1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/errno.h>
48 #include <linux/slab.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_eh.h>
52 #include <scsi/scsi_device.h>
55 #include "transport.h"
61 /***********************************************************************
62 * Data transfer routines
63 ***********************************************************************/
66 * This is subtle, so pay attention:
67 * ---------------------------------
68 * We're very concerned about races with a command abort. Hanging this code
69 * is a sure fire way to hang the kernel. (Note that this discussion applies
70 * only to transactions resulting from a scsi queued-command, since only
71 * these transactions are subject to a scsi abort. Other transactions, such
72 * as those occurring during device-specific initialization, must be handled
73 * by a separate code path.)
75 * The abort function (usb_storage_command_abort() in scsiglue.c) first
76 * sets the machine state and the ABORTING bit in us->dflags to prevent
77 * new URBs from being submitted. It then calls usb_stor_stop_transport()
78 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
79 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
80 * bit is tested to see if the current_sg scatter-gather request needs to be
81 * stopped. The timeout callback routine does much the same thing.
83 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
84 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
85 * called to stop any ongoing requests.
87 * The submit function first verifies that the submitting is allowed
88 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
89 * completes without errors, and only then sets the URB_ACTIVE bit. This
90 * prevents the stop_transport() function from trying to cancel the URB
91 * while the submit call is underway. Next, the submit function must test
92 * the flags to see if an abort or disconnect occurred during the submission
93 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
94 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
95 * is still set). Either way, the function must then wait for the URB to
96 * finish. Note that the URB can still be in progress even after a call to
97 * usb_unlink_urb() returns.
99 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
100 * either the stop_transport() function or the submitting function
101 * is guaranteed to call usb_unlink_urb() for an active URB,
102 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
103 * called more than once or from being called during usb_submit_urb().
106 /* This is the completion handler which will wake us up when an URB
109 static void usb_stor_blocking_completion(struct urb *urb)
111 struct completion *urb_done_ptr = urb->context;
113 complete(urb_done_ptr);
116 /* This is the common part of the URB message submission code
118 * All URBs from the usb-storage driver involved in handling a queued scsi
119 * command _must_ pass through this function (or something like it) for the
120 * abort mechanisms to work properly.
122 static int usb_stor_msg_common(struct us_data *us, int timeout)
124 struct completion urb_done;
128 /* don't submit URBs during abort processing */
129 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
132 /* set up data structures for the wakeup system */
133 init_completion(&urb_done);
135 /* fill the common fields in the URB */
136 us->current_urb->context = &urb_done;
137 us->current_urb->actual_length = 0;
138 us->current_urb->error_count = 0;
139 us->current_urb->status = 0;
141 /* we assume that if transfer_buffer isn't us->iobuf then it
142 * hasn't been mapped for DMA. Yes, this is clunky, but it's
143 * easier than always having the caller tell us whether the
144 * transfer buffer has already been mapped. */
145 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP;
146 if (us->current_urb->transfer_buffer == us->iobuf)
147 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
148 us->current_urb->transfer_dma = us->iobuf_dma;
149 us->current_urb->setup_dma = us->cr_dma;
152 status = usb_submit_urb(us->current_urb, GFP_NOIO);
154 /* something went wrong */
158 /* since the URB has been submitted successfully, it's now okay
160 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
162 /* did an abort occur during the submission? */
163 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
165 /* cancel the URB, if it hasn't been cancelled already */
166 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
167 US_DEBUGP("-- cancelling URB\n");
168 usb_unlink_urb(us->current_urb);
172 /* wait for the completion of the URB */
173 timeleft = wait_for_completion_interruptible_timeout(
174 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
176 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
179 US_DEBUGP("%s -- cancelling URB\n",
180 timeleft == 0 ? "Timeout" : "Signal");
181 usb_kill_urb(us->current_urb);
184 /* return the URB status */
185 return us->current_urb->status;
189 * Transfer one control message, with timeouts, and allowing early
190 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
192 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
193 u8 request, u8 requesttype, u16 value, u16 index,
194 void *data, u16 size, int timeout)
198 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
199 __func__, request, requesttype,
202 /* fill in the devrequest structure */
203 us->cr->bRequestType = requesttype;
204 us->cr->bRequest = request;
205 us->cr->wValue = cpu_to_le16(value);
206 us->cr->wIndex = cpu_to_le16(index);
207 us->cr->wLength = cpu_to_le16(size);
209 /* fill and submit the URB */
210 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
211 (unsigned char*) us->cr, data, size,
212 usb_stor_blocking_completion, NULL);
213 status = usb_stor_msg_common(us, timeout);
215 /* return the actual length of the data transferred if no error */
217 status = us->current_urb->actual_length;
221 /* This is a version of usb_clear_halt() that allows early termination and
222 * doesn't read the status from the device -- this is because some devices
223 * crash their internal firmware when the status is requested after a halt.
225 * A definitive list of these 'bad' devices is too difficult to maintain or
226 * make complete enough to be useful. This problem was first observed on the
227 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
228 * MacOS nor Windows checks the status after clearing a halt.
230 * Since many vendors in this space limit their testing to interoperability
231 * with these two OSes, specification violations like this one are common.
233 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
236 int endp = usb_pipeendpoint(pipe);
238 if (usb_pipein (pipe))
241 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
242 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
243 USB_ENDPOINT_HALT, endp,
246 /* reset the endpoint toggle */
248 usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe),
249 usb_pipeout(pipe), 0);
251 US_DEBUGP("%s: result = %d\n", __func__, result);
257 * Interpret the results of a URB transfer
259 * This function prints appropriate debugging messages, clears halts on
260 * non-control endpoints, and translates the status to the corresponding
261 * USB_STOR_XFER_xxx return code.
263 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
264 unsigned int length, int result, unsigned int partial)
266 US_DEBUGP("Status code %d; transferred %u/%u\n",
267 result, partial, length);
270 /* no error code; did we send all the data? */
272 if (partial != length) {
273 US_DEBUGP("-- short transfer\n");
274 return USB_STOR_XFER_SHORT;
277 US_DEBUGP("-- transfer complete\n");
278 return USB_STOR_XFER_GOOD;
282 /* for control endpoints, (used by CB[I]) a stall indicates
283 * a failed command */
284 if (usb_pipecontrol(pipe)) {
285 US_DEBUGP("-- stall on control pipe\n");
286 return USB_STOR_XFER_STALLED;
289 /* for other sorts of endpoint, clear the stall */
290 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
291 if (usb_stor_clear_halt(us, pipe) < 0)
292 return USB_STOR_XFER_ERROR;
293 return USB_STOR_XFER_STALLED;
295 /* babble - the device tried to send more than we wanted to read */
297 US_DEBUGP("-- babble\n");
298 return USB_STOR_XFER_LONG;
300 /* the transfer was cancelled by abort, disconnect, or timeout */
302 US_DEBUGP("-- transfer cancelled\n");
303 return USB_STOR_XFER_ERROR;
305 /* short scatter-gather read transfer */
307 US_DEBUGP("-- short read transfer\n");
308 return USB_STOR_XFER_SHORT;
310 /* abort or disconnect in progress */
312 US_DEBUGP("-- abort or disconnect in progress\n");
313 return USB_STOR_XFER_ERROR;
315 /* the catch-all error case */
317 US_DEBUGP("-- unknown error\n");
318 return USB_STOR_XFER_ERROR;
323 * Transfer one control message, without timeouts, but allowing early
324 * termination. Return codes are USB_STOR_XFER_xxx.
326 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
327 u8 request, u8 requesttype, u16 value, u16 index,
328 void *data, u16 size)
332 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
333 __func__, request, requesttype,
336 /* fill in the devrequest structure */
337 us->cr->bRequestType = requesttype;
338 us->cr->bRequest = request;
339 us->cr->wValue = cpu_to_le16(value);
340 us->cr->wIndex = cpu_to_le16(index);
341 us->cr->wLength = cpu_to_le16(size);
343 /* fill and submit the URB */
344 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
345 (unsigned char*) us->cr, data, size,
346 usb_stor_blocking_completion, NULL);
347 result = usb_stor_msg_common(us, 0);
349 return interpret_urb_result(us, pipe, size, result,
350 us->current_urb->actual_length);
354 * Receive one interrupt buffer, without timeouts, but allowing early
355 * termination. Return codes are USB_STOR_XFER_xxx.
357 * This routine always uses us->recv_intr_pipe as the pipe and
358 * us->ep_bInterval as the interrupt interval.
360 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
364 unsigned int pipe = us->recv_intr_pipe;
367 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
369 /* calculate the max packet size */
370 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
374 /* fill and submit the URB */
375 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
376 maxp, usb_stor_blocking_completion, NULL,
378 result = usb_stor_msg_common(us, 0);
380 return interpret_urb_result(us, pipe, length, result,
381 us->current_urb->actual_length);
385 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
386 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
387 * stalls during the transfer, the halt is automatically cleared.
389 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
390 void *buf, unsigned int length, unsigned int *act_len)
394 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
396 /* fill and submit the URB */
397 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
398 usb_stor_blocking_completion, NULL);
399 result = usb_stor_msg_common(us, 0);
401 /* store the actual length of the data transferred */
403 *act_len = us->current_urb->actual_length;
404 return interpret_urb_result(us, pipe, length, result,
405 us->current_urb->actual_length);
409 * Transfer a scatter-gather list via bulk transfer
411 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
412 * above, but it uses the usbcore scatter-gather library.
414 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
415 struct scatterlist *sg, int num_sg, unsigned int length,
416 unsigned int *act_len)
420 /* don't submit s-g requests during abort processing */
421 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
422 return USB_STOR_XFER_ERROR;
424 /* initialize the scatter-gather request block */
425 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
427 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
428 sg, num_sg, length, GFP_NOIO);
430 US_DEBUGP("usb_sg_init returned %d\n", result);
431 return USB_STOR_XFER_ERROR;
434 /* since the block has been initialized successfully, it's now
435 * okay to cancel it */
436 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
438 /* did an abort occur during the submission? */
439 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
441 /* cancel the request, if it hasn't been cancelled already */
442 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
443 US_DEBUGP("-- cancelling sg request\n");
444 usb_sg_cancel(&us->current_sg);
448 /* wait for the completion of the transfer */
449 usb_sg_wait(&us->current_sg);
450 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
452 result = us->current_sg.status;
454 *act_len = us->current_sg.bytes;
455 return interpret_urb_result(us, pipe, length, result,
456 us->current_sg.bytes);
460 * Common used function. Transfer a complete command
461 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
463 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
464 struct scsi_cmnd* srb)
466 unsigned int partial;
467 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
468 scsi_sg_count(srb), scsi_bufflen(srb),
471 scsi_set_resid(srb, scsi_bufflen(srb) - partial);
476 * Transfer an entire SCSI command's worth of data payload over the bulk
479 * Note that this uses usb_stor_bulk_transfer_buf() and
480 * usb_stor_bulk_transfer_sglist() to achieve its goals --
481 * this function simply determines whether we're going to use
482 * scatter-gather or not, and acts appropriately.
484 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
485 void *buf, unsigned int length_left, int use_sg, int *residual)
488 unsigned int partial;
490 /* are we scatter-gathering? */
492 /* use the usb core scatter-gather primitives */
493 result = usb_stor_bulk_transfer_sglist(us, pipe,
494 (struct scatterlist *) buf, use_sg,
495 length_left, &partial);
496 length_left -= partial;
498 /* no scatter-gather, just make the request */
499 result = usb_stor_bulk_transfer_buf(us, pipe, buf,
500 length_left, &partial);
501 length_left -= partial;
504 /* store the residual and return the error code */
506 *residual = length_left;
510 /***********************************************************************
512 ***********************************************************************/
514 /* Invoke the transport and basic error-handling/recovery methods
516 * This is used by the protocol layers to actually send the message to
517 * the device and receive the response.
519 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
524 /* send the command to the transport layer */
525 scsi_set_resid(srb, 0);
526 result = us->transport(srb, us);
528 /* if the command gets aborted by the higher layers, we need to
529 * short-circuit all other processing
531 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
532 US_DEBUGP("-- command was aborted\n");
533 srb->result = DID_ABORT << 16;
537 /* if there is a transport error, reset and don't auto-sense */
538 if (result == USB_STOR_TRANSPORT_ERROR) {
539 US_DEBUGP("-- transport indicates error, resetting\n");
540 srb->result = DID_ERROR << 16;
544 /* if the transport provided its own sense data, don't auto-sense */
545 if (result == USB_STOR_TRANSPORT_NO_SENSE) {
546 srb->result = SAM_STAT_CHECK_CONDITION;
550 srb->result = SAM_STAT_GOOD;
552 /* Determine if we need to auto-sense
554 * I normally don't use a flag like this, but it's almost impossible
555 * to understand what's going on here if I don't.
560 * If we're running the CB transport, which is incapable
561 * of determining status on its own, we will auto-sense
562 * unless the operation involved a data-in transfer. Devices
563 * can signal most data-in errors by stalling the bulk-in pipe.
565 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) &&
566 srb->sc_data_direction != DMA_FROM_DEVICE) {
567 US_DEBUGP("-- CB transport device requiring auto-sense\n");
572 * If we have a failure, we're going to do a REQUEST_SENSE
573 * automatically. Note that we differentiate between a command
574 * "failure" and an "error" in the transport mechanism.
576 if (result == USB_STOR_TRANSPORT_FAILED) {
577 US_DEBUGP("-- transport indicates command failure\n");
582 * A short transfer on a command where we don't expect it
583 * is unusual, but it doesn't mean we need to auto-sense.
585 if ((scsi_get_resid(srb) > 0) &&
586 !((srb->cmnd[0] == REQUEST_SENSE) ||
587 (srb->cmnd[0] == INQUIRY) ||
588 (srb->cmnd[0] == MODE_SENSE) ||
589 (srb->cmnd[0] == LOG_SENSE) ||
590 (srb->cmnd[0] == MODE_SENSE_10))) {
591 US_DEBUGP("-- unexpectedly short transfer\n");
594 /* Now, if we need to do the auto-sense, let's do it */
595 if (need_auto_sense) {
597 struct scsi_eh_save ses;
599 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
601 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, US_SENSE_SIZE);
603 /* FIXME: we must do the protocol translation here */
604 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI ||
605 us->subclass == US_SC_CYP_ATACB)
610 /* issue the auto-sense command */
611 scsi_set_resid(srb, 0);
612 temp_result = us->transport(us->srb, us);
614 /* let's clean up right away */
615 scsi_eh_restore_cmnd(srb, &ses);
617 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
618 US_DEBUGP("-- auto-sense aborted\n");
619 srb->result = DID_ABORT << 16;
622 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
623 US_DEBUGP("-- auto-sense failure\n");
625 /* we skip the reset if this happens to be a
626 * multi-target device, since failure of an
627 * auto-sense is perfectly valid
629 srb->result = DID_ERROR << 16;
630 if (!(us->fflags & US_FL_SCM_MULT_TARG))
635 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
636 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
637 srb->sense_buffer[0],
638 srb->sense_buffer[2] & 0xf,
639 srb->sense_buffer[12],
640 srb->sense_buffer[13]);
641 #ifdef CONFIG_USB_STORAGE_DEBUG
643 srb->sense_buffer[2] & 0xf,
644 srb->sense_buffer[12],
645 srb->sense_buffer[13]);
648 /* set the result so the higher layers expect this data */
649 srb->result = SAM_STAT_CHECK_CONDITION;
651 /* If things are really okay, then let's show that. Zero
652 * out the sense buffer so the higher layers won't realize
653 * we did an unsolicited auto-sense. */
654 if (result == USB_STOR_TRANSPORT_GOOD &&
655 /* Filemark 0, ignore EOM, ILI 0, no sense */
656 (srb->sense_buffer[2] & 0xaf) == 0 &&
658 srb->sense_buffer[12] == 0 &&
659 srb->sense_buffer[13] == 0) {
660 srb->result = SAM_STAT_GOOD;
661 srb->sense_buffer[0] = 0x0;
665 /* Did we transfer less than the minimum amount required? */
666 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
667 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
668 srb->result = (DID_ERROR << 16) | (SUGGEST_RETRY << 24);
672 /* Error and abort processing: try to resynchronize with the device
673 * by issuing a port reset. If that fails, try a class-specific
677 /* Set the RESETTING bit, and clear the ABORTING bit so that
678 * the reset may proceed. */
679 scsi_lock(us_to_host(us));
680 set_bit(US_FLIDX_RESETTING, &us->dflags);
681 clear_bit(US_FLIDX_ABORTING, &us->dflags);
682 scsi_unlock(us_to_host(us));
684 /* We must release the device lock because the pre_reset routine
685 * will want to acquire it. */
686 mutex_unlock(&us->dev_mutex);
687 result = usb_stor_port_reset(us);
688 mutex_lock(&us->dev_mutex);
691 scsi_lock(us_to_host(us));
692 usb_stor_report_device_reset(us);
693 scsi_unlock(us_to_host(us));
694 us->transport_reset(us);
696 clear_bit(US_FLIDX_RESETTING, &us->dflags);
699 /* Stop the current URB transfer */
700 void usb_stor_stop_transport(struct us_data *us)
702 US_DEBUGP("%s called\n", __func__);
704 /* If the state machine is blocked waiting for an URB,
705 * let's wake it up. The test_and_clear_bit() call
706 * guarantees that if a URB has just been submitted,
707 * it won't be cancelled more than once. */
708 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
709 US_DEBUGP("-- cancelling URB\n");
710 usb_unlink_urb(us->current_urb);
713 /* If we are waiting for a scatter-gather operation, cancel it. */
714 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
715 US_DEBUGP("-- cancelling sg request\n");
716 usb_sg_cancel(&us->current_sg);
721 * Control/Bulk/Interrupt transport
724 int usb_stor_CBI_transport(struct scsi_cmnd *srb, struct us_data *us)
726 unsigned int transfer_length = scsi_bufflen(srb);
727 unsigned int pipe = 0;
731 /* let's send the command via the control pipe */
732 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
734 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
735 us->ifnum, srb->cmnd, srb->cmd_len);
737 /* check the return code for the command */
738 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
740 /* if we stalled the command, it means command failed */
741 if (result == USB_STOR_XFER_STALLED) {
742 return USB_STOR_TRANSPORT_FAILED;
745 /* Uh oh... serious problem here */
746 if (result != USB_STOR_XFER_GOOD) {
747 return USB_STOR_TRANSPORT_ERROR;
751 /* transfer the data payload for this command, if one exists*/
752 if (transfer_length) {
753 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
754 us->recv_bulk_pipe : us->send_bulk_pipe;
755 result = usb_stor_bulk_srb(us, pipe, srb);
756 US_DEBUGP("CBI data stage result is 0x%x\n", result);
758 /* if we stalled the data transfer it means command failed */
759 if (result == USB_STOR_XFER_STALLED)
760 return USB_STOR_TRANSPORT_FAILED;
761 if (result > USB_STOR_XFER_STALLED)
762 return USB_STOR_TRANSPORT_ERROR;
766 result = usb_stor_intr_transfer(us, us->iobuf, 2);
767 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
768 us->iobuf[0], us->iobuf[1]);
769 if (result != USB_STOR_XFER_GOOD)
770 return USB_STOR_TRANSPORT_ERROR;
772 /* UFI gives us ASC and ASCQ, like a request sense
774 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
775 * devices, so we ignore the information for those commands. Note
776 * that this means we could be ignoring a real error on these
777 * commands, but that can't be helped.
779 if (us->subclass == US_SC_UFI) {
780 if (srb->cmnd[0] == REQUEST_SENSE ||
781 srb->cmnd[0] == INQUIRY)
782 return USB_STOR_TRANSPORT_GOOD;
785 return USB_STOR_TRANSPORT_GOOD;
788 /* If not UFI, we interpret the data as a result code
789 * The first byte should always be a 0x0.
791 * Some bogus devices don't follow that rule. They stuff the ASC
792 * into the first byte -- so if it's non-zero, call it a failure.
795 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
801 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
802 switch (us->iobuf[1] & 0x0F) {
804 return USB_STOR_TRANSPORT_GOOD;
808 return USB_STOR_TRANSPORT_ERROR;
810 /* the CBI spec requires that the bulk pipe must be cleared
811 * following any data-in/out command failure (section 2.4.3.1.3)
815 usb_stor_clear_halt(us, pipe);
816 return USB_STOR_TRANSPORT_FAILED;
820 * Control/Bulk transport
822 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
824 unsigned int transfer_length = scsi_bufflen(srb);
828 /* let's send the command via the control pipe */
829 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
831 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
832 us->ifnum, srb->cmnd, srb->cmd_len);
834 /* check the return code for the command */
835 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
837 /* if we stalled the command, it means command failed */
838 if (result == USB_STOR_XFER_STALLED) {
839 return USB_STOR_TRANSPORT_FAILED;
842 /* Uh oh... serious problem here */
843 if (result != USB_STOR_XFER_GOOD) {
844 return USB_STOR_TRANSPORT_ERROR;
848 /* transfer the data payload for this command, if one exists*/
849 if (transfer_length) {
850 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
851 us->recv_bulk_pipe : us->send_bulk_pipe;
852 result = usb_stor_bulk_srb(us, pipe, srb);
853 US_DEBUGP("CB data stage result is 0x%x\n", result);
855 /* if we stalled the data transfer it means command failed */
856 if (result == USB_STOR_XFER_STALLED)
857 return USB_STOR_TRANSPORT_FAILED;
858 if (result > USB_STOR_XFER_STALLED)
859 return USB_STOR_TRANSPORT_ERROR;
863 /* NOTE: CB does not have a status stage. Silly, I know. So
864 * we have to catch this at a higher level.
866 return USB_STOR_TRANSPORT_GOOD;
870 * Bulk only transport
873 /* Determine what the maximum LUN supported is */
874 int usb_stor_Bulk_max_lun(struct us_data *us)
878 /* issue the command */
880 result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
882 USB_DIR_IN | USB_TYPE_CLASS |
884 0, us->ifnum, us->iobuf, 1, HZ);
886 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
887 result, us->iobuf[0]);
889 /* if we have a successful request, return the result */
894 * Some devices don't like GetMaxLUN. They may STALL the control
895 * pipe, they may return a zero-length result, they may do nothing at
896 * all and timeout, or they may fail in even more bizarrely creative
897 * ways. In these cases the best approach is to use the default
898 * value: only one LUN.
903 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
905 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
906 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
907 unsigned int transfer_length = scsi_bufflen(srb);
908 unsigned int residue;
912 unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
914 /* Take care of BULK32 devices; set extra byte to 0 */
915 if (unlikely(us->fflags & US_FL_BULK32)) {
920 /* set up the command wrapper */
921 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
922 bcb->DataTransferLength = cpu_to_le32(transfer_length);
923 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0;
924 bcb->Tag = ++us->tag;
925 bcb->Lun = srb->device->lun;
926 if (us->fflags & US_FL_SCM_MULT_TARG)
927 bcb->Lun |= srb->device->id << 4;
928 bcb->Length = srb->cmd_len;
930 /* copy the command payload */
931 memset(bcb->CDB, 0, sizeof(bcb->CDB));
932 memcpy(bcb->CDB, srb->cmnd, bcb->Length);
934 /* send it to out endpoint */
935 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
936 le32_to_cpu(bcb->Signature), bcb->Tag,
937 le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
938 (bcb->Lun >> 4), (bcb->Lun & 0x0F),
940 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
942 US_DEBUGP("Bulk command transfer result=%d\n", result);
943 if (result != USB_STOR_XFER_GOOD)
944 return USB_STOR_TRANSPORT_ERROR;
947 /* send/receive data payload, if there is any */
949 /* Some USB-IDE converter chips need a 100us delay between the
950 * command phase and the data phase. Some devices need a little
951 * more than that, probably because of clock rate inaccuracies. */
952 if (unlikely(us->fflags & US_FL_GO_SLOW))
955 if (transfer_length) {
956 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
957 us->recv_bulk_pipe : us->send_bulk_pipe;
958 result = usb_stor_bulk_srb(us, pipe, srb);
959 US_DEBUGP("Bulk data transfer result 0x%x\n", result);
960 if (result == USB_STOR_XFER_ERROR)
961 return USB_STOR_TRANSPORT_ERROR;
963 /* If the device tried to send back more data than the
964 * amount requested, the spec requires us to transfer
965 * the CSW anyway. Since there's no point retrying the
966 * the command, we'll return fake sense data indicating
967 * Illegal Request, Invalid Field in CDB.
969 if (result == USB_STOR_XFER_LONG)
973 /* See flow chart on pg 15 of the Bulk Only Transport spec for
974 * an explanation of how this code works.
977 /* get CSW for device status */
978 US_DEBUGP("Attempting to get CSW...\n");
979 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
980 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
982 /* Some broken devices add unnecessary zero-length packets to the
983 * end of their data transfers. Such packets show up as 0-length
984 * CSWs. If we encounter such a thing, try to read the CSW again.
986 if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
987 US_DEBUGP("Received 0-length CSW; retrying...\n");
988 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
989 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
992 /* did the attempt to read the CSW fail? */
993 if (result == USB_STOR_XFER_STALLED) {
995 /* get the status again */
996 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
997 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
998 bcs, US_BULK_CS_WRAP_LEN, NULL);
1001 /* if we still have a failure at this point, we're in trouble */
1002 US_DEBUGP("Bulk status result = %d\n", result);
1003 if (result != USB_STOR_XFER_GOOD)
1004 return USB_STOR_TRANSPORT_ERROR;
1006 /* check bulk status */
1007 residue = le32_to_cpu(bcs->Residue);
1008 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1009 le32_to_cpu(bcs->Signature), bcs->Tag,
1010 residue, bcs->Status);
1011 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1012 bcs->Status > US_BULK_STAT_PHASE) {
1013 US_DEBUGP("Bulk logical error\n");
1014 return USB_STOR_TRANSPORT_ERROR;
1017 /* Some broken devices report odd signatures, so we do not check them
1018 * for validity against the spec. We store the first one we see,
1019 * and check subsequent transfers for validity against this signature.
1021 if (!us->bcs_signature) {
1022 us->bcs_signature = bcs->Signature;
1023 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1024 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1025 le32_to_cpu(us->bcs_signature));
1026 } else if (bcs->Signature != us->bcs_signature) {
1027 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1028 le32_to_cpu(bcs->Signature),
1029 le32_to_cpu(us->bcs_signature));
1030 return USB_STOR_TRANSPORT_ERROR;
1033 /* try to compute the actual residue, based on how much data
1034 * was really transferred and what the device tells us */
1035 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1037 /* Heuristically detect devices that generate bogus residues
1038 * by seeing what happens with INQUIRY and READ CAPACITY
1041 if (bcs->Status == US_BULK_STAT_OK &&
1042 scsi_get_resid(srb) == 0 &&
1043 ((srb->cmnd[0] == INQUIRY &&
1044 transfer_length == 36) ||
1045 (srb->cmnd[0] == READ_CAPACITY &&
1046 transfer_length == 8))) {
1047 us->fflags |= US_FL_IGNORE_RESIDUE;
1050 residue = min(residue, transfer_length);
1051 scsi_set_resid(srb, max(scsi_get_resid(srb),
1056 /* based on the status code, we report good or bad */
1057 switch (bcs->Status) {
1058 case US_BULK_STAT_OK:
1059 /* device babbled -- return fake sense data */
1061 memcpy(srb->sense_buffer,
1062 usb_stor_sense_invalidCDB,
1063 sizeof(usb_stor_sense_invalidCDB));
1064 return USB_STOR_TRANSPORT_NO_SENSE;
1067 /* command good -- note that data could be short */
1068 return USB_STOR_TRANSPORT_GOOD;
1070 case US_BULK_STAT_FAIL:
1071 /* command failed */
1072 return USB_STOR_TRANSPORT_FAILED;
1074 case US_BULK_STAT_PHASE:
1075 /* phase error -- note that a transport reset will be
1076 * invoked by the invoke_transport() function
1078 return USB_STOR_TRANSPORT_ERROR;
1081 /* we should never get here, but if we do, we're in trouble */
1082 return USB_STOR_TRANSPORT_ERROR;
1085 /***********************************************************************
1087 ***********************************************************************/
1089 /* This is the common part of the device reset code.
1091 * It's handy that every transport mechanism uses the control endpoint for
1094 * Basically, we send a reset with a 5-second timeout, so we don't get
1095 * jammed attempting to do the reset.
1097 static int usb_stor_reset_common(struct us_data *us,
1098 u8 request, u8 requesttype,
1099 u16 value, u16 index, void *data, u16 size)
1104 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1105 US_DEBUGP("No reset during disconnect\n");
1109 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1110 request, requesttype, value, index, data, size,
1113 US_DEBUGP("Soft reset failed: %d\n", result);
1117 /* Give the device some time to recover from the reset,
1118 * but don't delay disconnect processing. */
1119 wait_event_interruptible_timeout(us->delay_wait,
1120 test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1122 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1123 US_DEBUGP("Reset interrupted by disconnect\n");
1127 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1128 result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1130 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1131 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1133 /* return a result code based on the result of the clear-halts */
1137 US_DEBUGP("Soft reset failed\n");
1139 US_DEBUGP("Soft reset done\n");
1143 /* This issues a CB[I] Reset to the device in question
1145 #define CB_RESET_CMD_SIZE 12
1147 int usb_stor_CB_reset(struct us_data *us)
1149 US_DEBUGP("%s called\n", __func__);
1151 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1152 us->iobuf[0] = SEND_DIAGNOSTIC;
1154 return usb_stor_reset_common(us, US_CBI_ADSC,
1155 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1156 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1159 /* This issues a Bulk-only Reset to the device in question, including
1160 * clearing the subsequent endpoint halts that may occur.
1162 int usb_stor_Bulk_reset(struct us_data *us)
1164 US_DEBUGP("%s called\n", __func__);
1166 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1167 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1168 0, us->ifnum, NULL, 0);
1171 /* Issue a USB port reset to the device. The caller must not hold
1174 int usb_stor_port_reset(struct us_data *us)
1176 int result, rc_lock;
1179 usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1181 US_DEBUGP("unable to lock device for reset: %d\n", result);
1183 /* Were we disconnected while waiting for the lock? */
1184 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1186 US_DEBUGP("No reset during disconnect\n");
1188 result = usb_reset_device(us->pusb_dev);
1189 US_DEBUGP("usb_reset_device returns %d\n",
1193 usb_unlock_device(us->pusb_dev);