2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
57 * Alan Cox : Tidied tcp_data to avoid a potential
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/config.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/smp_lock.h>
257 #include <linux/fs.h>
258 #include <linux/random.h>
259 #include <linux/bootmem.h>
261 #include <net/icmp.h>
263 #include <net/xfrm.h>
267 #include <asm/uaccess.h>
268 #include <asm/ioctls.h>
270 int sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
272 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics);
274 kmem_cache_t *tcp_bucket_cachep;
275 kmem_cache_t *tcp_timewait_cachep;
277 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
279 int sysctl_tcp_mem[3];
280 int sysctl_tcp_wmem[3] = { 4 * 1024, 16 * 1024, 128 * 1024 };
281 int sysctl_tcp_rmem[3] = { 4 * 1024, 87380, 87380 * 2 };
283 EXPORT_SYMBOL(sysctl_tcp_mem);
284 EXPORT_SYMBOL(sysctl_tcp_rmem);
285 EXPORT_SYMBOL(sysctl_tcp_wmem);
287 atomic_t tcp_memory_allocated; /* Current allocated memory. */
288 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 EXPORT_SYMBOL(tcp_sockets_allocated);
294 * Pressure flag: try to collapse.
295 * Technical note: it is used by multiple contexts non atomically.
296 * All the sk_stream_mem_schedule() is of this nature: accounting
297 * is strict, actions are advisory and have some latency.
299 int tcp_memory_pressure;
301 EXPORT_SYMBOL(tcp_memory_pressure);
303 void tcp_enter_memory_pressure(void)
305 if (!tcp_memory_pressure) {
306 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
307 tcp_memory_pressure = 1;
311 EXPORT_SYMBOL(tcp_enter_memory_pressure);
314 * LISTEN is a special case for poll..
316 static __inline__ unsigned int tcp_listen_poll(struct sock *sk,
319 return !reqsk_queue_empty(&tcp_sk(sk)->accept_queue) ? (POLLIN | POLLRDNORM) : 0;
323 * Wait for a TCP event.
325 * Note that we don't need to lock the socket, as the upper poll layers
326 * take care of normal races (between the test and the event) and we don't
327 * go look at any of the socket buffers directly.
329 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
332 struct sock *sk = sock->sk;
333 struct tcp_sock *tp = tcp_sk(sk);
335 poll_wait(file, sk->sk_sleep, wait);
336 if (sk->sk_state == TCP_LISTEN)
337 return tcp_listen_poll(sk, wait);
339 /* Socket is not locked. We are protected from async events
340 by poll logic and correct handling of state changes
341 made by another threads is impossible in any case.
349 * POLLHUP is certainly not done right. But poll() doesn't
350 * have a notion of HUP in just one direction, and for a
351 * socket the read side is more interesting.
353 * Some poll() documentation says that POLLHUP is incompatible
354 * with the POLLOUT/POLLWR flags, so somebody should check this
355 * all. But careful, it tends to be safer to return too many
356 * bits than too few, and you can easily break real applications
357 * if you don't tell them that something has hung up!
361 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
362 * our fs/select.c). It means that after we received EOF,
363 * poll always returns immediately, making impossible poll() on write()
364 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
365 * if and only if shutdown has been made in both directions.
366 * Actually, it is interesting to look how Solaris and DUX
367 * solve this dilemma. I would prefer, if PULLHUP were maskable,
368 * then we could set it on SND_SHUTDOWN. BTW examples given
369 * in Stevens' books assume exactly this behaviour, it explains
370 * why PULLHUP is incompatible with POLLOUT. --ANK
372 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
373 * blocking on fresh not-connected or disconnected socket. --ANK
375 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
377 if (sk->sk_shutdown & RCV_SHUTDOWN)
378 mask |= POLLIN | POLLRDNORM;
381 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
382 /* Potential race condition. If read of tp below will
383 * escape above sk->sk_state, we can be illegally awaken
384 * in SYN_* states. */
385 if ((tp->rcv_nxt != tp->copied_seq) &&
386 (tp->urg_seq != tp->copied_seq ||
387 tp->rcv_nxt != tp->copied_seq + 1 ||
388 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
389 mask |= POLLIN | POLLRDNORM;
391 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
392 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
393 mask |= POLLOUT | POLLWRNORM;
394 } else { /* send SIGIO later */
395 set_bit(SOCK_ASYNC_NOSPACE,
396 &sk->sk_socket->flags);
397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
399 /* Race breaker. If space is freed after
400 * wspace test but before the flags are set,
401 * IO signal will be lost.
403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
404 mask |= POLLOUT | POLLWRNORM;
408 if (tp->urg_data & TCP_URG_VALID)
414 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
416 struct tcp_sock *tp = tcp_sk(sk);
421 if (sk->sk_state == TCP_LISTEN)
425 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
427 else if (sock_flag(sk, SOCK_URGINLINE) ||
429 before(tp->urg_seq, tp->copied_seq) ||
430 !before(tp->urg_seq, tp->rcv_nxt)) {
431 answ = tp->rcv_nxt - tp->copied_seq;
433 /* Subtract 1, if FIN is in queue. */
434 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
436 ((struct sk_buff *)sk->sk_receive_queue.prev)->h.th->fin;
438 answ = tp->urg_seq - tp->copied_seq;
442 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
445 if (sk->sk_state == TCP_LISTEN)
448 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
451 answ = tp->write_seq - tp->snd_una;
457 return put_user(answ, (int __user *)arg);
461 int tcp_listen_start(struct sock *sk)
463 struct inet_sock *inet = inet_sk(sk);
464 struct tcp_sock *tp = tcp_sk(sk);
465 int rc = reqsk_queue_alloc(&tp->accept_queue, TCP_SYNQ_HSIZE);
470 sk->sk_max_ack_backlog = 0;
471 sk->sk_ack_backlog = 0;
474 /* There is race window here: we announce ourselves listening,
475 * but this transition is still not validated by get_port().
476 * It is OK, because this socket enters to hash table only
477 * after validation is complete.
479 sk->sk_state = TCP_LISTEN;
480 if (!sk->sk_prot->get_port(sk, inet->num)) {
481 inet->sport = htons(inet->num);
484 sk->sk_prot->hash(sk);
489 sk->sk_state = TCP_CLOSE;
490 reqsk_queue_destroy(&tp->accept_queue);
495 * This routine closes sockets which have been at least partially
496 * opened, but not yet accepted.
499 static void tcp_listen_stop (struct sock *sk)
501 struct tcp_sock *tp = tcp_sk(sk);
502 struct listen_sock *lopt;
503 struct request_sock *acc_req;
504 struct request_sock *req;
507 tcp_delete_keepalive_timer(sk);
509 /* make all the listen_opt local to us */
510 lopt = reqsk_queue_yank_listen_sk(&tp->accept_queue);
511 acc_req = reqsk_queue_yank_acceptq(&tp->accept_queue);
514 for (i = 0; i < TCP_SYNQ_HSIZE; i++) {
515 while ((req = lopt->syn_table[i]) != NULL) {
516 lopt->syn_table[i] = req->dl_next;
520 /* Following specs, it would be better either to send FIN
521 * (and enter FIN-WAIT-1, it is normal close)
522 * or to send active reset (abort).
523 * Certainly, it is pretty dangerous while synflood, but it is
524 * bad justification for our negligence 8)
525 * To be honest, we are not able to make either
526 * of the variants now. --ANK
531 BUG_TRAP(!lopt->qlen);
535 while ((req = acc_req) != NULL) {
536 struct sock *child = req->sk;
538 acc_req = req->dl_next;
542 BUG_TRAP(!sock_owned_by_user(child));
545 tcp_disconnect(child, O_NONBLOCK);
549 atomic_inc(&tcp_orphan_count);
551 tcp_destroy_sock(child);
553 bh_unlock_sock(child);
557 sk_acceptq_removed(sk);
560 BUG_TRAP(!sk->sk_ack_backlog);
563 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
565 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
566 tp->pushed_seq = tp->write_seq;
569 static inline int forced_push(struct tcp_sock *tp)
571 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
574 static inline void skb_entail(struct sock *sk, struct tcp_sock *tp,
578 TCP_SKB_CB(skb)->seq = tp->write_seq;
579 TCP_SKB_CB(skb)->end_seq = tp->write_seq;
580 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
581 TCP_SKB_CB(skb)->sacked = 0;
582 skb_header_release(skb);
583 __skb_queue_tail(&sk->sk_write_queue, skb);
584 sk_charge_skb(sk, skb);
585 if (!sk->sk_send_head)
586 sk->sk_send_head = skb;
587 else if (tp->nonagle&TCP_NAGLE_PUSH)
588 tp->nonagle &= ~TCP_NAGLE_PUSH;
591 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
594 if (flags & MSG_OOB) {
596 tp->snd_up = tp->write_seq;
597 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
601 static inline void tcp_push(struct sock *sk, struct tcp_sock *tp, int flags,
602 int mss_now, int nonagle)
604 if (sk->sk_send_head) {
605 struct sk_buff *skb = sk->sk_write_queue.prev;
606 if (!(flags & MSG_MORE) || forced_push(tp))
607 tcp_mark_push(tp, skb);
608 tcp_mark_urg(tp, flags, skb);
609 __tcp_push_pending_frames(sk, tp, mss_now,
610 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
614 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
615 size_t psize, int flags)
617 struct tcp_sock *tp = tcp_sk(sk);
621 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
623 /* Wait for a connection to finish. */
624 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
625 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
628 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
630 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
634 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
638 struct sk_buff *skb = sk->sk_write_queue.prev;
639 struct page *page = pages[poffset / PAGE_SIZE];
640 int copy, i, can_coalesce;
641 int offset = poffset % PAGE_SIZE;
642 int size = min_t(size_t, psize, PAGE_SIZE - offset);
644 if (!sk->sk_send_head || (copy = mss_now - skb->len) <= 0) {
646 if (!sk_stream_memory_free(sk))
647 goto wait_for_sndbuf;
649 skb = sk_stream_alloc_pskb(sk, 0, 0,
652 goto wait_for_memory;
654 skb_entail(sk, tp, skb);
661 i = skb_shinfo(skb)->nr_frags;
662 can_coalesce = skb_can_coalesce(skb, i, page, offset);
663 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
664 tcp_mark_push(tp, skb);
667 if (sk->sk_forward_alloc < copy &&
668 !sk_stream_mem_schedule(sk, copy, 0))
669 goto wait_for_memory;
672 skb_shinfo(skb)->frags[i - 1].size += copy;
675 skb_fill_page_desc(skb, i, page, offset, copy);
679 skb->data_len += copy;
680 skb->truesize += copy;
681 sk->sk_wmem_queued += copy;
682 sk->sk_forward_alloc -= copy;
683 skb->ip_summed = CHECKSUM_HW;
684 tp->write_seq += copy;
685 TCP_SKB_CB(skb)->end_seq += copy;
686 skb_shinfo(skb)->tso_segs = 0;
689 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
693 if (!(psize -= copy))
696 if (skb->len != mss_now || (flags & MSG_OOB))
699 if (forced_push(tp)) {
700 tcp_mark_push(tp, skb);
701 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
702 } else if (skb == sk->sk_send_head)
703 tcp_push_one(sk, mss_now);
707 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
710 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
712 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
715 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
720 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
727 return sk_stream_error(sk, flags, err);
730 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
731 size_t size, int flags)
734 struct sock *sk = sock->sk;
736 #define TCP_ZC_CSUM_FLAGS (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
738 if (!(sk->sk_route_caps & NETIF_F_SG) ||
739 !(sk->sk_route_caps & TCP_ZC_CSUM_FLAGS))
740 return sock_no_sendpage(sock, page, offset, size, flags);
742 #undef TCP_ZC_CSUM_FLAGS
746 res = do_tcp_sendpages(sk, &page, offset, size, flags);
752 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
753 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
755 static inline int select_size(struct sock *sk, struct tcp_sock *tp)
757 int tmp = tp->mss_cache_std;
759 if (sk->sk_route_caps & NETIF_F_SG) {
760 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
762 if (tmp >= pgbreak &&
763 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
769 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
773 struct tcp_sock *tp = tcp_sk(sk);
783 flags = msg->msg_flags;
784 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
786 /* Wait for a connection to finish. */
787 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
788 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
791 /* This should be in poll */
792 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
794 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
796 /* Ok commence sending. */
797 iovlen = msg->msg_iovlen;
802 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
805 while (--iovlen >= 0) {
806 int seglen = iov->iov_len;
807 unsigned char __user *from = iov->iov_base;
814 skb = sk->sk_write_queue.prev;
816 if (!sk->sk_send_head ||
817 (copy = mss_now - skb->len) <= 0) {
820 /* Allocate new segment. If the interface is SG,
821 * allocate skb fitting to single page.
823 if (!sk_stream_memory_free(sk))
824 goto wait_for_sndbuf;
826 skb = sk_stream_alloc_pskb(sk, select_size(sk, tp),
827 0, sk->sk_allocation);
829 goto wait_for_memory;
832 * Check whether we can use HW checksum.
834 if (sk->sk_route_caps &
835 (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM |
837 skb->ip_summed = CHECKSUM_HW;
839 skb_entail(sk, tp, skb);
843 /* Try to append data to the end of skb. */
847 /* Where to copy to? */
848 if (skb_tailroom(skb) > 0) {
849 /* We have some space in skb head. Superb! */
850 if (copy > skb_tailroom(skb))
851 copy = skb_tailroom(skb);
852 if ((err = skb_add_data(skb, from, copy)) != 0)
856 int i = skb_shinfo(skb)->nr_frags;
857 struct page *page = TCP_PAGE(sk);
858 int off = TCP_OFF(sk);
860 if (skb_can_coalesce(skb, i, page, off) &&
862 /* We can extend the last page
865 } else if (i == MAX_SKB_FRAGS ||
867 !(sk->sk_route_caps & NETIF_F_SG))) {
868 /* Need to add new fragment and cannot
869 * do this because interface is non-SG,
870 * or because all the page slots are
872 tcp_mark_push(tp, skb);
875 /* If page is cached, align
876 * offset to L1 cache boundary
878 off = (off + L1_CACHE_BYTES - 1) &
879 ~(L1_CACHE_BYTES - 1);
880 if (off == PAGE_SIZE) {
882 TCP_PAGE(sk) = page = NULL;
887 /* Allocate new cache page. */
888 if (!(page = sk_stream_alloc_page(sk)))
889 goto wait_for_memory;
893 if (copy > PAGE_SIZE - off)
894 copy = PAGE_SIZE - off;
896 /* Time to copy data. We are close to
898 err = skb_copy_to_page(sk, from, skb, page,
901 /* If this page was new, give it to the
902 * socket so it does not get leaked.
911 /* Update the skb. */
913 skb_shinfo(skb)->frags[i - 1].size +=
916 skb_fill_page_desc(skb, i, page, off, copy);
919 } else if (off + copy < PAGE_SIZE) {
925 TCP_OFF(sk) = off + copy;
929 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
931 tp->write_seq += copy;
932 TCP_SKB_CB(skb)->end_seq += copy;
933 skb_shinfo(skb)->tso_segs = 0;
937 if ((seglen -= copy) == 0 && iovlen == 0)
940 if (skb->len != mss_now || (flags & MSG_OOB))
943 if (forced_push(tp)) {
944 tcp_mark_push(tp, skb);
945 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
946 } else if (skb == sk->sk_send_head)
947 tcp_push_one(sk, mss_now);
951 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
954 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
956 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
959 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
965 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
972 if (sk->sk_send_head == skb)
973 sk->sk_send_head = NULL;
974 __skb_unlink(skb, skb->list);
975 sk_stream_free_skb(sk, skb);
982 err = sk_stream_error(sk, flags, err);
989 * Handle reading urgent data. BSD has very simple semantics for
990 * this, no blocking and very strange errors 8)
993 static int tcp_recv_urg(struct sock *sk, long timeo,
994 struct msghdr *msg, int len, int flags,
997 struct tcp_sock *tp = tcp_sk(sk);
999 /* No URG data to read. */
1000 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1001 tp->urg_data == TCP_URG_READ)
1002 return -EINVAL; /* Yes this is right ! */
1004 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1007 if (tp->urg_data & TCP_URG_VALID) {
1009 char c = tp->urg_data;
1011 if (!(flags & MSG_PEEK))
1012 tp->urg_data = TCP_URG_READ;
1014 /* Read urgent data. */
1015 msg->msg_flags |= MSG_OOB;
1018 if (!(flags & MSG_TRUNC))
1019 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1022 msg->msg_flags |= MSG_TRUNC;
1024 return err ? -EFAULT : len;
1027 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1030 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1031 * the available implementations agree in this case:
1032 * this call should never block, independent of the
1033 * blocking state of the socket.
1034 * Mike <pall@rz.uni-karlsruhe.de>
1039 /* Clean up the receive buffer for full frames taken by the user,
1040 * then send an ACK if necessary. COPIED is the number of bytes
1041 * tcp_recvmsg has given to the user so far, it speeds up the
1042 * calculation of whether or not we must ACK for the sake of
1045 static void cleanup_rbuf(struct sock *sk, int copied)
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 int time_to_ack = 0;
1051 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1053 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1056 if (tcp_ack_scheduled(tp)) {
1057 /* Delayed ACKs frequently hit locked sockets during bulk
1059 if (tp->ack.blocked ||
1060 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1061 tp->rcv_nxt - tp->rcv_wup > tp->ack.rcv_mss ||
1063 * If this read emptied read buffer, we send ACK, if
1064 * connection is not bidirectional, user drained
1065 * receive buffer and there was a small segment
1068 (copied > 0 && (tp->ack.pending & TCP_ACK_PUSHED) &&
1069 !tp->ack.pingpong && !atomic_read(&sk->sk_rmem_alloc)))
1073 /* We send an ACK if we can now advertise a non-zero window
1074 * which has been raised "significantly".
1076 * Even if window raised up to infinity, do not send window open ACK
1077 * in states, where we will not receive more. It is useless.
1079 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1080 __u32 rcv_window_now = tcp_receive_window(tp);
1082 /* Optimize, __tcp_select_window() is not cheap. */
1083 if (2*rcv_window_now <= tp->window_clamp) {
1084 __u32 new_window = __tcp_select_window(sk);
1086 /* Send ACK now, if this read freed lots of space
1087 * in our buffer. Certainly, new_window is new window.
1088 * We can advertise it now, if it is not less than current one.
1089 * "Lots" means "at least twice" here.
1091 if (new_window && new_window >= 2 * rcv_window_now)
1099 static void tcp_prequeue_process(struct sock *sk)
1101 struct sk_buff *skb;
1102 struct tcp_sock *tp = tcp_sk(sk);
1104 NET_ADD_STATS_USER(LINUX_MIB_TCPPREQUEUED, skb_queue_len(&tp->ucopy.prequeue));
1106 /* RX process wants to run with disabled BHs, though it is not
1109 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1110 sk->sk_backlog_rcv(sk, skb);
1113 /* Clear memory counter. */
1114 tp->ucopy.memory = 0;
1117 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1119 struct sk_buff *skb;
1122 skb_queue_walk(&sk->sk_receive_queue, skb) {
1123 offset = seq - TCP_SKB_CB(skb)->seq;
1126 if (offset < skb->len || skb->h.th->fin) {
1135 * This routine provides an alternative to tcp_recvmsg() for routines
1136 * that would like to handle copying from skbuffs directly in 'sendfile'
1139 * - It is assumed that the socket was locked by the caller.
1140 * - The routine does not block.
1141 * - At present, there is no support for reading OOB data
1142 * or for 'peeking' the socket using this routine
1143 * (although both would be easy to implement).
1145 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1146 sk_read_actor_t recv_actor)
1148 struct sk_buff *skb;
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 u32 seq = tp->copied_seq;
1154 if (sk->sk_state == TCP_LISTEN)
1156 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1157 if (offset < skb->len) {
1160 len = skb->len - offset;
1161 /* Stop reading if we hit a patch of urgent data */
1163 u32 urg_offset = tp->urg_seq - seq;
1164 if (urg_offset < len)
1169 used = recv_actor(desc, skb, offset, len);
1175 if (offset != skb->len)
1178 if (skb->h.th->fin) {
1179 sk_eat_skb(sk, skb);
1183 sk_eat_skb(sk, skb);
1187 tp->copied_seq = seq;
1189 tcp_rcv_space_adjust(sk);
1191 /* Clean up data we have read: This will do ACK frames. */
1193 cleanup_rbuf(sk, copied);
1198 * This routine copies from a sock struct into the user buffer.
1200 * Technical note: in 2.3 we work on _locked_ socket, so that
1201 * tricks with *seq access order and skb->users are not required.
1202 * Probably, code can be easily improved even more.
1205 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1206 size_t len, int nonblock, int flags, int *addr_len)
1208 struct tcp_sock *tp = tcp_sk(sk);
1214 int target; /* Read at least this many bytes */
1216 struct task_struct *user_recv = NULL;
1220 TCP_CHECK_TIMER(sk);
1223 if (sk->sk_state == TCP_LISTEN)
1226 timeo = sock_rcvtimeo(sk, nonblock);
1228 /* Urgent data needs to be handled specially. */
1229 if (flags & MSG_OOB)
1232 seq = &tp->copied_seq;
1233 if (flags & MSG_PEEK) {
1234 peek_seq = tp->copied_seq;
1238 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1241 struct sk_buff *skb;
1244 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1245 if (tp->urg_data && tp->urg_seq == *seq) {
1248 if (signal_pending(current)) {
1249 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1254 /* Next get a buffer. */
1256 skb = skb_peek(&sk->sk_receive_queue);
1261 /* Now that we have two receive queues this
1264 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1265 printk(KERN_INFO "recvmsg bug: copied %X "
1266 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1269 offset = *seq - TCP_SKB_CB(skb)->seq;
1272 if (offset < skb->len)
1276 BUG_TRAP(flags & MSG_PEEK);
1278 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1280 /* Well, if we have backlog, try to process it now yet. */
1282 if (copied >= target && !sk->sk_backlog.tail)
1287 sk->sk_state == TCP_CLOSE ||
1288 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1290 signal_pending(current) ||
1294 if (sock_flag(sk, SOCK_DONE))
1298 copied = sock_error(sk);
1302 if (sk->sk_shutdown & RCV_SHUTDOWN)
1305 if (sk->sk_state == TCP_CLOSE) {
1306 if (!sock_flag(sk, SOCK_DONE)) {
1307 /* This occurs when user tries to read
1308 * from never connected socket.
1321 if (signal_pending(current)) {
1322 copied = sock_intr_errno(timeo);
1327 cleanup_rbuf(sk, copied);
1329 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1330 /* Install new reader */
1331 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1332 user_recv = current;
1333 tp->ucopy.task = user_recv;
1334 tp->ucopy.iov = msg->msg_iov;
1337 tp->ucopy.len = len;
1339 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1340 (flags & (MSG_PEEK | MSG_TRUNC)));
1342 /* Ugly... If prequeue is not empty, we have to
1343 * process it before releasing socket, otherwise
1344 * order will be broken at second iteration.
1345 * More elegant solution is required!!!
1347 * Look: we have the following (pseudo)queues:
1349 * 1. packets in flight
1354 * Each queue can be processed only if the next ones
1355 * are empty. At this point we have empty receive_queue.
1356 * But prequeue _can_ be not empty after 2nd iteration,
1357 * when we jumped to start of loop because backlog
1358 * processing added something to receive_queue.
1359 * We cannot release_sock(), because backlog contains
1360 * packets arrived _after_ prequeued ones.
1362 * Shortly, algorithm is clear --- to process all
1363 * the queues in order. We could make it more directly,
1364 * requeueing packets from backlog to prequeue, if
1365 * is not empty. It is more elegant, but eats cycles,
1368 if (skb_queue_len(&tp->ucopy.prequeue))
1371 /* __ Set realtime policy in scheduler __ */
1374 if (copied >= target) {
1375 /* Do not sleep, just process backlog. */
1379 sk_wait_data(sk, &timeo);
1384 /* __ Restore normal policy in scheduler __ */
1386 if ((chunk = len - tp->ucopy.len) != 0) {
1387 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1392 if (tp->rcv_nxt == tp->copied_seq &&
1393 skb_queue_len(&tp->ucopy.prequeue)) {
1395 tcp_prequeue_process(sk);
1397 if ((chunk = len - tp->ucopy.len) != 0) {
1398 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1404 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1405 if (net_ratelimit())
1406 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1407 current->comm, current->pid);
1408 peek_seq = tp->copied_seq;
1413 /* Ok so how much can we use? */
1414 used = skb->len - offset;
1418 /* Do we have urgent data here? */
1420 u32 urg_offset = tp->urg_seq - *seq;
1421 if (urg_offset < used) {
1423 if (!sock_flag(sk, SOCK_URGINLINE)) {
1435 if (!(flags & MSG_TRUNC)) {
1436 err = skb_copy_datagram_iovec(skb, offset,
1437 msg->msg_iov, used);
1439 /* Exception. Bailout! */
1450 tcp_rcv_space_adjust(sk);
1453 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1455 tcp_fast_path_check(sk, tp);
1457 if (used + offset < skb->len)
1462 if (!(flags & MSG_PEEK))
1463 sk_eat_skb(sk, skb);
1467 /* Process the FIN. */
1469 if (!(flags & MSG_PEEK))
1470 sk_eat_skb(sk, skb);
1475 if (skb_queue_len(&tp->ucopy.prequeue)) {
1478 tp->ucopy.len = copied > 0 ? len : 0;
1480 tcp_prequeue_process(sk);
1482 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1483 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1489 tp->ucopy.task = NULL;
1493 /* According to UNIX98, msg_name/msg_namelen are ignored
1494 * on connected socket. I was just happy when found this 8) --ANK
1497 /* Clean up data we have read: This will do ACK frames. */
1498 cleanup_rbuf(sk, copied);
1500 TCP_CHECK_TIMER(sk);
1505 TCP_CHECK_TIMER(sk);
1510 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1515 * State processing on a close. This implements the state shift for
1516 * sending our FIN frame. Note that we only send a FIN for some
1517 * states. A shutdown() may have already sent the FIN, or we may be
1521 static unsigned char new_state[16] = {
1522 /* current state: new state: action: */
1523 /* (Invalid) */ TCP_CLOSE,
1524 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1525 /* TCP_SYN_SENT */ TCP_CLOSE,
1526 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1527 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1528 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1529 /* TCP_TIME_WAIT */ TCP_CLOSE,
1530 /* TCP_CLOSE */ TCP_CLOSE,
1531 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1532 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1533 /* TCP_LISTEN */ TCP_CLOSE,
1534 /* TCP_CLOSING */ TCP_CLOSING,
1537 static int tcp_close_state(struct sock *sk)
1539 int next = (int)new_state[sk->sk_state];
1540 int ns = next & TCP_STATE_MASK;
1542 tcp_set_state(sk, ns);
1544 return next & TCP_ACTION_FIN;
1548 * Shutdown the sending side of a connection. Much like close except
1549 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1552 void tcp_shutdown(struct sock *sk, int how)
1554 /* We need to grab some memory, and put together a FIN,
1555 * and then put it into the queue to be sent.
1556 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1558 if (!(how & SEND_SHUTDOWN))
1561 /* If we've already sent a FIN, or it's a closed state, skip this. */
1562 if ((1 << sk->sk_state) &
1563 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1564 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1565 /* Clear out any half completed packets. FIN if needed. */
1566 if (tcp_close_state(sk))
1572 * At this point, there should be no process reference to this
1573 * socket, and thus no user references at all. Therefore we
1574 * can assume the socket waitqueue is inactive and nobody will
1575 * try to jump onto it.
1577 void tcp_destroy_sock(struct sock *sk)
1579 BUG_TRAP(sk->sk_state == TCP_CLOSE);
1580 BUG_TRAP(sock_flag(sk, SOCK_DEAD));
1582 /* It cannot be in hash table! */
1583 BUG_TRAP(sk_unhashed(sk));
1585 /* If it has not 0 inet_sk(sk)->num, it must be bound */
1586 BUG_TRAP(!inet_sk(sk)->num || tcp_sk(sk)->bind_hash);
1588 sk->sk_prot->destroy(sk);
1590 sk_stream_kill_queues(sk);
1592 xfrm_sk_free_policy(sk);
1594 #ifdef INET_REFCNT_DEBUG
1595 if (atomic_read(&sk->sk_refcnt) != 1) {
1596 printk(KERN_DEBUG "Destruction TCP %p delayed, c=%d\n",
1597 sk, atomic_read(&sk->sk_refcnt));
1601 atomic_dec(&tcp_orphan_count);
1605 void tcp_close(struct sock *sk, long timeout)
1607 struct sk_buff *skb;
1608 int data_was_unread = 0;
1611 sk->sk_shutdown = SHUTDOWN_MASK;
1613 if (sk->sk_state == TCP_LISTEN) {
1614 tcp_set_state(sk, TCP_CLOSE);
1617 tcp_listen_stop(sk);
1619 goto adjudge_to_death;
1622 /* We need to flush the recv. buffs. We do this only on the
1623 * descriptor close, not protocol-sourced closes, because the
1624 * reader process may not have drained the data yet!
1626 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1627 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1629 data_was_unread += len;
1633 sk_stream_mem_reclaim(sk);
1635 /* As outlined in draft-ietf-tcpimpl-prob-03.txt, section
1636 * 3.10, we send a RST here because data was lost. To
1637 * witness the awful effects of the old behavior of always
1638 * doing a FIN, run an older 2.1.x kernel or 2.0.x, start
1639 * a bulk GET in an FTP client, suspend the process, wait
1640 * for the client to advertise a zero window, then kill -9
1641 * the FTP client, wheee... Note: timeout is always zero
1644 if (data_was_unread) {
1645 /* Unread data was tossed, zap the connection. */
1646 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1647 tcp_set_state(sk, TCP_CLOSE);
1648 tcp_send_active_reset(sk, GFP_KERNEL);
1649 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1650 /* Check zero linger _after_ checking for unread data. */
1651 sk->sk_prot->disconnect(sk, 0);
1652 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1653 } else if (tcp_close_state(sk)) {
1654 /* We FIN if the application ate all the data before
1655 * zapping the connection.
1658 /* RED-PEN. Formally speaking, we have broken TCP state
1659 * machine. State transitions:
1661 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1662 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1663 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1665 * are legal only when FIN has been sent (i.e. in window),
1666 * rather than queued out of window. Purists blame.
1668 * F.e. "RFC state" is ESTABLISHED,
1669 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1671 * The visible declinations are that sometimes
1672 * we enter time-wait state, when it is not required really
1673 * (harmless), do not send active resets, when they are
1674 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1675 * they look as CLOSING or LAST_ACK for Linux)
1676 * Probably, I missed some more holelets.
1682 sk_stream_wait_close(sk, timeout);
1685 /* It is the last release_sock in its life. It will remove backlog. */
1689 /* Now socket is owned by kernel and we acquire BH lock
1690 to finish close. No need to check for user refs.
1694 BUG_TRAP(!sock_owned_by_user(sk));
1699 /* This is a (useful) BSD violating of the RFC. There is a
1700 * problem with TCP as specified in that the other end could
1701 * keep a socket open forever with no application left this end.
1702 * We use a 3 minute timeout (about the same as BSD) then kill
1703 * our end. If they send after that then tough - BUT: long enough
1704 * that we won't make the old 4*rto = almost no time - whoops
1707 * Nope, it was not mistake. It is really desired behaviour
1708 * f.e. on http servers, when such sockets are useless, but
1709 * consume significant resources. Let's do it with special
1710 * linger2 option. --ANK
1713 if (sk->sk_state == TCP_FIN_WAIT2) {
1714 struct tcp_sock *tp = tcp_sk(sk);
1715 if (tp->linger2 < 0) {
1716 tcp_set_state(sk, TCP_CLOSE);
1717 tcp_send_active_reset(sk, GFP_ATOMIC);
1718 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1720 int tmo = tcp_fin_time(tp);
1722 if (tmo > TCP_TIMEWAIT_LEN) {
1723 tcp_reset_keepalive_timer(sk, tcp_fin_time(tp));
1725 atomic_inc(&tcp_orphan_count);
1726 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1731 if (sk->sk_state != TCP_CLOSE) {
1732 sk_stream_mem_reclaim(sk);
1733 if (atomic_read(&tcp_orphan_count) > sysctl_tcp_max_orphans ||
1734 (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
1735 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])) {
1736 if (net_ratelimit())
1737 printk(KERN_INFO "TCP: too many of orphaned "
1739 tcp_set_state(sk, TCP_CLOSE);
1740 tcp_send_active_reset(sk, GFP_ATOMIC);
1741 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1744 atomic_inc(&tcp_orphan_count);
1746 if (sk->sk_state == TCP_CLOSE)
1747 tcp_destroy_sock(sk);
1748 /* Otherwise, socket is reprieved until protocol close. */
1756 /* These states need RST on ABORT according to RFC793 */
1758 static inline int tcp_need_reset(int state)
1760 return (1 << state) &
1761 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1762 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1765 int tcp_disconnect(struct sock *sk, int flags)
1767 struct inet_sock *inet = inet_sk(sk);
1768 struct tcp_sock *tp = tcp_sk(sk);
1770 int old_state = sk->sk_state;
1772 if (old_state != TCP_CLOSE)
1773 tcp_set_state(sk, TCP_CLOSE);
1775 /* ABORT function of RFC793 */
1776 if (old_state == TCP_LISTEN) {
1777 tcp_listen_stop(sk);
1778 } else if (tcp_need_reset(old_state) ||
1779 (tp->snd_nxt != tp->write_seq &&
1780 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1781 /* The last check adjusts for discrepance of Linux wrt. RFC
1784 tcp_send_active_reset(sk, gfp_any());
1785 sk->sk_err = ECONNRESET;
1786 } else if (old_state == TCP_SYN_SENT)
1787 sk->sk_err = ECONNRESET;
1789 tcp_clear_xmit_timers(sk);
1790 __skb_queue_purge(&sk->sk_receive_queue);
1791 sk_stream_writequeue_purge(sk);
1792 __skb_queue_purge(&tp->out_of_order_queue);
1796 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1797 inet_reset_saddr(sk);
1799 sk->sk_shutdown = 0;
1800 sock_reset_flag(sk, SOCK_DONE);
1802 if ((tp->write_seq += tp->max_window + 2) == 0)
1807 tp->packets_out = 0;
1808 tp->snd_ssthresh = 0x7fffffff;
1809 tp->snd_cwnd_cnt = 0;
1810 tcp_set_ca_state(tp, TCP_CA_Open);
1811 tcp_clear_retrans(tp);
1812 tcp_delack_init(tp);
1813 sk->sk_send_head = NULL;
1814 tp->rx_opt.saw_tstamp = 0;
1815 tcp_sack_reset(&tp->rx_opt);
1818 BUG_TRAP(!inet->num || tp->bind_hash);
1820 sk->sk_error_report(sk);
1825 * Wait for an incoming connection, avoid race
1826 * conditions. This must be called with the socket locked.
1828 static int wait_for_connect(struct sock *sk, long timeo)
1830 struct tcp_sock *tp = tcp_sk(sk);
1835 * True wake-one mechanism for incoming connections: only
1836 * one process gets woken up, not the 'whole herd'.
1837 * Since we do not 'race & poll' for established sockets
1838 * anymore, the common case will execute the loop only once.
1840 * Subtle issue: "add_wait_queue_exclusive()" will be added
1841 * after any current non-exclusive waiters, and we know that
1842 * it will always _stay_ after any new non-exclusive waiters
1843 * because all non-exclusive waiters are added at the
1844 * beginning of the wait-queue. As such, it's ok to "drop"
1845 * our exclusiveness temporarily when we get woken up without
1846 * having to remove and re-insert us on the wait queue.
1849 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
1850 TASK_INTERRUPTIBLE);
1852 if (reqsk_queue_empty(&tp->accept_queue))
1853 timeo = schedule_timeout(timeo);
1856 if (!reqsk_queue_empty(&tp->accept_queue))
1859 if (sk->sk_state != TCP_LISTEN)
1861 err = sock_intr_errno(timeo);
1862 if (signal_pending(current))
1868 finish_wait(sk->sk_sleep, &wait);
1873 * This will accept the next outstanding connection.
1876 struct sock *tcp_accept(struct sock *sk, int flags, int *err)
1878 struct tcp_sock *tp = tcp_sk(sk);
1884 /* We need to make sure that this socket is listening,
1885 * and that it has something pending.
1888 if (sk->sk_state != TCP_LISTEN)
1891 /* Find already established connection */
1892 if (reqsk_queue_empty(&tp->accept_queue)) {
1893 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
1895 /* If this is a non blocking socket don't sleep */
1900 error = wait_for_connect(sk, timeo);
1905 newsk = reqsk_queue_get_child(&tp->accept_queue, sk);
1906 BUG_TRAP(newsk->sk_state != TCP_SYN_RECV);
1917 * Socket option code for TCP.
1919 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1922 struct tcp_sock *tp = tcp_sk(sk);
1926 if (level != SOL_TCP)
1927 return tp->af_specific->setsockopt(sk, level, optname,
1930 /* This is a string value all the others are int's */
1931 if (optname == TCP_CONGESTION) {
1932 char name[TCP_CA_NAME_MAX];
1937 val = strncpy_from_user(name, optval,
1938 min(TCP_CA_NAME_MAX-1, optlen));
1944 err = tcp_set_congestion_control(tp, name);
1949 if (optlen < sizeof(int))
1952 if (get_user(val, (int __user *)optval))
1959 /* Values greater than interface MTU won't take effect. However
1960 * at the point when this call is done we typically don't yet
1961 * know which interface is going to be used */
1962 if (val < 8 || val > MAX_TCP_WINDOW) {
1966 tp->rx_opt.user_mss = val;
1971 /* TCP_NODELAY is weaker than TCP_CORK, so that
1972 * this option on corked socket is remembered, but
1973 * it is not activated until cork is cleared.
1975 * However, when TCP_NODELAY is set we make
1976 * an explicit push, which overrides even TCP_CORK
1977 * for currently queued segments.
1979 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1980 tcp_push_pending_frames(sk, tp);
1982 tp->nonagle &= ~TCP_NAGLE_OFF;
1987 /* When set indicates to always queue non-full frames.
1988 * Later the user clears this option and we transmit
1989 * any pending partial frames in the queue. This is
1990 * meant to be used alongside sendfile() to get properly
1991 * filled frames when the user (for example) must write
1992 * out headers with a write() call first and then use
1993 * sendfile to send out the data parts.
1995 * TCP_CORK can be set together with TCP_NODELAY and it is
1996 * stronger than TCP_NODELAY.
1999 tp->nonagle |= TCP_NAGLE_CORK;
2001 tp->nonagle &= ~TCP_NAGLE_CORK;
2002 if (tp->nonagle&TCP_NAGLE_OFF)
2003 tp->nonagle |= TCP_NAGLE_PUSH;
2004 tcp_push_pending_frames(sk, tp);
2009 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2012 tp->keepalive_time = val * HZ;
2013 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2014 !((1 << sk->sk_state) &
2015 (TCPF_CLOSE | TCPF_LISTEN))) {
2016 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2017 if (tp->keepalive_time > elapsed)
2018 elapsed = tp->keepalive_time - elapsed;
2021 tcp_reset_keepalive_timer(sk, elapsed);
2026 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2029 tp->keepalive_intvl = val * HZ;
2032 if (val < 1 || val > MAX_TCP_KEEPCNT)
2035 tp->keepalive_probes = val;
2038 if (val < 1 || val > MAX_TCP_SYNCNT)
2041 tp->syn_retries = val;
2047 else if (val > sysctl_tcp_fin_timeout / HZ)
2050 tp->linger2 = val * HZ;
2053 case TCP_DEFER_ACCEPT:
2054 tp->defer_accept = 0;
2056 /* Translate value in seconds to number of
2058 while (tp->defer_accept < 32 &&
2059 val > ((TCP_TIMEOUT_INIT / HZ) <<
2066 case TCP_WINDOW_CLAMP:
2068 if (sk->sk_state != TCP_CLOSE) {
2072 tp->window_clamp = 0;
2074 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2075 SOCK_MIN_RCVBUF / 2 : val;
2080 tp->ack.pingpong = 1;
2082 tp->ack.pingpong = 0;
2083 if ((1 << sk->sk_state) &
2084 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2085 tcp_ack_scheduled(tp)) {
2086 tp->ack.pending |= TCP_ACK_PUSHED;
2087 cleanup_rbuf(sk, 1);
2089 tp->ack.pingpong = 1;
2102 /* Return information about state of tcp endpoint in API format. */
2103 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2105 struct tcp_sock *tp = tcp_sk(sk);
2106 u32 now = tcp_time_stamp;
2108 memset(info, 0, sizeof(*info));
2110 info->tcpi_state = sk->sk_state;
2111 info->tcpi_ca_state = tp->ca_state;
2112 info->tcpi_retransmits = tp->retransmits;
2113 info->tcpi_probes = tp->probes_out;
2114 info->tcpi_backoff = tp->backoff;
2116 if (tp->rx_opt.tstamp_ok)
2117 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2118 if (tp->rx_opt.sack_ok)
2119 info->tcpi_options |= TCPI_OPT_SACK;
2120 if (tp->rx_opt.wscale_ok) {
2121 info->tcpi_options |= TCPI_OPT_WSCALE;
2122 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2123 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2126 if (tp->ecn_flags&TCP_ECN_OK)
2127 info->tcpi_options |= TCPI_OPT_ECN;
2129 info->tcpi_rto = jiffies_to_usecs(tp->rto);
2130 info->tcpi_ato = jiffies_to_usecs(tp->ack.ato);
2131 info->tcpi_snd_mss = tp->mss_cache_std;
2132 info->tcpi_rcv_mss = tp->ack.rcv_mss;
2134 info->tcpi_unacked = tp->packets_out;
2135 info->tcpi_sacked = tp->sacked_out;
2136 info->tcpi_lost = tp->lost_out;
2137 info->tcpi_retrans = tp->retrans_out;
2138 info->tcpi_fackets = tp->fackets_out;
2140 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2141 info->tcpi_last_data_recv = jiffies_to_msecs(now - tp->ack.lrcvtime);
2142 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2144 info->tcpi_pmtu = tp->pmtu_cookie;
2145 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2146 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2147 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2148 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2149 info->tcpi_snd_cwnd = tp->snd_cwnd;
2150 info->tcpi_advmss = tp->advmss;
2151 info->tcpi_reordering = tp->reordering;
2153 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2154 info->tcpi_rcv_space = tp->rcvq_space.space;
2156 info->tcpi_total_retrans = tp->total_retrans;
2159 EXPORT_SYMBOL_GPL(tcp_get_info);
2161 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2164 struct tcp_sock *tp = tcp_sk(sk);
2167 if (level != SOL_TCP)
2168 return tp->af_specific->getsockopt(sk, level, optname,
2171 if (get_user(len, optlen))
2174 len = min_t(unsigned int, len, sizeof(int));
2181 val = tp->mss_cache_std;
2182 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2183 val = tp->rx_opt.user_mss;
2186 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2189 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2192 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2195 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2198 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2201 val = tp->syn_retries ? : sysctl_tcp_syn_retries;
2206 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2208 case TCP_DEFER_ACCEPT:
2209 val = !tp->defer_accept ? 0 : ((TCP_TIMEOUT_INIT / HZ) <<
2210 (tp->defer_accept - 1));
2212 case TCP_WINDOW_CLAMP:
2213 val = tp->window_clamp;
2216 struct tcp_info info;
2218 if (get_user(len, optlen))
2221 tcp_get_info(sk, &info);
2223 len = min_t(unsigned int, len, sizeof(info));
2224 if (put_user(len, optlen))
2226 if (copy_to_user(optval, &info, len))
2231 val = !tp->ack.pingpong;
2234 case TCP_CONGESTION:
2235 if (get_user(len, optlen))
2237 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2238 if (put_user(len, optlen))
2240 if (copy_to_user(optval, tp->ca_ops->name, len))
2244 return -ENOPROTOOPT;
2247 if (put_user(len, optlen))
2249 if (copy_to_user(optval, &val, len))
2255 extern void __skb_cb_too_small_for_tcp(int, int);
2256 extern struct tcp_congestion_ops tcp_reno;
2258 static __initdata unsigned long thash_entries;
2259 static int __init set_thash_entries(char *str)
2263 thash_entries = simple_strtoul(str, &str, 0);
2266 __setup("thash_entries=", set_thash_entries);
2268 void __init tcp_init(void)
2270 struct sk_buff *skb = NULL;
2273 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2274 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2277 tcp_bucket_cachep = kmem_cache_create("tcp_bind_bucket",
2278 sizeof(struct tcp_bind_bucket),
2279 0, SLAB_HWCACHE_ALIGN,
2281 if (!tcp_bucket_cachep)
2282 panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
2284 tcp_timewait_cachep = kmem_cache_create("tcp_tw_bucket",
2285 sizeof(struct tcp_tw_bucket),
2286 0, SLAB_HWCACHE_ALIGN,
2288 if (!tcp_timewait_cachep)
2289 panic("tcp_init: Cannot alloc tcp_tw_bucket cache.");
2291 /* Size and allocate the main established and bind bucket
2294 * The methodology is similar to that of the buffer cache.
2296 tcp_ehash = (struct tcp_ehash_bucket *)
2297 alloc_large_system_hash("TCP established",
2298 sizeof(struct tcp_ehash_bucket),
2300 (num_physpages >= 128 * 1024) ?
2307 tcp_ehash_size = (1 << tcp_ehash_size) >> 1;
2308 for (i = 0; i < (tcp_ehash_size << 1); i++) {
2309 rwlock_init(&tcp_ehash[i].lock);
2310 INIT_HLIST_HEAD(&tcp_ehash[i].chain);
2313 tcp_bhash = (struct tcp_bind_hashbucket *)
2314 alloc_large_system_hash("TCP bind",
2315 sizeof(struct tcp_bind_hashbucket),
2317 (num_physpages >= 128 * 1024) ?
2324 tcp_bhash_size = 1 << tcp_bhash_size;
2325 for (i = 0; i < tcp_bhash_size; i++) {
2326 spin_lock_init(&tcp_bhash[i].lock);
2327 INIT_HLIST_HEAD(&tcp_bhash[i].chain);
2330 /* Try to be a bit smarter and adjust defaults depending
2331 * on available memory.
2333 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2334 (tcp_bhash_size * sizeof(struct tcp_bind_hashbucket));
2338 sysctl_local_port_range[0] = 32768;
2339 sysctl_local_port_range[1] = 61000;
2340 sysctl_tcp_max_tw_buckets = 180000;
2341 sysctl_tcp_max_orphans = 4096 << (order - 4);
2342 sysctl_max_syn_backlog = 1024;
2343 } else if (order < 3) {
2344 sysctl_local_port_range[0] = 1024 * (3 - order);
2345 sysctl_tcp_max_tw_buckets >>= (3 - order);
2346 sysctl_tcp_max_orphans >>= (3 - order);
2347 sysctl_max_syn_backlog = 128;
2349 tcp_port_rover = sysctl_local_port_range[0] - 1;
2351 sysctl_tcp_mem[0] = 768 << order;
2352 sysctl_tcp_mem[1] = 1024 << order;
2353 sysctl_tcp_mem[2] = 1536 << order;
2356 sysctl_tcp_wmem[2] = 64 * 1024;
2357 sysctl_tcp_rmem[0] = PAGE_SIZE;
2358 sysctl_tcp_rmem[1] = 43689;
2359 sysctl_tcp_rmem[2] = 2 * 43689;
2362 printk(KERN_INFO "TCP: Hash tables configured "
2363 "(established %d bind %d)\n",
2364 tcp_ehash_size << 1, tcp_bhash_size);
2366 tcp_register_congestion_control(&tcp_reno);
2369 EXPORT_SYMBOL(tcp_accept);
2370 EXPORT_SYMBOL(tcp_close);
2371 EXPORT_SYMBOL(tcp_destroy_sock);
2372 EXPORT_SYMBOL(tcp_disconnect);
2373 EXPORT_SYMBOL(tcp_getsockopt);
2374 EXPORT_SYMBOL(tcp_ioctl);
2375 EXPORT_SYMBOL(tcp_poll);
2376 EXPORT_SYMBOL(tcp_read_sock);
2377 EXPORT_SYMBOL(tcp_recvmsg);
2378 EXPORT_SYMBOL(tcp_sendmsg);
2379 EXPORT_SYMBOL(tcp_sendpage);
2380 EXPORT_SYMBOL(tcp_setsockopt);
2381 EXPORT_SYMBOL(tcp_shutdown);
2382 EXPORT_SYMBOL(tcp_statistics);
2383 EXPORT_SYMBOL(tcp_timewait_cachep);