.
2618 if (mp->m_qflags == 0)
2621 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2624 * This type of quotas was turned off, so ignore this record.
2626 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2627 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2629 if (log->l_quotaoffs_flag & type)
2633 * At this point we know that quota was _not_ turned off.
2634 * Since the mount flags are not indicating to us otherwise, this
2635 * must mean that quota is on, and the dquot needs to be replayed.
2636 * Remember that we may not have fully recovered the superblock yet,
2637 * so we can't do the usual trick of looking at the SB quota bits.
2639 * The other possibility, of course, is that the quota subsystem was
2640 * removed since the last mount - ENOSYS.
2642 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2644 if ((error = xfs_qm_dqcheck(recddq,
2646 0, XFS_QMOPT_DOWARN,
2647 "xlog_recover_do_dquot_trans (log copy)"))) {
2648 return XFS_ERROR(EIO);
2650 ASSERT(dq_f->qlf_len == 1);
2652 error = xfs_read_buf(mp, mp->m_ddev_targp,
2654 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2657 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2658 bp, dq_f->qlf_blkno);
2662 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2665 * At least the magic num portion should be on disk because this
2666 * was among a chunk of dquots created earlier, and we did some
2667 * minimal initialization then.
2669 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2670 "xlog_recover_do_dquot_trans")) {
2672 return XFS_ERROR(EIO);
2675 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2677 ASSERT(dq_f->qlf_size == 2);
2678 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2679 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2680 XFS_BUF_SET_FSPRIVATE(bp, mp);
2681 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2682 xfs_bdwrite(mp, bp);
2688 * This routine is called to create an in-core extent free intent
2689 * item from the efi format structure which was logged on disk.
2690 * It allocates an in-core efi, copies the extents from the format
2691 * structure into it, and adds the efi to the AIL with the given
2695 xlog_recover_do_efi_trans(
2697 xlog_recover_item_t *item,
2702 xfs_efi_log_item_t *efip;
2703 xfs_efi_log_format_t *efi_formatp;
2706 if (pass == XLOG_RECOVER_PASS1) {
2710 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2711 ASSERT(item->ri_buf[0].i_len ==
2712 (sizeof(xfs_efi_log_format_t) +
2713 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2716 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2717 memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2718 sizeof(xfs_efi_log_format_t) +
2719 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2720 efip->efi_next_extent = efi_formatp->efi_nextents;
2721 efip->efi_flags |= XFS_EFI_COMMITTED;
2725 * xfs_trans_update_ail() drops the AIL lock.
2727 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2732 * This routine is called when an efd format structure is found in
2733 * a committed transaction in the log. It's purpose is to cancel
2734 * the corresponding efi if it was still in the log. To do this
2735 * it searches the AIL for the efi with an id equal to that in the
2736 * efd format structure. If we find it, we remove the efi from the
2740 xlog_recover_do_efd_trans(
2742 xlog_recover_item_t *item,
2746 xfs_efd_log_format_t *efd_formatp;
2747 xfs_efi_log_item_t *efip = NULL;
2748 xfs_log_item_t *lip;
2753 if (pass == XLOG_RECOVER_PASS1) {
2757 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2758 ASSERT(item->ri_buf[0].i_len ==
2759 (sizeof(xfs_efd_log_format_t) +
2760 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2761 efi_id = efd_formatp->efd_efi_id;
2764 * Search for the efi with the id in the efd format structure
2769 lip = xfs_trans_first_ail(mp, &gen);
2770 while (lip != NULL) {
2771 if (lip->li_type == XFS_LI_EFI) {
2772 efip = (xfs_efi_log_item_t *)lip;
2773 if (efip->efi_format.efi_id == efi_id) {
2775 * xfs_trans_delete_ail() drops the
2778 xfs_trans_delete_ail(mp, lip, s);
2782 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2786 * If we found it, then free it up. If it wasn't there, it
2787 * must have been overwritten in the log. Oh well.
2790 xfs_efi_item_free(efip);
2797 * Perform the transaction
2799 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2800 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2803 xlog_recover_do_trans(
2805 xlog_recover_t *trans,
2809 xlog_recover_item_t *item, *first_item;
2811 if ((error = xlog_recover_reorder_trans(log, trans)))
2813 first_item = item = trans->r_itemq;
2816 * we don't need to worry about the block number being
2817 * truncated in > 1 TB buffers because in user-land,
2818 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2819 * the blkno's will get through the user-mode buffer
2820 * cache properly. The only bad case is o32 kernels
2821 * where xfs_daddr_t is 32-bits but mount will warn us
2822 * off a > 1 TB filesystem before we get here.
2824 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2825 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2826 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2827 if ((error = xlog_recover_do_buffer_trans(log, item,
2830 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2831 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2832 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2833 if ((error = xlog_recover_do_inode_trans(log, item,
2836 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2837 xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2839 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2840 xlog_recover_do_efd_trans(log, item, pass);
2841 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2842 if ((error = xlog_recover_do_dquot_trans(log, item,
2845 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2846 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2850 xlog_warn("XFS: xlog_recover_do_trans");
2852 error = XFS_ERROR(EIO);
2855 item = item->ri_next;
2856 } while (first_item != item);
2862 * Free up any resources allocated by the transaction
2864 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2867 xlog_recover_free_trans(
2868 xlog_recover_t *trans)
2870 xlog_recover_item_t *first_item, *item, *free_item;
2873 item = first_item = trans->r_itemq;
2876 item = item->ri_next;
2877 /* Free the regions in the item. */
2878 for (i = 0; i < free_item->ri_cnt; i++) {
2879 kmem_free(free_item->ri_buf[i].i_addr,
2880 free_item->ri_buf[i].i_len);
2882 /* Free the item itself */
2883 kmem_free(free_item->ri_buf,
2884 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2885 kmem_free(free_item, sizeof(xlog_recover_item_t));
2886 } while (first_item != item);
2887 /* Free the transaction recover structure */
2888 kmem_free(trans, sizeof(xlog_recover_t));
2892 xlog_recover_commit_trans(
2895 xlog_recover_t *trans,
2900 if ((error = xlog_recover_unlink_tid(q, trans)))
2902 if ((error = xlog_recover_do_trans(log, trans, pass)))
2904 xlog_recover_free_trans(trans); /* no error */
2909 xlog_recover_unmount_trans(
2910 xlog_recover_t *trans)
2912 /* Do nothing now */
2913 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2918 * There are two valid states of the r_state field. 0 indicates that the
2919 * transaction structure is in a normal state. We have either seen the
2920 * start of the transaction or the last operation we added was not a partial
2921 * operation. If the last operation we added to the transaction was a
2922 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2924 * NOTE: skip LRs with 0 data length.
2927 xlog_recover_process_data(
2929 xlog_recover_t *rhash[],
2930 xlog_rec_header_t *rhead,
2936 xlog_op_header_t *ohead;
2937 xlog_recover_t *trans;
2943 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2944 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2946 /* check the log format matches our own - else we can't recover */
2947 if (xlog_header_check_recover(log->l_mp, rhead))
2948 return (XFS_ERROR(EIO));
2950 while ((dp < lp) && num_logops) {
2951 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2952 ohead = (xlog_op_header_t *)dp;
2953 dp += sizeof(xlog_op_header_t);
2954 if (ohead->oh_clientid != XFS_TRANSACTION &&
2955 ohead->oh_clientid != XFS_LOG) {
2957 "XFS: xlog_recover_process_data: bad clientid");
2959 return (XFS_ERROR(EIO));
2961 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2962 hash = XLOG_RHASH(tid);
2963 trans = xlog_recover_find_tid(rhash[hash], tid);
2964 if (trans == NULL) { /* not found; add new tid */
2965 if (ohead->oh_flags & XLOG_START_TRANS)
2966 xlog_recover_new_tid(&rhash[hash], tid,
2967 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2969 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2970 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2971 if (flags & XLOG_WAS_CONT_TRANS)
2972 flags &= ~XLOG_CONTINUE_TRANS;
2974 case XLOG_COMMIT_TRANS:
2975 error = xlog_recover_commit_trans(log,
2976 &rhash[hash], trans, pass);
2978 case XLOG_UNMOUNT_TRANS:
2979 error = xlog_recover_unmount_trans(trans);
2981 case XLOG_WAS_CONT_TRANS:
2982 error = xlog_recover_add_to_cont_trans(trans,
2983 dp, INT_GET(ohead->oh_len,
2986 case XLOG_START_TRANS:
2988 "XFS: xlog_recover_process_data: bad transaction");
2990 error = XFS_ERROR(EIO);
2993 case XLOG_CONTINUE_TRANS:
2994 error = xlog_recover_add_to_trans(trans,
2995 dp, INT_GET(ohead->oh_len,
3000 "XFS: xlog_recover_process_data: bad flag");
3002 error = XFS_ERROR(EIO);
3008 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3015 * Process an extent free intent item that was recovered from
3016 * the log. We need to free the extents that it describes.
3019 xlog_recover_process_efi(
3021 xfs_efi_log_item_t *efip)
3023 xfs_efd_log_item_t *efdp;
3027 xfs_fsblock_t startblock_fsb;
3029 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3032 * First check the validity of the extents described by the
3033 * EFI. If any are bad, then assume that all are bad and
3034 * just toss the EFI.
3036 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3037 extp = &(efip->efi_format.efi_extents[i]);
3038 startblock_fsb = XFS_BB_TO_FSB(mp,
3039 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3040 if ((startblock_fsb == 0) ||
3041 (extp->ext_len == 0) ||
3042 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3043 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3045 * This will pull the EFI from the AIL and
3046 * free the memory associated with it.
3048 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3053 tp = xfs_trans_alloc(mp, 0);
3054 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3055 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3057 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3058 extp = &(efip->efi_format.efi_extents[i]);
3059 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3060 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3064 efip->efi_flags |= XFS_EFI_RECOVERED;
3065 xfs_trans_commit(tp, 0, NULL);
3069 * Verify that once we've encountered something other than an EFI
3070 * in the AIL that there are no more EFIs in the AIL.
3074 xlog_recover_check_ail(
3076 xfs_log_item_t *lip,
3082 ASSERT(lip->li_type != XFS_LI_EFI);
3083 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3085 * The check will be bogus if we restart from the
3086 * beginning of the AIL, so ASSERT that we don't.
3087 * We never should since we're holding the AIL lock
3090 ASSERT(gen == orig_gen);
3091 } while (lip != NULL);
3096 * When this is called, all of the EFIs which did not have
3097 * corresponding EFDs should be in the AIL. What we do now
3098 * is free the extents associated with each one.
3100 * Since we process the EFIs in normal transactions, they
3101 * will be removed at some point after the commit. This prevents
3102 * us from just walking down the list processing each one.
3103 * We'll use a flag in the EFI to skip those that we've already
3104 * processed and use the AIL iteration mechanism's generation
3105 * count to try to speed this up at least a bit.
3107 * When we start, we know that the EFIs are the only things in
3108 * the AIL. As we process them, however, other items are added
3109 * to the AIL. Since everything added to the AIL must come after
3110 * everything already in the AIL, we stop processing as soon as
3111 * we see something other than an EFI in the AIL.
3114 xlog_recover_process_efis(
3117 xfs_log_item_t *lip;
3118 xfs_efi_log_item_t *efip;
3126 lip = xfs_trans_first_ail(mp, &gen);
3127 while (lip != NULL) {
3129 * We're done when we see something other than an EFI.
3131 if (lip->li_type != XFS_LI_EFI) {
3132 xlog_recover_check_ail(mp, lip, gen);
3137 * Skip EFIs that we've already processed.
3139 efip = (xfs_efi_log_item_t *)lip;
3140 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3141 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3146 xlog_recover_process_efi(mp, efip);
3148 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3154 * This routine performs a transaction to null out a bad inode pointer
3155 * in an agi unlinked inode hash bucket.
3158 xlog_recover_clear_agi_bucket(
3160 xfs_agnumber_t agno,
3169 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3170 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3172 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3173 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3174 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3176 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3180 agi = XFS_BUF_TO_AGI(agibp);
3181 if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) {
3182 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3185 ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC);
3187 INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO);
3188 offset = offsetof(xfs_agi_t, agi_unlinked) +
3189 (sizeof(xfs_agino_t) * bucket);
3190 xfs_trans_log_buf(tp, agibp, offset,
3191 (offset + sizeof(xfs_agino_t) - 1));
3193 (void) xfs_trans_commit(tp, 0, NULL);
3197 * xlog_iunlink_recover
3199 * This is called during recovery to process any inodes which
3200 * we unlinked but not freed when the system crashed. These
3201 * inodes will be on the lists in the AGI blocks. What we do
3202 * here is scan all the AGIs and fully truncate and free any
3203 * inodes found on the lists. Each inode is removed from the
3204 * lists when it has been fully truncated and is freed. The
3205 * freeing of the inode and its removal from the list must be
3209 xlog_recover_process_iunlinks(
3213 xfs_agnumber_t agno;
3228 * Prevent any DMAPI event from being sent while in this function.
3230 mp_dmevmask = mp->m_dmevmask;
3233 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3235 * Find the agi for this ag.
3237 agibp = xfs_buf_read(mp->m_ddev_targp,
3238 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3239 XFS_FSS_TO_BB(mp, 1), 0);
3240 if (XFS_BUF_ISERROR(agibp)) {
3241 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3243 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3245 agi = XFS_BUF_TO_AGI(agibp);
3246 ASSERT(XFS_AGI_MAGIC ==
3247 INT_GET(agi->agi_magicnum, ARCH_CONVERT));
3249 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3251 agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT);
3252 while (agino != NULLAGINO) {
3255 * Release the agi buffer so that it can
3256 * be acquired in the normal course of the
3257 * transaction to truncate and free the inode.
3259 xfs_buf_relse(agibp);
3261 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3262 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3263 ASSERT(error || (ip != NULL));
3267 * Get the on disk inode to find the
3268 * next inode in the bucket.
3270 error = xfs_itobp(mp, NULL, ip, &dip,
3272 ASSERT(error || (dip != NULL));
3276 ASSERT(ip->i_d.di_nlink == 0);
3278 /* setup for the next pass */
3279 agino = INT_GET(dip->di_next_unlinked,
3283 * Prevent any DMAPI event from
3284 * being sent when the
3285 * reference on the inode is
3288 ip->i_d.di_dmevmask = 0;
3291 * If this is a new inode, handle
3292 * it specially. Otherwise,
3293 * just drop our reference to the
3294 * inode. If there are no
3295 * other references, this will
3297 * xfs_inactive() which will
3298 * truncate the file and free
3301 if (ip->i_d.di_mode == 0)
3302 xfs_iput_new(ip, 0);
3304 VN_RELE(XFS_ITOV(ip));
3307 * We can't read in the inode
3308 * this bucket points to, or
3309 * this inode is messed up. Just
3310 * ditch this bucket of inodes. We
3311 * will lose some inodes and space,
3312 * but at least we won't hang. Call
3313 * xlog_recover_clear_agi_bucket()
3314 * to perform a transaction to clear
3315 * the inode pointer in the bucket.
3317 xlog_recover_clear_agi_bucket(mp, agno,
3324 * Reacquire the agibuffer and continue around
3327 agibp = xfs_buf_read(mp->m_ddev_targp,
3328 XFS_AG_DADDR(mp, agno,
3330 XFS_FSS_TO_BB(mp, 1), 0);
3331 if (XFS_BUF_ISERROR(agibp)) {
3333 "xlog_recover_process_iunlinks(#2)",
3335 XFS_AG_DADDR(mp, agno,
3336 XFS_AGI_DADDR(mp)));
3338 agi = XFS_BUF_TO_AGI(agibp);
3339 ASSERT(XFS_AGI_MAGIC == INT_GET(
3340 agi->agi_magicnum, ARCH_CONVERT));
3345 * Release the buffer for the current agi so we can
3346 * go on to the next one.
3348 xfs_buf_relse(agibp);
3351 mp->m_dmevmask = mp_dmevmask;
3357 xlog_pack_data_checksum(
3359 xlog_in_core_t *iclog,
3366 up = (uint *)iclog->ic_datap;
3367 /* divide length by 4 to get # words */
3368 for (i = 0; i < (size >> 2); i++) {
3369 chksum ^= INT_GET(*up, ARCH_CONVERT);
3372 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3375 #define xlog_pack_data_checksum(log, iclog, size)
3379 * Stamp cycle number in every block
3384 xlog_in_core_t *iclog,
3388 int size = iclog->ic_offset + roundoff;
3391 xlog_in_core_2_t *xhdr;
3393 xlog_pack_data_checksum(log, iclog, size);
3395 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3397 dp = iclog->ic_datap;
3398 for (i = 0; i < BTOBB(size) &&
3399 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3400 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3401 *(uint *)dp = cycle_lsn;
3405 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3406 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3407 for ( ; i < BTOBB(size); i++) {
3408 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3409 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3410 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3411 *(uint *)dp = cycle_lsn;
3415 for (i = 1; i < log->l_iclog_heads; i++) {
3416 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3421 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3423 xlog_unpack_data_checksum(
3424 xlog_rec_header_t *rhead,
3428 uint *up = (uint *)dp;
3432 /* divide length by 4 to get # words */
3433 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3434 chksum ^= INT_GET(*up, ARCH_CONVERT);
3437 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3438 if (rhead->h_chksum ||
3439 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3441 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3442 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3444 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3445 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3447 "XFS: LogR this is a LogV2 filesystem");
3449 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3454 #define xlog_unpack_data_checksum(rhead, dp, log)
3459 xlog_rec_header_t *rhead,
3464 xlog_in_core_2_t *xhdr;
3466 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3467 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3468 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3472 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3473 xhdr = (xlog_in_core_2_t *)rhead;
3474 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3475 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3476 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3477 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3482 xlog_unpack_data_checksum(rhead, dp, log);
3486 xlog_valid_rec_header(
3488 xlog_rec_header_t *rhead,
3494 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3495 XLOG_HEADER_MAGIC_NUM))) {
3496 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3497 XFS_ERRLEVEL_LOW, log->l_mp);
3498 return XFS_ERROR(EFSCORRUPTED);
3501 (!rhead->h_version ||
3502 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3503 (~XLOG_VERSION_OKBITS)) != 0))) {
3504 xlog_warn("XFS: %s: unrecognised log version (%d).",
3505 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3506 return XFS_ERROR(EIO);
3509 /* LR body must have data or it wouldn't have been written */
3510 hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3511 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3512 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3513 XFS_ERRLEVEL_LOW, log->l_mp);
3514 return XFS_ERROR(EFSCORRUPTED);
3516 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3517 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3518 XFS_ERRLEVEL_LOW, log->l_mp);
3519 return XFS_ERROR(EFSCORRUPTED);
3525 * Read the log from tail to head and process the log records found.
3526 * Handle the two cases where the tail and head are in the same cycle
3527 * and where the active portion of the log wraps around the end of
3528 * the physical log separately. The pass parameter is passed through
3529 * to the routines called to process the data and is not looked at
3533 xlog_do_recovery_pass(
3535 xfs_daddr_t head_blk,
3536 xfs_daddr_t tail_blk,
3539 xlog_rec_header_t *rhead;
3541 xfs_caddr_t bufaddr, offset;
3542 xfs_buf_t *hbp, *dbp;
3543 int error = 0, h_size;
3544 int bblks, split_bblks;
3545 int hblks, split_hblks, wrapped_hblks;
3546 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3548 ASSERT(head_blk != tail_blk);
3551 * Read the header of the tail block and get the iclog buffer size from
3552 * h_size. Use this to tell how many sectors make up the log header.
3554 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3556 * When using variable length iclogs, read first sector of
3557 * iclog header and extract the header size from it. Get a
3558 * new hbp that is the correct size.
3560 hbp = xlog_get_bp(log, 1);
3563 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3565 offset = xlog_align(log, tail_blk, 1, hbp);
3566 rhead = (xlog_rec_header_t *)offset;
3567 error = xlog_valid_rec_header(log, rhead, tail_blk);
3570 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3571 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3572 & XLOG_VERSION_2) &&
3573 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3574 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3575 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3578 hbp = xlog_get_bp(log, hblks);
3583 ASSERT(log->l_sectbb_log == 0);
3585 hbp = xlog_get_bp(log, 1);
3586 h_size = XLOG_BIG_RECORD_BSIZE;
3591 dbp = xlog_get_bp(log, BTOBB(h_size));
3597 memset(rhash, 0, sizeof(rhash));
3598 if (tail_blk <= head_blk) {
3599 for (blk_no = tail_blk; blk_no < head_blk; ) {
3600 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3602 offset = xlog_align(log, blk_no, hblks, hbp);
3603 rhead = (xlog_rec_header_t *)offset;
3604 error = xlog_valid_rec_header(log, rhead, blk_no);
3608 /* blocks in data section */
3609 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3610 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3613 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3614 xlog_unpack_data(rhead, offset, log);
3615 if ((error = xlog_recover_process_data(log,
3616 rhash, rhead, offset, pass)))
3618 blk_no += bblks + hblks;
3622 * Perform recovery around the end of the physical log.
3623 * When the head is not on the same cycle number as the tail,
3624 * we can't do a sequential recovery as above.
3627 while (blk_no < log->l_logBBsize) {
3629 * Check for header wrapping around physical end-of-log
3634 if (blk_no + hblks <= log->l_logBBsize) {
3635 /* Read header in one read */
3636 error = xlog_bread(log, blk_no, hblks, hbp);
3639 offset = xlog_align(log, blk_no, hblks, hbp);
3641 /* This LR is split across physical log end */
3642 if (blk_no != log->l_logBBsize) {
3643 /* some data before physical log end */
3644 ASSERT(blk_no <= INT_MAX);
3645 split_hblks = log->l_logBBsize - (int)blk_no;
3646 ASSERT(split_hblks > 0);
3647 if ((error = xlog_bread(log, blk_no,
3650 offset = xlog_align(log, blk_no,
3654 * Note: this black magic still works with
3655 * large sector sizes (non-512) only because:
3656 * - we increased the buffer size originally
3657 * by 1 sector giving us enough extra space
3658 * for the second read;
3659 * - the log start is guaranteed to be sector
3661 * - we read the log end (LR header start)
3662 * _first_, then the log start (LR header end)
3663 * - order is important.
3665 bufaddr = XFS_BUF_PTR(hbp);
3666 XFS_BUF_SET_PTR(hbp,
3667 bufaddr + BBTOB(split_hblks),
3668 BBTOB(hblks - split_hblks));
3669 wrapped_hblks = hblks - split_hblks;
3670 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3673 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3675 offset = xlog_align(log, 0,
3676 wrapped_hblks, hbp);
3678 rhead = (xlog_rec_header_t *)offset;
3679 error = xlog_valid_rec_header(log, rhead,
3680 split_hblks ? blk_no : 0);
3684 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3687 /* Read in data for log record */
3688 if (blk_no + bblks <= log->l_logBBsize) {
3689 error = xlog_bread(log, blk_no, bblks, dbp);
3692 offset = xlog_align(log, blk_no, bblks, dbp);
3694 /* This log record is split across the
3695 * physical end of log */
3698 if (blk_no != log->l_logBBsize) {
3699 /* some data is before the physical
3701 ASSERT(!wrapped_hblks);
3702 ASSERT(blk_no <= INT_MAX);
3704 log->l_logBBsize - (int)blk_no;
3705 ASSERT(split_bblks > 0);
3706 if ((error = xlog_bread(log, blk_no,
3709 offset = xlog_align(log, blk_no,
3713 * Note: this black magic still works with
3714 * large sector sizes (non-512) only because:
3715 * - we increased the buffer size originally
3716 * by 1 sector giving us enough extra space
3717 * for the second read;
3718 * - the log start is guaranteed to be sector
3720 * - we read the log end (LR header start)
3721 * _first_, then the log start (LR header end)
3722 * - order is important.
3724 bufaddr = XFS_BUF_PTR(dbp);
3725 XFS_BUF_SET_PTR(dbp,
3726 bufaddr + BBTOB(split_bblks),
3727 BBTOB(bblks - split_bblks));
3728 if ((error = xlog_bread(log, wrapped_hblks,
3729 bblks - split_bblks, dbp)))
3731 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3733 offset = xlog_align(log, wrapped_hblks,
3734 bblks - split_bblks, dbp);
3736 xlog_unpack_data(rhead, offset, log);
3737 if ((error = xlog_recover_process_data(log, rhash,
3738 rhead, offset, pass)))
3743 ASSERT(blk_no >= log->l_logBBsize);
3744 blk_no -= log->l_logBBsize;
3746 /* read first part of physical log */
3747 while (blk_no < head_blk) {
3748 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3750 offset = xlog_align(log, blk_no, hblks, hbp);
3751 rhead = (xlog_rec_header_t *)offset;
3752 error = xlog_valid_rec_header(log, rhead, blk_no);
3755 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3756 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3758 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3759 xlog_unpack_data(rhead, offset, log);
3760 if ((error = xlog_recover_process_data(log, rhash,
3761 rhead, offset, pass)))
3763 blk_no += bblks + hblks;
3775 * Do the recovery of the log. We actually do this in two phases.
3776 * The two passes are necessary in order to implement the function
3777 * of cancelling a record written into the log. The first pass
3778 * determines those things which have been cancelled, and the
3779 * second pass replays log items normally except for those which
3780 * have been cancelled. The handling of the replay and cancellations
3781 * takes place in the log item type specific routines.
3783 * The table of items which have cancel records in the log is allocated
3784 * and freed at this level, since only here do we know when all of
3785 * the log recovery has been completed.
3788 xlog_do_log_recovery(
3790 xfs_daddr_t head_blk,
3791 xfs_daddr_t tail_blk)
3795 ASSERT(head_blk != tail_blk);
3798 * First do a pass to find all of the cancelled buf log items.
3799 * Store them in the buf_cancel_table for use in the second pass.
3801 log->l_buf_cancel_table =
3802 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3803 sizeof(xfs_buf_cancel_t*),
3805 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3806 XLOG_RECOVER_PASS1);
3808 kmem_free(log->l_buf_cancel_table,
3809 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3810 log->l_buf_cancel_table = NULL;
3814 * Then do a second pass to actually recover the items in the log.
3815 * When it is complete free the table of buf cancel items.
3817 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3818 XLOG_RECOVER_PASS2);
3823 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3824 ASSERT(log->l_buf_cancel_table[i] == NULL);
3828 kmem_free(log->l_buf_cancel_table,
3829 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3830 log->l_buf_cancel_table = NULL;
3836 * Do the actual recovery
3841 xfs_daddr_t head_blk,
3842 xfs_daddr_t tail_blk)
3849 * First replay the images in the log.
3851 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3856 XFS_bflush(log->l_mp->m_ddev_targp);
3859 * If IO errors happened during recovery, bail out.
3861 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3866 * We now update the tail_lsn since much of the recovery has completed
3867 * and there may be space available to use. If there were no extent
3868 * or iunlinks, we can free up the entire log and set the tail_lsn to
3869 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3870 * lsn of the last known good LR on disk. If there are extent frees
3871 * or iunlinks they will have some entries in the AIL; so we look at
3872 * the AIL to determine how to set the tail_lsn.
3874 xlog_assign_tail_lsn(log->l_mp);
3877 * Now that we've finished replaying all buffer and inode
3878 * updates, re-read in the superblock.
3880 bp = xfs_getsb(log->l_mp, 0);
3883 xfsbdstrat(log->l_mp, bp);
3884 if ((error = xfs_iowait(bp))) {
3885 xfs_ioerror_alert("xlog_do_recover",
3886 log->l_mp, bp, XFS_BUF_ADDR(bp));
3892 /* Convert superblock from on-disk format */
3893 sbp = &log->l_mp->m_sb;
3894 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3895 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3896 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3899 xlog_recover_check_summary(log);
3901 /* Normal transactions can now occur */
3902 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3907 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3909 * Return error or zero.
3916 xfs_daddr_t head_blk, tail_blk;
3919 /* find the tail of the log */
3920 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
3923 if (tail_blk != head_blk) {
3924 /* There used to be a comment here:
3926 * disallow recovery on read-only mounts. note -- mount
3927 * checks for ENOSPC and turns it into an intelligent
3929 * ...but this is no longer true. Now, unless you specify
3930 * NORECOVERY (in which case this function would never be
3931 * called), we just go ahead and recover. We do this all
3932 * under the vfs layer, so we can get away with it unless
3933 * the device itself is read-only, in which case we fail.
3935 if ((error = xfs_dev_is_read_only(log->l_mp,
3936 "recovery required"))) {
3941 "Starting XFS recovery on filesystem: %s (dev: %s)",
3942 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
3944 error = xlog_do_recover(log, head_blk, tail_blk);
3945 log->l_flags |= XLOG_RECOVERY_NEEDED;
3951 * In the first part of recovery we replay inodes and buffers and build
3952 * up the list of extent free items which need to be processed. Here
3953 * we process the extent free items and clean up the on disk unlinked
3954 * inode lists. This is separated from the first part of recovery so
3955 * that the root and real-time bitmap inodes can be read in from disk in
3956 * between the two stages. This is necessary so that we can free space
3957 * in the real-time portion of the file system.
3960 xlog_recover_finish(
3965 * Now we're ready to do the transactions needed for the
3966 * rest of recovery. Start with completing all the extent
3967 * free intent records and then process the unlinked inode
3968 * lists. At this point, we essentially run in normal mode
3969 * except that we're still performing recovery actions
3970 * rather than accepting new requests.
3972 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3973 xlog_recover_process_efis(log);
3975 * Sync the log to get all the EFIs out of the AIL.
3976 * This isn't absolutely necessary, but it helps in
3977 * case the unlink transactions would have problems
3978 * pushing the EFIs out of the way.
3980 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3981 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3983 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3984 xlog_recover_process_iunlinks(log);
3987 xlog_recover_check_summary(log);
3990 "Ending XFS recovery on filesystem: %s (dev: %s)",
3991 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
3992 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3995 "!Ending clean XFS mount for filesystem: %s",
3996 log->l_mp->m_fsname);
4004 * Read all of the agf and agi counters and check that they
4005 * are consistent with the superblock counters.
4008 xlog_recover_check_summary(
4016 xfs_daddr_t agfdaddr;
4017 xfs_daddr_t agidaddr;
4019 #ifdef XFS_LOUD_RECOVERY
4022 xfs_agnumber_t agno;
4023 __uint64_t freeblks;
4032 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4033 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4034 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4035 XFS_FSS_TO_BB(mp, 1), 0);
4036 if (XFS_BUF_ISERROR(agfbp)) {
4037 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4038 mp, agfbp, agfdaddr);
4040 agfp = XFS_BUF_TO_AGF(agfbp);
4041 ASSERT(XFS_AGF_MAGIC ==
4042 INT_GET(agfp->agf_magicnum, ARCH_CONVERT));
4043 ASSERT(XFS_AGF_GOOD_VERSION(
4044 INT_GET(agfp->agf_versionnum, ARCH_CONVERT)));
4045 ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno);
4047 freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) +
4048 INT_GET(agfp->agf_flcount, ARCH_CONVERT);
4049 xfs_buf_relse(agfbp);
4051 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4052 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4053 XFS_FSS_TO_BB(mp, 1), 0);
4054 if (XFS_BUF_ISERROR(agibp)) {
4055 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4056 mp, agibp, agidaddr);
4058 agip = XFS_BUF_TO_AGI(agibp);
4059 ASSERT(XFS_AGI_MAGIC ==
4060 INT_GET(agip->agi_magicnum, ARCH_CONVERT));
4061 ASSERT(XFS_AGI_GOOD_VERSION(
4062 INT_GET(agip->agi_versionnum, ARCH_CONVERT)));
4063 ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno);
4065 itotal += INT_GET(agip->agi_count, ARCH_CONVERT);
4066 ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT);
4067 xfs_buf_relse(agibp);
4070 sbbp = xfs_getsb(mp, 0);
4071 #ifdef XFS_LOUD_RECOVERY
4073 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4075 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4076 sbp->sb_icount, itotal);
4078 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4079 sbp->sb_ifree, ifree);
4081 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4082 sbp->sb_fdblocks, freeblks);
4085 * This is turned off until I account for the allocation
4086 * btree blocks which live in free space.
4088 ASSERT(sbp->sb_icount == itotal);
4089 ASSERT(sbp->sb_ifree == ifree);
4090 ASSERT(sbp->sb_fdblocks == freeblks);
4093 xfs_buf_relse(sbbp);