[PATCH] ipw2200: Add LEAP authentication algorithm support
[linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36 #define IPW2200_VERSION "git-1.0.8"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
39 #define DRV_VERSION     IPW2200_VERSION
40
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
42
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
47
48 static int cmdlog = 0;
49 static int debug = 0;
50 static int channel = 0;
51 static int mode = 0;
52
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
56 static int led = 0;
57 static int disable = 0;
58 static int hwcrypto = 1;
59 static const char ipw_modes[] = {
60         'a', 'b', 'g', '?'
61 };
62
63 #ifdef CONFIG_IPW_QOS
64 static int qos_enable = 0;
65 static int qos_burst_enable = 0;
66 static int qos_no_ack_mask = 0;
67 static int burst_duration_CCK = 0;
68 static int burst_duration_OFDM = 0;
69
70 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
71         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
72          QOS_TX3_CW_MIN_OFDM},
73         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
74          QOS_TX3_CW_MAX_OFDM},
75         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
76         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
77         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
78          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
79 };
80
81 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
82         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
83          QOS_TX3_CW_MIN_CCK},
84         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
85          QOS_TX3_CW_MAX_CCK},
86         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
87         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
88         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
89          QOS_TX3_TXOP_LIMIT_CCK}
90 };
91
92 static struct ieee80211_qos_parameters def_parameters_OFDM = {
93         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
94          DEF_TX3_CW_MIN_OFDM},
95         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
96          DEF_TX3_CW_MAX_OFDM},
97         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
98         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
99         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
100          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
101 };
102
103 static struct ieee80211_qos_parameters def_parameters_CCK = {
104         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
105          DEF_TX3_CW_MIN_CCK},
106         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
107          DEF_TX3_CW_MAX_CCK},
108         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
109         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
110         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
111          DEF_TX3_TXOP_LIMIT_CCK}
112 };
113
114 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
115
116 static int from_priority_to_tx_queue[] = {
117         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
118         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
119 };
120
121 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
122
123 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
124                                        *qos_param);
125 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
126                                      *qos_param);
127 #endif                          /* CONFIG_IPW_QOS */
128
129 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
130 static void ipw_remove_current_network(struct ipw_priv *priv);
131 static void ipw_rx(struct ipw_priv *priv);
132 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
133                                 struct clx2_tx_queue *txq, int qindex);
134 static int ipw_queue_reset(struct ipw_priv *priv);
135
136 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
137                              int len, int sync);
138
139 static void ipw_tx_queue_free(struct ipw_priv *);
140
141 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
142 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
143 static void ipw_rx_queue_replenish(void *);
144 static int ipw_up(struct ipw_priv *);
145 static void ipw_bg_up(void *);
146 static void ipw_down(struct ipw_priv *);
147 static void ipw_bg_down(void *);
148 static int ipw_config(struct ipw_priv *);
149 static int init_supported_rates(struct ipw_priv *priv,
150                                 struct ipw_supported_rates *prates);
151 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
152 static void ipw_send_wep_keys(struct ipw_priv *, int);
153
154 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
155 static int ipw_channel_to_index(struct ieee80211_device *, u8);
156 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
157 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
158 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
159
160 static int snprint_line(char *buf, size_t count,
161                         const u8 * data, u32 len, u32 ofs)
162 {
163         int out, i, j, l;
164         char c;
165
166         out = snprintf(buf, count, "%08X", ofs);
167
168         for (l = 0, i = 0; i < 2; i++) {
169                 out += snprintf(buf + out, count - out, " ");
170                 for (j = 0; j < 8 && l < len; j++, l++)
171                         out += snprintf(buf + out, count - out, "%02X ",
172                                         data[(i * 8 + j)]);
173                 for (; j < 8; j++)
174                         out += snprintf(buf + out, count - out, "   ");
175         }
176
177         out += snprintf(buf + out, count - out, " ");
178         for (l = 0, i = 0; i < 2; i++) {
179                 out += snprintf(buf + out, count - out, " ");
180                 for (j = 0; j < 8 && l < len; j++, l++) {
181                         c = data[(i * 8 + j)];
182                         if (!isascii(c) || !isprint(c))
183                                 c = '.';
184
185                         out += snprintf(buf + out, count - out, "%c", c);
186                 }
187
188                 for (; j < 8; j++)
189                         out += snprintf(buf + out, count - out, " ");
190         }
191
192         return out;
193 }
194
195 static void printk_buf(int level, const u8 * data, u32 len)
196 {
197         char line[81];
198         u32 ofs = 0;
199         if (!(ipw_debug_level & level))
200                 return;
201
202         while (len) {
203                 snprint_line(line, sizeof(line), &data[ofs],
204                              min(len, 16U), ofs);
205                 printk(KERN_DEBUG "%s\n", line);
206                 ofs += 16;
207                 len -= min(len, 16U);
208         }
209 }
210
211 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
212 {
213         size_t out = size;
214         u32 ofs = 0;
215         int total = 0;
216
217         while (size && len) {
218                 out = snprint_line(output, size, &data[ofs],
219                                    min_t(size_t, len, 16U), ofs);
220
221                 ofs += 16;
222                 output += out;
223                 size -= out;
224                 len -= min_t(size_t, len, 16U);
225                 total += out;
226         }
227         return total;
228 }
229
230 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
232 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
233
234 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
235 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
236 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
237
238 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
239 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
240 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
241 {
242         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
243                      __LINE__, (u32) (b), (u32) (c));
244         _ipw_write_reg8(a, b, c);
245 }
246
247 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
248 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
249 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
250 {
251         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
252                      __LINE__, (u32) (b), (u32) (c));
253         _ipw_write_reg16(a, b, c);
254 }
255
256 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
257 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
258 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
259 {
260         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
261                      __LINE__, (u32) (b), (u32) (c));
262         _ipw_write_reg32(a, b, c);
263 }
264
265 /* 8-bit direct write (low 4K) */
266 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
267
268 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
269 #define ipw_write8(ipw, ofs, val) \
270  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
271  _ipw_write8(ipw, ofs, val)
272
273
274 /* 16-bit direct write (low 4K) */
275 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
276
277 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
278 #define ipw_write16(ipw, ofs, val) \
279  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
280  _ipw_write16(ipw, ofs, val)
281
282
283 /* 32-bit direct write (low 4K) */
284 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
285
286 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
287 #define ipw_write32(ipw, ofs, val) \
288  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
289  _ipw_write32(ipw, ofs, val)
290
291
292 /* 8-bit direct read (low 4K) */
293 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
294
295 /* 8-bit direct read (low 4K), with debug wrapper */
296 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
297 {
298         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
299         return _ipw_read8(ipw, ofs);
300 }
301
302 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
303 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
304
305
306 /* 16-bit direct read (low 4K) */
307 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
308
309 /* 16-bit direct read (low 4K), with debug wrapper */
310 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
311 {
312         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
313         return _ipw_read16(ipw, ofs);
314 }
315
316 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
317 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
318
319
320 /* 32-bit direct read (low 4K) */
321 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
322
323 /* 32-bit direct read (low 4K), with debug wrapper */
324 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
325 {
326         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
327         return _ipw_read32(ipw, ofs);
328 }
329
330 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
331 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
332
333
334 /* multi-byte read (above 4K), with debug wrapper */
335 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
336 static inline void __ipw_read_indirect(const char *f, int l,
337                                        struct ipw_priv *a, u32 b, u8 * c, int d)
338 {
339         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
340                      d);
341         _ipw_read_indirect(a, b, c, d);
342 }
343
344 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
345 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
346
347 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
348 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
349                                 int num);
350 #define ipw_write_indirect(a, b, c, d) \
351         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
352         _ipw_write_indirect(a, b, c, d)
353
354 /* 32-bit indirect write (above 4K) */
355 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
356 {
357         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
358         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
359         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
360 }
361
362 /* 8-bit indirect write (above 4K) */
363 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
364 {
365         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
366         u32 dif_len = reg - aligned_addr;
367
368         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
369         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
370         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
371 }
372
373 /* 16-bit indirect write (above 4K) */
374 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
375 {
376         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
377         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
378
379         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
380         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
381         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
382 }
383
384
385 /* 8-bit indirect read (above 4K) */
386 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
387 {
388         u32 word;
389         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
390         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
391         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
392         return (word >> ((reg & 0x3) * 8)) & 0xff;
393 }
394
395 /* 32-bit indirect read (above 4K) */
396 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
397 {
398         u32 value;
399
400         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
401
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
403         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
404         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
405         return value;
406 }
407
408 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
409 /*    for area above 1st 4K of SRAM/reg space */
410 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
411                                int num)
412 {
413         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
414         u32 dif_len = addr - aligned_addr;
415         u32 i;
416
417         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
418
419         if (num <= 0) {
420                 return;
421         }
422
423         /* Read the first dword (or portion) byte by byte */
424         if (unlikely(dif_len)) {
425                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426                 /* Start reading at aligned_addr + dif_len */
427                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
428                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
429                 aligned_addr += 4;
430         }
431
432         /* Read all of the middle dwords as dwords, with auto-increment */
433         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
434         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
435                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
436
437         /* Read the last dword (or portion) byte by byte */
438         if (unlikely(num)) {
439                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
440                 for (i = 0; num > 0; i++, num--)
441                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
442         }
443 }
444
445 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
446 /*    for area above 1st 4K of SRAM/reg space */
447 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
448                                 int num)
449 {
450         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
451         u32 dif_len = addr - aligned_addr;
452         u32 i;
453
454         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455
456         if (num <= 0) {
457                 return;
458         }
459
460         /* Write the first dword (or portion) byte by byte */
461         if (unlikely(dif_len)) {
462                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
463                 /* Start writing at aligned_addr + dif_len */
464                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
465                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
466                 aligned_addr += 4;
467         }
468
469         /* Write all of the middle dwords as dwords, with auto-increment */
470         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
471         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
472                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
473
474         /* Write the last dword (or portion) byte by byte */
475         if (unlikely(num)) {
476                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
477                 for (i = 0; num > 0; i++, num--, buf++)
478                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
479         }
480 }
481
482 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
483 /*    for 1st 4K of SRAM/regs space */
484 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
485                              int num)
486 {
487         memcpy_toio((priv->hw_base + addr), buf, num);
488 }
489
490 /* Set bit(s) in low 4K of SRAM/regs */
491 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
492 {
493         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
494 }
495
496 /* Clear bit(s) in low 4K of SRAM/regs */
497 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
498 {
499         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
500 }
501
502 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
503 {
504         if (priv->status & STATUS_INT_ENABLED)
505                 return;
506         priv->status |= STATUS_INT_ENABLED;
507         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
508 }
509
510 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
511 {
512         if (!(priv->status & STATUS_INT_ENABLED))
513                 return;
514         priv->status &= ~STATUS_INT_ENABLED;
515         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
516 }
517
518 #ifdef CONFIG_IPW2200_DEBUG
519 static char *ipw_error_desc(u32 val)
520 {
521         switch (val) {
522         case IPW_FW_ERROR_OK:
523                 return "ERROR_OK";
524         case IPW_FW_ERROR_FAIL:
525                 return "ERROR_FAIL";
526         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
527                 return "MEMORY_UNDERFLOW";
528         case IPW_FW_ERROR_MEMORY_OVERFLOW:
529                 return "MEMORY_OVERFLOW";
530         case IPW_FW_ERROR_BAD_PARAM:
531                 return "BAD_PARAM";
532         case IPW_FW_ERROR_BAD_CHECKSUM:
533                 return "BAD_CHECKSUM";
534         case IPW_FW_ERROR_NMI_INTERRUPT:
535                 return "NMI_INTERRUPT";
536         case IPW_FW_ERROR_BAD_DATABASE:
537                 return "BAD_DATABASE";
538         case IPW_FW_ERROR_ALLOC_FAIL:
539                 return "ALLOC_FAIL";
540         case IPW_FW_ERROR_DMA_UNDERRUN:
541                 return "DMA_UNDERRUN";
542         case IPW_FW_ERROR_DMA_STATUS:
543                 return "DMA_STATUS";
544         case IPW_FW_ERROR_DINO_ERROR:
545                 return "DINO_ERROR";
546         case IPW_FW_ERROR_EEPROM_ERROR:
547                 return "EEPROM_ERROR";
548         case IPW_FW_ERROR_SYSASSERT:
549                 return "SYSASSERT";
550         case IPW_FW_ERROR_FATAL_ERROR:
551                 return "FATAL_ERROR";
552         default:
553                 return "UNKNOWN_ERROR";
554         }
555 }
556
557 static void ipw_dump_error_log(struct ipw_priv *priv,
558                                struct ipw_fw_error *error)
559 {
560         u32 i;
561
562         if (!error) {
563                 IPW_ERROR("Error allocating and capturing error log.  "
564                           "Nothing to dump.\n");
565                 return;
566         }
567
568         IPW_ERROR("Start IPW Error Log Dump:\n");
569         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
570                   error->status, error->config);
571
572         for (i = 0; i < error->elem_len; i++)
573                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
574                           ipw_error_desc(error->elem[i].desc),
575                           error->elem[i].time,
576                           error->elem[i].blink1,
577                           error->elem[i].blink2,
578                           error->elem[i].link1,
579                           error->elem[i].link2, error->elem[i].data);
580         for (i = 0; i < error->log_len; i++)
581                 IPW_ERROR("%i\t0x%08x\t%i\n",
582                           error->log[i].time,
583                           error->log[i].data, error->log[i].event);
584 }
585 #endif
586
587 static inline int ipw_is_init(struct ipw_priv *priv)
588 {
589         return (priv->status & STATUS_INIT) ? 1 : 0;
590 }
591
592 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
593 {
594         u32 addr, field_info, field_len, field_count, total_len;
595
596         IPW_DEBUG_ORD("ordinal = %i\n", ord);
597
598         if (!priv || !val || !len) {
599                 IPW_DEBUG_ORD("Invalid argument\n");
600                 return -EINVAL;
601         }
602
603         /* verify device ordinal tables have been initialized */
604         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
605                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
606                 return -EINVAL;
607         }
608
609         switch (IPW_ORD_TABLE_ID_MASK & ord) {
610         case IPW_ORD_TABLE_0_MASK:
611                 /*
612                  * TABLE 0: Direct access to a table of 32 bit values
613                  *
614                  * This is a very simple table with the data directly
615                  * read from the table
616                  */
617
618                 /* remove the table id from the ordinal */
619                 ord &= IPW_ORD_TABLE_VALUE_MASK;
620
621                 /* boundary check */
622                 if (ord > priv->table0_len) {
623                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
624                                       "max (%i)\n", ord, priv->table0_len);
625                         return -EINVAL;
626                 }
627
628                 /* verify we have enough room to store the value */
629                 if (*len < sizeof(u32)) {
630                         IPW_DEBUG_ORD("ordinal buffer length too small, "
631                                       "need %zd\n", sizeof(u32));
632                         return -EINVAL;
633                 }
634
635                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
636                               ord, priv->table0_addr + (ord << 2));
637
638                 *len = sizeof(u32);
639                 ord <<= 2;
640                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
641                 break;
642
643         case IPW_ORD_TABLE_1_MASK:
644                 /*
645                  * TABLE 1: Indirect access to a table of 32 bit values
646                  *
647                  * This is a fairly large table of u32 values each
648                  * representing starting addr for the data (which is
649                  * also a u32)
650                  */
651
652                 /* remove the table id from the ordinal */
653                 ord &= IPW_ORD_TABLE_VALUE_MASK;
654
655                 /* boundary check */
656                 if (ord > priv->table1_len) {
657                         IPW_DEBUG_ORD("ordinal value too long\n");
658                         return -EINVAL;
659                 }
660
661                 /* verify we have enough room to store the value */
662                 if (*len < sizeof(u32)) {
663                         IPW_DEBUG_ORD("ordinal buffer length too small, "
664                                       "need %zd\n", sizeof(u32));
665                         return -EINVAL;
666                 }
667
668                 *((u32 *) val) =
669                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
670                 *len = sizeof(u32);
671                 break;
672
673         case IPW_ORD_TABLE_2_MASK:
674                 /*
675                  * TABLE 2: Indirect access to a table of variable sized values
676                  *
677                  * This table consist of six values, each containing
678                  *     - dword containing the starting offset of the data
679                  *     - dword containing the lengh in the first 16bits
680                  *       and the count in the second 16bits
681                  */
682
683                 /* remove the table id from the ordinal */
684                 ord &= IPW_ORD_TABLE_VALUE_MASK;
685
686                 /* boundary check */
687                 if (ord > priv->table2_len) {
688                         IPW_DEBUG_ORD("ordinal value too long\n");
689                         return -EINVAL;
690                 }
691
692                 /* get the address of statistic */
693                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
694
695                 /* get the second DW of statistics ;
696                  * two 16-bit words - first is length, second is count */
697                 field_info =
698                     ipw_read_reg32(priv,
699                                    priv->table2_addr + (ord << 3) +
700                                    sizeof(u32));
701
702                 /* get each entry length */
703                 field_len = *((u16 *) & field_info);
704
705                 /* get number of entries */
706                 field_count = *(((u16 *) & field_info) + 1);
707
708                 /* abort if not enought memory */
709                 total_len = field_len * field_count;
710                 if (total_len > *len) {
711                         *len = total_len;
712                         return -EINVAL;
713                 }
714
715                 *len = total_len;
716                 if (!total_len)
717                         return 0;
718
719                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
720                               "field_info = 0x%08x\n",
721                               addr, total_len, field_info);
722                 ipw_read_indirect(priv, addr, val, total_len);
723                 break;
724
725         default:
726                 IPW_DEBUG_ORD("Invalid ordinal!\n");
727                 return -EINVAL;
728
729         }
730
731         return 0;
732 }
733
734 static void ipw_init_ordinals(struct ipw_priv *priv)
735 {
736         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
737         priv->table0_len = ipw_read32(priv, priv->table0_addr);
738
739         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
740                       priv->table0_addr, priv->table0_len);
741
742         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
743         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
744
745         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
746                       priv->table1_addr, priv->table1_len);
747
748         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
749         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
750         priv->table2_len &= 0x0000ffff; /* use first two bytes */
751
752         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
753                       priv->table2_addr, priv->table2_len);
754
755 }
756
757 static u32 ipw_register_toggle(u32 reg)
758 {
759         reg &= ~IPW_START_STANDBY;
760         if (reg & IPW_GATE_ODMA)
761                 reg &= ~IPW_GATE_ODMA;
762         if (reg & IPW_GATE_IDMA)
763                 reg &= ~IPW_GATE_IDMA;
764         if (reg & IPW_GATE_ADMA)
765                 reg &= ~IPW_GATE_ADMA;
766         return reg;
767 }
768
769 /*
770  * LED behavior:
771  * - On radio ON, turn on any LEDs that require to be on during start
772  * - On initialization, start unassociated blink
773  * - On association, disable unassociated blink
774  * - On disassociation, start unassociated blink
775  * - On radio OFF, turn off any LEDs started during radio on
776  *
777  */
778 #define LD_TIME_LINK_ON 300
779 #define LD_TIME_LINK_OFF 2700
780 #define LD_TIME_ACT_ON 250
781
782 static void ipw_led_link_on(struct ipw_priv *priv)
783 {
784         unsigned long flags;
785         u32 led;
786
787         /* If configured to not use LEDs, or nic_type is 1,
788          * then we don't toggle a LINK led */
789         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
790                 return;
791
792         spin_lock_irqsave(&priv->lock, flags);
793
794         if (!(priv->status & STATUS_RF_KILL_MASK) &&
795             !(priv->status & STATUS_LED_LINK_ON)) {
796                 IPW_DEBUG_LED("Link LED On\n");
797                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
798                 led |= priv->led_association_on;
799
800                 led = ipw_register_toggle(led);
801
802                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
803                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
804
805                 priv->status |= STATUS_LED_LINK_ON;
806
807                 /* If we aren't associated, schedule turning the LED off */
808                 if (!(priv->status & STATUS_ASSOCIATED))
809                         queue_delayed_work(priv->workqueue,
810                                            &priv->led_link_off,
811                                            LD_TIME_LINK_ON);
812         }
813
814         spin_unlock_irqrestore(&priv->lock, flags);
815 }
816
817 static void ipw_bg_led_link_on(void *data)
818 {
819         struct ipw_priv *priv = data;
820         down(&priv->sem);
821         ipw_led_link_on(data);
822         up(&priv->sem);
823 }
824
825 static void ipw_led_link_off(struct ipw_priv *priv)
826 {
827         unsigned long flags;
828         u32 led;
829
830         /* If configured not to use LEDs, or nic type is 1,
831          * then we don't goggle the LINK led. */
832         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
833                 return;
834
835         spin_lock_irqsave(&priv->lock, flags);
836
837         if (priv->status & STATUS_LED_LINK_ON) {
838                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
839                 led &= priv->led_association_off;
840                 led = ipw_register_toggle(led);
841
842                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
843                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
844
845                 IPW_DEBUG_LED("Link LED Off\n");
846
847                 priv->status &= ~STATUS_LED_LINK_ON;
848
849                 /* If we aren't associated and the radio is on, schedule
850                  * turning the LED on (blink while unassociated) */
851                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
852                     !(priv->status & STATUS_ASSOCIATED))
853                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
854                                            LD_TIME_LINK_OFF);
855
856         }
857
858         spin_unlock_irqrestore(&priv->lock, flags);
859 }
860
861 static void ipw_bg_led_link_off(void *data)
862 {
863         struct ipw_priv *priv = data;
864         down(&priv->sem);
865         ipw_led_link_off(data);
866         up(&priv->sem);
867 }
868
869 static void __ipw_led_activity_on(struct ipw_priv *priv)
870 {
871         u32 led;
872
873         if (priv->config & CFG_NO_LED)
874                 return;
875
876         if (priv->status & STATUS_RF_KILL_MASK)
877                 return;
878
879         if (!(priv->status & STATUS_LED_ACT_ON)) {
880                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
881                 led |= priv->led_activity_on;
882
883                 led = ipw_register_toggle(led);
884
885                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
886                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
887
888                 IPW_DEBUG_LED("Activity LED On\n");
889
890                 priv->status |= STATUS_LED_ACT_ON;
891
892                 cancel_delayed_work(&priv->led_act_off);
893                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
894                                    LD_TIME_ACT_ON);
895         } else {
896                 /* Reschedule LED off for full time period */
897                 cancel_delayed_work(&priv->led_act_off);
898                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
899                                    LD_TIME_ACT_ON);
900         }
901 }
902
903 #if 0
904 void ipw_led_activity_on(struct ipw_priv *priv)
905 {
906         unsigned long flags;
907         spin_lock_irqsave(&priv->lock, flags);
908         __ipw_led_activity_on(priv);
909         spin_unlock_irqrestore(&priv->lock, flags);
910 }
911 #endif  /*  0  */
912
913 static void ipw_led_activity_off(struct ipw_priv *priv)
914 {
915         unsigned long flags;
916         u32 led;
917
918         if (priv->config & CFG_NO_LED)
919                 return;
920
921         spin_lock_irqsave(&priv->lock, flags);
922
923         if (priv->status & STATUS_LED_ACT_ON) {
924                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
925                 led &= priv->led_activity_off;
926
927                 led = ipw_register_toggle(led);
928
929                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
930                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
931
932                 IPW_DEBUG_LED("Activity LED Off\n");
933
934                 priv->status &= ~STATUS_LED_ACT_ON;
935         }
936
937         spin_unlock_irqrestore(&priv->lock, flags);
938 }
939
940 static void ipw_bg_led_activity_off(void *data)
941 {
942         struct ipw_priv *priv = data;
943         down(&priv->sem);
944         ipw_led_activity_off(data);
945         up(&priv->sem);
946 }
947
948 static void ipw_led_band_on(struct ipw_priv *priv)
949 {
950         unsigned long flags;
951         u32 led;
952
953         /* Only nic type 1 supports mode LEDs */
954         if (priv->config & CFG_NO_LED ||
955             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
956                 return;
957
958         spin_lock_irqsave(&priv->lock, flags);
959
960         led = ipw_read_reg32(priv, IPW_EVENT_REG);
961         if (priv->assoc_network->mode == IEEE_A) {
962                 led |= priv->led_ofdm_on;
963                 led &= priv->led_association_off;
964                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
965         } else if (priv->assoc_network->mode == IEEE_G) {
966                 led |= priv->led_ofdm_on;
967                 led |= priv->led_association_on;
968                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
969         } else {
970                 led &= priv->led_ofdm_off;
971                 led |= priv->led_association_on;
972                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
973         }
974
975         led = ipw_register_toggle(led);
976
977         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
978         ipw_write_reg32(priv, IPW_EVENT_REG, led);
979
980         spin_unlock_irqrestore(&priv->lock, flags);
981 }
982
983 static void ipw_led_band_off(struct ipw_priv *priv)
984 {
985         unsigned long flags;
986         u32 led;
987
988         /* Only nic type 1 supports mode LEDs */
989         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
990                 return;
991
992         spin_lock_irqsave(&priv->lock, flags);
993
994         led = ipw_read_reg32(priv, IPW_EVENT_REG);
995         led &= priv->led_ofdm_off;
996         led &= priv->led_association_off;
997
998         led = ipw_register_toggle(led);
999
1000         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1001         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1002
1003         spin_unlock_irqrestore(&priv->lock, flags);
1004 }
1005
1006 static void ipw_led_radio_on(struct ipw_priv *priv)
1007 {
1008         ipw_led_link_on(priv);
1009 }
1010
1011 static void ipw_led_radio_off(struct ipw_priv *priv)
1012 {
1013         ipw_led_activity_off(priv);
1014         ipw_led_link_off(priv);
1015 }
1016
1017 static void ipw_led_link_up(struct ipw_priv *priv)
1018 {
1019         /* Set the Link Led on for all nic types */
1020         ipw_led_link_on(priv);
1021 }
1022
1023 static void ipw_led_link_down(struct ipw_priv *priv)
1024 {
1025         ipw_led_activity_off(priv);
1026         ipw_led_link_off(priv);
1027
1028         if (priv->status & STATUS_RF_KILL_MASK)
1029                 ipw_led_radio_off(priv);
1030 }
1031
1032 static void ipw_led_init(struct ipw_priv *priv)
1033 {
1034         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1035
1036         /* Set the default PINs for the link and activity leds */
1037         priv->led_activity_on = IPW_ACTIVITY_LED;
1038         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1039
1040         priv->led_association_on = IPW_ASSOCIATED_LED;
1041         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1042
1043         /* Set the default PINs for the OFDM leds */
1044         priv->led_ofdm_on = IPW_OFDM_LED;
1045         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1046
1047         switch (priv->nic_type) {
1048         case EEPROM_NIC_TYPE_1:
1049                 /* In this NIC type, the LEDs are reversed.... */
1050                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1051                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1052                 priv->led_association_on = IPW_ACTIVITY_LED;
1053                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1054
1055                 if (!(priv->config & CFG_NO_LED))
1056                         ipw_led_band_on(priv);
1057
1058                 /* And we don't blink link LEDs for this nic, so
1059                  * just return here */
1060                 return;
1061
1062         case EEPROM_NIC_TYPE_3:
1063         case EEPROM_NIC_TYPE_2:
1064         case EEPROM_NIC_TYPE_4:
1065         case EEPROM_NIC_TYPE_0:
1066                 break;
1067
1068         default:
1069                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1070                                priv->nic_type);
1071                 priv->nic_type = EEPROM_NIC_TYPE_0;
1072                 break;
1073         }
1074
1075         if (!(priv->config & CFG_NO_LED)) {
1076                 if (priv->status & STATUS_ASSOCIATED)
1077                         ipw_led_link_on(priv);
1078                 else
1079                         ipw_led_link_off(priv);
1080         }
1081 }
1082
1083 static void ipw_led_shutdown(struct ipw_priv *priv)
1084 {
1085         ipw_led_activity_off(priv);
1086         ipw_led_link_off(priv);
1087         ipw_led_band_off(priv);
1088         cancel_delayed_work(&priv->led_link_on);
1089         cancel_delayed_work(&priv->led_link_off);
1090         cancel_delayed_work(&priv->led_act_off);
1091 }
1092
1093 /*
1094  * The following adds a new attribute to the sysfs representation
1095  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1096  * used for controling the debug level.
1097  *
1098  * See the level definitions in ipw for details.
1099  */
1100 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1101 {
1102         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1103 }
1104
1105 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1106                                  size_t count)
1107 {
1108         char *p = (char *)buf;
1109         u32 val;
1110
1111         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1112                 p++;
1113                 if (p[0] == 'x' || p[0] == 'X')
1114                         p++;
1115                 val = simple_strtoul(p, &p, 16);
1116         } else
1117                 val = simple_strtoul(p, &p, 10);
1118         if (p == buf)
1119                 printk(KERN_INFO DRV_NAME
1120                        ": %s is not in hex or decimal form.\n", buf);
1121         else
1122                 ipw_debug_level = val;
1123
1124         return strnlen(buf, count);
1125 }
1126
1127 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1128                    show_debug_level, store_debug_level);
1129
1130 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1131 {
1132         /* length = 1st dword in log */
1133         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1134 }
1135
1136 static void ipw_capture_event_log(struct ipw_priv *priv,
1137                                   u32 log_len, struct ipw_event *log)
1138 {
1139         u32 base;
1140
1141         if (log_len) {
1142                 base = ipw_read32(priv, IPW_EVENT_LOG);
1143                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1144                                   (u8 *) log, sizeof(*log) * log_len);
1145         }
1146 }
1147
1148 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1149 {
1150         struct ipw_fw_error *error;
1151         u32 log_len = ipw_get_event_log_len(priv);
1152         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1153         u32 elem_len = ipw_read_reg32(priv, base);
1154
1155         error = kmalloc(sizeof(*error) +
1156                         sizeof(*error->elem) * elem_len +
1157                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1158         if (!error) {
1159                 IPW_ERROR("Memory allocation for firmware error log "
1160                           "failed.\n");
1161                 return NULL;
1162         }
1163         error->jiffies = jiffies;
1164         error->status = priv->status;
1165         error->config = priv->config;
1166         error->elem_len = elem_len;
1167         error->log_len = log_len;
1168         error->elem = (struct ipw_error_elem *)error->payload;
1169         error->log = (struct ipw_event *)(error->elem + elem_len);
1170
1171         ipw_capture_event_log(priv, log_len, error->log);
1172
1173         if (elem_len)
1174                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1175                                   sizeof(*error->elem) * elem_len);
1176
1177         return error;
1178 }
1179
1180 static void ipw_free_error_log(struct ipw_fw_error *error)
1181 {
1182         if (error)
1183                 kfree(error);
1184 }
1185
1186 static ssize_t show_event_log(struct device *d,
1187                               struct device_attribute *attr, char *buf)
1188 {
1189         struct ipw_priv *priv = dev_get_drvdata(d);
1190         u32 log_len = ipw_get_event_log_len(priv);
1191         struct ipw_event log[log_len];
1192         u32 len = 0, i;
1193
1194         ipw_capture_event_log(priv, log_len, log);
1195
1196         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1197         for (i = 0; i < log_len; i++)
1198                 len += snprintf(buf + len, PAGE_SIZE - len,
1199                                 "\n%08X%08X%08X",
1200                                 log[i].time, log[i].event, log[i].data);
1201         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1202         return len;
1203 }
1204
1205 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1206
1207 static ssize_t show_error(struct device *d,
1208                           struct device_attribute *attr, char *buf)
1209 {
1210         struct ipw_priv *priv = dev_get_drvdata(d);
1211         u32 len = 0, i;
1212         if (!priv->error)
1213                 return 0;
1214         len += snprintf(buf + len, PAGE_SIZE - len,
1215                         "%08lX%08X%08X%08X",
1216                         priv->error->jiffies,
1217                         priv->error->status,
1218                         priv->error->config, priv->error->elem_len);
1219         for (i = 0; i < priv->error->elem_len; i++)
1220                 len += snprintf(buf + len, PAGE_SIZE - len,
1221                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1222                                 priv->error->elem[i].time,
1223                                 priv->error->elem[i].desc,
1224                                 priv->error->elem[i].blink1,
1225                                 priv->error->elem[i].blink2,
1226                                 priv->error->elem[i].link1,
1227                                 priv->error->elem[i].link2,
1228                                 priv->error->elem[i].data);
1229
1230         len += snprintf(buf + len, PAGE_SIZE - len,
1231                         "\n%08X", priv->error->log_len);
1232         for (i = 0; i < priv->error->log_len; i++)
1233                 len += snprintf(buf + len, PAGE_SIZE - len,
1234                                 "\n%08X%08X%08X",
1235                                 priv->error->log[i].time,
1236                                 priv->error->log[i].event,
1237                                 priv->error->log[i].data);
1238         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1239         return len;
1240 }
1241
1242 static ssize_t clear_error(struct device *d,
1243                            struct device_attribute *attr,
1244                            const char *buf, size_t count)
1245 {
1246         struct ipw_priv *priv = dev_get_drvdata(d);
1247         if (priv->error) {
1248                 ipw_free_error_log(priv->error);
1249                 priv->error = NULL;
1250         }
1251         return count;
1252 }
1253
1254 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1255
1256 static ssize_t show_cmd_log(struct device *d,
1257                             struct device_attribute *attr, char *buf)
1258 {
1259         struct ipw_priv *priv = dev_get_drvdata(d);
1260         u32 len = 0, i;
1261         if (!priv->cmdlog)
1262                 return 0;
1263         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1264              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1265              i = (i + 1) % priv->cmdlog_len) {
1266                 len +=
1267                     snprintf(buf + len, PAGE_SIZE - len,
1268                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1269                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1270                              priv->cmdlog[i].cmd.len);
1271                 len +=
1272                     snprintk_buf(buf + len, PAGE_SIZE - len,
1273                                  (u8 *) priv->cmdlog[i].cmd.param,
1274                                  priv->cmdlog[i].cmd.len);
1275                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1276         }
1277         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1278         return len;
1279 }
1280
1281 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1282
1283 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1284                              char *buf)
1285 {
1286         struct ipw_priv *priv = dev_get_drvdata(d);
1287         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1288 }
1289
1290 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1291                               const char *buf, size_t count)
1292 {
1293         struct ipw_priv *priv = dev_get_drvdata(d);
1294 #ifdef CONFIG_IPW2200_DEBUG
1295         struct net_device *dev = priv->net_dev;
1296 #endif
1297         char buffer[] = "00000000";
1298         unsigned long len =
1299             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1300         unsigned long val;
1301         char *p = buffer;
1302
1303         IPW_DEBUG_INFO("enter\n");
1304
1305         strncpy(buffer, buf, len);
1306         buffer[len] = 0;
1307
1308         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1309                 p++;
1310                 if (p[0] == 'x' || p[0] == 'X')
1311                         p++;
1312                 val = simple_strtoul(p, &p, 16);
1313         } else
1314                 val = simple_strtoul(p, &p, 10);
1315         if (p == buffer) {
1316                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1317         } else {
1318                 priv->ieee->scan_age = val;
1319                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1320         }
1321
1322         IPW_DEBUG_INFO("exit\n");
1323         return len;
1324 }
1325
1326 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1327
1328 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1329                         char *buf)
1330 {
1331         struct ipw_priv *priv = dev_get_drvdata(d);
1332         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1333 }
1334
1335 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1336                          const char *buf, size_t count)
1337 {
1338         struct ipw_priv *priv = dev_get_drvdata(d);
1339
1340         IPW_DEBUG_INFO("enter\n");
1341
1342         if (count == 0)
1343                 return 0;
1344
1345         if (*buf == 0) {
1346                 IPW_DEBUG_LED("Disabling LED control.\n");
1347                 priv->config |= CFG_NO_LED;
1348                 ipw_led_shutdown(priv);
1349         } else {
1350                 IPW_DEBUG_LED("Enabling LED control.\n");
1351                 priv->config &= ~CFG_NO_LED;
1352                 ipw_led_init(priv);
1353         }
1354
1355         IPW_DEBUG_INFO("exit\n");
1356         return count;
1357 }
1358
1359 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1360
1361 static ssize_t show_status(struct device *d,
1362                            struct device_attribute *attr, char *buf)
1363 {
1364         struct ipw_priv *p = d->driver_data;
1365         return sprintf(buf, "0x%08x\n", (int)p->status);
1366 }
1367
1368 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1369
1370 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1371                         char *buf)
1372 {
1373         struct ipw_priv *p = d->driver_data;
1374         return sprintf(buf, "0x%08x\n", (int)p->config);
1375 }
1376
1377 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1378
1379 static ssize_t show_nic_type(struct device *d,
1380                              struct device_attribute *attr, char *buf)
1381 {
1382         struct ipw_priv *priv = d->driver_data;
1383         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1384 }
1385
1386 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1387
1388 static ssize_t show_ucode_version(struct device *d,
1389                                   struct device_attribute *attr, char *buf)
1390 {
1391         u32 len = sizeof(u32), tmp = 0;
1392         struct ipw_priv *p = d->driver_data;
1393
1394         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1395                 return 0;
1396
1397         return sprintf(buf, "0x%08x\n", tmp);
1398 }
1399
1400 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1401
1402 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1403                         char *buf)
1404 {
1405         u32 len = sizeof(u32), tmp = 0;
1406         struct ipw_priv *p = d->driver_data;
1407
1408         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1409                 return 0;
1410
1411         return sprintf(buf, "0x%08x\n", tmp);
1412 }
1413
1414 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1415
1416 /*
1417  * Add a device attribute to view/control the delay between eeprom
1418  * operations.
1419  */
1420 static ssize_t show_eeprom_delay(struct device *d,
1421                                  struct device_attribute *attr, char *buf)
1422 {
1423         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1424         return sprintf(buf, "%i\n", n);
1425 }
1426 static ssize_t store_eeprom_delay(struct device *d,
1427                                   struct device_attribute *attr,
1428                                   const char *buf, size_t count)
1429 {
1430         struct ipw_priv *p = d->driver_data;
1431         sscanf(buf, "%i", &p->eeprom_delay);
1432         return strnlen(buf, count);
1433 }
1434
1435 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1436                    show_eeprom_delay, store_eeprom_delay);
1437
1438 static ssize_t show_command_event_reg(struct device *d,
1439                                       struct device_attribute *attr, char *buf)
1440 {
1441         u32 reg = 0;
1442         struct ipw_priv *p = d->driver_data;
1443
1444         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1445         return sprintf(buf, "0x%08x\n", reg);
1446 }
1447 static ssize_t store_command_event_reg(struct device *d,
1448                                        struct device_attribute *attr,
1449                                        const char *buf, size_t count)
1450 {
1451         u32 reg;
1452         struct ipw_priv *p = d->driver_data;
1453
1454         sscanf(buf, "%x", &reg);
1455         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1456         return strnlen(buf, count);
1457 }
1458
1459 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1460                    show_command_event_reg, store_command_event_reg);
1461
1462 static ssize_t show_mem_gpio_reg(struct device *d,
1463                                  struct device_attribute *attr, char *buf)
1464 {
1465         u32 reg = 0;
1466         struct ipw_priv *p = d->driver_data;
1467
1468         reg = ipw_read_reg32(p, 0x301100);
1469         return sprintf(buf, "0x%08x\n", reg);
1470 }
1471 static ssize_t store_mem_gpio_reg(struct device *d,
1472                                   struct device_attribute *attr,
1473                                   const char *buf, size_t count)
1474 {
1475         u32 reg;
1476         struct ipw_priv *p = d->driver_data;
1477
1478         sscanf(buf, "%x", &reg);
1479         ipw_write_reg32(p, 0x301100, reg);
1480         return strnlen(buf, count);
1481 }
1482
1483 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1484                    show_mem_gpio_reg, store_mem_gpio_reg);
1485
1486 static ssize_t show_indirect_dword(struct device *d,
1487                                    struct device_attribute *attr, char *buf)
1488 {
1489         u32 reg = 0;
1490         struct ipw_priv *priv = d->driver_data;
1491
1492         if (priv->status & STATUS_INDIRECT_DWORD)
1493                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1494         else
1495                 reg = 0;
1496
1497         return sprintf(buf, "0x%08x\n", reg);
1498 }
1499 static ssize_t store_indirect_dword(struct device *d,
1500                                     struct device_attribute *attr,
1501                                     const char *buf, size_t count)
1502 {
1503         struct ipw_priv *priv = d->driver_data;
1504
1505         sscanf(buf, "%x", &priv->indirect_dword);
1506         priv->status |= STATUS_INDIRECT_DWORD;
1507         return strnlen(buf, count);
1508 }
1509
1510 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1511                    show_indirect_dword, store_indirect_dword);
1512
1513 static ssize_t show_indirect_byte(struct device *d,
1514                                   struct device_attribute *attr, char *buf)
1515 {
1516         u8 reg = 0;
1517         struct ipw_priv *priv = d->driver_data;
1518
1519         if (priv->status & STATUS_INDIRECT_BYTE)
1520                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1521         else
1522                 reg = 0;
1523
1524         return sprintf(buf, "0x%02x\n", reg);
1525 }
1526 static ssize_t store_indirect_byte(struct device *d,
1527                                    struct device_attribute *attr,
1528                                    const char *buf, size_t count)
1529 {
1530         struct ipw_priv *priv = d->driver_data;
1531
1532         sscanf(buf, "%x", &priv->indirect_byte);
1533         priv->status |= STATUS_INDIRECT_BYTE;
1534         return strnlen(buf, count);
1535 }
1536
1537 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1538                    show_indirect_byte, store_indirect_byte);
1539
1540 static ssize_t show_direct_dword(struct device *d,
1541                                  struct device_attribute *attr, char *buf)
1542 {
1543         u32 reg = 0;
1544         struct ipw_priv *priv = d->driver_data;
1545
1546         if (priv->status & STATUS_DIRECT_DWORD)
1547                 reg = ipw_read32(priv, priv->direct_dword);
1548         else
1549                 reg = 0;
1550
1551         return sprintf(buf, "0x%08x\n", reg);
1552 }
1553 static ssize_t store_direct_dword(struct device *d,
1554                                   struct device_attribute *attr,
1555                                   const char *buf, size_t count)
1556 {
1557         struct ipw_priv *priv = d->driver_data;
1558
1559         sscanf(buf, "%x", &priv->direct_dword);
1560         priv->status |= STATUS_DIRECT_DWORD;
1561         return strnlen(buf, count);
1562 }
1563
1564 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1565                    show_direct_dword, store_direct_dword);
1566
1567 static int rf_kill_active(struct ipw_priv *priv)
1568 {
1569         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1570                 priv->status |= STATUS_RF_KILL_HW;
1571         else
1572                 priv->status &= ~STATUS_RF_KILL_HW;
1573
1574         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1575 }
1576
1577 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1578                             char *buf)
1579 {
1580         /* 0 - RF kill not enabled
1581            1 - SW based RF kill active (sysfs)
1582            2 - HW based RF kill active
1583            3 - Both HW and SW baed RF kill active */
1584         struct ipw_priv *priv = d->driver_data;
1585         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1586             (rf_kill_active(priv) ? 0x2 : 0x0);
1587         return sprintf(buf, "%i\n", val);
1588 }
1589
1590 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1591 {
1592         if ((disable_radio ? 1 : 0) ==
1593             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1594                 return 0;
1595
1596         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1597                           disable_radio ? "OFF" : "ON");
1598
1599         if (disable_radio) {
1600                 priv->status |= STATUS_RF_KILL_SW;
1601
1602                 if (priv->workqueue)
1603                         cancel_delayed_work(&priv->request_scan);
1604                 queue_work(priv->workqueue, &priv->down);
1605         } else {
1606                 priv->status &= ~STATUS_RF_KILL_SW;
1607                 if (rf_kill_active(priv)) {
1608                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1609                                           "disabled by HW switch\n");
1610                         /* Make sure the RF_KILL check timer is running */
1611                         cancel_delayed_work(&priv->rf_kill);
1612                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1613                                            2 * HZ);
1614                 } else
1615                         queue_work(priv->workqueue, &priv->up);
1616         }
1617
1618         return 1;
1619 }
1620
1621 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1622                              const char *buf, size_t count)
1623 {
1624         struct ipw_priv *priv = d->driver_data;
1625
1626         ipw_radio_kill_sw(priv, buf[0] == '1');
1627
1628         return count;
1629 }
1630
1631 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1632
1633 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1634                                char *buf)
1635 {
1636         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1637         int pos = 0, len = 0;
1638         if (priv->config & CFG_SPEED_SCAN) {
1639                 while (priv->speed_scan[pos] != 0)
1640                         len += sprintf(&buf[len], "%d ",
1641                                        priv->speed_scan[pos++]);
1642                 return len + sprintf(&buf[len], "\n");
1643         }
1644
1645         return sprintf(buf, "0\n");
1646 }
1647
1648 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1649                                 const char *buf, size_t count)
1650 {
1651         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1652         int channel, pos = 0;
1653         const char *p = buf;
1654
1655         /* list of space separated channels to scan, optionally ending with 0 */
1656         while ((channel = simple_strtol(p, NULL, 0))) {
1657                 if (pos == MAX_SPEED_SCAN - 1) {
1658                         priv->speed_scan[pos] = 0;
1659                         break;
1660                 }
1661
1662                 if (ipw_is_valid_channel(priv->ieee, channel))
1663                         priv->speed_scan[pos++] = channel;
1664                 else
1665                         IPW_WARNING("Skipping invalid channel request: %d\n",
1666                                     channel);
1667                 p = strchr(p, ' ');
1668                 if (!p)
1669                         break;
1670                 while (*p == ' ' || *p == '\t')
1671                         p++;
1672         }
1673
1674         if (pos == 0)
1675                 priv->config &= ~CFG_SPEED_SCAN;
1676         else {
1677                 priv->speed_scan_pos = 0;
1678                 priv->config |= CFG_SPEED_SCAN;
1679         }
1680
1681         return count;
1682 }
1683
1684 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1685                    store_speed_scan);
1686
1687 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1688                               char *buf)
1689 {
1690         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1691         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1692 }
1693
1694 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1695                                const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1698         if (buf[0] == '1')
1699                 priv->config |= CFG_NET_STATS;
1700         else
1701                 priv->config &= ~CFG_NET_STATS;
1702
1703         return count;
1704 }
1705
1706 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1707                    show_net_stats, store_net_stats);
1708
1709 static void notify_wx_assoc_event(struct ipw_priv *priv)
1710 {
1711         union iwreq_data wrqu;
1712         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1713         if (priv->status & STATUS_ASSOCIATED)
1714                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1715         else
1716                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1717         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1718 }
1719
1720 static void ipw_irq_tasklet(struct ipw_priv *priv)
1721 {
1722         u32 inta, inta_mask, handled = 0;
1723         unsigned long flags;
1724         int rc = 0;
1725
1726         spin_lock_irqsave(&priv->lock, flags);
1727
1728         inta = ipw_read32(priv, IPW_INTA_RW);
1729         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1730         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1731
1732         /* Add any cached INTA values that need to be handled */
1733         inta |= priv->isr_inta;
1734
1735         /* handle all the justifications for the interrupt */
1736         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1737                 ipw_rx(priv);
1738                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1739         }
1740
1741         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1742                 IPW_DEBUG_HC("Command completed.\n");
1743                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1744                 priv->status &= ~STATUS_HCMD_ACTIVE;
1745                 wake_up_interruptible(&priv->wait_command_queue);
1746                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1747         }
1748
1749         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1750                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1751                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1752                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1753         }
1754
1755         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1756                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1757                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1758                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1759         }
1760
1761         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1762                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1763                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1764                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1765         }
1766
1767         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1768                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1769                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1770                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1771         }
1772
1773         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1774                 IPW_WARNING("STATUS_CHANGE\n");
1775                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1776         }
1777
1778         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1779                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1780                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1781         }
1782
1783         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1784                 IPW_WARNING("HOST_CMD_DONE\n");
1785                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1786         }
1787
1788         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1789                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1790                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1791         }
1792
1793         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1794                 IPW_WARNING("PHY_OFF_DONE\n");
1795                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1799                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1800                 priv->status |= STATUS_RF_KILL_HW;
1801                 wake_up_interruptible(&priv->wait_command_queue);
1802                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1803                 cancel_delayed_work(&priv->request_scan);
1804                 schedule_work(&priv->link_down);
1805                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1806                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1807         }
1808
1809         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1810                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1811                 if (priv->error) {
1812                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1813 #ifdef CONFIG_IPW2200_DEBUG
1814                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1815                                 struct ipw_fw_error *error =
1816                                     ipw_alloc_error_log(priv);
1817                                 ipw_dump_error_log(priv, error);
1818                                 if (error)
1819                                         ipw_free_error_log(error);
1820                         }
1821 #endif
1822                 } else {
1823                         priv->error = ipw_alloc_error_log(priv);
1824                         if (priv->error)
1825                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1826                         else
1827                                 IPW_ERROR("Error allocating sysfs 'error' "
1828                                           "log.\n");
1829 #ifdef CONFIG_IPW2200_DEBUG
1830                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1831                                 ipw_dump_error_log(priv, priv->error);
1832 #endif
1833                 }
1834
1835                 /* XXX: If hardware encryption is for WPA/WPA2,
1836                  * we have to notify the supplicant. */
1837                 if (priv->ieee->sec.encrypt) {
1838                         priv->status &= ~STATUS_ASSOCIATED;
1839                         notify_wx_assoc_event(priv);
1840                 }
1841
1842                 /* Keep the restart process from trying to send host
1843                  * commands by clearing the INIT status bit */
1844                 priv->status &= ~STATUS_INIT;
1845
1846                 /* Cancel currently queued command. */
1847                 priv->status &= ~STATUS_HCMD_ACTIVE;
1848                 wake_up_interruptible(&priv->wait_command_queue);
1849
1850                 queue_work(priv->workqueue, &priv->adapter_restart);
1851                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1852         }
1853
1854         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1855                 IPW_ERROR("Parity error\n");
1856                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1857         }
1858
1859         if (handled != inta) {
1860                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1861         }
1862
1863         /* enable all interrupts */
1864         ipw_enable_interrupts(priv);
1865
1866         spin_unlock_irqrestore(&priv->lock, flags);
1867 }
1868
1869 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1870 static char *get_cmd_string(u8 cmd)
1871 {
1872         switch (cmd) {
1873                 IPW_CMD(HOST_COMPLETE);
1874                 IPW_CMD(POWER_DOWN);
1875                 IPW_CMD(SYSTEM_CONFIG);
1876                 IPW_CMD(MULTICAST_ADDRESS);
1877                 IPW_CMD(SSID);
1878                 IPW_CMD(ADAPTER_ADDRESS);
1879                 IPW_CMD(PORT_TYPE);
1880                 IPW_CMD(RTS_THRESHOLD);
1881                 IPW_CMD(FRAG_THRESHOLD);
1882                 IPW_CMD(POWER_MODE);
1883                 IPW_CMD(WEP_KEY);
1884                 IPW_CMD(TGI_TX_KEY);
1885                 IPW_CMD(SCAN_REQUEST);
1886                 IPW_CMD(SCAN_REQUEST_EXT);
1887                 IPW_CMD(ASSOCIATE);
1888                 IPW_CMD(SUPPORTED_RATES);
1889                 IPW_CMD(SCAN_ABORT);
1890                 IPW_CMD(TX_FLUSH);
1891                 IPW_CMD(QOS_PARAMETERS);
1892                 IPW_CMD(DINO_CONFIG);
1893                 IPW_CMD(RSN_CAPABILITIES);
1894                 IPW_CMD(RX_KEY);
1895                 IPW_CMD(CARD_DISABLE);
1896                 IPW_CMD(SEED_NUMBER);
1897                 IPW_CMD(TX_POWER);
1898                 IPW_CMD(COUNTRY_INFO);
1899                 IPW_CMD(AIRONET_INFO);
1900                 IPW_CMD(AP_TX_POWER);
1901                 IPW_CMD(CCKM_INFO);
1902                 IPW_CMD(CCX_VER_INFO);
1903                 IPW_CMD(SET_CALIBRATION);
1904                 IPW_CMD(SENSITIVITY_CALIB);
1905                 IPW_CMD(RETRY_LIMIT);
1906                 IPW_CMD(IPW_PRE_POWER_DOWN);
1907                 IPW_CMD(VAP_BEACON_TEMPLATE);
1908                 IPW_CMD(VAP_DTIM_PERIOD);
1909                 IPW_CMD(EXT_SUPPORTED_RATES);
1910                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1911                 IPW_CMD(VAP_QUIET_INTERVALS);
1912                 IPW_CMD(VAP_CHANNEL_SWITCH);
1913                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1914                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1915                 IPW_CMD(VAP_CF_PARAM_SET);
1916                 IPW_CMD(VAP_SET_BEACONING_STATE);
1917                 IPW_CMD(MEASUREMENT);
1918                 IPW_CMD(POWER_CAPABILITY);
1919                 IPW_CMD(SUPPORTED_CHANNELS);
1920                 IPW_CMD(TPC_REPORT);
1921                 IPW_CMD(WME_INFO);
1922                 IPW_CMD(PRODUCTION_COMMAND);
1923         default:
1924                 return "UNKNOWN";
1925         }
1926 }
1927
1928 #define HOST_COMPLETE_TIMEOUT HZ
1929 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1930 {
1931         int rc = 0;
1932         unsigned long flags;
1933
1934         spin_lock_irqsave(&priv->lock, flags);
1935         if (priv->status & STATUS_HCMD_ACTIVE) {
1936                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1937                           get_cmd_string(cmd->cmd));
1938                 spin_unlock_irqrestore(&priv->lock, flags);
1939                 return -EAGAIN;
1940         }
1941
1942         priv->status |= STATUS_HCMD_ACTIVE;
1943
1944         if (priv->cmdlog) {
1945                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1946                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1947                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1948                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1949                        cmd->len);
1950                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1951         }
1952
1953         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1954                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1955                      priv->status);
1956
1957 #ifndef DEBUG_CMD_WEP_KEY
1958         if (cmd->cmd == IPW_CMD_WEP_KEY)
1959                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1960         else
1961 #endif
1962                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1963
1964
1965         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1966         if (rc) {
1967                 priv->status &= ~STATUS_HCMD_ACTIVE;
1968                 IPW_ERROR("Failed to send %s: Reason %d\n",
1969                           get_cmd_string(cmd->cmd), rc);
1970                 spin_unlock_irqrestore(&priv->lock, flags);
1971                 goto exit;
1972         }
1973         spin_unlock_irqrestore(&priv->lock, flags);
1974
1975         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1976                                               !(priv->
1977                                                 status & STATUS_HCMD_ACTIVE),
1978                                               HOST_COMPLETE_TIMEOUT);
1979         if (rc == 0) {
1980                 spin_lock_irqsave(&priv->lock, flags);
1981                 if (priv->status & STATUS_HCMD_ACTIVE) {
1982                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1983                                   get_cmd_string(cmd->cmd));
1984                         priv->status &= ~STATUS_HCMD_ACTIVE;
1985                         spin_unlock_irqrestore(&priv->lock, flags);
1986                         rc = -EIO;
1987                         goto exit;
1988                 }
1989                 spin_unlock_irqrestore(&priv->lock, flags);
1990         } else
1991                 rc = 0;
1992
1993         if (priv->status & STATUS_RF_KILL_HW) {
1994                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1995                           get_cmd_string(cmd->cmd));
1996                 rc = -EIO;
1997                 goto exit;
1998         }
1999
2000       exit:
2001         if (priv->cmdlog) {
2002                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2003                 priv->cmdlog_pos %= priv->cmdlog_len;
2004         }
2005         return rc;
2006 }
2007
2008 static int ipw_send_host_complete(struct ipw_priv *priv)
2009 {
2010         struct host_cmd cmd = {
2011                 .cmd = IPW_CMD_HOST_COMPLETE,
2012                 .len = 0
2013         };
2014
2015         if (!priv) {
2016                 IPW_ERROR("Invalid args\n");
2017                 return -1;
2018         }
2019
2020         return ipw_send_cmd(priv, &cmd);
2021 }
2022
2023 static int ipw_send_system_config(struct ipw_priv *priv,
2024                                   struct ipw_sys_config *config)
2025 {
2026         struct host_cmd cmd = {
2027                 .cmd = IPW_CMD_SYSTEM_CONFIG,
2028                 .len = sizeof(*config)
2029         };
2030
2031         if (!priv || !config) {
2032                 IPW_ERROR("Invalid args\n");
2033                 return -1;
2034         }
2035
2036         memcpy(cmd.param, config, sizeof(*config));
2037         return ipw_send_cmd(priv, &cmd);
2038 }
2039
2040 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2041 {
2042         struct host_cmd cmd = {
2043                 .cmd = IPW_CMD_SSID,
2044                 .len = min(len, IW_ESSID_MAX_SIZE)
2045         };
2046
2047         if (!priv || !ssid) {
2048                 IPW_ERROR("Invalid args\n");
2049                 return -1;
2050         }
2051
2052         memcpy(cmd.param, ssid, cmd.len);
2053         return ipw_send_cmd(priv, &cmd);
2054 }
2055
2056 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2057 {
2058         struct host_cmd cmd = {
2059                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
2060                 .len = ETH_ALEN
2061         };
2062
2063         if (!priv || !mac) {
2064                 IPW_ERROR("Invalid args\n");
2065                 return -1;
2066         }
2067
2068         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2069                        priv->net_dev->name, MAC_ARG(mac));
2070
2071         memcpy(cmd.param, mac, ETH_ALEN);
2072         return ipw_send_cmd(priv, &cmd);
2073 }
2074
2075 /*
2076  * NOTE: This must be executed from our workqueue as it results in udelay
2077  * being called which may corrupt the keyboard if executed on default
2078  * workqueue
2079  */
2080 static void ipw_adapter_restart(void *adapter)
2081 {
2082         struct ipw_priv *priv = adapter;
2083
2084         if (priv->status & STATUS_RF_KILL_MASK)
2085                 return;
2086
2087         ipw_down(priv);
2088
2089         if (priv->assoc_network &&
2090             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2091                 ipw_remove_current_network(priv);
2092
2093         if (ipw_up(priv)) {
2094                 IPW_ERROR("Failed to up device\n");
2095                 return;
2096         }
2097 }
2098
2099 static void ipw_bg_adapter_restart(void *data)
2100 {
2101         struct ipw_priv *priv = data;
2102         down(&priv->sem);
2103         ipw_adapter_restart(data);
2104         up(&priv->sem);
2105 }
2106
2107 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2108
2109 static void ipw_scan_check(void *data)
2110 {
2111         struct ipw_priv *priv = data;
2112         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2113                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2114                                "adapter (%dms).\n",
2115                                IPW_SCAN_CHECK_WATCHDOG / 100);
2116                 queue_work(priv->workqueue, &priv->adapter_restart);
2117         }
2118 }
2119
2120 static void ipw_bg_scan_check(void *data)
2121 {
2122         struct ipw_priv *priv = data;
2123         down(&priv->sem);
2124         ipw_scan_check(data);
2125         up(&priv->sem);
2126 }
2127
2128 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2129                                      struct ipw_scan_request_ext *request)
2130 {
2131         struct host_cmd cmd = {
2132                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2133                 .len = sizeof(*request)
2134         };
2135
2136         memcpy(cmd.param, request, sizeof(*request));
2137         return ipw_send_cmd(priv, &cmd);
2138 }
2139
2140 static int ipw_send_scan_abort(struct ipw_priv *priv)
2141 {
2142         struct host_cmd cmd = {
2143                 .cmd = IPW_CMD_SCAN_ABORT,
2144                 .len = 0
2145         };
2146
2147         if (!priv) {
2148                 IPW_ERROR("Invalid args\n");
2149                 return -1;
2150         }
2151
2152         return ipw_send_cmd(priv, &cmd);
2153 }
2154
2155 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2156 {
2157         struct host_cmd cmd = {
2158                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2159                 .len = sizeof(struct ipw_sensitivity_calib)
2160         };
2161         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2162             &cmd.param;
2163         calib->beacon_rssi_raw = sens;
2164         return ipw_send_cmd(priv, &cmd);
2165 }
2166
2167 static int ipw_send_associate(struct ipw_priv *priv,
2168                               struct ipw_associate *associate)
2169 {
2170         struct host_cmd cmd = {
2171                 .cmd = IPW_CMD_ASSOCIATE,
2172                 .len = sizeof(*associate)
2173         };
2174
2175         struct ipw_associate tmp_associate;
2176         memcpy(&tmp_associate, associate, sizeof(*associate));
2177         tmp_associate.policy_support =
2178             cpu_to_le16(tmp_associate.policy_support);
2179         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2180         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2181         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2182         tmp_associate.listen_interval =
2183             cpu_to_le16(tmp_associate.listen_interval);
2184         tmp_associate.beacon_interval =
2185             cpu_to_le16(tmp_associate.beacon_interval);
2186         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2187
2188         if (!priv || !associate) {
2189                 IPW_ERROR("Invalid args\n");
2190                 return -1;
2191         }
2192
2193         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2194         return ipw_send_cmd(priv, &cmd);
2195 }
2196
2197 static int ipw_send_supported_rates(struct ipw_priv *priv,
2198                                     struct ipw_supported_rates *rates)
2199 {
2200         struct host_cmd cmd = {
2201                 .cmd = IPW_CMD_SUPPORTED_RATES,
2202                 .len = sizeof(*rates)
2203         };
2204
2205         if (!priv || !rates) {
2206                 IPW_ERROR("Invalid args\n");
2207                 return -1;
2208         }
2209
2210         memcpy(cmd.param, rates, sizeof(*rates));
2211         return ipw_send_cmd(priv, &cmd);
2212 }
2213
2214 static int ipw_set_random_seed(struct ipw_priv *priv)
2215 {
2216         struct host_cmd cmd = {
2217                 .cmd = IPW_CMD_SEED_NUMBER,
2218                 .len = sizeof(u32)
2219         };
2220
2221         if (!priv) {
2222                 IPW_ERROR("Invalid args\n");
2223                 return -1;
2224         }
2225
2226         get_random_bytes(&cmd.param, sizeof(u32));
2227
2228         return ipw_send_cmd(priv, &cmd);
2229 }
2230
2231 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2232 {
2233         struct host_cmd cmd = {
2234                 .cmd = IPW_CMD_CARD_DISABLE,
2235                 .len = sizeof(u32)
2236         };
2237
2238         if (!priv) {
2239                 IPW_ERROR("Invalid args\n");
2240                 return -1;
2241         }
2242
2243         *((u32 *) & cmd.param) = phy_off;
2244
2245         return ipw_send_cmd(priv, &cmd);
2246 }
2247
2248 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2249 {
2250         struct host_cmd cmd = {
2251                 .cmd = IPW_CMD_TX_POWER,
2252                 .len = sizeof(*power)
2253         };
2254
2255         if (!priv || !power) {
2256                 IPW_ERROR("Invalid args\n");
2257                 return -1;
2258         }
2259
2260         memcpy(cmd.param, power, sizeof(*power));
2261         return ipw_send_cmd(priv, &cmd);
2262 }
2263
2264 static int ipw_set_tx_power(struct ipw_priv *priv)
2265 {
2266         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2267         struct ipw_tx_power tx_power;
2268         s8 max_power;
2269         int i;
2270
2271         memset(&tx_power, 0, sizeof(tx_power));
2272
2273         /* configure device for 'G' band */
2274         tx_power.ieee_mode = IPW_G_MODE;
2275         tx_power.num_channels = geo->bg_channels;
2276         for (i = 0; i < geo->bg_channels; i++) {
2277                 max_power = geo->bg[i].max_power;
2278                 tx_power.channels_tx_power[i].channel_number =
2279                     geo->bg[i].channel;
2280                 tx_power.channels_tx_power[i].tx_power = max_power ?
2281                     min(max_power, priv->tx_power) : priv->tx_power;
2282         }
2283         if (ipw_send_tx_power(priv, &tx_power))
2284                 return -EIO;
2285
2286         /* configure device to also handle 'B' band */
2287         tx_power.ieee_mode = IPW_B_MODE;
2288         if (ipw_send_tx_power(priv, &tx_power))
2289                 return -EIO;
2290
2291         /* configure device to also handle 'A' band */
2292         if (priv->ieee->abg_true) {
2293                 tx_power.ieee_mode = IPW_A_MODE;
2294                 tx_power.num_channels = geo->a_channels;
2295                 for (i = 0; i < tx_power.num_channels; i++) {
2296                         max_power = geo->a[i].max_power;
2297                         tx_power.channels_tx_power[i].channel_number =
2298                             geo->a[i].channel;
2299                         tx_power.channels_tx_power[i].tx_power = max_power ?
2300                             min(max_power, priv->tx_power) : priv->tx_power;
2301                 }
2302                 if (ipw_send_tx_power(priv, &tx_power))
2303                         return -EIO;
2304         }
2305         return 0;
2306 }
2307
2308 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2309 {
2310         struct ipw_rts_threshold rts_threshold = {
2311                 .rts_threshold = rts,
2312         };
2313         struct host_cmd cmd = {
2314                 .cmd = IPW_CMD_RTS_THRESHOLD,
2315                 .len = sizeof(rts_threshold)
2316         };
2317
2318         if (!priv) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2324         return ipw_send_cmd(priv, &cmd);
2325 }
2326
2327 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2328 {
2329         struct ipw_frag_threshold frag_threshold = {
2330                 .frag_threshold = frag,
2331         };
2332         struct host_cmd cmd = {
2333                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2334                 .len = sizeof(frag_threshold)
2335         };
2336
2337         if (!priv) {
2338                 IPW_ERROR("Invalid args\n");
2339                 return -1;
2340         }
2341
2342         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2343         return ipw_send_cmd(priv, &cmd);
2344 }
2345
2346 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2347 {
2348         struct host_cmd cmd = {
2349                 .cmd = IPW_CMD_POWER_MODE,
2350                 .len = sizeof(u32)
2351         };
2352         u32 *param = (u32 *) (&cmd.param);
2353
2354         if (!priv) {
2355                 IPW_ERROR("Invalid args\n");
2356                 return -1;
2357         }
2358
2359         /* If on battery, set to 3, if AC set to CAM, else user
2360          * level */
2361         switch (mode) {
2362         case IPW_POWER_BATTERY:
2363                 *param = IPW_POWER_INDEX_3;
2364                 break;
2365         case IPW_POWER_AC:
2366                 *param = IPW_POWER_MODE_CAM;
2367                 break;
2368         default:
2369                 *param = mode;
2370                 break;
2371         }
2372
2373         return ipw_send_cmd(priv, &cmd);
2374 }
2375
2376 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2377 {
2378         struct ipw_retry_limit retry_limit = {
2379                 .short_retry_limit = slimit,
2380                 .long_retry_limit = llimit
2381         };
2382         struct host_cmd cmd = {
2383                 .cmd = IPW_CMD_RETRY_LIMIT,
2384                 .len = sizeof(retry_limit)
2385         };
2386
2387         if (!priv) {
2388                 IPW_ERROR("Invalid args\n");
2389                 return -1;
2390         }
2391
2392         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2393         return ipw_send_cmd(priv, &cmd);
2394 }
2395
2396 /*
2397  * The IPW device contains a Microwire compatible EEPROM that stores
2398  * various data like the MAC address.  Usually the firmware has exclusive
2399  * access to the eeprom, but during device initialization (before the
2400  * device driver has sent the HostComplete command to the firmware) the
2401  * device driver has read access to the EEPROM by way of indirect addressing
2402  * through a couple of memory mapped registers.
2403  *
2404  * The following is a simplified implementation for pulling data out of the
2405  * the eeprom, along with some helper functions to find information in
2406  * the per device private data's copy of the eeprom.
2407  *
2408  * NOTE: To better understand how these functions work (i.e what is a chip
2409  *       select and why do have to keep driving the eeprom clock?), read
2410  *       just about any data sheet for a Microwire compatible EEPROM.
2411  */
2412
2413 /* write a 32 bit value into the indirect accessor register */
2414 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2415 {
2416         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2417
2418         /* the eeprom requires some time to complete the operation */
2419         udelay(p->eeprom_delay);
2420
2421         return;
2422 }
2423
2424 /* perform a chip select operation */
2425 static void eeprom_cs(struct ipw_priv *priv)
2426 {
2427         eeprom_write_reg(priv, 0);
2428         eeprom_write_reg(priv, EEPROM_BIT_CS);
2429         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2430         eeprom_write_reg(priv, EEPROM_BIT_CS);
2431 }
2432
2433 /* perform a chip select operation */
2434 static void eeprom_disable_cs(struct ipw_priv *priv)
2435 {
2436         eeprom_write_reg(priv, EEPROM_BIT_CS);
2437         eeprom_write_reg(priv, 0);
2438         eeprom_write_reg(priv, EEPROM_BIT_SK);
2439 }
2440
2441 /* push a single bit down to the eeprom */
2442 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2443 {
2444         int d = (bit ? EEPROM_BIT_DI : 0);
2445         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2446         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2447 }
2448
2449 /* push an opcode followed by an address down to the eeprom */
2450 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2451 {
2452         int i;
2453
2454         eeprom_cs(priv);
2455         eeprom_write_bit(priv, 1);
2456         eeprom_write_bit(priv, op & 2);
2457         eeprom_write_bit(priv, op & 1);
2458         for (i = 7; i >= 0; i--) {
2459                 eeprom_write_bit(priv, addr & (1 << i));
2460         }
2461 }
2462
2463 /* pull 16 bits off the eeprom, one bit at a time */
2464 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2465 {
2466         int i;
2467         u16 r = 0;
2468
2469         /* Send READ Opcode */
2470         eeprom_op(priv, EEPROM_CMD_READ, addr);
2471
2472         /* Send dummy bit */
2473         eeprom_write_reg(priv, EEPROM_BIT_CS);
2474
2475         /* Read the byte off the eeprom one bit at a time */
2476         for (i = 0; i < 16; i++) {
2477                 u32 data = 0;
2478                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2479                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2480                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2481                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2482         }
2483
2484         /* Send another dummy bit */
2485         eeprom_write_reg(priv, 0);
2486         eeprom_disable_cs(priv);
2487
2488         return r;
2489 }
2490
2491 /* helper function for pulling the mac address out of the private */
2492 /* data's copy of the eeprom data                                 */
2493 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2494 {
2495         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2496 }
2497
2498 /*
2499  * Either the device driver (i.e. the host) or the firmware can
2500  * load eeprom data into the designated region in SRAM.  If neither
2501  * happens then the FW will shutdown with a fatal error.
2502  *
2503  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2504  * bit needs region of shared SRAM needs to be non-zero.
2505  */
2506 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2507 {
2508         int i;
2509         u16 *eeprom = (u16 *) priv->eeprom;
2510
2511         IPW_DEBUG_TRACE(">>\n");
2512
2513         /* read entire contents of eeprom into private buffer */
2514         for (i = 0; i < 128; i++)
2515                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2516
2517         /*
2518            If the data looks correct, then copy it to our private
2519            copy.  Otherwise let the firmware know to perform the operation
2520            on it's own
2521          */
2522         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2523                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2524
2525                 /* write the eeprom data to sram */
2526                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2527                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2528
2529                 /* Do not load eeprom data on fatal error or suspend */
2530                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2531         } else {
2532                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2533
2534                 /* Load eeprom data on fatal error or suspend */
2535                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2536         }
2537
2538         IPW_DEBUG_TRACE("<<\n");
2539 }
2540
2541 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2542 {
2543         count >>= 2;
2544         if (!count)
2545                 return;
2546         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2547         while (count--)
2548                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2549 }
2550
2551 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2552 {
2553         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2554                         CB_NUMBER_OF_ELEMENTS_SMALL *
2555                         sizeof(struct command_block));
2556 }
2557
2558 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2559 {                               /* start dma engine but no transfers yet */
2560
2561         IPW_DEBUG_FW(">> : \n");
2562
2563         /* Start the dma */
2564         ipw_fw_dma_reset_command_blocks(priv);
2565
2566         /* Write CB base address */
2567         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2568
2569         IPW_DEBUG_FW("<< : \n");
2570         return 0;
2571 }
2572
2573 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2574 {
2575         u32 control = 0;
2576
2577         IPW_DEBUG_FW(">> :\n");
2578
2579         //set the Stop and Abort bit
2580         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2581         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2582         priv->sram_desc.last_cb_index = 0;
2583
2584         IPW_DEBUG_FW("<< \n");
2585 }
2586
2587 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2588                                           struct command_block *cb)
2589 {
2590         u32 address =
2591             IPW_SHARED_SRAM_DMA_CONTROL +
2592             (sizeof(struct command_block) * index);
2593         IPW_DEBUG_FW(">> :\n");
2594
2595         ipw_write_indirect(priv, address, (u8 *) cb,
2596                            (int)sizeof(struct command_block));
2597
2598         IPW_DEBUG_FW("<< :\n");
2599         return 0;
2600
2601 }
2602
2603 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2604 {
2605         u32 control = 0;
2606         u32 index = 0;
2607
2608         IPW_DEBUG_FW(">> :\n");
2609
2610         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2611                 ipw_fw_dma_write_command_block(priv, index,
2612                                                &priv->sram_desc.cb_list[index]);
2613
2614         /* Enable the DMA in the CSR register */
2615         ipw_clear_bit(priv, IPW_RESET_REG,
2616                       IPW_RESET_REG_MASTER_DISABLED |
2617                       IPW_RESET_REG_STOP_MASTER);
2618
2619         /* Set the Start bit. */
2620         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2621         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2622
2623         IPW_DEBUG_FW("<< :\n");
2624         return 0;
2625 }
2626
2627 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2628 {
2629         u32 address;
2630         u32 register_value = 0;
2631         u32 cb_fields_address = 0;
2632
2633         IPW_DEBUG_FW(">> :\n");
2634         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2635         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2636
2637         /* Read the DMA Controlor register */
2638         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2639         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2640
2641         /* Print the CB values */
2642         cb_fields_address = address;
2643         register_value = ipw_read_reg32(priv, cb_fields_address);
2644         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2645
2646         cb_fields_address += sizeof(u32);
2647         register_value = ipw_read_reg32(priv, cb_fields_address);
2648         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2649
2650         cb_fields_address += sizeof(u32);
2651         register_value = ipw_read_reg32(priv, cb_fields_address);
2652         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2653                           register_value);
2654
2655         cb_fields_address += sizeof(u32);
2656         register_value = ipw_read_reg32(priv, cb_fields_address);
2657         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2658
2659         IPW_DEBUG_FW(">> :\n");
2660 }
2661
2662 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2663 {
2664         u32 current_cb_address = 0;
2665         u32 current_cb_index = 0;
2666
2667         IPW_DEBUG_FW("<< :\n");
2668         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2669
2670         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2671             sizeof(struct command_block);
2672
2673         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2674                           current_cb_index, current_cb_address);
2675
2676         IPW_DEBUG_FW(">> :\n");
2677         return current_cb_index;
2678
2679 }
2680
2681 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2682                                         u32 src_address,
2683                                         u32 dest_address,
2684                                         u32 length,
2685                                         int interrupt_enabled, int is_last)
2686 {
2687
2688         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2689             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2690             CB_DEST_SIZE_LONG;
2691         struct command_block *cb;
2692         u32 last_cb_element = 0;
2693
2694         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2695                           src_address, dest_address, length);
2696
2697         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2698                 return -1;
2699
2700         last_cb_element = priv->sram_desc.last_cb_index;
2701         cb = &priv->sram_desc.cb_list[last_cb_element];
2702         priv->sram_desc.last_cb_index++;
2703
2704         /* Calculate the new CB control word */
2705         if (interrupt_enabled)
2706                 control |= CB_INT_ENABLED;
2707
2708         if (is_last)
2709                 control |= CB_LAST_VALID;
2710
2711         control |= length;
2712
2713         /* Calculate the CB Element's checksum value */
2714         cb->status = control ^ src_address ^ dest_address;
2715
2716         /* Copy the Source and Destination addresses */
2717         cb->dest_addr = dest_address;
2718         cb->source_addr = src_address;
2719
2720         /* Copy the Control Word last */
2721         cb->control = control;
2722
2723         return 0;
2724 }
2725
2726 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2727                                  u32 src_phys, u32 dest_address, u32 length)
2728 {
2729         u32 bytes_left = length;
2730         u32 src_offset = 0;
2731         u32 dest_offset = 0;
2732         int status = 0;
2733         IPW_DEBUG_FW(">> \n");
2734         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2735                           src_phys, dest_address, length);
2736         while (bytes_left > CB_MAX_LENGTH) {
2737                 status = ipw_fw_dma_add_command_block(priv,
2738                                                       src_phys + src_offset,
2739                                                       dest_address +
2740                                                       dest_offset,
2741                                                       CB_MAX_LENGTH, 0, 0);
2742                 if (status) {
2743                         IPW_DEBUG_FW_INFO(": Failed\n");
2744                         return -1;
2745                 } else
2746                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2747
2748                 src_offset += CB_MAX_LENGTH;
2749                 dest_offset += CB_MAX_LENGTH;
2750                 bytes_left -= CB_MAX_LENGTH;
2751         }
2752
2753         /* add the buffer tail */
2754         if (bytes_left > 0) {
2755                 status =
2756                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2757                                                  dest_address + dest_offset,
2758                                                  bytes_left, 0, 0);
2759                 if (status) {
2760                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2761                         return -1;
2762                 } else
2763                         IPW_DEBUG_FW_INFO
2764                             (": Adding new cb - the buffer tail\n");
2765         }
2766
2767         IPW_DEBUG_FW("<< \n");
2768         return 0;
2769 }
2770
2771 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2772 {
2773         u32 current_index = 0;
2774         u32 watchdog = 0;
2775
2776         IPW_DEBUG_FW(">> : \n");
2777
2778         current_index = ipw_fw_dma_command_block_index(priv);
2779         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2780                           (int)priv->sram_desc.last_cb_index);
2781
2782         while (current_index < priv->sram_desc.last_cb_index) {
2783                 udelay(50);
2784                 current_index = ipw_fw_dma_command_block_index(priv);
2785
2786                 watchdog++;
2787
2788                 if (watchdog > 400) {
2789                         IPW_DEBUG_FW_INFO("Timeout\n");
2790                         ipw_fw_dma_dump_command_block(priv);
2791                         ipw_fw_dma_abort(priv);
2792                         return -1;
2793                 }
2794         }
2795
2796         ipw_fw_dma_abort(priv);
2797
2798         /*Disable the DMA in the CSR register */
2799         ipw_set_bit(priv, IPW_RESET_REG,
2800                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2801
2802         IPW_DEBUG_FW("<< dmaWaitSync \n");
2803         return 0;
2804 }
2805
2806 static void ipw_remove_current_network(struct ipw_priv *priv)
2807 {
2808         struct list_head *element, *safe;
2809         struct ieee80211_network *network = NULL;
2810         unsigned long flags;
2811
2812         spin_lock_irqsave(&priv->ieee->lock, flags);
2813         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2814                 network = list_entry(element, struct ieee80211_network, list);
2815                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2816                         list_del(element);
2817                         list_add_tail(&network->list,
2818                                       &priv->ieee->network_free_list);
2819                 }
2820         }
2821         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2822 }
2823
2824 /**
2825  * Check that card is still alive.
2826  * Reads debug register from domain0.
2827  * If card is present, pre-defined value should
2828  * be found there.
2829  *
2830  * @param priv
2831  * @return 1 if card is present, 0 otherwise
2832  */
2833 static inline int ipw_alive(struct ipw_priv *priv)
2834 {
2835         return ipw_read32(priv, 0x90) == 0xd55555d5;
2836 }
2837
2838 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2839                                int timeout)
2840 {
2841         int i = 0;
2842
2843         do {
2844                 if ((ipw_read32(priv, addr) & mask) == mask)
2845                         return i;
2846                 mdelay(10);
2847                 i += 10;
2848         } while (i < timeout);
2849
2850         return -ETIME;
2851 }
2852
2853 /* These functions load the firmware and micro code for the operation of
2854  * the ipw hardware.  It assumes the buffer has all the bits for the
2855  * image and the caller is handling the memory allocation and clean up.
2856  */
2857
2858 static int ipw_stop_master(struct ipw_priv *priv)
2859 {
2860         int rc;
2861
2862         IPW_DEBUG_TRACE(">> \n");
2863         /* stop master. typical delay - 0 */
2864         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2865
2866         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2867                           IPW_RESET_REG_MASTER_DISABLED, 100);
2868         if (rc < 0) {
2869                 IPW_ERROR("stop master failed in 10ms\n");
2870                 return -1;
2871         }
2872
2873         IPW_DEBUG_INFO("stop master %dms\n", rc);
2874
2875         return rc;
2876 }
2877
2878 static void ipw_arc_release(struct ipw_priv *priv)
2879 {
2880         IPW_DEBUG_TRACE(">> \n");
2881         mdelay(5);
2882
2883         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2884
2885         /* no one knows timing, for safety add some delay */
2886         mdelay(5);
2887 }
2888
2889 struct fw_header {
2890         u32 version;
2891         u32 mode;
2892 };
2893
2894 struct fw_chunk {
2895         u32 address;
2896         u32 length;
2897 };
2898
2899 #define IPW_FW_MAJOR_VERSION 2
2900 #define IPW_FW_MINOR_VERSION 4
2901
2902 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2903 #define IPW_FW_MAJOR(x) (x & 0xff)
2904
2905 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2906
2907 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2908 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2909
2910 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2911 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2912 #else
2913 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2914 #endif
2915
2916 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2917 {
2918         int rc = 0, i, addr;
2919         u8 cr = 0;
2920         u16 *image;
2921
2922         image = (u16 *) data;
2923
2924         IPW_DEBUG_TRACE(">> \n");
2925
2926         rc = ipw_stop_master(priv);
2927
2928         if (rc < 0)
2929                 return rc;
2930
2931 //      spin_lock_irqsave(&priv->lock, flags);
2932
2933         for (addr = IPW_SHARED_LOWER_BOUND;
2934              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2935                 ipw_write32(priv, addr, 0);
2936         }
2937
2938         /* no ucode (yet) */
2939         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2940         /* destroy DMA queues */
2941         /* reset sequence */
2942
2943         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2944         ipw_arc_release(priv);
2945         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2946         mdelay(1);
2947
2948         /* reset PHY */
2949         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2950         mdelay(1);
2951
2952         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2953         mdelay(1);
2954
2955         /* enable ucode store */
2956         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
2957         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
2958         mdelay(1);
2959
2960         /* write ucode */
2961         /**
2962          * @bug
2963          * Do NOT set indirect address register once and then
2964          * store data to indirect data register in the loop.
2965          * It seems very reasonable, but in this case DINO do not
2966          * accept ucode. It is essential to set address each time.
2967          */
2968         /* load new ipw uCode */
2969         for (i = 0; i < len / 2; i++)
2970                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2971                                 cpu_to_le16(image[i]));
2972
2973         /* enable DINO */
2974         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2975         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2976
2977         /* this is where the igx / win driver deveates from the VAP driver. */
2978
2979         /* wait for alive response */
2980         for (i = 0; i < 100; i++) {
2981                 /* poll for incoming data */
2982                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2983                 if (cr & DINO_RXFIFO_DATA)
2984                         break;
2985                 mdelay(1);
2986         }
2987
2988         if (cr & DINO_RXFIFO_DATA) {
2989                 /* alive_command_responce size is NOT multiple of 4 */
2990                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2991
2992                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2993                         response_buffer[i] =
2994                             le32_to_cpu(ipw_read_reg32(priv,
2995                                                        IPW_BASEBAND_RX_FIFO_READ));
2996                 memcpy(&priv->dino_alive, response_buffer,
2997                        sizeof(priv->dino_alive));
2998                 if (priv->dino_alive.alive_command == 1
2999                     && priv->dino_alive.ucode_valid == 1) {
3000                         rc = 0;
3001                         IPW_DEBUG_INFO
3002                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3003                              "of %02d/%02d/%02d %02d:%02d\n",
3004                              priv->dino_alive.software_revision,
3005                              priv->dino_alive.software_revision,
3006                              priv->dino_alive.device_identifier,
3007                              priv->dino_alive.device_identifier,
3008                              priv->dino_alive.time_stamp[0],
3009                              priv->dino_alive.time_stamp[1],
3010                              priv->dino_alive.time_stamp[2],
3011                              priv->dino_alive.time_stamp[3],
3012                              priv->dino_alive.time_stamp[4]);
3013                 } else {
3014                         IPW_DEBUG_INFO("Microcode is not alive\n");
3015                         rc = -EINVAL;
3016                 }
3017         } else {
3018                 IPW_DEBUG_INFO("No alive response from DINO\n");
3019                 rc = -ETIME;
3020         }
3021
3022         /* disable DINO, otherwise for some reason
3023            firmware have problem getting alive resp. */
3024         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3025
3026 //      spin_unlock_irqrestore(&priv->lock, flags);
3027
3028         return rc;
3029 }
3030
3031 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3032 {
3033         int rc = -1;
3034         int offset = 0;
3035         struct fw_chunk *chunk;
3036         dma_addr_t shared_phys;
3037         u8 *shared_virt;
3038
3039         IPW_DEBUG_TRACE("<< : \n");
3040         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3041
3042         if (!shared_virt)
3043                 return -ENOMEM;
3044
3045         memmove(shared_virt, data, len);
3046
3047         /* Start the Dma */
3048         rc = ipw_fw_dma_enable(priv);
3049
3050         if (priv->sram_desc.last_cb_index > 0) {
3051                 /* the DMA is already ready this would be a bug. */
3052                 BUG();
3053                 goto out;
3054         }
3055
3056         do {
3057                 chunk = (struct fw_chunk *)(data + offset);
3058                 offset += sizeof(struct fw_chunk);
3059                 /* build DMA packet and queue up for sending */
3060                 /* dma to chunk->address, the chunk->length bytes from data +
3061                  * offeset*/
3062                 /* Dma loading */
3063                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3064                                            le32_to_cpu(chunk->address),
3065                                            le32_to_cpu(chunk->length));
3066                 if (rc) {
3067                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3068                         goto out;
3069                 }
3070
3071                 offset += le32_to_cpu(chunk->length);
3072         } while (offset < len);
3073
3074         /* Run the DMA and wait for the answer */
3075         rc = ipw_fw_dma_kick(priv);
3076         if (rc) {
3077                 IPW_ERROR("dmaKick Failed\n");
3078                 goto out;
3079         }
3080
3081         rc = ipw_fw_dma_wait(priv);
3082         if (rc) {
3083                 IPW_ERROR("dmaWaitSync Failed\n");
3084                 goto out;
3085         }
3086       out:
3087         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3088         return rc;
3089 }
3090
3091 /* stop nic */
3092 static int ipw_stop_nic(struct ipw_priv *priv)
3093 {
3094         int rc = 0;
3095
3096         /* stop */
3097         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3098
3099         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3100                           IPW_RESET_REG_MASTER_DISABLED, 500);
3101         if (rc < 0) {
3102                 IPW_ERROR("wait for reg master disabled failed\n");
3103                 return rc;
3104         }
3105
3106         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3107
3108         return rc;
3109 }
3110
3111 static void ipw_start_nic(struct ipw_priv *priv)
3112 {
3113         IPW_DEBUG_TRACE(">>\n");
3114
3115         /* prvHwStartNic  release ARC */
3116         ipw_clear_bit(priv, IPW_RESET_REG,
3117                       IPW_RESET_REG_MASTER_DISABLED |
3118                       IPW_RESET_REG_STOP_MASTER |
3119                       CBD_RESET_REG_PRINCETON_RESET);
3120
3121         /* enable power management */
3122         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3123                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3124
3125         IPW_DEBUG_TRACE("<<\n");
3126 }
3127
3128 static int ipw_init_nic(struct ipw_priv *priv)
3129 {
3130         int rc;
3131
3132         IPW_DEBUG_TRACE(">>\n");
3133         /* reset */
3134         /*prvHwInitNic */
3135         /* set "initialization complete" bit to move adapter to D0 state */
3136         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3137
3138         /* low-level PLL activation */
3139         ipw_write32(priv, IPW_READ_INT_REGISTER,
3140                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3141
3142         /* wait for clock stabilization */
3143         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3144                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3145         if (rc < 0)
3146                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3147
3148         /* assert SW reset */
3149         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3150
3151         udelay(10);
3152
3153         /* set "initialization complete" bit to move adapter to D0 state */
3154         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3155
3156         IPW_DEBUG_TRACE(">>\n");
3157         return 0;
3158 }
3159
3160 /* Call this function from process context, it will sleep in request_firmware.
3161  * Probe is an ok place to call this from.
3162  */
3163 static int ipw_reset_nic(struct ipw_priv *priv)
3164 {
3165         int rc = 0;
3166         unsigned long flags;
3167
3168         IPW_DEBUG_TRACE(">>\n");
3169
3170         rc = ipw_init_nic(priv);
3171
3172         spin_lock_irqsave(&priv->lock, flags);
3173         /* Clear the 'host command active' bit... */
3174         priv->status &= ~STATUS_HCMD_ACTIVE;
3175         wake_up_interruptible(&priv->wait_command_queue);
3176         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3177         wake_up_interruptible(&priv->wait_state);
3178         spin_unlock_irqrestore(&priv->lock, flags);
3179
3180         IPW_DEBUG_TRACE("<<\n");
3181         return rc;
3182 }
3183
3184 static int ipw_get_fw(struct ipw_priv *priv,
3185                       const struct firmware **fw, const char *name)
3186 {
3187         struct fw_header *header;
3188         int rc;
3189
3190         /* ask firmware_class module to get the boot firmware off disk */
3191         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3192         if (rc < 0) {
3193                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3194                 return rc;
3195         }
3196
3197         header = (struct fw_header *)(*fw)->data;
3198         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3199                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3200                           name,
3201                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3202                           IPW_FW_MAJOR_VERSION);
3203                 return -EINVAL;
3204         }
3205
3206         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3207                        name,
3208                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3209                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3210                        (*fw)->size - sizeof(struct fw_header));
3211         return 0;
3212 }
3213
3214 #define IPW_RX_BUF_SIZE (3000)
3215
3216 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3217                                       struct ipw_rx_queue *rxq)
3218 {
3219         unsigned long flags;
3220         int i;
3221
3222         spin_lock_irqsave(&rxq->lock, flags);
3223
3224         INIT_LIST_HEAD(&rxq->rx_free);
3225         INIT_LIST_HEAD(&rxq->rx_used);
3226
3227         /* Fill the rx_used queue with _all_ of the Rx buffers */
3228         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3229                 /* In the reset function, these buffers may have been allocated
3230                  * to an SKB, so we need to unmap and free potential storage */
3231                 if (rxq->pool[i].skb != NULL) {
3232                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3233                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3234                         dev_kfree_skb(rxq->pool[i].skb);
3235                         rxq->pool[i].skb = NULL;
3236                 }
3237                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3238         }
3239
3240         /* Set us so that we have processed and used all buffers, but have
3241          * not restocked the Rx queue with fresh buffers */
3242         rxq->read = rxq->write = 0;
3243         rxq->processed = RX_QUEUE_SIZE - 1;
3244         rxq->free_count = 0;
3245         spin_unlock_irqrestore(&rxq->lock, flags);
3246 }
3247
3248 #ifdef CONFIG_PM
3249 static int fw_loaded = 0;
3250 static const struct firmware *bootfw = NULL;
3251 static const struct firmware *firmware = NULL;
3252 static const struct firmware *ucode = NULL;
3253
3254 static void free_firmware(void)
3255 {
3256         if (fw_loaded) {
3257                 release_firmware(bootfw);
3258                 release_firmware(ucode);
3259                 release_firmware(firmware);
3260                 bootfw = ucode = firmware = NULL;
3261                 fw_loaded = 0;
3262         }
3263 }
3264 #else
3265 #define free_firmware() do {} while (0)
3266 #endif
3267
3268 static int ipw_load(struct ipw_priv *priv)
3269 {
3270 #ifndef CONFIG_PM
3271         const struct firmware *bootfw = NULL;
3272         const struct firmware *firmware = NULL;
3273         const struct firmware *ucode = NULL;
3274 #endif
3275         int rc = 0, retries = 3;
3276
3277 #ifdef CONFIG_PM
3278         if (!fw_loaded) {
3279 #endif
3280                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3281                 if (rc)
3282                         goto error;
3283
3284                 switch (priv->ieee->iw_mode) {
3285                 case IW_MODE_ADHOC:
3286                         rc = ipw_get_fw(priv, &ucode,
3287                                         IPW_FW_NAME("ibss_ucode"));
3288                         if (rc)
3289                                 goto error;
3290
3291                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3292                         break;
3293
3294 #ifdef CONFIG_IPW2200_MONITOR
3295                 case IW_MODE_MONITOR:
3296                         rc = ipw_get_fw(priv, &ucode,
3297                                         IPW_FW_NAME("sniffer_ucode"));
3298                         if (rc)
3299                                 goto error;
3300
3301                         rc = ipw_get_fw(priv, &firmware,
3302                                         IPW_FW_NAME("sniffer"));
3303                         break;
3304 #endif
3305                 case IW_MODE_INFRA:
3306                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3307                         if (rc)
3308                                 goto error;
3309
3310                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3311                         break;
3312
3313                 default:
3314                         rc = -EINVAL;
3315                 }
3316
3317                 if (rc)
3318                         goto error;
3319
3320 #ifdef CONFIG_PM
3321                 fw_loaded = 1;
3322         }
3323 #endif
3324
3325         if (!priv->rxq)
3326                 priv->rxq = ipw_rx_queue_alloc(priv);
3327         else
3328                 ipw_rx_queue_reset(priv, priv->rxq);
3329         if (!priv->rxq) {
3330                 IPW_ERROR("Unable to initialize Rx queue\n");
3331                 goto error;
3332         }
3333
3334       retry:
3335         /* Ensure interrupts are disabled */
3336         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3337         priv->status &= ~STATUS_INT_ENABLED;
3338
3339         /* ack pending interrupts */
3340         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3341
3342         ipw_stop_nic(priv);
3343
3344         rc = ipw_reset_nic(priv);
3345         if (rc) {
3346                 IPW_ERROR("Unable to reset NIC\n");
3347                 goto error;
3348         }
3349
3350         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3351                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3352
3353         /* DMA the initial boot firmware into the device */
3354         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3355                                bootfw->size - sizeof(struct fw_header));
3356         if (rc < 0) {
3357                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3358                 goto error;
3359         }
3360
3361         /* kick start the device */
3362         ipw_start_nic(priv);
3363
3364         /* wait for the device to finish it's initial startup sequence */
3365         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3366                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3367         if (rc < 0) {
3368                 IPW_ERROR("device failed to boot initial fw image\n");
3369                 goto error;
3370         }
3371         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3372
3373         /* ack fw init done interrupt */
3374         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3375
3376         /* DMA the ucode into the device */
3377         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3378                             ucode->size - sizeof(struct fw_header));
3379         if (rc < 0) {
3380                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3381                 goto error;
3382         }
3383
3384         /* stop nic */
3385         ipw_stop_nic(priv);
3386
3387         /* DMA bss firmware into the device */
3388         rc = ipw_load_firmware(priv, firmware->data +
3389                                sizeof(struct fw_header),
3390                                firmware->size - sizeof(struct fw_header));
3391         if (rc < 0) {
3392                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3393                 goto error;
3394         }
3395
3396         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3397
3398         rc = ipw_queue_reset(priv);
3399         if (rc) {
3400                 IPW_ERROR("Unable to initialize queues\n");
3401                 goto error;
3402         }
3403
3404         /* Ensure interrupts are disabled */
3405         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3406         /* ack pending interrupts */
3407         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3408
3409         /* kick start the device */
3410         ipw_start_nic(priv);
3411
3412         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3413                 if (retries > 0) {
3414                         IPW_WARNING("Parity error.  Retrying init.\n");
3415                         retries--;
3416                         goto retry;
3417                 }
3418
3419                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3420                 rc = -EIO;
3421                 goto error;
3422         }
3423
3424         /* wait for the device */
3425         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3426                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3427         if (rc < 0) {
3428                 IPW_ERROR("device failed to start after 500ms\n");
3429                 goto error;
3430         }
3431         IPW_DEBUG_INFO("device response after %dms\n", rc);
3432
3433         /* ack fw init done interrupt */
3434         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3435
3436         /* read eeprom data and initialize the eeprom region of sram */
3437         priv->eeprom_delay = 1;
3438         ipw_eeprom_init_sram(priv);
3439
3440         /* enable interrupts */
3441         ipw_enable_interrupts(priv);
3442
3443         /* Ensure our queue has valid packets */
3444         ipw_rx_queue_replenish(priv);
3445
3446         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3447
3448         /* ack pending interrupts */
3449         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3450
3451 #ifndef CONFIG_PM
3452         release_firmware(bootfw);
3453         release_firmware(ucode);
3454         release_firmware(firmware);
3455 #endif
3456         return 0;
3457
3458       error:
3459         if (priv->rxq) {
3460                 ipw_rx_queue_free(priv, priv->rxq);
3461                 priv->rxq = NULL;
3462         }
3463         ipw_tx_queue_free(priv);
3464         if (bootfw)
3465                 release_firmware(bootfw);
3466         if (ucode)
3467                 release_firmware(ucode);
3468         if (firmware)
3469                 release_firmware(firmware);
3470 #ifdef CONFIG_PM
3471         fw_loaded = 0;
3472         bootfw = ucode = firmware = NULL;
3473 #endif
3474
3475         return rc;
3476 }
3477
3478 /**
3479  * DMA services
3480  *
3481  * Theory of operation
3482  *
3483  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3484  * 2 empty entries always kept in the buffer to protect from overflow.
3485  *
3486  * For Tx queue, there are low mark and high mark limits. If, after queuing
3487  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3488  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3489  * Tx queue resumed.
3490  *
3491  * The IPW operates with six queues, one receive queue in the device's
3492  * sram, one transmit queue for sending commands to the device firmware,
3493  * and four transmit queues for data.
3494  *
3495  * The four transmit queues allow for performing quality of service (qos)
3496  * transmissions as per the 802.11 protocol.  Currently Linux does not
3497  * provide a mechanism to the user for utilizing prioritized queues, so
3498  * we only utilize the first data transmit queue (queue1).
3499  */
3500
3501 /**
3502  * Driver allocates buffers of this size for Rx
3503  */
3504
3505 static inline int ipw_queue_space(const struct clx2_queue *q)
3506 {
3507         int s = q->last_used - q->first_empty;
3508         if (s <= 0)
3509                 s += q->n_bd;
3510         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3511         if (s < 0)
3512                 s = 0;
3513         return s;
3514 }
3515
3516 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3517 {
3518         return (++index == n_bd) ? 0 : index;
3519 }
3520
3521 /**
3522  * Initialize common DMA queue structure
3523  *
3524  * @param q                queue to init
3525  * @param count            Number of BD's to allocate. Should be power of 2
3526  * @param read_register    Address for 'read' register
3527  *                         (not offset within BAR, full address)
3528  * @param write_register   Address for 'write' register
3529  *                         (not offset within BAR, full address)
3530  * @param base_register    Address for 'base' register
3531  *                         (not offset within BAR, full address)
3532  * @param size             Address for 'size' register
3533  *                         (not offset within BAR, full address)
3534  */
3535 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3536                            int count, u32 read, u32 write, u32 base, u32 size)
3537 {
3538         q->n_bd = count;
3539
3540         q->low_mark = q->n_bd / 4;
3541         if (q->low_mark < 4)
3542                 q->low_mark = 4;
3543
3544         q->high_mark = q->n_bd / 8;
3545         if (q->high_mark < 2)
3546                 q->high_mark = 2;
3547
3548         q->first_empty = q->last_used = 0;
3549         q->reg_r = read;
3550         q->reg_w = write;
3551
3552         ipw_write32(priv, base, q->dma_addr);
3553         ipw_write32(priv, size, count);
3554         ipw_write32(priv, read, 0);
3555         ipw_write32(priv, write, 0);
3556
3557         _ipw_read32(priv, 0x90);
3558 }
3559
3560 static int ipw_queue_tx_init(struct ipw_priv *priv,
3561                              struct clx2_tx_queue *q,
3562                              int count, u32 read, u32 write, u32 base, u32 size)
3563 {
3564         struct pci_dev *dev = priv->pci_dev;
3565
3566         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3567         if (!q->txb) {
3568                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3569                 return -ENOMEM;
3570         }
3571
3572         q->bd =
3573             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3574         if (!q->bd) {
3575                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3576                           sizeof(q->bd[0]) * count);
3577                 kfree(q->txb);
3578                 q->txb = NULL;
3579                 return -ENOMEM;
3580         }
3581
3582         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3583         return 0;
3584 }
3585
3586 /**
3587  * Free one TFD, those at index [txq->q.last_used].
3588  * Do NOT advance any indexes
3589  *
3590  * @param dev
3591  * @param txq
3592  */
3593 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3594                                   struct clx2_tx_queue *txq)
3595 {
3596         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3597         struct pci_dev *dev = priv->pci_dev;
3598         int i;
3599
3600         /* classify bd */
3601         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3602                 /* nothing to cleanup after for host commands */
3603                 return;
3604
3605         /* sanity check */
3606         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3607                 IPW_ERROR("Too many chunks: %i\n",
3608                           le32_to_cpu(bd->u.data.num_chunks));
3609                 /** @todo issue fatal error, it is quite serious situation */
3610                 return;
3611         }
3612
3613         /* unmap chunks if any */
3614         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3615                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3616                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3617                                  PCI_DMA_TODEVICE);
3618                 if (txq->txb[txq->q.last_used]) {
3619                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3620                         txq->txb[txq->q.last_used] = NULL;
3621                 }
3622         }
3623 }
3624
3625 /**
3626  * Deallocate DMA queue.
3627  *
3628  * Empty queue by removing and destroying all BD's.
3629  * Free all buffers.
3630  *
3631  * @param dev
3632  * @param q
3633  */
3634 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3635 {
3636         struct clx2_queue *q = &txq->q;
3637         struct pci_dev *dev = priv->pci_dev;
3638
3639         if (q->n_bd == 0)
3640                 return;
3641
3642         /* first, empty all BD's */
3643         for (; q->first_empty != q->last_used;
3644              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3645                 ipw_queue_tx_free_tfd(priv, txq);
3646         }
3647
3648         /* free buffers belonging to queue itself */
3649         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3650                             q->dma_addr);
3651         kfree(txq->txb);
3652
3653         /* 0 fill whole structure */
3654         memset(txq, 0, sizeof(*txq));
3655 }
3656
3657 /**
3658  * Destroy all DMA queues and structures
3659  *
3660  * @param priv
3661  */
3662 static void ipw_tx_queue_free(struct ipw_priv *priv)
3663 {
3664         /* Tx CMD queue */
3665         ipw_queue_tx_free(priv, &priv->txq_cmd);
3666
3667         /* Tx queues */
3668         ipw_queue_tx_free(priv, &priv->txq[0]);
3669         ipw_queue_tx_free(priv, &priv->txq[1]);
3670         ipw_queue_tx_free(priv, &priv->txq[2]);
3671         ipw_queue_tx_free(priv, &priv->txq[3]);
3672 }
3673
3674 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3675 {
3676         /* First 3 bytes are manufacturer */
3677         bssid[0] = priv->mac_addr[0];
3678         bssid[1] = priv->mac_addr[1];
3679         bssid[2] = priv->mac_addr[2];
3680
3681         /* Last bytes are random */
3682         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3683
3684         bssid[0] &= 0xfe;       /* clear multicast bit */
3685         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3686 }
3687
3688 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3689 {
3690         struct ipw_station_entry entry;
3691         int i;
3692
3693         for (i = 0; i < priv->num_stations; i++) {
3694                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3695                         /* Another node is active in network */
3696                         priv->missed_adhoc_beacons = 0;
3697                         if (!(priv->config & CFG_STATIC_CHANNEL))
3698                                 /* when other nodes drop out, we drop out */
3699                                 priv->config &= ~CFG_ADHOC_PERSIST;
3700
3701                         return i;
3702                 }
3703         }
3704
3705         if (i == MAX_STATIONS)
3706                 return IPW_INVALID_STATION;
3707
3708         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3709
3710         entry.reserved = 0;
3711         entry.support_mode = 0;
3712         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3713         memcpy(priv->stations[i], bssid, ETH_ALEN);
3714         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3715                          &entry, sizeof(entry));
3716         priv->num_stations++;
3717
3718         return i;
3719 }
3720
3721 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3722 {
3723         int i;
3724
3725         for (i = 0; i < priv->num_stations; i++)
3726                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3727                         return i;
3728
3729         return IPW_INVALID_STATION;
3730 }
3731
3732 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3733 {
3734         int err;
3735
3736         if (priv->status & STATUS_ASSOCIATING) {
3737                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3738                 queue_work(priv->workqueue, &priv->disassociate);
3739                 return;
3740         }
3741
3742         if (!(priv->status & STATUS_ASSOCIATED)) {
3743                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3744                 return;
3745         }
3746
3747         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3748                         "on channel %d.\n",
3749                         MAC_ARG(priv->assoc_request.bssid),
3750                         priv->assoc_request.channel);
3751
3752         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3753         priv->status |= STATUS_DISASSOCIATING;
3754
3755         if (quiet)
3756                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3757         else
3758                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3759
3760         err = ipw_send_associate(priv, &priv->assoc_request);
3761         if (err) {
3762                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3763                              "failed.\n");
3764                 return;
3765         }
3766
3767 }
3768
3769 static int ipw_disassociate(void *data)
3770 {
3771         struct ipw_priv *priv = data;
3772         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3773                 return 0;
3774         ipw_send_disassociate(data, 0);
3775         return 1;
3776 }
3777
3778 static void ipw_bg_disassociate(void *data)
3779 {
3780         struct ipw_priv *priv = data;
3781         down(&priv->sem);
3782         ipw_disassociate(data);
3783         up(&priv->sem);
3784 }
3785
3786 static void ipw_system_config(void *data)
3787 {
3788         struct ipw_priv *priv = data;
3789         ipw_send_system_config(priv, &priv->sys_config);
3790 }
3791
3792 struct ipw_status_code {
3793         u16 status;
3794         const char *reason;
3795 };
3796
3797 static const struct ipw_status_code ipw_status_codes[] = {
3798         {0x00, "Successful"},
3799         {0x01, "Unspecified failure"},
3800         {0x0A, "Cannot support all requested capabilities in the "
3801          "Capability information field"},
3802         {0x0B, "Reassociation denied due to inability to confirm that "
3803          "association exists"},
3804         {0x0C, "Association denied due to reason outside the scope of this "
3805          "standard"},
3806         {0x0D,
3807          "Responding station does not support the specified authentication "
3808          "algorithm"},
3809         {0x0E,
3810          "Received an Authentication frame with authentication sequence "
3811          "transaction sequence number out of expected sequence"},
3812         {0x0F, "Authentication rejected because of challenge failure"},
3813         {0x10, "Authentication rejected due to timeout waiting for next "
3814          "frame in sequence"},
3815         {0x11, "Association denied because AP is unable to handle additional "
3816          "associated stations"},
3817         {0x12,
3818          "Association denied due to requesting station not supporting all "
3819          "of the datarates in the BSSBasicServiceSet Parameter"},
3820         {0x13,
3821          "Association denied due to requesting station not supporting "
3822          "short preamble operation"},
3823         {0x14,
3824          "Association denied due to requesting station not supporting "
3825          "PBCC encoding"},
3826         {0x15,
3827          "Association denied due to requesting station not supporting "
3828          "channel agility"},
3829         {0x19,
3830          "Association denied due to requesting station not supporting "
3831          "short slot operation"},
3832         {0x1A,
3833          "Association denied due to requesting station not supporting "
3834          "DSSS-OFDM operation"},
3835         {0x28, "Invalid Information Element"},
3836         {0x29, "Group Cipher is not valid"},
3837         {0x2A, "Pairwise Cipher is not valid"},
3838         {0x2B, "AKMP is not valid"},
3839         {0x2C, "Unsupported RSN IE version"},
3840         {0x2D, "Invalid RSN IE Capabilities"},
3841         {0x2E, "Cipher suite is rejected per security policy"},
3842 };
3843
3844 #ifdef CONFIG_IPW2200_DEBUG
3845 static const char *ipw_get_status_code(u16 status)
3846 {
3847         int i;
3848         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3849                 if (ipw_status_codes[i].status == (status & 0xff))
3850                         return ipw_status_codes[i].reason;
3851         return "Unknown status value.";
3852 }
3853 #endif
3854
3855 static void inline average_init(struct average *avg)
3856 {
3857         memset(avg, 0, sizeof(*avg));
3858 }
3859
3860 static void average_add(struct average *avg, s16 val)
3861 {
3862         avg->sum -= avg->entries[avg->pos];
3863         avg->sum += val;
3864         avg->entries[avg->pos++] = val;
3865         if (unlikely(avg->pos == AVG_ENTRIES)) {
3866                 avg->init = 1;
3867                 avg->pos = 0;
3868         }
3869 }
3870
3871 static s16 average_value(struct average *avg)
3872 {
3873         if (!unlikely(avg->init)) {
3874                 if (avg->pos)
3875                         return avg->sum / avg->pos;
3876                 return 0;
3877         }
3878
3879         return avg->sum / AVG_ENTRIES;
3880 }
3881
3882 static void ipw_reset_stats(struct ipw_priv *priv)
3883 {
3884         u32 len = sizeof(u32);
3885
3886         priv->quality = 0;
3887
3888         average_init(&priv->average_missed_beacons);
3889         average_init(&priv->average_rssi);
3890         average_init(&priv->average_noise);
3891
3892         priv->last_rate = 0;
3893         priv->last_missed_beacons = 0;
3894         priv->last_rx_packets = 0;
3895         priv->last_tx_packets = 0;
3896         priv->last_tx_failures = 0;
3897
3898         /* Firmware managed, reset only when NIC is restarted, so we have to
3899          * normalize on the current value */
3900         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3901                         &priv->last_rx_err, &len);
3902         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3903                         &priv->last_tx_failures, &len);
3904
3905         /* Driver managed, reset with each association */
3906         priv->missed_adhoc_beacons = 0;
3907         priv->missed_beacons = 0;
3908         priv->tx_packets = 0;
3909         priv->rx_packets = 0;
3910
3911 }
3912
3913 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3914 {
3915         u32 i = 0x80000000;
3916         u32 mask = priv->rates_mask;
3917         /* If currently associated in B mode, restrict the maximum
3918          * rate match to B rates */
3919         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3920                 mask &= IEEE80211_CCK_RATES_MASK;
3921
3922         /* TODO: Verify that the rate is supported by the current rates
3923          * list. */
3924
3925         while (i && !(mask & i))
3926                 i >>= 1;
3927         switch (i) {
3928         case IEEE80211_CCK_RATE_1MB_MASK:
3929                 return 1000000;
3930         case IEEE80211_CCK_RATE_2MB_MASK:
3931                 return 2000000;
3932         case IEEE80211_CCK_RATE_5MB_MASK:
3933                 return 5500000;
3934         case IEEE80211_OFDM_RATE_6MB_MASK:
3935                 return 6000000;
3936         case IEEE80211_OFDM_RATE_9MB_MASK:
3937                 return 9000000;
3938         case IEEE80211_CCK_RATE_11MB_MASK:
3939                 return 11000000;
3940         case IEEE80211_OFDM_RATE_12MB_MASK:
3941                 return 12000000;
3942         case IEEE80211_OFDM_RATE_18MB_MASK:
3943                 return 18000000;
3944         case IEEE80211_OFDM_RATE_24MB_MASK:
3945                 return 24000000;
3946         case IEEE80211_OFDM_RATE_36MB_MASK:
3947                 return 36000000;
3948         case IEEE80211_OFDM_RATE_48MB_MASK:
3949                 return 48000000;
3950         case IEEE80211_OFDM_RATE_54MB_MASK:
3951                 return 54000000;
3952         }
3953
3954         if (priv->ieee->mode == IEEE_B)
3955                 return 11000000;
3956         else
3957                 return 54000000;
3958 }
3959
3960 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3961 {
3962         u32 rate, len = sizeof(rate);
3963         int err;
3964
3965         if (!(priv->status & STATUS_ASSOCIATED))
3966                 return 0;
3967
3968         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3969                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3970                                       &len);
3971                 if (err) {
3972                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3973                         return 0;
3974                 }
3975         } else
3976                 return ipw_get_max_rate(priv);
3977
3978         switch (rate) {
3979         case IPW_TX_RATE_1MB:
3980                 return 1000000;
3981         case IPW_TX_RATE_2MB:
3982                 return 2000000;
3983         case IPW_TX_RATE_5MB:
3984                 return 5500000;
3985         case IPW_TX_RATE_6MB:
3986                 return 6000000;
3987         case IPW_TX_RATE_9MB:
3988                 return 9000000;
3989         case IPW_TX_RATE_11MB:
3990                 return 11000000;
3991         case IPW_TX_RATE_12MB:
3992                 return 12000000;
3993         case IPW_TX_RATE_18MB:
3994                 return 18000000;
3995         case IPW_TX_RATE_24MB:
3996                 return 24000000;
3997         case IPW_TX_RATE_36MB:
3998                 return 36000000;
3999         case IPW_TX_RATE_48MB:
4000                 return 48000000;
4001         case IPW_TX_RATE_54MB:
4002                 return 54000000;
4003         }
4004
4005         return 0;
4006 }
4007
4008 #define IPW_STATS_INTERVAL (2 * HZ)
4009 static void ipw_gather_stats(struct ipw_priv *priv)
4010 {
4011         u32 rx_err, rx_err_delta, rx_packets_delta;
4012         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4013         u32 missed_beacons_percent, missed_beacons_delta;
4014         u32 quality = 0;
4015         u32 len = sizeof(u32);
4016         s16 rssi;
4017         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4018             rate_quality;
4019         u32 max_rate;
4020
4021         if (!(priv->status & STATUS_ASSOCIATED)) {
4022                 priv->quality = 0;
4023                 return;
4024         }
4025
4026         /* Update the statistics */
4027         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4028                         &priv->missed_beacons, &len);
4029         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4030         priv->last_missed_beacons = priv->missed_beacons;
4031         if (priv->assoc_request.beacon_interval) {
4032                 missed_beacons_percent = missed_beacons_delta *
4033                     (HZ * priv->assoc_request.beacon_interval) /
4034                     (IPW_STATS_INTERVAL * 10);
4035         } else {
4036                 missed_beacons_percent = 0;
4037         }
4038         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4039
4040         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4041         rx_err_delta = rx_err - priv->last_rx_err;
4042         priv->last_rx_err = rx_err;
4043
4044         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4045         tx_failures_delta = tx_failures - priv->last_tx_failures;
4046         priv->last_tx_failures = tx_failures;
4047
4048         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4049         priv->last_rx_packets = priv->rx_packets;
4050
4051         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4052         priv->last_tx_packets = priv->tx_packets;
4053
4054         /* Calculate quality based on the following:
4055          *
4056          * Missed beacon: 100% = 0, 0% = 70% missed
4057          * Rate: 60% = 1Mbs, 100% = Max
4058          * Rx and Tx errors represent a straight % of total Rx/Tx
4059          * RSSI: 100% = > -50,  0% = < -80
4060          * Rx errors: 100% = 0, 0% = 50% missed
4061          *
4062          * The lowest computed quality is used.
4063          *
4064          */
4065 #define BEACON_THRESHOLD 5
4066         beacon_quality = 100 - missed_beacons_percent;
4067         if (beacon_quality < BEACON_THRESHOLD)
4068                 beacon_quality = 0;
4069         else
4070                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4071                     (100 - BEACON_THRESHOLD);
4072         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4073                         beacon_quality, missed_beacons_percent);
4074
4075         priv->last_rate = ipw_get_current_rate(priv);
4076         max_rate = ipw_get_max_rate(priv);
4077         rate_quality = priv->last_rate * 40 / max_rate + 60;
4078         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4079                         rate_quality, priv->last_rate / 1000000);
4080
4081         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4082                 rx_quality = 100 - (rx_err_delta * 100) /
4083                     (rx_packets_delta + rx_err_delta);
4084         else
4085                 rx_quality = 100;
4086         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4087                         rx_quality, rx_err_delta, rx_packets_delta);
4088
4089         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4090                 tx_quality = 100 - (tx_failures_delta * 100) /
4091                     (tx_packets_delta + tx_failures_delta);
4092         else
4093                 tx_quality = 100;
4094         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4095                         tx_quality, tx_failures_delta, tx_packets_delta);
4096
4097         rssi = average_value(&priv->average_rssi);
4098         signal_quality =
4099             (100 *
4100              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4101              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4102              (priv->ieee->perfect_rssi - rssi) *
4103              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4104               62 * (priv->ieee->perfect_rssi - rssi))) /
4105             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4106              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4107         if (signal_quality > 100)
4108                 signal_quality = 100;
4109         else if (signal_quality < 1)
4110                 signal_quality = 0;
4111
4112         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4113                         signal_quality, rssi);
4114
4115         quality = min(beacon_quality,
4116                       min(rate_quality,
4117                           min(tx_quality, min(rx_quality, signal_quality))));
4118         if (quality == beacon_quality)
4119                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4120                                 quality);
4121         if (quality == rate_quality)
4122                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4123                                 quality);
4124         if (quality == tx_quality)
4125                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4126                                 quality);
4127         if (quality == rx_quality)
4128                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4129                                 quality);
4130         if (quality == signal_quality)
4131                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4132                                 quality);
4133
4134         priv->quality = quality;
4135
4136         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4137                            IPW_STATS_INTERVAL);
4138 }
4139
4140 static void ipw_bg_gather_stats(void *data)
4141 {
4142         struct ipw_priv *priv = data;
4143         down(&priv->sem);
4144         ipw_gather_stats(data);
4145         up(&priv->sem);
4146 }
4147
4148 /* Missed beacon behavior:
4149  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4150  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4151  * Above disassociate threshold, give up and stop scanning.
4152  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4153 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4154                                             int missed_count)
4155 {
4156         priv->notif_missed_beacons = missed_count;
4157
4158         if (missed_count > priv->disassociate_threshold &&
4159             priv->status & STATUS_ASSOCIATED) {
4160                 /* If associated and we've hit the missed
4161                  * beacon threshold, disassociate, turn
4162                  * off roaming, and abort any active scans */
4163                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4164                           IPW_DL_STATE | IPW_DL_ASSOC,
4165                           "Missed beacon: %d - disassociate\n", missed_count);
4166                 priv->status &= ~STATUS_ROAMING;
4167                 if (priv->status & STATUS_SCANNING) {
4168                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4169                                   IPW_DL_STATE,
4170                                   "Aborting scan with missed beacon.\n");
4171                         queue_work(priv->workqueue, &priv->abort_scan);
4172                 }
4173
4174                 queue_work(priv->workqueue, &priv->disassociate);
4175                 return;
4176         }
4177
4178         if (priv->status & STATUS_ROAMING) {
4179                 /* If we are currently roaming, then just
4180                  * print a debug statement... */
4181                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4182                           "Missed beacon: %d - roam in progress\n",
4183                           missed_count);
4184                 return;
4185         }
4186
4187         if (missed_count > priv->roaming_threshold &&
4188             missed_count <= priv->disassociate_threshold) {
4189                 /* If we are not already roaming, set the ROAM
4190                  * bit in the status and kick off a scan.
4191                  * This can happen several times before we reach
4192                  * disassociate_threshold. */
4193                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4194                           "Missed beacon: %d - initiate "
4195                           "roaming\n", missed_count);
4196                 if (!(priv->status & STATUS_ROAMING)) {
4197                         priv->status |= STATUS_ROAMING;
4198                         if (!(priv->status & STATUS_SCANNING))
4199                                 queue_work(priv->workqueue,
4200                                            &priv->request_scan);
4201                 }
4202                 return;
4203         }
4204
4205         if (priv->status & STATUS_SCANNING) {
4206                 /* Stop scan to keep fw from getting
4207                  * stuck (only if we aren't roaming --
4208                  * otherwise we'll never scan more than 2 or 3
4209                  * channels..) */
4210                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4211                           "Aborting scan with missed beacon.\n");
4212                 queue_work(priv->workqueue, &priv->abort_scan);
4213         }
4214
4215         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4216
4217 }
4218
4219 /**
4220  * Handle host notification packet.
4221  * Called from interrupt routine
4222  */
4223 static void ipw_rx_notification(struct ipw_priv *priv,
4224                                        struct ipw_rx_notification *notif)
4225 {
4226         notif->size = le16_to_cpu(notif->size);
4227
4228         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4229
4230         switch (notif->subtype) {
4231         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4232                         struct notif_association *assoc = &notif->u.assoc;
4233
4234                         switch (assoc->state) {
4235                         case CMAS_ASSOCIATED:{
4236                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4237                                                   IPW_DL_ASSOC,
4238                                                   "associated: '%s' " MAC_FMT
4239                                                   " \n",
4240                                                   escape_essid(priv->essid,
4241                                                                priv->essid_len),
4242                                                   MAC_ARG(priv->bssid));
4243
4244                                         switch (priv->ieee->iw_mode) {
4245                                         case IW_MODE_INFRA:
4246                                                 memcpy(priv->ieee->bssid,
4247                                                        priv->bssid, ETH_ALEN);
4248                                                 break;
4249
4250                                         case IW_MODE_ADHOC:
4251                                                 memcpy(priv->ieee->bssid,
4252                                                        priv->bssid, ETH_ALEN);
4253
4254                                                 /* clear out the station table */
4255                                                 priv->num_stations = 0;
4256
4257                                                 IPW_DEBUG_ASSOC
4258                                                     ("queueing adhoc check\n");
4259                                                 queue_delayed_work(priv->
4260                                                                    workqueue,
4261                                                                    &priv->
4262                                                                    adhoc_check,
4263                                                                    priv->
4264                                                                    assoc_request.
4265                                                                    beacon_interval);
4266                                                 break;
4267                                         }
4268
4269                                         priv->status &= ~STATUS_ASSOCIATING;
4270                                         priv->status |= STATUS_ASSOCIATED;
4271                                         queue_work(priv->workqueue,
4272                                                    &priv->system_config);
4273
4274 #ifdef CONFIG_IPW_QOS
4275 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4276                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4277                                         if ((priv->status & STATUS_AUTH) &&
4278                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4279                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4280                                                 if ((sizeof
4281                                                      (struct
4282                                                       ieee80211_assoc_response)
4283                                                      <= notif->size)
4284                                                     && (notif->size <= 2314)) {
4285                                                         struct
4286                                                         ieee80211_rx_stats
4287                                                             stats = {
4288                                                                 .len =
4289                                                                     notif->
4290                                                                     size - 1,
4291                                                         };
4292
4293                                                         IPW_DEBUG_QOS
4294                                                             ("QoS Associate "
4295                                                              "size %d\n",
4296                                                              notif->size);
4297                                                         ieee80211_rx_mgt(priv->
4298                                                                          ieee,
4299                                                                          (struct
4300                                                                           ieee80211_hdr_4addr
4301                                                                           *)
4302                                                                          &notif->u.raw, &stats);
4303                                                 }
4304                                         }
4305 #endif
4306
4307                                         schedule_work(&priv->link_up);
4308
4309                                         break;
4310                                 }
4311
4312                         case CMAS_AUTHENTICATED:{
4313                                         if (priv->
4314                                             status & (STATUS_ASSOCIATED |
4315                                                       STATUS_AUTH)) {
4316 #ifdef CONFIG_IPW2200_DEBUG
4317                                                 struct notif_authenticate *auth
4318                                                     = &notif->u.auth;
4319                                                 IPW_DEBUG(IPW_DL_NOTIF |
4320                                                           IPW_DL_STATE |
4321                                                           IPW_DL_ASSOC,
4322                                                           "deauthenticated: '%s' "
4323                                                           MAC_FMT
4324                                                           ": (0x%04X) - %s \n",
4325                                                           escape_essid(priv->
4326                                                                        essid,
4327                                                                        priv->
4328                                                                        essid_len),
4329                                                           MAC_ARG(priv->bssid),
4330                                                           ntohs(auth->status),
4331                                                           ipw_get_status_code
4332                                                           (ntohs
4333                                                            (auth->status)));
4334 #endif
4335
4336                                                 priv->status &=
4337                                                     ~(STATUS_ASSOCIATING |
4338                                                       STATUS_AUTH |
4339                                                       STATUS_ASSOCIATED);
4340
4341                                                 schedule_work(&priv->link_down);
4342                                                 break;
4343                                         }
4344
4345                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4346                                                   IPW_DL_ASSOC,
4347                                                   "authenticated: '%s' " MAC_FMT
4348                                                   "\n",
4349                                                   escape_essid(priv->essid,
4350                                                                priv->essid_len),
4351                                                   MAC_ARG(priv->bssid));
4352                                         break;
4353                                 }
4354
4355                         case CMAS_INIT:{
4356                                         if (priv->status & STATUS_AUTH) {
4357                                                 struct
4358                                                     ieee80211_assoc_response
4359                                                 *resp;
4360                                                 resp =
4361                                                     (struct
4362                                                      ieee80211_assoc_response
4363                                                      *)&notif->u.raw;
4364                                                 IPW_DEBUG(IPW_DL_NOTIF |
4365                                                           IPW_DL_STATE |
4366                                                           IPW_DL_ASSOC,
4367                                                           "association failed (0x%04X): %s\n",
4368                                                           ntohs(resp->status),
4369                                                           ipw_get_status_code
4370                                                           (ntohs
4371                                                            (resp->status)));
4372                                         }
4373
4374                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4375                                                   IPW_DL_ASSOC,
4376                                                   "disassociated: '%s' " MAC_FMT
4377                                                   " \n",
4378                                                   escape_essid(priv->essid,
4379                                                                priv->essid_len),
4380                                                   MAC_ARG(priv->bssid));
4381
4382                                         priv->status &=
4383                                             ~(STATUS_DISASSOCIATING |
4384                                               STATUS_ASSOCIATING |
4385                                               STATUS_ASSOCIATED | STATUS_AUTH);
4386                                         if (priv->assoc_network
4387                                             && (priv->assoc_network->
4388                                                 capability &
4389                                                 WLAN_CAPABILITY_IBSS))
4390                                                 ipw_remove_current_network
4391                                                     (priv);
4392
4393                                         schedule_work(&priv->link_down);
4394
4395                                         break;
4396                                 }
4397
4398                         case CMAS_RX_ASSOC_RESP:
4399                                 break;
4400
4401                         default:
4402                                 IPW_ERROR("assoc: unknown (%d)\n",
4403                                           assoc->state);
4404                                 break;
4405                         }
4406
4407                         break;
4408                 }
4409
4410         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4411                         struct notif_authenticate *auth = &notif->u.auth;
4412                         switch (auth->state) {
4413                         case CMAS_AUTHENTICATED:
4414                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4415                                           "authenticated: '%s' " MAC_FMT " \n",
4416                                           escape_essid(priv->essid,
4417                                                        priv->essid_len),
4418                                           MAC_ARG(priv->bssid));
4419                                 priv->status |= STATUS_AUTH;
4420                                 break;
4421
4422                         case CMAS_INIT:
4423                                 if (priv->status & STATUS_AUTH) {
4424                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                                   IPW_DL_ASSOC,
4426                                                   "authentication failed (0x%04X): %s\n",
4427                                                   ntohs(auth->status),
4428                                                   ipw_get_status_code(ntohs
4429                                                                       (auth->
4430                                                                        status)));
4431                                 }
4432                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4433                                           IPW_DL_ASSOC,
4434                                           "deauthenticated: '%s' " MAC_FMT "\n",
4435                                           escape_essid(priv->essid,
4436                                                        priv->essid_len),
4437                                           MAC_ARG(priv->bssid));
4438
4439                                 priv->status &= ~(STATUS_ASSOCIATING |
4440                                                   STATUS_AUTH |
4441                                                   STATUS_ASSOCIATED);
4442
4443                                 schedule_work(&priv->link_down);
4444                                 break;
4445
4446                         case CMAS_TX_AUTH_SEQ_1:
4447                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4448                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4449                                 break;
4450                         case CMAS_RX_AUTH_SEQ_2:
4451                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4452                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4453                                 break;
4454                         case CMAS_AUTH_SEQ_1_PASS:
4455                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4456                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4457                                 break;
4458                         case CMAS_AUTH_SEQ_1_FAIL:
4459                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4460                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4461                                 break;
4462                         case CMAS_TX_AUTH_SEQ_3:
4463                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4464                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4465                                 break;
4466                         case CMAS_RX_AUTH_SEQ_4:
4467                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4468                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4469                                 break;
4470                         case CMAS_AUTH_SEQ_2_PASS:
4471                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4472                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4473                                 break;
4474                         case CMAS_AUTH_SEQ_2_FAIL:
4475                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4476                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4477                                 break;
4478                         case CMAS_TX_ASSOC:
4479                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4480                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4481                                 break;
4482                         case CMAS_RX_ASSOC_RESP:
4483                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4484                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4485
4486                                 break;
4487                         case CMAS_ASSOCIATED:
4488                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4489                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4490                                 break;
4491                         default:
4492                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4493                                                 auth->state);
4494                                 break;
4495                         }
4496                         break;
4497                 }
4498
4499         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4500                         struct notif_channel_result *x =
4501                             &notif->u.channel_result;
4502
4503                         if (notif->size == sizeof(*x)) {
4504                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4505                                                x->channel_num);
4506                         } else {
4507                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4508                                                "(should be %zd)\n",
4509                                                notif->size, sizeof(*x));
4510                         }
4511                         break;
4512                 }
4513
4514         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4515                         struct notif_scan_complete *x = &notif->u.scan_complete;
4516                         if (notif->size == sizeof(*x)) {
4517                                 IPW_DEBUG_SCAN
4518                                     ("Scan completed: type %d, %d channels, "
4519                                      "%d status\n", x->scan_type,
4520                                      x->num_channels, x->status);
4521                         } else {
4522                                 IPW_ERROR("Scan completed of wrong size %d "
4523                                           "(should be %zd)\n",
4524                                           notif->size, sizeof(*x));
4525                         }
4526
4527                         priv->status &=
4528                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4529
4530                         wake_up_interruptible(&priv->wait_state);
4531                         cancel_delayed_work(&priv->scan_check);
4532
4533                         if (priv->status & STATUS_EXIT_PENDING)
4534                                 break;
4535
4536                         priv->ieee->scans++;
4537
4538 #ifdef CONFIG_IPW2200_MONITOR
4539                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4540                                 priv->status |= STATUS_SCAN_FORCED;
4541                                 queue_work(priv->workqueue,
4542                                            &priv->request_scan);
4543                                 break;
4544                         }
4545                         priv->status &= ~STATUS_SCAN_FORCED;
4546 #endif                          /* CONFIG_IPW2200_MONITOR */
4547
4548                         if (!(priv->status & (STATUS_ASSOCIATED |
4549                                               STATUS_ASSOCIATING |
4550                                               STATUS_ROAMING |
4551                                               STATUS_DISASSOCIATING)))
4552                                 queue_work(priv->workqueue, &priv->associate);
4553                         else if (priv->status & STATUS_ROAMING) {
4554                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4555                                         /* If a scan completed and we are in roam mode, then
4556                                          * the scan that completed was the one requested as a
4557                                          * result of entering roam... so, schedule the
4558                                          * roam work */
4559                                         queue_work(priv->workqueue,
4560                                                    &priv->roam);
4561                                 else
4562                                         /* Don't schedule if we aborted the scan */
4563                                         priv->status &= ~STATUS_ROAMING;
4564                         } else if (priv->status & STATUS_SCAN_PENDING)
4565                                 queue_work(priv->workqueue,
4566                                            &priv->request_scan);
4567                         else if (priv->config & CFG_BACKGROUND_SCAN
4568                                  && priv->status & STATUS_ASSOCIATED)
4569                                 queue_delayed_work(priv->workqueue,
4570                                                    &priv->request_scan, HZ);
4571                         break;
4572                 }
4573
4574         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4575                         struct notif_frag_length *x = &notif->u.frag_len;
4576
4577                         if (notif->size == sizeof(*x))
4578                                 IPW_ERROR("Frag length: %d\n",
4579                                           le16_to_cpu(x->frag_length));
4580                         else
4581                                 IPW_ERROR("Frag length of wrong size %d "
4582                                           "(should be %zd)\n",
4583                                           notif->size, sizeof(*x));
4584                         break;
4585                 }
4586
4587         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4588                         struct notif_link_deterioration *x =
4589                             &notif->u.link_deterioration;
4590
4591                         if (notif->size == sizeof(*x)) {
4592                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4593                                           "link deterioration: '%s' " MAC_FMT
4594                                           " \n", escape_essid(priv->essid,
4595                                                               priv->essid_len),
4596                                           MAC_ARG(priv->bssid));
4597                                 memcpy(&priv->last_link_deterioration, x,
4598                                        sizeof(*x));
4599                         } else {
4600                                 IPW_ERROR("Link Deterioration of wrong size %d "
4601                                           "(should be %zd)\n",
4602                                           notif->size, sizeof(*x));
4603                         }
4604                         break;
4605                 }
4606
4607         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4608                         IPW_ERROR("Dino config\n");
4609                         if (priv->hcmd
4610                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4611                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4612
4613                         break;
4614                 }
4615
4616         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4617                         struct notif_beacon_state *x = &notif->u.beacon_state;
4618                         if (notif->size != sizeof(*x)) {
4619                                 IPW_ERROR
4620                                     ("Beacon state of wrong size %d (should "
4621                                      "be %zd)\n", notif->size, sizeof(*x));
4622                                 break;
4623                         }
4624
4625                         if (le32_to_cpu(x->state) ==
4626                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4627                                 ipw_handle_missed_beacon(priv,
4628                                                          le32_to_cpu(x->
4629                                                                      number));
4630
4631                         break;
4632                 }
4633
4634         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4635                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4636                         if (notif->size == sizeof(*x)) {
4637                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4638                                           "0x%02x station %d\n",
4639                                           x->key_state, x->security_type,
4640                                           x->station_index);
4641                                 break;
4642                         }
4643
4644                         IPW_ERROR
4645                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4646                              notif->size, sizeof(*x));
4647                         break;
4648                 }
4649
4650         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4651                         struct notif_calibration *x = &notif->u.calibration;
4652
4653                         if (notif->size == sizeof(*x)) {
4654                                 memcpy(&priv->calib, x, sizeof(*x));
4655                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4656                                 break;
4657                         }
4658
4659                         IPW_ERROR
4660                             ("Calibration of wrong size %d (should be %zd)\n",
4661                              notif->size, sizeof(*x));
4662                         break;
4663                 }
4664
4665         case HOST_NOTIFICATION_NOISE_STATS:{
4666                         if (notif->size == sizeof(u32)) {
4667                                 priv->last_noise =
4668                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4669                                           0xff);
4670                                 average_add(&priv->average_noise,
4671                                             priv->last_noise);
4672                                 break;
4673                         }
4674
4675                         IPW_ERROR
4676                             ("Noise stat is wrong size %d (should be %zd)\n",
4677                              notif->size, sizeof(u32));
4678                         break;
4679                 }
4680
4681         default:
4682                 IPW_ERROR("Unknown notification: "
4683                           "subtype=%d,flags=0x%2x,size=%d\n",
4684                           notif->subtype, notif->flags, notif->size);
4685         }
4686 }
4687
4688 /**
4689  * Destroys all DMA structures and initialise them again
4690  *
4691  * @param priv
4692  * @return error code
4693  */
4694 static int ipw_queue_reset(struct ipw_priv *priv)
4695 {
4696         int rc = 0;
4697         /** @todo customize queue sizes */
4698         int nTx = 64, nTxCmd = 8;
4699         ipw_tx_queue_free(priv);
4700         /* Tx CMD queue */
4701         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4702                                IPW_TX_CMD_QUEUE_READ_INDEX,
4703                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4704                                IPW_TX_CMD_QUEUE_BD_BASE,
4705                                IPW_TX_CMD_QUEUE_BD_SIZE);
4706         if (rc) {
4707                 IPW_ERROR("Tx Cmd queue init failed\n");
4708                 goto error;
4709         }
4710         /* Tx queue(s) */
4711         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4712                                IPW_TX_QUEUE_0_READ_INDEX,
4713                                IPW_TX_QUEUE_0_WRITE_INDEX,
4714                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4715         if (rc) {
4716                 IPW_ERROR("Tx 0 queue init failed\n");
4717                 goto error;
4718         }
4719         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4720                                IPW_TX_QUEUE_1_READ_INDEX,
4721                                IPW_TX_QUEUE_1_WRITE_INDEX,
4722                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4723         if (rc) {
4724                 IPW_ERROR("Tx 1 queue init failed\n");
4725                 goto error;
4726         }
4727         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4728                                IPW_TX_QUEUE_2_READ_INDEX,
4729                                IPW_TX_QUEUE_2_WRITE_INDEX,
4730                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4731         if (rc) {
4732                 IPW_ERROR("Tx 2 queue init failed\n");
4733                 goto error;
4734         }
4735         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4736                                IPW_TX_QUEUE_3_READ_INDEX,
4737                                IPW_TX_QUEUE_3_WRITE_INDEX,
4738                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4739         if (rc) {
4740                 IPW_ERROR("Tx 3 queue init failed\n");
4741                 goto error;
4742         }
4743         /* statistics */
4744         priv->rx_bufs_min = 0;
4745         priv->rx_pend_max = 0;
4746         return rc;
4747
4748       error:
4749         ipw_tx_queue_free(priv);
4750         return rc;
4751 }
4752
4753 /**
4754  * Reclaim Tx queue entries no more used by NIC.
4755  *
4756  * When FW adwances 'R' index, all entries between old and
4757  * new 'R' index need to be reclaimed. As result, some free space
4758  * forms. If there is enough free space (> low mark), wake Tx queue.
4759  *
4760  * @note Need to protect against garbage in 'R' index
4761  * @param priv
4762  * @param txq
4763  * @param qindex
4764  * @return Number of used entries remains in the queue
4765  */
4766 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4767                                 struct clx2_tx_queue *txq, int qindex)
4768 {
4769         u32 hw_tail;
4770         int used;
4771         struct clx2_queue *q = &txq->q;
4772
4773         hw_tail = ipw_read32(priv, q->reg_r);
4774         if (hw_tail >= q->n_bd) {
4775                 IPW_ERROR
4776                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4777                      hw_tail, q->n_bd);
4778                 goto done;
4779         }
4780         for (; q->last_used != hw_tail;
4781              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4782                 ipw_queue_tx_free_tfd(priv, txq);
4783                 priv->tx_packets++;
4784         }
4785       done:
4786         if ((ipw_queue_space(q) > q->low_mark) &&
4787             (qindex >= 0) &&
4788             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4789                 netif_wake_queue(priv->net_dev);
4790         used = q->first_empty - q->last_used;
4791         if (used < 0)
4792                 used += q->n_bd;
4793
4794         return used;
4795 }
4796
4797 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4798                              int len, int sync)
4799 {
4800         struct clx2_tx_queue *txq = &priv->txq_cmd;
4801         struct clx2_queue *q = &txq->q;
4802         struct tfd_frame *tfd;
4803
4804         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4805                 IPW_ERROR("No space for Tx\n");
4806                 return -EBUSY;
4807         }
4808
4809         tfd = &txq->bd[q->first_empty];
4810         txq->txb[q->first_empty] = NULL;
4811
4812         memset(tfd, 0, sizeof(*tfd));
4813         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4814         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4815         priv->hcmd_seq++;
4816         tfd->u.cmd.index = hcmd;
4817         tfd->u.cmd.length = len;
4818         memcpy(tfd->u.cmd.payload, buf, len);
4819         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4820         ipw_write32(priv, q->reg_w, q->first_empty);
4821         _ipw_read32(priv, 0x90);
4822
4823         return 0;
4824 }
4825
4826 /*
4827  * Rx theory of operation
4828  *
4829  * The host allocates 32 DMA target addresses and passes the host address
4830  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4831  * 0 to 31
4832  *
4833  * Rx Queue Indexes
4834  * The host/firmware share two index registers for managing the Rx buffers.
4835  *
4836  * The READ index maps to the first position that the firmware may be writing
4837  * to -- the driver can read up to (but not including) this position and get
4838  * good data.
4839  * The READ index is managed by the firmware once the card is enabled.
4840  *
4841  * The WRITE index maps to the last position the driver has read from -- the
4842  * position preceding WRITE is the last slot the firmware can place a packet.
4843  *
4844  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4845  * WRITE = READ.
4846  *
4847  * During initialization the host sets up the READ queue position to the first
4848  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4849  *
4850  * When the firmware places a packet in a buffer it will advance the READ index
4851  * and fire the RX interrupt.  The driver can then query the READ index and
4852  * process as many packets as possible, moving the WRITE index forward as it
4853  * resets the Rx queue buffers with new memory.
4854  *
4855  * The management in the driver is as follows:
4856  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4857  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4858  *   to replensish the ipw->rxq->rx_free.
4859  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4860  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4861  *   'processed' and 'read' driver indexes as well)
4862  * + A received packet is processed and handed to the kernel network stack,
4863  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4864  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4865  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4866  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4867  *   were enough free buffers and RX_STALLED is set it is cleared.
4868  *
4869  *
4870  * Driver sequence:
4871  *
4872  * ipw_rx_queue_alloc()       Allocates rx_free
4873  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4874  *                            ipw_rx_queue_restock
4875  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4876  *                            queue, updates firmware pointers, and updates
4877  *                            the WRITE index.  If insufficient rx_free buffers
4878  *                            are available, schedules ipw_rx_queue_replenish
4879  *
4880  * -- enable interrupts --
4881  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4882  *                            READ INDEX, detaching the SKB from the pool.
4883  *                            Moves the packet buffer from queue to rx_used.
4884  *                            Calls ipw_rx_queue_restock to refill any empty
4885  *                            slots.
4886  * ...
4887  *
4888  */
4889
4890 /*
4891  * If there are slots in the RX queue that  need to be restocked,
4892  * and we have free pre-allocated buffers, fill the ranks as much
4893  * as we can pulling from rx_free.
4894  *
4895  * This moves the 'write' index forward to catch up with 'processed', and
4896  * also updates the memory address in the firmware to reference the new
4897  * target buffer.
4898  */
4899 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4900 {
4901         struct ipw_rx_queue *rxq = priv->rxq;
4902         struct list_head *element;
4903         struct ipw_rx_mem_buffer *rxb;
4904         unsigned long flags;
4905         int write;
4906
4907         spin_lock_irqsave(&rxq->lock, flags);
4908         write = rxq->write;
4909         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4910                 element = rxq->rx_free.next;
4911                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4912                 list_del(element);
4913
4914                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4915                             rxb->dma_addr);
4916                 rxq->queue[rxq->write] = rxb;
4917                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4918                 rxq->free_count--;
4919         }
4920         spin_unlock_irqrestore(&rxq->lock, flags);
4921
4922         /* If the pre-allocated buffer pool is dropping low, schedule to
4923          * refill it */
4924         if (rxq->free_count <= RX_LOW_WATERMARK)
4925                 queue_work(priv->workqueue, &priv->rx_replenish);
4926
4927         /* If we've added more space for the firmware to place data, tell it */
4928         if (write != rxq->write)
4929                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4930 }
4931
4932 /*
4933  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4934  * Also restock the Rx queue via ipw_rx_queue_restock.
4935  *
4936  * This is called as a scheduled work item (except for during intialization)
4937  */
4938 static void ipw_rx_queue_replenish(void *data)
4939 {
4940         struct ipw_priv *priv = data;
4941         struct ipw_rx_queue *rxq = priv->rxq;
4942         struct list_head *element;
4943         struct ipw_rx_mem_buffer *rxb;
4944         unsigned long flags;
4945
4946         spin_lock_irqsave(&rxq->lock, flags);
4947         while (!list_empty(&rxq->rx_used)) {
4948                 element = rxq->rx_used.next;
4949                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4950                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4951                 if (!rxb->skb) {
4952                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4953                                priv->net_dev->name);
4954                         /* We don't reschedule replenish work here -- we will
4955                          * call the restock method and if it still needs
4956                          * more buffers it will schedule replenish */
4957                         break;
4958                 }
4959                 list_del(element);
4960
4961                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4962                 rxb->dma_addr =
4963                     pci_map_single(priv->pci_dev, rxb->skb->data,
4964                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4965
4966                 list_add_tail(&rxb->list, &rxq->rx_free);
4967                 rxq->free_count++;
4968         }
4969         spin_unlock_irqrestore(&rxq->lock, flags);
4970
4971         ipw_rx_queue_restock(priv);
4972 }
4973
4974 static void ipw_bg_rx_queue_replenish(void *data)
4975 {
4976         struct ipw_priv *priv = data;
4977         down(&priv->sem);
4978         ipw_rx_queue_replenish(data);
4979         up(&priv->sem);
4980 }
4981
4982 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4983  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4984  * This free routine walks the list of POOL entries and if SKB is set to
4985  * non NULL it is unmapped and freed
4986  */
4987 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4988 {
4989         int i;
4990
4991         if (!rxq)
4992                 return;
4993
4994         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4995                 if (rxq->pool[i].skb != NULL) {
4996                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4997                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4998                         dev_kfree_skb(rxq->pool[i].skb);
4999                 }
5000         }
5001
5002         kfree(rxq);
5003 }
5004
5005 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5006 {
5007         struct ipw_rx_queue *rxq;
5008         int i;
5009
5010         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5011         if (unlikely(!rxq)) {
5012                 IPW_ERROR("memory allocation failed\n");
5013                 return NULL;
5014         }
5015         spin_lock_init(&rxq->lock);
5016         INIT_LIST_HEAD(&rxq->rx_free);
5017         INIT_LIST_HEAD(&rxq->rx_used);
5018
5019         /* Fill the rx_used queue with _all_ of the Rx buffers */
5020         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5021                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5022
5023         /* Set us so that we have processed and used all buffers, but have
5024          * not restocked the Rx queue with fresh buffers */
5025         rxq->read = rxq->write = 0;
5026         rxq->processed = RX_QUEUE_SIZE - 1;
5027         rxq->free_count = 0;
5028
5029         return rxq;
5030 }
5031
5032 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5033 {
5034         rate &= ~IEEE80211_BASIC_RATE_MASK;
5035         if (ieee_mode == IEEE_A) {
5036                 switch (rate) {
5037                 case IEEE80211_OFDM_RATE_6MB:
5038                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5039                             1 : 0;
5040                 case IEEE80211_OFDM_RATE_9MB:
5041                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5042                             1 : 0;
5043                 case IEEE80211_OFDM_RATE_12MB:
5044                         return priv->
5045                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5046                 case IEEE80211_OFDM_RATE_18MB:
5047                         return priv->
5048                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5049                 case IEEE80211_OFDM_RATE_24MB:
5050                         return priv->
5051                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5052                 case IEEE80211_OFDM_RATE_36MB:
5053                         return priv->
5054                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5055                 case IEEE80211_OFDM_RATE_48MB:
5056                         return priv->
5057                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5058                 case IEEE80211_OFDM_RATE_54MB:
5059                         return priv->
5060                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5061                 default:
5062                         return 0;
5063                 }
5064         }
5065
5066         /* B and G mixed */
5067         switch (rate) {
5068         case IEEE80211_CCK_RATE_1MB:
5069                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5070         case IEEE80211_CCK_RATE_2MB:
5071                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5072         case IEEE80211_CCK_RATE_5MB:
5073                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5074         case IEEE80211_CCK_RATE_11MB:
5075                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5076         }
5077
5078         /* If we are limited to B modulations, bail at this point */
5079         if (ieee_mode == IEEE_B)
5080                 return 0;
5081
5082         /* G */
5083         switch (rate) {
5084         case IEEE80211_OFDM_RATE_6MB:
5085                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5086         case IEEE80211_OFDM_RATE_9MB:
5087                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5088         case IEEE80211_OFDM_RATE_12MB:
5089                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5090         case IEEE80211_OFDM_RATE_18MB:
5091                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5092         case IEEE80211_OFDM_RATE_24MB:
5093                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5094         case IEEE80211_OFDM_RATE_36MB:
5095                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5096         case IEEE80211_OFDM_RATE_48MB:
5097                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5098         case IEEE80211_OFDM_RATE_54MB:
5099                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5100         }
5101
5102         return 0;
5103 }
5104
5105 static int ipw_compatible_rates(struct ipw_priv *priv,
5106                                 const struct ieee80211_network *network,
5107                                 struct ipw_supported_rates *rates)
5108 {
5109         int num_rates, i;
5110
5111         memset(rates, 0, sizeof(*rates));
5112         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5113         rates->num_rates = 0;
5114         for (i = 0; i < num_rates; i++) {
5115                 if (!ipw_is_rate_in_mask(priv, network->mode,
5116                                          network->rates[i])) {
5117
5118                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5119                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5120                                                "rate %02X\n",
5121                                                network->rates[i]);
5122                                 rates->supported_rates[rates->num_rates++] =
5123                                     network->rates[i];
5124                                 continue;
5125                         }
5126
5127                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5128                                        network->rates[i], priv->rates_mask);
5129                         continue;
5130                 }
5131
5132                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5133         }
5134
5135         num_rates = min(network->rates_ex_len,
5136                         (u8) (IPW_MAX_RATES - num_rates));
5137         for (i = 0; i < num_rates; i++) {
5138                 if (!ipw_is_rate_in_mask(priv, network->mode,
5139                                          network->rates_ex[i])) {
5140                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5141                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5142                                                "rate %02X\n",
5143                                                network->rates_ex[i]);
5144                                 rates->supported_rates[rates->num_rates++] =
5145                                     network->rates[i];
5146                                 continue;
5147                         }
5148
5149                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5150                                        network->rates_ex[i], priv->rates_mask);
5151                         continue;
5152                 }
5153
5154                 rates->supported_rates[rates->num_rates++] =
5155                     network->rates_ex[i];
5156         }
5157
5158         return 1;
5159 }
5160
5161 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5162                                   const struct ipw_supported_rates *src)
5163 {
5164         u8 i;
5165         for (i = 0; i < src->num_rates; i++)
5166                 dest->supported_rates[i] = src->supported_rates[i];
5167         dest->num_rates = src->num_rates;
5168 }
5169
5170 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5171  * mask should ever be used -- right now all callers to add the scan rates are
5172  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5173 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5174                                    u8 modulation, u32 rate_mask)
5175 {
5176         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5177             IEEE80211_BASIC_RATE_MASK : 0;
5178
5179         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5180                 rates->supported_rates[rates->num_rates++] =
5181                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5182
5183         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5184                 rates->supported_rates[rates->num_rates++] =
5185                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5186
5187         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5188                 rates->supported_rates[rates->num_rates++] = basic_mask |
5189                     IEEE80211_CCK_RATE_5MB;
5190
5191         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5192                 rates->supported_rates[rates->num_rates++] = basic_mask |
5193                     IEEE80211_CCK_RATE_11MB;
5194 }
5195
5196 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5197                                     u8 modulation, u32 rate_mask)
5198 {
5199         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5200             IEEE80211_BASIC_RATE_MASK : 0;
5201
5202         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5203                 rates->supported_rates[rates->num_rates++] = basic_mask |
5204                     IEEE80211_OFDM_RATE_6MB;
5205
5206         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5207                 rates->supported_rates[rates->num_rates++] =
5208                     IEEE80211_OFDM_RATE_9MB;
5209
5210         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5211                 rates->supported_rates[rates->num_rates++] = basic_mask |
5212                     IEEE80211_OFDM_RATE_12MB;
5213
5214         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5215                 rates->supported_rates[rates->num_rates++] =
5216                     IEEE80211_OFDM_RATE_18MB;
5217
5218         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5219                 rates->supported_rates[rates->num_rates++] = basic_mask |
5220                     IEEE80211_OFDM_RATE_24MB;
5221
5222         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5223                 rates->supported_rates[rates->num_rates++] =
5224                     IEEE80211_OFDM_RATE_36MB;
5225
5226         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5227                 rates->supported_rates[rates->num_rates++] =
5228                     IEEE80211_OFDM_RATE_48MB;
5229
5230         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5231                 rates->supported_rates[rates->num_rates++] =
5232                     IEEE80211_OFDM_RATE_54MB;
5233 }
5234
5235 struct ipw_network_match {
5236         struct ieee80211_network *network;
5237         struct ipw_supported_rates rates;
5238 };
5239
5240 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5241                                   struct ipw_network_match *match,
5242                                   struct ieee80211_network *network,
5243                                   int roaming)
5244 {
5245         struct ipw_supported_rates rates;
5246
5247         /* Verify that this network's capability is compatible with the
5248          * current mode (AdHoc or Infrastructure) */
5249         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5250              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5251                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5252                                 "capability mismatch.\n",
5253                                 escape_essid(network->ssid, network->ssid_len),
5254                                 MAC_ARG(network->bssid));
5255                 return 0;
5256         }
5257
5258         /* If we do not have an ESSID for this AP, we can not associate with
5259          * it */
5260         if (network->flags & NETWORK_EMPTY_ESSID) {
5261                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5262                                 "because of hidden ESSID.\n",
5263                                 escape_essid(network->ssid, network->ssid_len),
5264                                 MAC_ARG(network->bssid));
5265                 return 0;
5266         }
5267
5268         if (unlikely(roaming)) {
5269                 /* If we are roaming, then ensure check if this is a valid
5270                  * network to try and roam to */
5271                 if ((network->ssid_len != match->network->ssid_len) ||
5272                     memcmp(network->ssid, match->network->ssid,
5273                            network->ssid_len)) {
5274                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5275                                         "because of non-network ESSID.\n",
5276                                         escape_essid(network->ssid,
5277                                                      network->ssid_len),
5278                                         MAC_ARG(network->bssid));
5279                         return 0;
5280                 }
5281         } else {
5282                 /* If an ESSID has been configured then compare the broadcast
5283                  * ESSID to ours */
5284                 if ((priv->config & CFG_STATIC_ESSID) &&
5285                     ((network->ssid_len != priv->essid_len) ||
5286                      memcmp(network->ssid, priv->essid,
5287                             min(network->ssid_len, priv->essid_len)))) {
5288                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5289
5290                         strncpy(escaped,
5291                                 escape_essid(network->ssid, network->ssid_len),
5292                                 sizeof(escaped));
5293                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5294                                         "because of ESSID mismatch: '%s'.\n",
5295                                         escaped, MAC_ARG(network->bssid),
5296                                         escape_essid(priv->essid,
5297                                                      priv->essid_len));
5298                         return 0;
5299                 }
5300         }
5301
5302         /* If the old network rate is better than this one, don't bother
5303          * testing everything else. */
5304
5305         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5306                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5307                                 "current network.\n",
5308                                 escape_essid(match->network->ssid,
5309                                              match->network->ssid_len));
5310                 return 0;
5311         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5312                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5313                                 "current network.\n",
5314                                 escape_essid(match->network->ssid,
5315                                              match->network->ssid_len));
5316                 return 0;
5317         }
5318
5319         /* Now go through and see if the requested network is valid... */
5320         if (priv->ieee->scan_age != 0 &&
5321             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5322                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5323                                 "because of age: %lums.\n",
5324                                 escape_essid(network->ssid, network->ssid_len),
5325                                 MAC_ARG(network->bssid),
5326                                 1000 * (jiffies - network->last_scanned) / HZ);
5327                 return 0;
5328         }
5329
5330         if ((priv->config & CFG_STATIC_CHANNEL) &&
5331             (network->channel != priv->channel)) {
5332                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5333                                 "because of channel mismatch: %d != %d.\n",
5334                                 escape_essid(network->ssid, network->ssid_len),
5335                                 MAC_ARG(network->bssid),
5336                                 network->channel, priv->channel);
5337                 return 0;
5338         }
5339
5340         /* Verify privacy compatability */
5341         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5342             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5343                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5344                                 "because of privacy mismatch: %s != %s.\n",
5345                                 escape_essid(network->ssid, network->ssid_len),
5346                                 MAC_ARG(network->bssid),
5347                                 priv->
5348                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5349                                 network->
5350                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5351                                 "off");
5352                 return 0;
5353         }
5354
5355         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5356                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5357                                 "because of the same BSSID match: " MAC_FMT
5358                                 ".\n", escape_essid(network->ssid,
5359                                                     network->ssid_len),
5360                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5361                 return 0;
5362         }
5363
5364         /* Filter out any incompatible freq / mode combinations */
5365         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5366                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5367                                 "because of invalid frequency/mode "
5368                                 "combination.\n",
5369                                 escape_essid(network->ssid, network->ssid_len),
5370                                 MAC_ARG(network->bssid));
5371                 return 0;
5372         }
5373
5374         /* Ensure that the rates supported by the driver are compatible with
5375          * this AP, including verification of basic rates (mandatory) */
5376         if (!ipw_compatible_rates(priv, network, &rates)) {
5377                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5378                                 "because configured rate mask excludes "
5379                                 "AP mandatory rate.\n",
5380                                 escape_essid(network->ssid, network->ssid_len),
5381                                 MAC_ARG(network->bssid));
5382                 return 0;
5383         }
5384
5385         if (rates.num_rates == 0) {
5386                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5387                                 "because of no compatible rates.\n",
5388                                 escape_essid(network->ssid, network->ssid_len),
5389                                 MAC_ARG(network->bssid));
5390                 return 0;
5391         }
5392
5393         /* TODO: Perform any further minimal comparititive tests.  We do not
5394          * want to put too much policy logic here; intelligent scan selection
5395          * should occur within a generic IEEE 802.11 user space tool.  */
5396
5397         /* Set up 'new' AP to this network */
5398         ipw_copy_rates(&match->rates, &rates);
5399         match->network = network;
5400         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5401                         escape_essid(network->ssid, network->ssid_len),
5402                         MAC_ARG(network->bssid));
5403
5404         return 1;
5405 }
5406
5407 static void ipw_merge_adhoc_network(void *data)
5408 {
5409         struct ipw_priv *priv = data;
5410         struct ieee80211_network *network = NULL;
5411         struct ipw_network_match match = {
5412                 .network = priv->assoc_network
5413         };
5414
5415         if ((priv->status & STATUS_ASSOCIATED) &&
5416             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5417                 /* First pass through ROAM process -- look for a better
5418                  * network */
5419                 unsigned long flags;
5420
5421                 spin_lock_irqsave(&priv->ieee->lock, flags);
5422                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5423                         if (network != priv->assoc_network)
5424                                 ipw_find_adhoc_network(priv, &match, network,
5425                                                        1);
5426                 }
5427                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5428
5429                 if (match.network == priv->assoc_network) {
5430                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5431                                         "merge to.\n");
5432                         return;
5433                 }
5434
5435                 down(&priv->sem);
5436                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5437                         IPW_DEBUG_MERGE("remove network %s\n",
5438                                         escape_essid(priv->essid,
5439                                                      priv->essid_len));
5440                         ipw_remove_current_network(priv);
5441                 }
5442
5443                 ipw_disassociate(priv);
5444                 priv->assoc_network = match.network;
5445                 up(&priv->sem);
5446                 return;
5447         }
5448 }
5449
5450 static int ipw_best_network(struct ipw_priv *priv,
5451                             struct ipw_network_match *match,
5452                             struct ieee80211_network *network, int roaming)
5453 {
5454         struct ipw_supported_rates rates;
5455
5456         /* Verify that this network's capability is compatible with the
5457          * current mode (AdHoc or Infrastructure) */
5458         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5459              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5460             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5461              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5462                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5463                                 "capability mismatch.\n",
5464                                 escape_essid(network->ssid, network->ssid_len),
5465                                 MAC_ARG(network->bssid));
5466                 return 0;
5467         }
5468
5469         /* If we do not have an ESSID for this AP, we can not associate with
5470          * it */
5471         if (network->flags & NETWORK_EMPTY_ESSID) {
5472                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5473                                 "because of hidden ESSID.\n",
5474                                 escape_essid(network->ssid, network->ssid_len),
5475                                 MAC_ARG(network->bssid));
5476                 return 0;
5477         }
5478
5479         if (unlikely(roaming)) {
5480                 /* If we are roaming, then ensure check if this is a valid
5481                  * network to try and roam to */
5482                 if ((network->ssid_len != match->network->ssid_len) ||
5483                     memcmp(network->ssid, match->network->ssid,
5484                            network->ssid_len)) {
5485                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5486                                         "because of non-network ESSID.\n",
5487                                         escape_essid(network->ssid,
5488                                                      network->ssid_len),
5489                                         MAC_ARG(network->bssid));
5490                         return 0;
5491                 }
5492         } else {
5493                 /* If an ESSID has been configured then compare the broadcast
5494                  * ESSID to ours */
5495                 if ((priv->config & CFG_STATIC_ESSID) &&
5496                     ((network->ssid_len != priv->essid_len) ||
5497                      memcmp(network->ssid, priv->essid,
5498                             min(network->ssid_len, priv->essid_len)))) {
5499                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5500                         strncpy(escaped,
5501                                 escape_essid(network->ssid, network->ssid_len),
5502                                 sizeof(escaped));
5503                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5504                                         "because of ESSID mismatch: '%s'.\n",
5505                                         escaped, MAC_ARG(network->bssid),
5506                                         escape_essid(priv->essid,
5507                                                      priv->essid_len));
5508                         return 0;
5509                 }
5510         }
5511
5512         /* If the old network rate is better than this one, don't bother
5513          * testing everything else. */
5514         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5515                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5516                 strncpy(escaped,
5517                         escape_essid(network->ssid, network->ssid_len),
5518                         sizeof(escaped));
5519                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5520                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5521                                 escaped, MAC_ARG(network->bssid),
5522                                 escape_essid(match->network->ssid,
5523                                              match->network->ssid_len),
5524                                 MAC_ARG(match->network->bssid));
5525                 return 0;
5526         }
5527
5528         /* If this network has already had an association attempt within the
5529          * last 3 seconds, do not try and associate again... */
5530         if (network->last_associate &&
5531             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5532                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5533                                 "because of storming (%lus since last "
5534                                 "assoc attempt).\n",
5535                                 escape_essid(network->ssid, network->ssid_len),
5536                                 MAC_ARG(network->bssid),
5537                                 (jiffies - network->last_associate) / HZ);
5538                 return 0;
5539         }
5540
5541         /* Now go through and see if the requested network is valid... */
5542         if (priv->ieee->scan_age != 0 &&
5543             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5544                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545                                 "because of age: %lums.\n",
5546                                 escape_essid(network->ssid, network->ssid_len),
5547                                 MAC_ARG(network->bssid),
5548                                 1000 * (jiffies - network->last_scanned) / HZ);
5549                 return 0;
5550         }
5551
5552         if ((priv->config & CFG_STATIC_CHANNEL) &&
5553             (network->channel != priv->channel)) {
5554                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5555                                 "because of channel mismatch: %d != %d.\n",
5556                                 escape_essid(network->ssid, network->ssid_len),
5557                                 MAC_ARG(network->bssid),
5558                                 network->channel, priv->channel);
5559                 return 0;
5560         }
5561
5562         /* Verify privacy compatability */
5563         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5564             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5565                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5566                                 "because of privacy mismatch: %s != %s.\n",
5567                                 escape_essid(network->ssid, network->ssid_len),
5568                                 MAC_ARG(network->bssid),
5569                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5570                                 "off",
5571                                 network->capability &
5572                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5573                 return 0;
5574         }
5575
5576         if (!priv->ieee->wpa_enabled && (network->wpa_ie_len > 0 ||
5577                                          network->rsn_ie_len > 0)) {
5578                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5579                                 "because of WPA capability mismatch.\n",
5580                                 escape_essid(network->ssid, network->ssid_len),
5581                                 MAC_ARG(network->bssid));
5582                 return 0;
5583         }
5584
5585         if ((priv->config & CFG_STATIC_BSSID) &&
5586             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5587                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5588                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5589                                 escape_essid(network->ssid, network->ssid_len),
5590                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5591                 return 0;
5592         }
5593
5594         /* Filter out any incompatible freq / mode combinations */
5595         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5596                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5597                                 "because of invalid frequency/mode "
5598                                 "combination.\n",
5599                                 escape_essid(network->ssid, network->ssid_len),
5600                                 MAC_ARG(network->bssid));
5601                 return 0;
5602         }
5603
5604         /* Filter out invalid channel in current GEO */
5605         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5606                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5607                                 "because of invalid channel in current GEO\n",
5608                                 escape_essid(network->ssid, network->ssid_len),
5609                                 MAC_ARG(network->bssid));
5610                 return 0;
5611         }
5612
5613         /* Ensure that the rates supported by the driver are compatible with
5614          * this AP, including verification of basic rates (mandatory) */
5615         if (!ipw_compatible_rates(priv, network, &rates)) {
5616                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5617                                 "because configured rate mask excludes "
5618                                 "AP mandatory rate.\n",
5619                                 escape_essid(network->ssid, network->ssid_len),
5620                                 MAC_ARG(network->bssid));
5621                 return 0;
5622         }
5623
5624         if (rates.num_rates == 0) {
5625                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5626                                 "because of no compatible rates.\n",
5627                                 escape_essid(network->ssid, network->ssid_len),
5628                                 MAC_ARG(network->bssid));
5629                 return 0;
5630         }
5631
5632         /* TODO: Perform any further minimal comparititive tests.  We do not
5633          * want to put too much policy logic here; intelligent scan selection
5634          * should occur within a generic IEEE 802.11 user space tool.  */
5635
5636         /* Set up 'new' AP to this network */
5637         ipw_copy_rates(&match->rates, &rates);
5638         match->network = network;
5639
5640         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5641                         escape_essid(network->ssid, network->ssid_len),
5642                         MAC_ARG(network->bssid));
5643
5644         return 1;
5645 }
5646
5647 static void ipw_adhoc_create(struct ipw_priv *priv,
5648                              struct ieee80211_network *network)
5649 {
5650         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5651         int i;
5652
5653         /*
5654          * For the purposes of scanning, we can set our wireless mode
5655          * to trigger scans across combinations of bands, but when it
5656          * comes to creating a new ad-hoc network, we have tell the FW
5657          * exactly which band to use.
5658          *
5659          * We also have the possibility of an invalid channel for the
5660          * chossen band.  Attempting to create a new ad-hoc network
5661          * with an invalid channel for wireless mode will trigger a
5662          * FW fatal error.
5663          *
5664          */
5665         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5666         case IEEE80211_52GHZ_BAND:
5667                 network->mode = IEEE_A;
5668                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5669                 if (i == -1)
5670                         BUG();
5671                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5672                         IPW_WARNING("Overriding invalid channel\n");
5673                         priv->channel = geo->a[0].channel;
5674                 }
5675                 break;
5676
5677         case IEEE80211_24GHZ_BAND:
5678                 if (priv->ieee->mode & IEEE_G)
5679                         network->mode = IEEE_G;
5680                 else
5681                         network->mode = IEEE_B;
5682                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5683                 if (i == -1)
5684                         BUG();
5685                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5686                         IPW_WARNING("Overriding invalid channel\n");
5687                         priv->channel = geo->bg[0].channel;
5688                 }
5689                 break;
5690
5691         default:
5692                 IPW_WARNING("Overriding invalid channel\n");
5693                 if (priv->ieee->mode & IEEE_A) {
5694                         network->mode = IEEE_A;
5695                         priv->channel = geo->a[0].channel;
5696                 } else if (priv->ieee->mode & IEEE_G) {
5697                         network->mode = IEEE_G;
5698                         priv->channel = geo->bg[0].channel;
5699                 } else {
5700                         network->mode = IEEE_B;
5701                         priv->channel = geo->bg[0].channel;
5702                 }
5703                 break;
5704         }
5705
5706         network->channel = priv->channel;
5707         priv->config |= CFG_ADHOC_PERSIST;
5708         ipw_create_bssid(priv, network->bssid);
5709         network->ssid_len = priv->essid_len;
5710         memcpy(network->ssid, priv->essid, priv->essid_len);
5711         memset(&network->stats, 0, sizeof(network->stats));
5712         network->capability = WLAN_CAPABILITY_IBSS;
5713         if (!(priv->config & CFG_PREAMBLE_LONG))
5714                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5715         if (priv->capability & CAP_PRIVACY_ON)
5716                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5717         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5718         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5719         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5720         memcpy(network->rates_ex,
5721                &priv->rates.supported_rates[network->rates_len],
5722                network->rates_ex_len);
5723         network->last_scanned = 0;
5724         network->flags = 0;
5725         network->last_associate = 0;
5726         network->time_stamp[0] = 0;
5727         network->time_stamp[1] = 0;
5728         network->beacon_interval = 100; /* Default */
5729         network->listen_interval = 10;  /* Default */
5730         network->atim_window = 0;       /* Default */
5731         network->wpa_ie_len = 0;
5732         network->rsn_ie_len = 0;
5733 }
5734
5735 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5736 {
5737         struct ipw_tgi_tx_key *key;
5738         struct host_cmd cmd = {
5739                 .cmd = IPW_CMD_TGI_TX_KEY,
5740                 .len = sizeof(*key)
5741         };
5742
5743         if (!(priv->ieee->sec.flags & (1 << index)))
5744                 return;
5745
5746         key = (struct ipw_tgi_tx_key *)&cmd.param;
5747         key->key_id = index;
5748         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5749         key->security_type = type;
5750         key->station_index = 0; /* always 0 for BSS */
5751         key->flags = 0;
5752         /* 0 for new key; previous value of counter (after fatal error) */
5753         key->tx_counter[0] = 0;
5754         key->tx_counter[1] = 0;
5755
5756         ipw_send_cmd(priv, &cmd);
5757 }
5758
5759 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5760 {
5761         struct ipw_wep_key *key;
5762         int i;
5763         struct host_cmd cmd = {
5764                 .cmd = IPW_CMD_WEP_KEY,
5765                 .len = sizeof(*key)
5766         };
5767
5768         key = (struct ipw_wep_key *)&cmd.param;
5769         key->cmd_id = DINO_CMD_WEP_KEY;
5770         key->seq_num = 0;
5771
5772         /* Note: AES keys cannot be set for multiple times.
5773          * Only set it at the first time. */
5774         for (i = 0; i < 4; i++) {
5775                 key->key_index = i | type;
5776                 if (!(priv->ieee->sec.flags & (1 << i))) {
5777                         key->key_size = 0;
5778                         continue;
5779                 }
5780
5781                 key->key_size = priv->ieee->sec.key_sizes[i];
5782                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5783
5784                 ipw_send_cmd(priv, &cmd);
5785         }
5786 }
5787
5788 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5789 {
5790         if (priv->ieee->host_encrypt)
5791                 return;
5792
5793         switch (level) {
5794         case SEC_LEVEL_3:
5795                 priv->sys_config.disable_unicast_decryption = 0;
5796                 priv->ieee->host_decrypt = 0;
5797                 break;
5798         case SEC_LEVEL_2:
5799                 priv->sys_config.disable_unicast_decryption = 1;
5800                 priv->ieee->host_decrypt = 1;
5801                 break;
5802         case SEC_LEVEL_1:
5803                 priv->sys_config.disable_unicast_decryption = 0;
5804                 priv->ieee->host_decrypt = 0;
5805                 break;
5806         case SEC_LEVEL_0:
5807                 priv->sys_config.disable_unicast_decryption = 1;
5808                 break;
5809         default:
5810                 break;
5811         }
5812 }
5813
5814 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5815 {
5816         if (priv->ieee->host_encrypt)
5817                 return;
5818
5819         switch (level) {
5820         case SEC_LEVEL_3:
5821                 priv->sys_config.disable_multicast_decryption = 0;
5822                 break;
5823         case SEC_LEVEL_2:
5824                 priv->sys_config.disable_multicast_decryption = 1;
5825                 break;
5826         case SEC_LEVEL_1:
5827                 priv->sys_config.disable_multicast_decryption = 0;
5828                 break;
5829         case SEC_LEVEL_0:
5830                 priv->sys_config.disable_multicast_decryption = 1;
5831                 break;
5832         default:
5833                 break;
5834         }
5835 }
5836
5837 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5838 {
5839         switch (priv->ieee->sec.level) {
5840         case SEC_LEVEL_3:
5841                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5842                         ipw_send_tgi_tx_key(priv,
5843                                             DCT_FLAG_EXT_SECURITY_CCM,
5844                                             priv->ieee->sec.active_key);
5845
5846                 if (!priv->ieee->host_mc_decrypt)
5847                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5848                 break;
5849         case SEC_LEVEL_2:
5850                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5851                         ipw_send_tgi_tx_key(priv,
5852                                             DCT_FLAG_EXT_SECURITY_TKIP,
5853                                             priv->ieee->sec.active_key);
5854                 break;
5855         case SEC_LEVEL_1:
5856                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5857                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5858                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5859                 break;
5860         case SEC_LEVEL_0:
5861         default:
5862                 break;
5863         }
5864 }
5865
5866 static void ipw_adhoc_check(void *data)
5867 {
5868         struct ipw_priv *priv = data;
5869
5870         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5871             !(priv->config & CFG_ADHOC_PERSIST)) {
5872                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5873                           IPW_DL_STATE | IPW_DL_ASSOC,
5874                           "Missed beacon: %d - disassociate\n",
5875                           priv->missed_adhoc_beacons);
5876                 ipw_remove_current_network(priv);
5877                 ipw_disassociate(priv);
5878                 return;
5879         }
5880
5881         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5882                            priv->assoc_request.beacon_interval);
5883 }
5884
5885 static void ipw_bg_adhoc_check(void *data)
5886 {
5887         struct ipw_priv *priv = data;
5888         down(&priv->sem);
5889         ipw_adhoc_check(data);
5890         up(&priv->sem);
5891 }
5892
5893 #ifdef CONFIG_IPW2200_DEBUG
5894 static void ipw_debug_config(struct ipw_priv *priv)
5895 {
5896         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5897                        "[CFG 0x%08X]\n", priv->config);
5898         if (priv->config & CFG_STATIC_CHANNEL)
5899                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5900         else
5901                 IPW_DEBUG_INFO("Channel unlocked.\n");
5902         if (priv->config & CFG_STATIC_ESSID)
5903                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5904                                escape_essid(priv->essid, priv->essid_len));
5905         else
5906                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5907         if (priv->config & CFG_STATIC_BSSID)
5908                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5909                                MAC_ARG(priv->bssid));
5910         else
5911                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5912         if (priv->capability & CAP_PRIVACY_ON)
5913                 IPW_DEBUG_INFO("PRIVACY on\n");
5914         else
5915                 IPW_DEBUG_INFO("PRIVACY off\n");
5916         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5917 }
5918 #else
5919 #define ipw_debug_config(x) do {} while (0)
5920 #endif
5921
5922 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5923 {
5924         /* TODO: Verify that this works... */
5925         struct ipw_fixed_rate fr = {
5926                 .tx_rates = priv->rates_mask
5927         };
5928         u32 reg;
5929         u16 mask = 0;
5930
5931         /* Identify 'current FW band' and match it with the fixed
5932          * Tx rates */
5933
5934         switch (priv->ieee->freq_band) {
5935         case IEEE80211_52GHZ_BAND:      /* A only */
5936                 /* IEEE_A */
5937                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5938                         /* Invalid fixed rate mask */
5939                         IPW_DEBUG_WX
5940                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5941                         fr.tx_rates = 0;
5942                         break;
5943                 }
5944
5945                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5946                 break;
5947
5948         default:                /* 2.4Ghz or Mixed */
5949                 /* IEEE_B */
5950                 if (mode == IEEE_B) {
5951                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5952                                 /* Invalid fixed rate mask */
5953                                 IPW_DEBUG_WX
5954                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5955                                 fr.tx_rates = 0;
5956                         }
5957                         break;
5958                 }
5959
5960                 /* IEEE_G */
5961                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5962                                     IEEE80211_OFDM_RATES_MASK)) {
5963                         /* Invalid fixed rate mask */
5964                         IPW_DEBUG_WX
5965                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5966                         fr.tx_rates = 0;
5967                         break;
5968                 }
5969
5970                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5971                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5972                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5973                 }
5974
5975                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5976                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5977                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5978                 }
5979
5980                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5981                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5982                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5983                 }
5984
5985                 fr.tx_rates |= mask;
5986                 break;
5987         }
5988
5989         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5990         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5991 }
5992
5993 static void ipw_abort_scan(struct ipw_priv *priv)
5994 {
5995         int err;
5996
5997         if (priv->status & STATUS_SCAN_ABORTING) {
5998                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5999                 return;
6000         }
6001         priv->status |= STATUS_SCAN_ABORTING;
6002
6003         err = ipw_send_scan_abort(priv);
6004         if (err)
6005                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6006 }
6007
6008 static void ipw_add_scan_channels(struct ipw_priv *priv,
6009                                   struct ipw_scan_request_ext *scan,
6010                                   int scan_type)
6011 {
6012         int channel_index = 0;
6013         const struct ieee80211_geo *geo;
6014         int i;
6015
6016         geo = ipw_get_geo(priv->ieee);
6017
6018         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6019                 int start = channel_index;
6020                 for (i = 0; i < geo->a_channels; i++) {
6021                         if ((priv->status & STATUS_ASSOCIATED) &&
6022                             geo->a[i].channel == priv->channel)
6023                                 continue;
6024                         channel_index++;
6025                         scan->channels_list[channel_index] = geo->a[i].channel;
6026                         ipw_set_scan_type(scan, channel_index,
6027                                           geo->a[i].
6028                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6029                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6030                                           scan_type);
6031                 }
6032
6033                 if (start != channel_index) {
6034                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6035                             (channel_index - start);
6036                         channel_index++;
6037                 }
6038         }
6039
6040         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6041                 int start = channel_index;
6042                 if (priv->config & CFG_SPEED_SCAN) {
6043                         int index;
6044                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6045                                 /* nop out the list */
6046                                 [0] = 0
6047                         };
6048
6049                         u8 channel;
6050                         while (channel_index < IPW_SCAN_CHANNELS) {
6051                                 channel =
6052                                     priv->speed_scan[priv->speed_scan_pos];
6053                                 if (channel == 0) {
6054                                         priv->speed_scan_pos = 0;
6055                                         channel = priv->speed_scan[0];
6056                                 }
6057                                 if ((priv->status & STATUS_ASSOCIATED) &&
6058                                     channel == priv->channel) {
6059                                         priv->speed_scan_pos++;
6060                                         continue;
6061                                 }
6062
6063                                 /* If this channel has already been
6064                                  * added in scan, break from loop
6065                                  * and this will be the first channel
6066                                  * in the next scan.
6067                                  */
6068                                 if (channels[channel - 1] != 0)
6069                                         break;
6070
6071                                 channels[channel - 1] = 1;
6072                                 priv->speed_scan_pos++;
6073                                 channel_index++;
6074                                 scan->channels_list[channel_index] = channel;
6075                                 index =
6076                                     ipw_channel_to_index(priv->ieee, channel);
6077                                 ipw_set_scan_type(scan, channel_index,
6078                                                   geo->bg[index].
6079                                                   flags &
6080                                                   IEEE80211_CH_PASSIVE_ONLY ?
6081                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6082                                                   : scan_type);
6083                         }
6084                 } else {
6085                         for (i = 0; i < geo->bg_channels; i++) {
6086                                 if ((priv->status & STATUS_ASSOCIATED) &&
6087                                     geo->bg[i].channel == priv->channel)
6088                                         continue;
6089                                 channel_index++;
6090                                 scan->channels_list[channel_index] =
6091                                     geo->bg[i].channel;
6092                                 ipw_set_scan_type(scan, channel_index,
6093                                                   geo->bg[i].
6094                                                   flags &
6095                                                   IEEE80211_CH_PASSIVE_ONLY ?
6096                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6097                                                   : scan_type);
6098                         }
6099                 }
6100
6101                 if (start != channel_index) {
6102                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6103                             (channel_index - start);
6104                 }
6105         }
6106 }
6107
6108 static int ipw_request_scan(struct ipw_priv *priv)
6109 {
6110         struct ipw_scan_request_ext scan;
6111         int err = 0, scan_type;
6112
6113         if (!(priv->status & STATUS_INIT) ||
6114             (priv->status & STATUS_EXIT_PENDING))
6115                 return 0;
6116
6117         down(&priv->sem);
6118
6119         if (priv->status & STATUS_SCANNING) {
6120                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6121                 priv->status |= STATUS_SCAN_PENDING;
6122                 goto done;
6123         }
6124
6125         if (!(priv->status & STATUS_SCAN_FORCED) &&
6126             priv->status & STATUS_SCAN_ABORTING) {
6127                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6128                 priv->status |= STATUS_SCAN_PENDING;
6129                 goto done;
6130         }
6131
6132         if (priv->status & STATUS_RF_KILL_MASK) {
6133                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6134                 priv->status |= STATUS_SCAN_PENDING;
6135                 goto done;
6136         }
6137
6138         memset(&scan, 0, sizeof(scan));
6139
6140         if (priv->config & CFG_SPEED_SCAN)
6141                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6142                     cpu_to_le16(30);
6143         else
6144                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6145                     cpu_to_le16(20);
6146
6147         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6148             cpu_to_le16(20);
6149         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6150
6151         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6152
6153 #ifdef CONFIG_IPW2200_MONITOR
6154         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6155                 u8 channel;
6156                 u8 band = 0;
6157
6158                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6159                 case IEEE80211_52GHZ_BAND:
6160                         band = (u8) (IPW_A_MODE << 6) | 1;
6161                         channel = priv->channel;
6162                         break;
6163
6164                 case IEEE80211_24GHZ_BAND:
6165                         band = (u8) (IPW_B_MODE << 6) | 1;
6166                         channel = priv->channel;
6167                         break;
6168
6169                 default:
6170                         band = (u8) (IPW_B_MODE << 6) | 1;
6171                         channel = 9;
6172                         break;
6173                 }
6174
6175                 scan.channels_list[0] = band;
6176                 scan.channels_list[1] = channel;
6177                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6178
6179                 /* NOTE:  The card will sit on this channel for this time
6180                  * period.  Scan aborts are timing sensitive and frequently
6181                  * result in firmware restarts.  As such, it is best to
6182                  * set a small dwell_time here and just keep re-issuing
6183                  * scans.  Otherwise fast channel hopping will not actually
6184                  * hop channels.
6185                  *
6186                  * TODO: Move SPEED SCAN support to all modes and bands */
6187                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6188                     cpu_to_le16(2000);
6189         } else {
6190 #endif                          /* CONFIG_IPW2200_MONITOR */
6191                 /* If we are roaming, then make this a directed scan for the
6192                  * current network.  Otherwise, ensure that every other scan
6193                  * is a fast channel hop scan */
6194                 if ((priv->status & STATUS_ROAMING)
6195                     || (!(priv->status & STATUS_ASSOCIATED)
6196                         && (priv->config & CFG_STATIC_ESSID)
6197                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6198                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6199                         if (err) {
6200                                 IPW_DEBUG_HC("Attempt to send SSID command "
6201                                              "failed.\n");
6202                                 goto done;
6203                         }
6204
6205                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6206                 } else
6207                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6208
6209                 ipw_add_scan_channels(priv, &scan, scan_type);
6210 #ifdef CONFIG_IPW2200_MONITOR
6211         }
6212 #endif
6213
6214         err = ipw_send_scan_request_ext(priv, &scan);
6215         if (err) {
6216                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6217                 goto done;
6218         }
6219
6220         priv->status |= STATUS_SCANNING;
6221         priv->status &= ~STATUS_SCAN_PENDING;
6222         queue_delayed_work(priv->workqueue, &priv->scan_check,
6223                            IPW_SCAN_CHECK_WATCHDOG);
6224       done:
6225         up(&priv->sem);
6226         return err;
6227 }
6228
6229 static void ipw_bg_abort_scan(void *data)
6230 {
6231         struct ipw_priv *priv = data;
6232         down(&priv->sem);
6233         ipw_abort_scan(data);
6234         up(&priv->sem);
6235 }
6236
6237 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6238 {
6239         /* This is called when wpa_supplicant loads and closes the driver
6240          * interface. */
6241         priv->ieee->wpa_enabled = value;
6242         return 0;
6243 }
6244
6245 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6246 {
6247         struct ieee80211_device *ieee = priv->ieee;
6248         struct ieee80211_security sec = {
6249                 .flags = SEC_AUTH_MODE,
6250         };
6251         int ret = 0;
6252
6253         if (value & IW_AUTH_ALG_SHARED_KEY) {
6254                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6255                 ieee->open_wep = 0;
6256         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6257                 sec.auth_mode = WLAN_AUTH_OPEN;
6258                 ieee->open_wep = 1;
6259         } else if (value & IW_AUTH_ALG_LEAP) {
6260                 sec.auth_mode = WLAN_AUTH_LEAP;
6261                 ieee->open_wep = 1;
6262         } else
6263                 return -EINVAL;
6264
6265         if (ieee->set_security)
6266                 ieee->set_security(ieee->dev, &sec);
6267         else
6268                 ret = -EOPNOTSUPP;
6269
6270         return ret;
6271 }
6272
6273 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6274                                 int wpa_ie_len)
6275 {
6276         /* make sure WPA is enabled */
6277         ipw_wpa_enable(priv, 1);
6278
6279         ipw_disassociate(priv);
6280 }
6281
6282 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6283                             char *capabilities, int length)
6284 {
6285         struct host_cmd cmd = {
6286                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6287                 .len = length,
6288         };
6289
6290         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6291
6292         memcpy(cmd.param, capabilities, length);
6293         return ipw_send_cmd(priv, &cmd);
6294 }
6295
6296 /*
6297  * WE-18 support
6298  */
6299
6300 /* SIOCSIWGENIE */
6301 static int ipw_wx_set_genie(struct net_device *dev,
6302                             struct iw_request_info *info,
6303                             union iwreq_data *wrqu, char *extra)
6304 {
6305         struct ipw_priv *priv = ieee80211_priv(dev);
6306         struct ieee80211_device *ieee = priv->ieee;
6307         u8 *buf;
6308         int err = 0;
6309
6310         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6311             (wrqu->data.length && extra == NULL))
6312                 return -EINVAL;
6313
6314         //down(&priv->sem);
6315
6316         //if (!ieee->wpa_enabled) {
6317         //      err = -EOPNOTSUPP;
6318         //      goto out;
6319         //}
6320
6321         if (wrqu->data.length) {
6322                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6323                 if (buf == NULL) {
6324                         err = -ENOMEM;
6325                         goto out;
6326                 }
6327
6328                 memcpy(buf, extra, wrqu->data.length);
6329                 kfree(ieee->wpa_ie);
6330                 ieee->wpa_ie = buf;
6331                 ieee->wpa_ie_len = wrqu->data.length;
6332         } else {
6333                 kfree(ieee->wpa_ie);
6334                 ieee->wpa_ie = NULL;
6335                 ieee->wpa_ie_len = 0;
6336         }
6337
6338         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6339       out:
6340         //up(&priv->sem);
6341         return err;
6342 }
6343
6344 /* SIOCGIWGENIE */
6345 static int ipw_wx_get_genie(struct net_device *dev,
6346                             struct iw_request_info *info,
6347                             union iwreq_data *wrqu, char *extra)
6348 {
6349         struct ipw_priv *priv = ieee80211_priv(dev);
6350         struct ieee80211_device *ieee = priv->ieee;
6351         int err = 0;
6352
6353         //down(&priv->sem);
6354
6355         //if (!ieee->wpa_enabled) {
6356         //      err = -EOPNOTSUPP;
6357         //      goto out;
6358         //}
6359
6360         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6361                 wrqu->data.length = 0;
6362                 goto out;
6363         }
6364
6365         if (wrqu->data.length < ieee->wpa_ie_len) {
6366                 err = -E2BIG;
6367                 goto out;
6368         }
6369
6370         wrqu->data.length = ieee->wpa_ie_len;
6371         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6372
6373       out:
6374         //up(&priv->sem);
6375         return err;
6376 }
6377
6378 static int wext_cipher2level(int cipher)
6379 {
6380         switch (cipher) {
6381         case IW_AUTH_CIPHER_NONE:
6382                 return SEC_LEVEL_0;
6383         case IW_AUTH_CIPHER_WEP40:
6384         case IW_AUTH_CIPHER_WEP104:
6385                 return SEC_LEVEL_1;
6386         case IW_AUTH_CIPHER_TKIP:
6387                 return SEC_LEVEL_2;
6388         case IW_AUTH_CIPHER_CCMP:
6389                 return SEC_LEVEL_3;
6390         default:
6391                 return -1;
6392         }
6393 }
6394
6395 /* SIOCSIWAUTH */
6396 static int ipw_wx_set_auth(struct net_device *dev,
6397                            struct iw_request_info *info,
6398                            union iwreq_data *wrqu, char *extra)
6399 {
6400         struct ipw_priv *priv = ieee80211_priv(dev);
6401         struct ieee80211_device *ieee = priv->ieee;
6402         struct iw_param *param = &wrqu->param;
6403         struct ieee80211_crypt_data *crypt;
6404         unsigned long flags;
6405         int ret = 0;
6406
6407         switch (param->flags & IW_AUTH_INDEX) {
6408         case IW_AUTH_WPA_VERSION:
6409                 break;
6410         case IW_AUTH_CIPHER_PAIRWISE:
6411                 ipw_set_hw_decrypt_unicast(priv,
6412                                            wext_cipher2level(param->value));
6413                 break;
6414         case IW_AUTH_CIPHER_GROUP:
6415                 ipw_set_hw_decrypt_multicast(priv,
6416                                              wext_cipher2level(param->value));
6417                 break;
6418         case IW_AUTH_KEY_MGMT:
6419                 /*
6420                  * ipw2200 does not use these parameters
6421                  */
6422                 break;
6423
6424         case IW_AUTH_TKIP_COUNTERMEASURES:
6425                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6426                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6427                         break;
6428
6429                 flags = crypt->ops->get_flags(crypt->priv);
6430
6431                 if (param->value)
6432                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6433                 else
6434                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6435
6436                 crypt->ops->set_flags(flags, crypt->priv);
6437
6438                 break;
6439
6440         case IW_AUTH_DROP_UNENCRYPTED:{
6441                         /* HACK:
6442                          *
6443                          * wpa_supplicant calls set_wpa_enabled when the driver
6444                          * is loaded and unloaded, regardless of if WPA is being
6445                          * used.  No other calls are made which can be used to
6446                          * determine if encryption will be used or not prior to
6447                          * association being expected.  If encryption is not being
6448                          * used, drop_unencrypted is set to false, else true -- we
6449                          * can use this to determine if the CAP_PRIVACY_ON bit should
6450                          * be set.
6451                          */
6452                         struct ieee80211_security sec = {
6453                                 .flags = SEC_ENABLED,
6454                                 .enabled = param->value,
6455                         };
6456                         priv->ieee->drop_unencrypted = param->value;
6457                         /* We only change SEC_LEVEL for open mode. Others
6458                          * are set by ipw_wpa_set_encryption.
6459                          */
6460                         if (!param->value) {
6461                                 sec.flags |= SEC_LEVEL;
6462                                 sec.level = SEC_LEVEL_0;
6463                         } else {
6464                                 sec.flags |= SEC_LEVEL;
6465                                 sec.level = SEC_LEVEL_1;
6466                         }
6467                         if (priv->ieee->set_security)
6468                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6469                         break;
6470                 }
6471
6472         case IW_AUTH_80211_AUTH_ALG:
6473                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6474                 break;
6475
6476         case IW_AUTH_WPA_ENABLED:
6477                 ret = ipw_wpa_enable(priv, param->value);
6478                 break;
6479
6480         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6481                 ieee->ieee802_1x = param->value;
6482                 break;
6483
6484                 //case IW_AUTH_ROAMING_CONTROL:
6485         case IW_AUTH_PRIVACY_INVOKED:
6486                 ieee->privacy_invoked = param->value;
6487                 break;
6488
6489         default:
6490                 return -EOPNOTSUPP;
6491         }
6492         return ret;
6493 }
6494
6495 /* SIOCGIWAUTH */
6496 static int ipw_wx_get_auth(struct net_device *dev,
6497                            struct iw_request_info *info,
6498                            union iwreq_data *wrqu, char *extra)
6499 {
6500         struct ipw_priv *priv = ieee80211_priv(dev);
6501         struct ieee80211_device *ieee = priv->ieee;
6502         struct ieee80211_crypt_data *crypt;
6503         struct iw_param *param = &wrqu->param;
6504         int ret = 0;
6505
6506         switch (param->flags & IW_AUTH_INDEX) {
6507         case IW_AUTH_WPA_VERSION:
6508         case IW_AUTH_CIPHER_PAIRWISE:
6509         case IW_AUTH_CIPHER_GROUP:
6510         case IW_AUTH_KEY_MGMT:
6511                 /*
6512                  * wpa_supplicant will control these internally
6513                  */
6514                 ret = -EOPNOTSUPP;
6515                 break;
6516
6517         case IW_AUTH_TKIP_COUNTERMEASURES:
6518                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6519                 if (!crypt || !crypt->ops->get_flags)
6520                         break;
6521
6522                 param->value = (crypt->ops->get_flags(crypt->priv) &
6523                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6524
6525                 break;
6526
6527         case IW_AUTH_DROP_UNENCRYPTED:
6528                 param->value = ieee->drop_unencrypted;
6529                 break;
6530
6531         case IW_AUTH_80211_AUTH_ALG:
6532                 param->value = ieee->sec.auth_mode;
6533                 break;
6534
6535         case IW_AUTH_WPA_ENABLED:
6536                 param->value = ieee->wpa_enabled;
6537                 break;
6538
6539         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6540                 param->value = ieee->ieee802_1x;
6541                 break;
6542
6543         case IW_AUTH_ROAMING_CONTROL:
6544         case IW_AUTH_PRIVACY_INVOKED:
6545                 param->value = ieee->privacy_invoked;
6546                 break;
6547
6548         default:
6549                 return -EOPNOTSUPP;
6550         }
6551         return 0;
6552 }
6553
6554 /* SIOCSIWENCODEEXT */
6555 static int ipw_wx_set_encodeext(struct net_device *dev,
6556                                 struct iw_request_info *info,
6557                                 union iwreq_data *wrqu, char *extra)
6558 {
6559         struct ipw_priv *priv = ieee80211_priv(dev);
6560         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6561
6562         if (hwcrypto) {
6563                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6564                         /* IPW HW can't build TKIP MIC,
6565                            host decryption still needed */
6566                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6567                                 priv->ieee->host_mc_decrypt = 1;
6568                         else {
6569                                 priv->ieee->host_encrypt = 0;
6570                                 priv->ieee->host_encrypt_msdu = 1;
6571                                 priv->ieee->host_decrypt = 1;
6572                         }
6573                 } else {
6574                         priv->ieee->host_encrypt = 0;
6575                         priv->ieee->host_encrypt_msdu = 0;
6576                         priv->ieee->host_decrypt = 0;
6577                         priv->ieee->host_mc_decrypt = 0;
6578                 }
6579         }
6580
6581         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6582 }
6583
6584 /* SIOCGIWENCODEEXT */
6585 static int ipw_wx_get_encodeext(struct net_device *dev,
6586                                 struct iw_request_info *info,
6587                                 union iwreq_data *wrqu, char *extra)
6588 {
6589         struct ipw_priv *priv = ieee80211_priv(dev);
6590         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6591 }
6592
6593 /* SIOCSIWMLME */
6594 static int ipw_wx_set_mlme(struct net_device *dev,
6595                            struct iw_request_info *info,
6596                            union iwreq_data *wrqu, char *extra)
6597 {
6598         struct ipw_priv *priv = ieee80211_priv(dev);
6599         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6600         u16 reason;
6601
6602         reason = cpu_to_le16(mlme->reason_code);
6603
6604         switch (mlme->cmd) {
6605         case IW_MLME_DEAUTH:
6606                 // silently ignore
6607                 break;
6608
6609         case IW_MLME_DISASSOC:
6610                 ipw_disassociate(priv);
6611                 break;
6612
6613         default:
6614                 return -EOPNOTSUPP;
6615         }
6616         return 0;
6617 }
6618
6619 #ifdef CONFIG_IPW_QOS
6620
6621 /* QoS */
6622 /*
6623 * get the modulation type of the current network or
6624 * the card current mode
6625 */
6626 u8 ipw_qos_current_mode(struct ipw_priv * priv)
6627 {
6628         u8 mode = 0;
6629
6630         if (priv->status & STATUS_ASSOCIATED) {
6631                 unsigned long flags;
6632
6633                 spin_lock_irqsave(&priv->ieee->lock, flags);
6634                 mode = priv->assoc_network->mode;
6635                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6636         } else {
6637                 mode = priv->ieee->mode;
6638         }
6639         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6640         return mode;
6641 }
6642
6643 /*
6644 * Handle management frame beacon and probe response
6645 */
6646 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6647                                          int active_network,
6648                                          struct ieee80211_network *network)
6649 {
6650         u32 size = sizeof(struct ieee80211_qos_parameters);
6651
6652         if (network->capability & WLAN_CAPABILITY_IBSS)
6653                 network->qos_data.active = network->qos_data.supported;
6654
6655         if (network->flags & NETWORK_HAS_QOS_MASK) {
6656                 if (active_network &&
6657                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6658                         network->qos_data.active = network->qos_data.supported;
6659
6660                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6661                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6662                     (network->qos_data.old_param_count !=
6663                      network->qos_data.param_count)) {
6664                         network->qos_data.old_param_count =
6665                             network->qos_data.param_count;
6666                         schedule_work(&priv->qos_activate);
6667                         IPW_DEBUG_QOS("QoS parameters change call "
6668                                       "qos_activate\n");
6669                 }
6670         } else {
6671                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6672                         memcpy(&network->qos_data.parameters,
6673                                &def_parameters_CCK, size);
6674                 else
6675                         memcpy(&network->qos_data.parameters,
6676                                &def_parameters_OFDM, size);
6677
6678                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6679                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6680                         schedule_work(&priv->qos_activate);
6681                 }
6682
6683                 network->qos_data.active = 0;
6684                 network->qos_data.supported = 0;
6685         }
6686         if ((priv->status & STATUS_ASSOCIATED) &&
6687             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6688                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6689                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6690                             !(network->flags & NETWORK_EMPTY_ESSID))
6691                                 if ((network->ssid_len ==
6692                                      priv->assoc_network->ssid_len) &&
6693                                     !memcmp(network->ssid,
6694                                             priv->assoc_network->ssid,
6695                                             network->ssid_len)) {
6696                                         queue_work(priv->workqueue,
6697                                                    &priv->merge_networks);
6698                                 }
6699         }
6700
6701         return 0;
6702 }
6703
6704 /*
6705 * This function set up the firmware to support QoS. It sends
6706 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6707 */
6708 static int ipw_qos_activate(struct ipw_priv *priv,
6709                             struct ieee80211_qos_data *qos_network_data)
6710 {
6711         int err;
6712         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6713         struct ieee80211_qos_parameters *active_one = NULL;
6714         u32 size = sizeof(struct ieee80211_qos_parameters);
6715         u32 burst_duration;
6716         int i;
6717         u8 type;
6718
6719         type = ipw_qos_current_mode(priv);
6720
6721         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6722         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6723         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6724         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6725
6726         if (qos_network_data == NULL) {
6727                 if (type == IEEE_B) {
6728                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6729                         active_one = &def_parameters_CCK;
6730                 } else
6731                         active_one = &def_parameters_OFDM;
6732
6733                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6734                 burst_duration = ipw_qos_get_burst_duration(priv);
6735                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6736                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6737                             (u16) burst_duration;
6738         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6739                 if (type == IEEE_B) {
6740                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6741                                       type);
6742                         if (priv->qos_data.qos_enable == 0)
6743                                 active_one = &def_parameters_CCK;
6744                         else
6745                                 active_one = priv->qos_data.def_qos_parm_CCK;
6746                 } else {
6747                         if (priv->qos_data.qos_enable == 0)
6748                                 active_one = &def_parameters_OFDM;
6749                         else
6750                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6751                 }
6752                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6753         } else {
6754                 unsigned long flags;
6755                 int active;
6756
6757                 spin_lock_irqsave(&priv->ieee->lock, flags);
6758                 active_one = &(qos_network_data->parameters);
6759                 qos_network_data->old_param_count =
6760                     qos_network_data->param_count;
6761                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6762                 active = qos_network_data->supported;
6763                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6764
6765                 if (active == 0) {
6766                         burst_duration = ipw_qos_get_burst_duration(priv);
6767                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6768                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6769                                     tx_op_limit[i] = (u16) burst_duration;
6770                 }
6771         }
6772
6773         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6774         err = ipw_send_qos_params_command(priv,
6775                                           (struct ieee80211_qos_parameters *)
6776                                           &(qos_parameters[0]));
6777         if (err)
6778                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6779
6780         return err;
6781 }
6782
6783 /*
6784 * send IPW_CMD_WME_INFO to the firmware
6785 */
6786 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6787 {
6788         int ret = 0;
6789         struct ieee80211_qos_information_element qos_info;
6790
6791         if (priv == NULL)
6792                 return -1;
6793
6794         qos_info.elementID = QOS_ELEMENT_ID;
6795         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6796
6797         qos_info.version = QOS_VERSION_1;
6798         qos_info.ac_info = 0;
6799
6800         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6801         qos_info.qui_type = QOS_OUI_TYPE;
6802         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6803
6804         ret = ipw_send_qos_info_command(priv, &qos_info);
6805         if (ret != 0) {
6806                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6807         }
6808         return ret;
6809 }
6810
6811 /*
6812 * Set the QoS parameter with the association request structure
6813 */
6814 static int ipw_qos_association(struct ipw_priv *priv,
6815                                struct ieee80211_network *network)
6816 {
6817         int err = 0;
6818         struct ieee80211_qos_data *qos_data = NULL;
6819         struct ieee80211_qos_data ibss_data = {
6820                 .supported = 1,
6821                 .active = 1,
6822         };
6823
6824         switch (priv->ieee->iw_mode) {
6825         case IW_MODE_ADHOC:
6826                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6827                         BUG();
6828
6829                 qos_data = &ibss_data;
6830                 break;
6831
6832         case IW_MODE_INFRA:
6833                 qos_data = &network->qos_data;
6834                 break;
6835
6836         default:
6837                 BUG();
6838                 break;
6839         }
6840
6841         err = ipw_qos_activate(priv, qos_data);
6842         if (err) {
6843                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6844                 return err;
6845         }
6846
6847         if (priv->qos_data.qos_enable && qos_data->supported) {
6848                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6849                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6850                 return ipw_qos_set_info_element(priv);
6851         }
6852
6853         return 0;
6854 }
6855
6856 /*
6857 * handling the beaconing responces. if we get different QoS setting
6858 * of the network from the the associated setting adjust the QoS
6859 * setting
6860 */
6861 static int ipw_qos_association_resp(struct ipw_priv *priv,
6862                                     struct ieee80211_network *network)
6863 {
6864         int ret = 0;
6865         unsigned long flags;
6866         u32 size = sizeof(struct ieee80211_qos_parameters);
6867         int set_qos_param = 0;
6868
6869         if ((priv == NULL) || (network == NULL) ||
6870             (priv->assoc_network == NULL))
6871                 return ret;
6872
6873         if (!(priv->status & STATUS_ASSOCIATED))
6874                 return ret;
6875
6876         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6877                 return ret;
6878
6879         spin_lock_irqsave(&priv->ieee->lock, flags);
6880         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6881                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6882                        sizeof(struct ieee80211_qos_data));
6883                 priv->assoc_network->qos_data.active = 1;
6884                 if ((network->qos_data.old_param_count !=
6885                      network->qos_data.param_count)) {
6886                         set_qos_param = 1;
6887                         network->qos_data.old_param_count =
6888                             network->qos_data.param_count;
6889                 }
6890
6891         } else {
6892                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6893                         memcpy(&priv->assoc_network->qos_data.parameters,
6894                                &def_parameters_CCK, size);
6895                 else
6896                         memcpy(&priv->assoc_network->qos_data.parameters,
6897                                &def_parameters_OFDM, size);
6898                 priv->assoc_network->qos_data.active = 0;
6899                 priv->assoc_network->qos_data.supported = 0;
6900                 set_qos_param = 1;
6901         }
6902
6903         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6904
6905         if (set_qos_param == 1)
6906                 schedule_work(&priv->qos_activate);
6907
6908         return ret;
6909 }
6910
6911 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6912 {
6913         u32 ret = 0;
6914
6915         if ((priv == NULL))
6916                 return 0;
6917
6918         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6919                 ret = priv->qos_data.burst_duration_CCK;
6920         else
6921                 ret = priv->qos_data.burst_duration_OFDM;
6922
6923         return ret;
6924 }
6925
6926 /*
6927 * Initialize the setting of QoS global
6928 */
6929 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6930                          int burst_enable, u32 burst_duration_CCK,
6931                          u32 burst_duration_OFDM)
6932 {
6933         priv->qos_data.qos_enable = enable;
6934
6935         if (priv->qos_data.qos_enable) {
6936                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6937                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6938                 IPW_DEBUG_QOS("QoS is enabled\n");
6939         } else {
6940                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6941                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6942                 IPW_DEBUG_QOS("QoS is not enabled\n");
6943         }
6944
6945         priv->qos_data.burst_enable = burst_enable;
6946
6947         if (burst_enable) {
6948                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6949                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6950         } else {
6951                 priv->qos_data.burst_duration_CCK = 0;
6952                 priv->qos_data.burst_duration_OFDM = 0;
6953         }
6954 }
6955
6956 /*
6957 * map the packet priority to the right TX Queue
6958 */
6959 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6960 {
6961         if (priority > 7 || !priv->qos_data.qos_enable)
6962                 priority = 0;
6963
6964         return from_priority_to_tx_queue[priority] - 1;
6965 }
6966
6967 /*
6968 * add QoS parameter to the TX command
6969 */
6970 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6971                                         u16 priority,
6972                                         struct tfd_data *tfd, u8 unicast)
6973 {
6974         int ret = 0;
6975         int tx_queue_id = 0;
6976         struct ieee80211_qos_data *qos_data = NULL;
6977         int active, supported;
6978         unsigned long flags;
6979
6980         if (!(priv->status & STATUS_ASSOCIATED))
6981                 return 0;
6982
6983         qos_data = &priv->assoc_network->qos_data;
6984
6985         spin_lock_irqsave(&priv->ieee->lock, flags);
6986
6987         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6988                 if (unicast == 0)
6989                         qos_data->active = 0;
6990                 else
6991                         qos_data->active = qos_data->supported;
6992         }
6993
6994         active = qos_data->active;
6995         supported = qos_data->supported;
6996
6997         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6998
6999         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7000                       "unicast %d\n",
7001                       priv->qos_data.qos_enable, active, supported, unicast);
7002         if (active && priv->qos_data.qos_enable) {
7003                 ret = from_priority_to_tx_queue[priority];
7004                 tx_queue_id = ret - 1;
7005                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
7006                 if (priority <= 7) {
7007                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7008                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
7009                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
7010                             IEEE80211_STYPE_QOS_DATA;
7011
7012                         if (priv->qos_data.qos_no_ack_mask &
7013                             (1UL << tx_queue_id)) {
7014                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7015                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
7016                                     CTRL_QOS_NO_ACK;
7017                         }
7018                 }
7019         }
7020
7021         return ret;
7022 }
7023
7024 /*
7025 * background support to run QoS activate functionality
7026 */
7027 static void ipw_bg_qos_activate(void *data)
7028 {
7029         struct ipw_priv *priv = data;
7030
7031         if (priv == NULL)
7032                 return;
7033
7034         down(&priv->sem);
7035
7036         if (priv->status & STATUS_ASSOCIATED)
7037                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7038
7039         up(&priv->sem);
7040 }
7041
7042 static int ipw_handle_probe_response(struct net_device *dev,
7043                                      struct ieee80211_probe_response *resp,
7044                                      struct ieee80211_network *network)
7045 {
7046         struct ipw_priv *priv = ieee80211_priv(dev);
7047         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7048                               (network == priv->assoc_network));
7049
7050         ipw_qos_handle_probe_response(priv, active_network, network);
7051
7052         return 0;
7053 }
7054
7055 static int ipw_handle_beacon(struct net_device *dev,
7056                              struct ieee80211_beacon *resp,
7057                              struct ieee80211_network *network)
7058 {
7059         struct ipw_priv *priv = ieee80211_priv(dev);
7060         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7061                               (network == priv->assoc_network));
7062
7063         ipw_qos_handle_probe_response(priv, active_network, network);
7064
7065         return 0;
7066 }
7067
7068 static int ipw_handle_assoc_response(struct net_device *dev,
7069                                      struct ieee80211_assoc_response *resp,
7070                                      struct ieee80211_network *network)
7071 {
7072         struct ipw_priv *priv = ieee80211_priv(dev);
7073         ipw_qos_association_resp(priv, network);
7074         return 0;
7075 }
7076
7077 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7078                                        *qos_param)
7079 {
7080         struct host_cmd cmd = {
7081                 .cmd = IPW_CMD_QOS_PARAMETERS,
7082                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7083         };
7084
7085         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7086         return ipw_send_cmd(priv, &cmd);
7087 }
7088
7089 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7090                                      *qos_param)
7091 {
7092         struct host_cmd cmd = {
7093                 .cmd = IPW_CMD_WME_INFO,
7094                 .len = sizeof(*qos_param)
7095         };
7096
7097         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7098         return ipw_send_cmd(priv, &cmd);
7099 }
7100
7101 #endif                          /* CONFIG_IPW_QOS */
7102
7103 static int ipw_associate_network(struct ipw_priv *priv,
7104                                  struct ieee80211_network *network,
7105                                  struct ipw_supported_rates *rates, int roaming)
7106 {
7107         int err;
7108
7109         if (priv->config & CFG_FIXED_RATE)
7110                 ipw_set_fixed_rate(priv, network->mode);
7111
7112         if (!(priv->config & CFG_STATIC_ESSID)) {
7113                 priv->essid_len = min(network->ssid_len,
7114                                       (u8) IW_ESSID_MAX_SIZE);
7115                 memcpy(priv->essid, network->ssid, priv->essid_len);
7116         }
7117
7118         network->last_associate = jiffies;
7119
7120         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7121         priv->assoc_request.channel = network->channel;
7122         priv->assoc_request.auth_key = 0;
7123
7124         if ((priv->capability & CAP_PRIVACY_ON) &&
7125             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7126                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7127                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7128
7129                 if ((priv->ieee->sec.level == SEC_LEVEL_1) &&
7130                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7131                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7132
7133         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7134                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7135                 priv->assoc_request.auth_type = AUTH_LEAP;
7136         else
7137                 priv->assoc_request.auth_type = AUTH_OPEN;
7138
7139         if (priv->ieee->wpa_ie_len) {
7140                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7141                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7142                                  priv->ieee->wpa_ie_len);
7143         }
7144
7145         /*
7146          * It is valid for our ieee device to support multiple modes, but
7147          * when it comes to associating to a given network we have to choose
7148          * just one mode.
7149          */
7150         if (network->mode & priv->ieee->mode & IEEE_A)
7151                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7152         else if (network->mode & priv->ieee->mode & IEEE_G)
7153                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7154         else if (network->mode & priv->ieee->mode & IEEE_B)
7155                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7156
7157         priv->assoc_request.capability = network->capability;
7158         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7159             && !(priv->config & CFG_PREAMBLE_LONG)) {
7160                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7161         } else {
7162                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7163
7164                 /* Clear the short preamble if we won't be supporting it */
7165                 priv->assoc_request.capability &=
7166                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7167         }
7168
7169         /* Clear capability bits that aren't used in Ad Hoc */
7170         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7171                 priv->assoc_request.capability &=
7172                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7173
7174         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7175                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7176                         roaming ? "Rea" : "A",
7177                         escape_essid(priv->essid, priv->essid_len),
7178                         network->channel,
7179                         ipw_modes[priv->assoc_request.ieee_mode],
7180                         rates->num_rates,
7181                         (priv->assoc_request.preamble_length ==
7182                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7183                         network->capability &
7184                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7185                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7186                         priv->capability & CAP_PRIVACY_ON ?
7187                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7188                          "(open)") : "",
7189                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7190                         priv->capability & CAP_PRIVACY_ON ?
7191                         '1' + priv->ieee->sec.active_key : '.',
7192                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7193
7194         priv->assoc_request.beacon_interval = network->beacon_interval;
7195         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7196             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7197                 priv->assoc_request.assoc_type = HC_IBSS_START;
7198                 priv->assoc_request.assoc_tsf_msw = 0;
7199                 priv->assoc_request.assoc_tsf_lsw = 0;
7200         } else {
7201                 if (unlikely(roaming))
7202                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7203                 else
7204                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7205                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7206                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7207         }
7208
7209         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7210
7211         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7212                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7213                 priv->assoc_request.atim_window = network->atim_window;
7214         } else {
7215                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7216                 priv->assoc_request.atim_window = 0;
7217         }
7218
7219         priv->assoc_request.listen_interval = network->listen_interval;
7220
7221         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7222         if (err) {
7223                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7224                 return err;
7225         }
7226
7227         rates->ieee_mode = priv->assoc_request.ieee_mode;
7228         rates->purpose = IPW_RATE_CONNECT;
7229         ipw_send_supported_rates(priv, rates);
7230
7231         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7232                 priv->sys_config.dot11g_auto_detection = 1;
7233         else
7234                 priv->sys_config.dot11g_auto_detection = 0;
7235
7236         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7237                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7238         else
7239                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7240
7241         err = ipw_send_system_config(priv, &priv->sys_config);
7242         if (err) {
7243                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7244                 return err;
7245         }
7246
7247         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7248         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7249         if (err) {
7250                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7251                 return err;
7252         }
7253
7254         /*
7255          * If preemption is enabled, it is possible for the association
7256          * to complete before we return from ipw_send_associate.  Therefore
7257          * we have to be sure and update our priviate data first.
7258          */
7259         priv->channel = network->channel;
7260         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7261         priv->status |= STATUS_ASSOCIATING;
7262         priv->status &= ~STATUS_SECURITY_UPDATED;
7263
7264         priv->assoc_network = network;
7265
7266 #ifdef CONFIG_IPW_QOS
7267         ipw_qos_association(priv, network);
7268 #endif
7269
7270         err = ipw_send_associate(priv, &priv->assoc_request);
7271         if (err) {
7272                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7273                 return err;
7274         }
7275
7276         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7277                   escape_essid(priv->essid, priv->essid_len),
7278                   MAC_ARG(priv->bssid));
7279
7280         return 0;
7281 }
7282
7283 static void ipw_roam(void *data)
7284 {
7285         struct ipw_priv *priv = data;
7286         struct ieee80211_network *network = NULL;
7287         struct ipw_network_match match = {
7288                 .network = priv->assoc_network
7289         };
7290
7291         /* The roaming process is as follows:
7292          *
7293          * 1.  Missed beacon threshold triggers the roaming process by
7294          *     setting the status ROAM bit and requesting a scan.
7295          * 2.  When the scan completes, it schedules the ROAM work
7296          * 3.  The ROAM work looks at all of the known networks for one that
7297          *     is a better network than the currently associated.  If none
7298          *     found, the ROAM process is over (ROAM bit cleared)
7299          * 4.  If a better network is found, a disassociation request is
7300          *     sent.
7301          * 5.  When the disassociation completes, the roam work is again
7302          *     scheduled.  The second time through, the driver is no longer
7303          *     associated, and the newly selected network is sent an
7304          *     association request.
7305          * 6.  At this point ,the roaming process is complete and the ROAM
7306          *     status bit is cleared.
7307          */
7308
7309         /* If we are no longer associated, and the roaming bit is no longer
7310          * set, then we are not actively roaming, so just return */
7311         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7312                 return;
7313
7314         if (priv->status & STATUS_ASSOCIATED) {
7315                 /* First pass through ROAM process -- look for a better
7316                  * network */
7317                 unsigned long flags;
7318                 u8 rssi = priv->assoc_network->stats.rssi;
7319                 priv->assoc_network->stats.rssi = -128;
7320                 spin_lock_irqsave(&priv->ieee->lock, flags);
7321                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7322                         if (network != priv->assoc_network)
7323                                 ipw_best_network(priv, &match, network, 1);
7324                 }
7325                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7326                 priv->assoc_network->stats.rssi = rssi;
7327
7328                 if (match.network == priv->assoc_network) {
7329                         IPW_DEBUG_ASSOC("No better APs in this network to "
7330                                         "roam to.\n");
7331                         priv->status &= ~STATUS_ROAMING;
7332                         ipw_debug_config(priv);
7333                         return;
7334                 }
7335
7336                 ipw_send_disassociate(priv, 1);
7337                 priv->assoc_network = match.network;
7338
7339                 return;
7340         }
7341
7342         /* Second pass through ROAM process -- request association */
7343         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7344         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7345         priv->status &= ~STATUS_ROAMING;
7346 }
7347
7348 static void ipw_bg_roam(void *data)
7349 {
7350         struct ipw_priv *priv = data;
7351         down(&priv->sem);
7352         ipw_roam(data);
7353         up(&priv->sem);
7354 }
7355
7356 static int ipw_associate(void *data)
7357 {
7358         struct ipw_priv *priv = data;
7359
7360         struct ieee80211_network *network = NULL;
7361         struct ipw_network_match match = {
7362                 .network = NULL
7363         };
7364         struct ipw_supported_rates *rates;
7365         struct list_head *element;
7366         unsigned long flags;
7367
7368         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7369                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7370                 return 0;
7371         }
7372
7373         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7374                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7375                                 "progress)\n");
7376                 return 0;
7377         }
7378
7379         if (priv->status & STATUS_DISASSOCIATING) {
7380                 IPW_DEBUG_ASSOC("Not attempting association (in "
7381                                 "disassociating)\n ");
7382                 queue_work(priv->workqueue, &priv->associate);
7383                 return 0;
7384         }
7385
7386         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7387                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7388                                 "initialized)\n");
7389                 return 0;
7390         }
7391
7392         if (!(priv->config & CFG_ASSOCIATE) &&
7393             !(priv->config & (CFG_STATIC_ESSID |
7394                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7395                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7396                 return 0;
7397         }
7398
7399         /* Protect our use of the network_list */
7400         spin_lock_irqsave(&priv->ieee->lock, flags);
7401         list_for_each_entry(network, &priv->ieee->network_list, list)
7402             ipw_best_network(priv, &match, network, 0);
7403
7404         network = match.network;
7405         rates = &match.rates;
7406
7407         if (network == NULL &&
7408             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7409             priv->config & CFG_ADHOC_CREATE &&
7410             priv->config & CFG_STATIC_ESSID &&
7411             priv->config & CFG_STATIC_CHANNEL &&
7412             !list_empty(&priv->ieee->network_free_list)) {
7413                 element = priv->ieee->network_free_list.next;
7414                 network = list_entry(element, struct ieee80211_network, list);
7415                 ipw_adhoc_create(priv, network);
7416                 rates = &priv->rates;
7417                 list_del(element);
7418                 list_add_tail(&network->list, &priv->ieee->network_list);
7419         }
7420         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7421
7422         /* If we reached the end of the list, then we don't have any valid
7423          * matching APs */
7424         if (!network) {
7425                 ipw_debug_config(priv);
7426
7427                 if (!(priv->status & STATUS_SCANNING)) {
7428                         if (!(priv->config & CFG_SPEED_SCAN))
7429                                 queue_delayed_work(priv->workqueue,
7430                                                    &priv->request_scan,
7431                                                    SCAN_INTERVAL);
7432                         else
7433                                 queue_work(priv->workqueue,
7434                                            &priv->request_scan);
7435                 }
7436
7437                 return 0;
7438         }
7439
7440         ipw_associate_network(priv, network, rates, 0);
7441
7442         return 1;
7443 }
7444
7445 static void ipw_bg_associate(void *data)
7446 {
7447         struct ipw_priv *priv = data;
7448         down(&priv->sem);
7449         ipw_associate(data);
7450         up(&priv->sem);
7451 }
7452
7453 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7454                                       struct sk_buff *skb)
7455 {
7456         struct ieee80211_hdr *hdr;
7457         u16 fc;
7458
7459         hdr = (struct ieee80211_hdr *)skb->data;
7460         fc = le16_to_cpu(hdr->frame_ctl);
7461         if (!(fc & IEEE80211_FCTL_PROTECTED))
7462                 return;
7463
7464         fc &= ~IEEE80211_FCTL_PROTECTED;
7465         hdr->frame_ctl = cpu_to_le16(fc);
7466         switch (priv->ieee->sec.level) {
7467         case SEC_LEVEL_3:
7468                 /* Remove CCMP HDR */
7469                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7470                         skb->data + IEEE80211_3ADDR_LEN + 8,
7471                         skb->len - IEEE80211_3ADDR_LEN - 8);
7472                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7473                 break;
7474         case SEC_LEVEL_2:
7475                 break;
7476         case SEC_LEVEL_1:
7477                 /* Remove IV */
7478                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7479                         skb->data + IEEE80211_3ADDR_LEN + 4,
7480                         skb->len - IEEE80211_3ADDR_LEN - 4);
7481                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7482                 break;
7483         case SEC_LEVEL_0:
7484                 break;
7485         default:
7486                 printk(KERN_ERR "Unknow security level %d\n",
7487                        priv->ieee->sec.level);
7488                 break;
7489         }
7490 }
7491
7492 static void ipw_handle_data_packet(struct ipw_priv *priv,
7493                                    struct ipw_rx_mem_buffer *rxb,
7494                                    struct ieee80211_rx_stats *stats)
7495 {
7496         struct ieee80211_hdr_4addr *hdr;
7497         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7498
7499         /* We received data from the HW, so stop the watchdog */
7500         priv->net_dev->trans_start = jiffies;
7501
7502         /* We only process data packets if the
7503          * interface is open */
7504         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7505                      skb_tailroom(rxb->skb))) {
7506                 priv->ieee->stats.rx_errors++;
7507                 priv->wstats.discard.misc++;
7508                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7509                 return;
7510         } else if (unlikely(!netif_running(priv->net_dev))) {
7511                 priv->ieee->stats.rx_dropped++;
7512                 priv->wstats.discard.misc++;
7513                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7514                 return;
7515         }
7516
7517         /* Advance skb->data to the start of the actual payload */
7518         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7519
7520         /* Set the size of the skb to the size of the frame */
7521         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7522
7523         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7524
7525         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7526         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7527         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7528             (is_multicast_ether_addr(hdr->addr1) ?
7529              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7530                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7531
7532         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7533                 priv->ieee->stats.rx_errors++;
7534         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7535                 rxb->skb = NULL;
7536                 __ipw_led_activity_on(priv);
7537         }
7538 }
7539
7540 #ifdef CONFIG_IEEE80211_RADIOTAP
7541 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7542                                            struct ipw_rx_mem_buffer *rxb,
7543                                            struct ieee80211_rx_stats *stats)
7544 {
7545         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7546         struct ipw_rx_frame *frame = &pkt->u.frame;
7547
7548         /* initial pull of some data */
7549         u16 received_channel = frame->received_channel;
7550         u8 antennaAndPhy = frame->antennaAndPhy;
7551         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7552         u16 pktrate = frame->rate;
7553
7554         /* Magic struct that slots into the radiotap header -- no reason
7555          * to build this manually element by element, we can write it much
7556          * more efficiently than we can parse it. ORDER MATTERS HERE */
7557         struct ipw_rt_hdr {
7558                 struct ieee80211_radiotap_header rt_hdr;
7559                 u8 rt_flags;    /* radiotap packet flags */
7560                 u8 rt_rate;     /* rate in 500kb/s */
7561                 u16 rt_channel; /* channel in mhz */
7562                 u16 rt_chbitmask;       /* channel bitfield */
7563                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7564                 u8 rt_antenna;  /* antenna number */
7565         } *ipw_rt;
7566
7567         short len = le16_to_cpu(pkt->u.frame.length);
7568
7569         /* We received data from the HW, so stop the watchdog */
7570         priv->net_dev->trans_start = jiffies;
7571
7572         /* We only process data packets if the
7573          * interface is open */
7574         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7575                      skb_tailroom(rxb->skb))) {
7576                 priv->ieee->stats.rx_errors++;
7577                 priv->wstats.discard.misc++;
7578                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7579                 return;
7580         } else if (unlikely(!netif_running(priv->net_dev))) {
7581                 priv->ieee->stats.rx_dropped++;
7582                 priv->wstats.discard.misc++;
7583                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7584                 return;
7585         }
7586
7587         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7588          * that now */
7589         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7590                 /* FIXME: Should alloc bigger skb instead */
7591                 priv->ieee->stats.rx_dropped++;
7592                 priv->wstats.discard.misc++;
7593                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7594                 return;
7595         }
7596
7597         /* copy the frame itself */
7598         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7599                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7600
7601         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7602          * part of our real header, saves a little time.
7603          *
7604          * No longer necessary since we fill in all our data.  Purge before merging
7605          * patch officially.
7606          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7607          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7608          */
7609
7610         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7611
7612         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7613         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7614         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7615
7616         /* Big bitfield of all the fields we provide in radiotap */
7617         ipw_rt->rt_hdr.it_present =
7618             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7619              (1 << IEEE80211_RADIOTAP_RATE) |
7620              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7621              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7622              (1 << IEEE80211_RADIOTAP_ANTENNA));
7623
7624         /* Zero the flags, we'll add to them as we go */
7625         ipw_rt->rt_flags = 0;
7626
7627         /* Convert signal to DBM */
7628         ipw_rt->rt_dbmsignal = antsignal;
7629
7630         /* Convert the channel data and set the flags */
7631         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7632         if (received_channel > 14) {    /* 802.11a */
7633                 ipw_rt->rt_chbitmask =
7634                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7635         } else if (antennaAndPhy & 32) {        /* 802.11b */
7636                 ipw_rt->rt_chbitmask =
7637                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7638         } else {                /* 802.11g */
7639                 ipw_rt->rt_chbitmask =
7640                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7641         }
7642
7643         /* set the rate in multiples of 500k/s */
7644         switch (pktrate) {
7645         case IPW_TX_RATE_1MB:
7646                 ipw_rt->rt_rate = 2;
7647                 break;
7648         case IPW_TX_RATE_2MB:
7649                 ipw_rt->rt_rate = 4;
7650                 break;
7651         case IPW_TX_RATE_5MB:
7652                 ipw_rt->rt_rate = 10;
7653                 break;
7654         case IPW_TX_RATE_6MB:
7655                 ipw_rt->rt_rate = 12;
7656                 break;
7657         case IPW_TX_RATE_9MB:
7658                 ipw_rt->rt_rate = 18;
7659                 break;
7660         case IPW_TX_RATE_11MB:
7661                 ipw_rt->rt_rate = 22;
7662                 break;
7663         case IPW_TX_RATE_12MB:
7664                 ipw_rt->rt_rate = 24;
7665                 break;
7666         case IPW_TX_RATE_18MB:
7667                 ipw_rt->rt_rate = 36;
7668                 break;
7669         case IPW_TX_RATE_24MB:
7670                 ipw_rt->rt_rate = 48;
7671                 break;
7672         case IPW_TX_RATE_36MB:
7673                 ipw_rt->rt_rate = 72;
7674                 break;
7675         case IPW_TX_RATE_48MB:
7676                 ipw_rt->rt_rate = 96;
7677                 break;
7678         case IPW_TX_RATE_54MB:
7679                 ipw_rt->rt_rate = 108;
7680                 break;
7681         default:
7682                 ipw_rt->rt_rate = 0;
7683                 break;
7684         }
7685
7686         /* antenna number */
7687         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7688
7689         /* set the preamble flag if we have it */
7690         if ((antennaAndPhy & 64))
7691                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7692
7693         /* Set the size of the skb to the size of the frame */
7694         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7695
7696         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7697
7698         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7699                 priv->ieee->stats.rx_errors++;
7700         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7701                 rxb->skb = NULL;
7702                 /* no LED during capture */
7703         }
7704 }
7705 #endif
7706
7707 static int is_network_packet(struct ipw_priv *priv,
7708                                     struct ieee80211_hdr_4addr *header)
7709 {
7710         /* Filter incoming packets to determine if they are targetted toward
7711          * this network, discarding packets coming from ourselves */
7712         switch (priv->ieee->iw_mode) {
7713         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7714                 /* packets from our adapter are dropped (echo) */
7715                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7716                         return 0;
7717
7718                 /* {broad,multi}cast packets to our BSSID go through */
7719                 if (is_multicast_ether_addr(header->addr1))
7720                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7721
7722                 /* packets to our adapter go through */
7723                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7724                                ETH_ALEN);
7725
7726         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7727                 /* packets from our adapter are dropped (echo) */
7728                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7729                         return 0;
7730
7731                 /* {broad,multi}cast packets to our BSS go through */
7732                 if (is_multicast_ether_addr(header->addr1))
7733                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7734
7735                 /* packets to our adapter go through */
7736                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7737                                ETH_ALEN);
7738         }
7739
7740         return 1;
7741 }
7742
7743 #define IPW_PACKET_RETRY_TIME HZ
7744
7745 static  int is_duplicate_packet(struct ipw_priv *priv,
7746                                       struct ieee80211_hdr_4addr *header)
7747 {
7748         u16 sc = le16_to_cpu(header->seq_ctl);
7749         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7750         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7751         u16 *last_seq, *last_frag;
7752         unsigned long *last_time;
7753
7754         switch (priv->ieee->iw_mode) {
7755         case IW_MODE_ADHOC:
7756                 {
7757                         struct list_head *p;
7758                         struct ipw_ibss_seq *entry = NULL;
7759                         u8 *mac = header->addr2;
7760                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7761
7762                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7763                                 entry =
7764                                     list_entry(p, struct ipw_ibss_seq, list);
7765                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7766                                         break;
7767                         }
7768                         if (p == &priv->ibss_mac_hash[index]) {
7769                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7770                                 if (!entry) {
7771                                         IPW_ERROR
7772                                             ("Cannot malloc new mac entry\n");
7773                                         return 0;
7774                                 }
7775                                 memcpy(entry->mac, mac, ETH_ALEN);
7776                                 entry->seq_num = seq;
7777                                 entry->frag_num = frag;
7778                                 entry->packet_time = jiffies;
7779                                 list_add(&entry->list,
7780                                          &priv->ibss_mac_hash[index]);
7781                                 return 0;
7782                         }
7783                         last_seq = &entry->seq_num;
7784                         last_frag = &entry->frag_num;
7785                         last_time = &entry->packet_time;
7786                         break;
7787                 }
7788         case IW_MODE_INFRA:
7789                 last_seq = &priv->last_seq_num;
7790                 last_frag = &priv->last_frag_num;
7791                 last_time = &priv->last_packet_time;
7792                 break;
7793         default:
7794                 return 0;
7795         }
7796         if ((*last_seq == seq) &&
7797             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7798                 if (*last_frag == frag)
7799                         goto drop;
7800                 if (*last_frag + 1 != frag)
7801                         /* out-of-order fragment */
7802                         goto drop;
7803         } else
7804                 *last_seq = seq;
7805
7806         *last_frag = frag;
7807         *last_time = jiffies;
7808         return 0;
7809
7810       drop:
7811         /* Comment this line now since we observed the card receives
7812          * duplicate packets but the FCTL_RETRY bit is not set in the
7813          * IBSS mode with fragmentation enabled.
7814          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7815         return 1;
7816 }
7817
7818 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7819                                    struct ipw_rx_mem_buffer *rxb,
7820                                    struct ieee80211_rx_stats *stats)
7821 {
7822         struct sk_buff *skb = rxb->skb;
7823         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7824         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7825             (skb->data + IPW_RX_FRAME_SIZE);
7826
7827         ieee80211_rx_mgt(priv->ieee, header, stats);
7828
7829         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7830             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7831               IEEE80211_STYPE_PROBE_RESP) ||
7832              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7833               IEEE80211_STYPE_BEACON))) {
7834                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7835                         ipw_add_station(priv, header->addr2);
7836         }
7837
7838         if (priv->config & CFG_NET_STATS) {
7839                 IPW_DEBUG_HC("sending stat packet\n");
7840
7841                 /* Set the size of the skb to the size of the full
7842                  * ipw header and 802.11 frame */
7843                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7844                         IPW_RX_FRAME_SIZE);
7845
7846                 /* Advance past the ipw packet header to the 802.11 frame */
7847                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7848
7849                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7850                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7851
7852                 skb->dev = priv->ieee->dev;
7853
7854                 /* Point raw at the ieee80211_stats */
7855                 skb->mac.raw = skb->data;
7856
7857                 skb->pkt_type = PACKET_OTHERHOST;
7858                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7859                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7860                 netif_rx(skb);
7861                 rxb->skb = NULL;
7862         }
7863 }
7864
7865 /*
7866  * Main entry function for recieving a packet with 80211 headers.  This
7867  * should be called when ever the FW has notified us that there is a new
7868  * skb in the recieve queue.
7869  */
7870 static void ipw_rx(struct ipw_priv *priv)
7871 {
7872         struct ipw_rx_mem_buffer *rxb;
7873         struct ipw_rx_packet *pkt;
7874         struct ieee80211_hdr_4addr *header;
7875         u32 r, w, i;
7876         u8 network_packet;
7877
7878         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7879         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7880         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7881
7882         while (i != r) {
7883                 rxb = priv->rxq->queue[i];
7884 #ifdef CONFIG_IPW2200_DEBUG
7885                 if (unlikely(rxb == NULL)) {
7886                         printk(KERN_CRIT "Queue not allocated!\n");
7887                         break;
7888                 }
7889 #endif
7890                 priv->rxq->queue[i] = NULL;
7891
7892                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7893                                             IPW_RX_BUF_SIZE,
7894                                             PCI_DMA_FROMDEVICE);
7895
7896                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7897                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7898                              pkt->header.message_type,
7899                              pkt->header.rx_seq_num, pkt->header.control_bits);
7900
7901                 switch (pkt->header.message_type) {
7902                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7903                                 struct ieee80211_rx_stats stats = {
7904                                         .rssi =
7905                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7906                                             IPW_RSSI_TO_DBM,
7907                                         .signal =
7908                                             le16_to_cpu(pkt->u.frame.signal),
7909                                         .noise =
7910                                             le16_to_cpu(pkt->u.frame.noise),
7911                                         .rate = pkt->u.frame.rate,
7912                                         .mac_time = jiffies,
7913                                         .received_channel =
7914                                             pkt->u.frame.received_channel,
7915                                         .freq =
7916                                             (pkt->u.frame.
7917                                              control & (1 << 0)) ?
7918                                             IEEE80211_24GHZ_BAND :
7919                                             IEEE80211_52GHZ_BAND,
7920                                         .len = le16_to_cpu(pkt->u.frame.length),
7921                                 };
7922
7923                                 if (stats.rssi != 0)
7924                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7925                                 if (stats.signal != 0)
7926                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7927                                 if (stats.noise != 0)
7928                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7929                                 if (stats.rate != 0)
7930                                         stats.mask |= IEEE80211_STATMASK_RATE;
7931
7932                                 priv->rx_packets++;
7933
7934 #ifdef CONFIG_IPW2200_MONITOR
7935                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7936 #ifdef CONFIG_IEEE80211_RADIOTAP
7937                                         ipw_handle_data_packet_monitor(priv,
7938                                                                        rxb,
7939                                                                        &stats);
7940 #else
7941                                         ipw_handle_data_packet(priv, rxb,
7942                                                                &stats);
7943 #endif
7944                                         break;
7945                                 }
7946 #endif
7947
7948                                 header =
7949                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7950                                                                    data +
7951                                                                    IPW_RX_FRAME_SIZE);
7952                                 /* TODO: Check Ad-Hoc dest/source and make sure
7953                                  * that we are actually parsing these packets
7954                                  * correctly -- we should probably use the
7955                                  * frame control of the packet and disregard
7956                                  * the current iw_mode */
7957
7958                                 network_packet =
7959                                     is_network_packet(priv, header);
7960                                 if (network_packet && priv->assoc_network) {
7961                                         priv->assoc_network->stats.rssi =
7962                                             stats.rssi;
7963                                         average_add(&priv->average_rssi,
7964                                                     stats.rssi);
7965                                         priv->last_rx_rssi = stats.rssi;
7966                                 }
7967
7968                                 IPW_DEBUG_RX("Frame: len=%u\n",
7969                                              le16_to_cpu(pkt->u.frame.length));
7970
7971                                 if (le16_to_cpu(pkt->u.frame.length) <
7972                                     frame_hdr_len(header)) {
7973                                         IPW_DEBUG_DROP
7974                                             ("Received packet is too small. "
7975                                              "Dropping.\n");
7976                                         priv->ieee->stats.rx_errors++;
7977                                         priv->wstats.discard.misc++;
7978                                         break;
7979                                 }
7980
7981                                 switch (WLAN_FC_GET_TYPE
7982                                         (le16_to_cpu(header->frame_ctl))) {
7983
7984                                 case IEEE80211_FTYPE_MGMT:
7985                                         ipw_handle_mgmt_packet(priv, rxb,
7986                                                                &stats);
7987                                         break;
7988
7989                                 case IEEE80211_FTYPE_CTL:
7990                                         break;
7991
7992                                 case IEEE80211_FTYPE_DATA:
7993                                         if (unlikely(!network_packet ||
7994                                                      is_duplicate_packet(priv,
7995                                                                          header)))
7996                                         {
7997                                                 IPW_DEBUG_DROP("Dropping: "
7998                                                                MAC_FMT ", "
7999                                                                MAC_FMT ", "
8000                                                                MAC_FMT "\n",
8001                                                                MAC_ARG(header->
8002                                                                        addr1),
8003                                                                MAC_ARG(header->
8004                                                                        addr2),
8005                                                                MAC_ARG(header->
8006                                                                        addr3));
8007                                                 break;
8008                                         }
8009
8010                                         ipw_handle_data_packet(priv, rxb,
8011                                                                &stats);
8012
8013                                         break;
8014                                 }
8015                                 break;
8016                         }
8017
8018                 case RX_HOST_NOTIFICATION_TYPE:{
8019                                 IPW_DEBUG_RX
8020                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8021                                      pkt->u.notification.subtype,
8022                                      pkt->u.notification.flags,
8023                                      pkt->u.notification.size);
8024                                 ipw_rx_notification(priv, &pkt->u.notification);
8025                                 break;
8026                         }
8027
8028                 default:
8029                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8030                                      pkt->header.message_type);
8031                         break;
8032                 }
8033
8034                 /* For now we just don't re-use anything.  We can tweak this
8035                  * later to try and re-use notification packets and SKBs that
8036                  * fail to Rx correctly */
8037                 if (rxb->skb != NULL) {
8038                         dev_kfree_skb_any(rxb->skb);
8039                         rxb->skb = NULL;
8040                 }
8041
8042                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8043                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8044                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8045
8046                 i = (i + 1) % RX_QUEUE_SIZE;
8047         }
8048
8049         /* Backtrack one entry */
8050         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8051
8052         ipw_rx_queue_restock(priv);
8053 }
8054
8055 #define DEFAULT_RTS_THRESHOLD     2304U
8056 #define MIN_RTS_THRESHOLD         1U
8057 #define MAX_RTS_THRESHOLD         2304U
8058 #define DEFAULT_BEACON_INTERVAL   100U
8059 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8060 #define DEFAULT_LONG_RETRY_LIMIT  4U
8061
8062 static int ipw_sw_reset(struct ipw_priv *priv, int init)
8063 {
8064         int band, modulation;
8065         int old_mode = priv->ieee->iw_mode;
8066
8067         /* Initialize module parameter values here */
8068         priv->config = 0;
8069
8070         /* We default to disabling the LED code as right now it causes
8071          * too many systems to lock up... */
8072         if (!led)
8073                 priv->config |= CFG_NO_LED;
8074
8075         if (associate)
8076                 priv->config |= CFG_ASSOCIATE;
8077         else
8078                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8079
8080         if (auto_create)
8081                 priv->config |= CFG_ADHOC_CREATE;
8082         else
8083                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8084
8085         priv->config &= ~CFG_STATIC_ESSID;
8086         priv->essid_len = 0;
8087         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8088
8089         if (disable) {
8090                 priv->status |= STATUS_RF_KILL_SW;
8091                 IPW_DEBUG_INFO("Radio disabled.\n");
8092         }
8093
8094         if (channel != 0) {
8095                 priv->config |= CFG_STATIC_CHANNEL;
8096                 priv->channel = channel;
8097                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8098                 /* TODO: Validate that provided channel is in range */
8099         }
8100 #ifdef CONFIG_IPW_QOS
8101         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8102                      burst_duration_CCK, burst_duration_OFDM);
8103 #endif                          /* CONFIG_IPW_QOS */
8104
8105         switch (mode) {
8106         case 1:
8107                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8108                 priv->net_dev->type = ARPHRD_ETHER;
8109
8110                 break;
8111 #ifdef CONFIG_IPW2200_MONITOR
8112         case 2:
8113                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8114 #ifdef CONFIG_IEEE80211_RADIOTAP
8115                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8116 #else
8117                 priv->net_dev->type = ARPHRD_IEEE80211;
8118 #endif
8119                 break;
8120 #endif
8121         default:
8122         case 0:
8123                 priv->net_dev->type = ARPHRD_ETHER;
8124                 priv->ieee->iw_mode = IW_MODE_INFRA;
8125                 break;
8126         }
8127
8128         if (hwcrypto) {
8129                 priv->ieee->host_encrypt = 0;
8130                 priv->ieee->host_encrypt_msdu = 0;
8131                 priv->ieee->host_decrypt = 0;
8132                 priv->ieee->host_mc_decrypt = 0;
8133         }
8134         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8135
8136         /* IPW2200/2915 is abled to do hardware fragmentation. */
8137         priv->ieee->host_open_frag = 0;
8138
8139         if ((priv->pci_dev->device == 0x4223) ||
8140             (priv->pci_dev->device == 0x4224)) {
8141                 if (init)
8142                         printk(KERN_INFO DRV_NAME
8143                                ": Detected Intel PRO/Wireless 2915ABG Network "
8144                                "Connection\n");
8145                 priv->ieee->abg_true = 1;
8146                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8147                 modulation = IEEE80211_OFDM_MODULATION |
8148                     IEEE80211_CCK_MODULATION;
8149                 priv->adapter = IPW_2915ABG;
8150                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8151         } else {
8152                 if (init)
8153                         printk(KERN_INFO DRV_NAME
8154                                ": Detected Intel PRO/Wireless 2200BG Network "
8155                                "Connection\n");
8156
8157                 priv->ieee->abg_true = 0;
8158                 band = IEEE80211_24GHZ_BAND;
8159                 modulation = IEEE80211_OFDM_MODULATION |
8160                     IEEE80211_CCK_MODULATION;
8161                 priv->adapter = IPW_2200BG;
8162                 priv->ieee->mode = IEEE_G | IEEE_B;
8163         }
8164
8165         priv->ieee->freq_band = band;
8166         priv->ieee->modulation = modulation;
8167
8168         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8169
8170         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8171         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8172
8173         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8174         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8175         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8176
8177         /* If power management is turned on, default to AC mode */
8178         priv->power_mode = IPW_POWER_AC;
8179         priv->tx_power = IPW_TX_POWER_DEFAULT;
8180
8181         return old_mode == priv->ieee->iw_mode;
8182 }
8183
8184 /*
8185  * This file defines the Wireless Extension handlers.  It does not
8186  * define any methods of hardware manipulation and relies on the
8187  * functions defined in ipw_main to provide the HW interaction.
8188  *
8189  * The exception to this is the use of the ipw_get_ordinal()
8190  * function used to poll the hardware vs. making unecessary calls.
8191  *
8192  */
8193
8194 static int ipw_wx_get_name(struct net_device *dev,
8195                            struct iw_request_info *info,
8196                            union iwreq_data *wrqu, char *extra)
8197 {
8198         struct ipw_priv *priv = ieee80211_priv(dev);
8199         down(&priv->sem);
8200         if (priv->status & STATUS_RF_KILL_MASK)
8201                 strcpy(wrqu->name, "radio off");
8202         else if (!(priv->status & STATUS_ASSOCIATED))
8203                 strcpy(wrqu->name, "unassociated");
8204         else
8205                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8206                          ipw_modes[priv->assoc_request.ieee_mode]);
8207         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8208         up(&priv->sem);
8209         return 0;
8210 }
8211
8212 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8213 {
8214         if (channel == 0) {
8215                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8216                 priv->config &= ~CFG_STATIC_CHANNEL;
8217                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8218                                 "parameters.\n");
8219                 ipw_associate(priv);
8220                 return 0;
8221         }
8222
8223         priv->config |= CFG_STATIC_CHANNEL;
8224
8225         if (priv->channel == channel) {
8226                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8227                                channel);
8228                 return 0;
8229         }
8230
8231         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8232         priv->channel = channel;
8233
8234 #ifdef CONFIG_IPW2200_MONITOR
8235         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8236                 int i;
8237                 if (priv->status & STATUS_SCANNING) {
8238                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8239                                        "channel change.\n");
8240                         ipw_abort_scan(priv);
8241                 }
8242
8243                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8244                         udelay(10);
8245
8246                 if (priv->status & STATUS_SCANNING)
8247                         IPW_DEBUG_SCAN("Still scanning...\n");
8248                 else
8249                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8250                                        1000 - i);
8251
8252                 return 0;
8253         }
8254 #endif                          /* CONFIG_IPW2200_MONITOR */
8255
8256         /* Network configuration changed -- force [re]association */
8257         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8258         if (!ipw_disassociate(priv))
8259                 ipw_associate(priv);
8260
8261         return 0;
8262 }
8263
8264 static int ipw_wx_set_freq(struct net_device *dev,
8265                            struct iw_request_info *info,
8266                            union iwreq_data *wrqu, char *extra)
8267 {
8268         struct ipw_priv *priv = ieee80211_priv(dev);
8269         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8270         struct iw_freq *fwrq = &wrqu->freq;
8271         int ret = 0, i;
8272         u8 channel, flags;
8273         int band;
8274
8275         if (fwrq->m == 0) {
8276                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8277                 down(&priv->sem);
8278                 ret = ipw_set_channel(priv, 0);
8279                 up(&priv->sem);
8280                 return ret;
8281         }
8282         /* if setting by freq convert to channel */
8283         if (fwrq->e == 1) {
8284                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8285                 if (channel == 0)
8286                         return -EINVAL;
8287         } else
8288                 channel = fwrq->m;
8289
8290         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8291                 return -EINVAL;
8292
8293         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8294                 i = ipw_channel_to_index(priv->ieee, channel);
8295                 if (i == -1)
8296                         return -EINVAL;
8297
8298                 flags = (band == IEEE80211_24GHZ_BAND) ?
8299                     geo->bg[i].flags : geo->a[i].flags;
8300                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8301                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8302                         return -EINVAL;
8303                 }
8304         }
8305
8306         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8307         down(&priv->sem);
8308         ret = ipw_set_channel(priv, channel);
8309         up(&priv->sem);
8310         return ret;
8311 }
8312
8313 static int ipw_wx_get_freq(struct net_device *dev,
8314                            struct iw_request_info *info,
8315                            union iwreq_data *wrqu, char *extra)
8316 {
8317         struct ipw_priv *priv = ieee80211_priv(dev);
8318
8319         wrqu->freq.e = 0;
8320
8321         /* If we are associated, trying to associate, or have a statically
8322          * configured CHANNEL then return that; otherwise return ANY */
8323         down(&priv->sem);
8324         if (priv->config & CFG_STATIC_CHANNEL ||
8325             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8326                 wrqu->freq.m = priv->channel;
8327         else
8328                 wrqu->freq.m = 0;
8329
8330         up(&priv->sem);
8331         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8332         return 0;
8333 }
8334
8335 static int ipw_wx_set_mode(struct net_device *dev,
8336                            struct iw_request_info *info,
8337                            union iwreq_data *wrqu, char *extra)
8338 {
8339         struct ipw_priv *priv = ieee80211_priv(dev);
8340         int err = 0;
8341
8342         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8343
8344         switch (wrqu->mode) {
8345 #ifdef CONFIG_IPW2200_MONITOR
8346         case IW_MODE_MONITOR:
8347 #endif
8348         case IW_MODE_ADHOC:
8349         case IW_MODE_INFRA:
8350                 break;
8351         case IW_MODE_AUTO:
8352                 wrqu->mode = IW_MODE_INFRA;
8353                 break;
8354         default:
8355                 return -EINVAL;
8356         }
8357         if (wrqu->mode == priv->ieee->iw_mode)
8358                 return 0;
8359
8360         down(&priv->sem);
8361
8362         ipw_sw_reset(priv, 0);
8363
8364 #ifdef CONFIG_IPW2200_MONITOR
8365         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8366                 priv->net_dev->type = ARPHRD_ETHER;
8367
8368         if (wrqu->mode == IW_MODE_MONITOR)
8369 #ifdef CONFIG_IEEE80211_RADIOTAP
8370                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8371 #else
8372                 priv->net_dev->type = ARPHRD_IEEE80211;
8373 #endif
8374 #endif                          /* CONFIG_IPW2200_MONITOR */
8375
8376         /* Free the existing firmware and reset the fw_loaded
8377          * flag so ipw_load() will bring in the new firmawre */
8378         free_firmware();
8379
8380         priv->ieee->iw_mode = wrqu->mode;
8381
8382         queue_work(priv->workqueue, &priv->adapter_restart);
8383         up(&priv->sem);
8384         return err;
8385 }
8386
8387 static int ipw_wx_get_mode(struct net_device *dev,
8388                            struct iw_request_info *info,
8389                            union iwreq_data *wrqu, char *extra)
8390 {
8391         struct ipw_priv *priv = ieee80211_priv(dev);
8392         down(&priv->sem);
8393         wrqu->mode = priv->ieee->iw_mode;
8394         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8395         up(&priv->sem);
8396         return 0;
8397 }
8398
8399 /* Values are in microsecond */
8400 static const s32 timeout_duration[] = {
8401         350000,
8402         250000,
8403         75000,
8404         37000,
8405         25000,
8406 };
8407
8408 static const s32 period_duration[] = {
8409         400000,
8410         700000,
8411         1000000,
8412         1000000,
8413         1000000
8414 };
8415
8416 static int ipw_wx_get_range(struct net_device *dev,
8417                             struct iw_request_info *info,
8418                             union iwreq_data *wrqu, char *extra)
8419 {
8420         struct ipw_priv *priv = ieee80211_priv(dev);
8421         struct iw_range *range = (struct iw_range *)extra;
8422         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8423         int i = 0, j;
8424
8425         wrqu->data.length = sizeof(*range);
8426         memset(range, 0, sizeof(*range));
8427
8428         /* 54Mbs == ~27 Mb/s real (802.11g) */
8429         range->throughput = 27 * 1000 * 1000;
8430
8431         range->max_qual.qual = 100;
8432         /* TODO: Find real max RSSI and stick here */
8433         range->max_qual.level = 0;
8434         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8435         range->max_qual.updated = 7;    /* Updated all three */
8436
8437         range->avg_qual.qual = 70;
8438         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8439         range->avg_qual.level = 0;      /* FIXME to real average level */
8440         range->avg_qual.noise = 0;
8441         range->avg_qual.updated = 7;    /* Updated all three */
8442         down(&priv->sem);
8443         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8444
8445         for (i = 0; i < range->num_bitrates; i++)
8446                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8447                     500000;
8448
8449         range->max_rts = DEFAULT_RTS_THRESHOLD;
8450         range->min_frag = MIN_FRAG_THRESHOLD;
8451         range->max_frag = MAX_FRAG_THRESHOLD;
8452
8453         range->encoding_size[0] = 5;
8454         range->encoding_size[1] = 13;
8455         range->num_encoding_sizes = 2;
8456         range->max_encoding_tokens = WEP_KEYS;
8457
8458         /* Set the Wireless Extension versions */
8459         range->we_version_compiled = WIRELESS_EXT;
8460         range->we_version_source = 16;
8461
8462         i = 0;
8463         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8464                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8465                      i++, j++) {
8466                         range->freq[i].i = geo->bg[j].channel;
8467                         range->freq[i].m = geo->bg[j].freq * 100000;
8468                         range->freq[i].e = 1;
8469                 }
8470         }
8471
8472         if (priv->ieee->mode & IEEE_A) {
8473                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8474                      i++, j++) {
8475                         range->freq[i].i = geo->a[j].channel;
8476                         range->freq[i].m = geo->a[j].freq * 100000;
8477                         range->freq[i].e = 1;
8478                 }
8479         }
8480
8481         range->num_channels = i;
8482         range->num_frequency = i;
8483
8484         up(&priv->sem);
8485
8486         /* Event capability (kernel + driver) */
8487         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8488                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8489                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8490         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8491
8492         IPW_DEBUG_WX("GET Range\n");
8493         return 0;
8494 }
8495
8496 static int ipw_wx_set_wap(struct net_device *dev,
8497                           struct iw_request_info *info,
8498                           union iwreq_data *wrqu, char *extra)
8499 {
8500         struct ipw_priv *priv = ieee80211_priv(dev);
8501
8502         static const unsigned char any[] = {
8503                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8504         };
8505         static const unsigned char off[] = {
8506                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8507         };
8508
8509         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8510                 return -EINVAL;
8511         down(&priv->sem);
8512         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8513             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8514                 /* we disable mandatory BSSID association */
8515                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8516                 priv->config &= ~CFG_STATIC_BSSID;
8517                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8518                                 "parameters.\n");
8519                 ipw_associate(priv);
8520                 up(&priv->sem);
8521                 return 0;
8522         }
8523
8524         priv->config |= CFG_STATIC_BSSID;
8525         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8526                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8527                 up(&priv->sem);
8528                 return 0;
8529         }
8530
8531         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8532                      MAC_ARG(wrqu->ap_addr.sa_data));
8533
8534         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8535
8536         /* Network configuration changed -- force [re]association */
8537         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8538         if (!ipw_disassociate(priv))
8539                 ipw_associate(priv);
8540
8541         up(&priv->sem);
8542         return 0;
8543 }
8544
8545 static int ipw_wx_get_wap(struct net_device *dev,
8546                           struct iw_request_info *info,
8547                           union iwreq_data *wrqu, char *extra)
8548 {
8549         struct ipw_priv *priv = ieee80211_priv(dev);
8550         /* If we are associated, trying to associate, or have a statically
8551          * configured BSSID then return that; otherwise return ANY */
8552         down(&priv->sem);
8553         if (priv->config & CFG_STATIC_BSSID ||
8554             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8555                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8556                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8557         } else
8558                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8559
8560         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8561                      MAC_ARG(wrqu->ap_addr.sa_data));
8562         up(&priv->sem);
8563         return 0;
8564 }
8565
8566 static int ipw_wx_set_essid(struct net_device *dev,
8567                             struct iw_request_info *info,
8568                             union iwreq_data *wrqu, char *extra)
8569 {
8570         struct ipw_priv *priv = ieee80211_priv(dev);
8571         char *essid = "";       /* ANY */
8572         int length = 0;
8573         down(&priv->sem);
8574         if (wrqu->essid.flags && wrqu->essid.length) {
8575                 length = wrqu->essid.length - 1;
8576                 essid = extra;
8577         }
8578         if (length == 0) {
8579                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8580                 if ((priv->config & CFG_STATIC_ESSID) &&
8581                     !(priv->status & (STATUS_ASSOCIATED |
8582                                       STATUS_ASSOCIATING))) {
8583                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8584                                         "parameters.\n");
8585                         priv->config &= ~CFG_STATIC_ESSID;
8586                         ipw_associate(priv);
8587                 }
8588                 up(&priv->sem);
8589                 return 0;
8590         }
8591
8592         length = min(length, IW_ESSID_MAX_SIZE);
8593
8594         priv->config |= CFG_STATIC_ESSID;
8595
8596         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8597                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8598                 up(&priv->sem);
8599                 return 0;
8600         }
8601
8602         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8603                      length);
8604
8605         priv->essid_len = length;
8606         memcpy(priv->essid, essid, priv->essid_len);
8607
8608         /* Network configuration changed -- force [re]association */
8609         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8610         if (!ipw_disassociate(priv))
8611                 ipw_associate(priv);
8612
8613         up(&priv->sem);
8614         return 0;
8615 }
8616
8617 static int ipw_wx_get_essid(struct net_device *dev,
8618                             struct iw_request_info *info,
8619                             union iwreq_data *wrqu, char *extra)
8620 {
8621         struct ipw_priv *priv = ieee80211_priv(dev);
8622
8623         /* If we are associated, trying to associate, or have a statically
8624          * configured ESSID then return that; otherwise return ANY */
8625         down(&priv->sem);
8626         if (priv->config & CFG_STATIC_ESSID ||
8627             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8628                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8629                              escape_essid(priv->essid, priv->essid_len));
8630                 memcpy(extra, priv->essid, priv->essid_len);
8631                 wrqu->essid.length = priv->essid_len;
8632                 wrqu->essid.flags = 1;  /* active */
8633         } else {
8634                 IPW_DEBUG_WX("Getting essid: ANY\n");
8635                 wrqu->essid.length = 0;
8636                 wrqu->essid.flags = 0;  /* active */
8637         }
8638         up(&priv->sem);
8639         return 0;
8640 }
8641
8642 static int ipw_wx_set_nick(struct net_device *dev,
8643                            struct iw_request_info *info,
8644                            union iwreq_data *wrqu, char *extra)
8645 {
8646         struct ipw_priv *priv = ieee80211_priv(dev);
8647
8648         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8649         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8650                 return -E2BIG;
8651         down(&priv->sem);
8652         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8653         memset(priv->nick, 0, sizeof(priv->nick));
8654         memcpy(priv->nick, extra, wrqu->data.length);
8655         IPW_DEBUG_TRACE("<<\n");
8656         up(&priv->sem);
8657         return 0;
8658
8659 }
8660
8661 static int ipw_wx_get_nick(struct net_device *dev,
8662                            struct iw_request_info *info,
8663                            union iwreq_data *wrqu, char *extra)
8664 {
8665         struct ipw_priv *priv = ieee80211_priv(dev);
8666         IPW_DEBUG_WX("Getting nick\n");
8667         down(&priv->sem);
8668         wrqu->data.length = strlen(priv->nick) + 1;
8669         memcpy(extra, priv->nick, wrqu->data.length);
8670         wrqu->data.flags = 1;   /* active */
8671         up(&priv->sem);
8672         return 0;
8673 }
8674
8675 static int ipw_wx_set_rate(struct net_device *dev,
8676                            struct iw_request_info *info,
8677                            union iwreq_data *wrqu, char *extra)
8678 {
8679         /* TODO: We should use semaphores or locks for access to priv */
8680         struct ipw_priv *priv = ieee80211_priv(dev);
8681         u32 target_rate = wrqu->bitrate.value;
8682         u32 fixed, mask;
8683
8684         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8685         /* value = X, fixed = 1 means only rate X */
8686         /* value = X, fixed = 0 means all rates lower equal X */
8687
8688         if (target_rate == -1) {
8689                 fixed = 0;
8690                 mask = IEEE80211_DEFAULT_RATES_MASK;
8691                 /* Now we should reassociate */
8692                 goto apply;
8693         }
8694
8695         mask = 0;
8696         fixed = wrqu->bitrate.fixed;
8697
8698         if (target_rate == 1000000 || !fixed)
8699                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8700         if (target_rate == 1000000)
8701                 goto apply;
8702
8703         if (target_rate == 2000000 || !fixed)
8704                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8705         if (target_rate == 2000000)
8706                 goto apply;
8707
8708         if (target_rate == 5500000 || !fixed)
8709                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8710         if (target_rate == 5500000)
8711                 goto apply;
8712
8713         if (target_rate == 6000000 || !fixed)
8714                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8715         if (target_rate == 6000000)
8716                 goto apply;
8717
8718         if (target_rate == 9000000 || !fixed)
8719                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8720         if (target_rate == 9000000)
8721                 goto apply;
8722
8723         if (target_rate == 11000000 || !fixed)
8724                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8725         if (target_rate == 11000000)
8726                 goto apply;
8727
8728         if (target_rate == 12000000 || !fixed)
8729                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8730         if (target_rate == 12000000)
8731                 goto apply;
8732
8733         if (target_rate == 18000000 || !fixed)
8734                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8735         if (target_rate == 18000000)
8736                 goto apply;
8737
8738         if (target_rate == 24000000 || !fixed)
8739                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8740         if (target_rate == 24000000)
8741                 goto apply;
8742
8743         if (target_rate == 36000000 || !fixed)
8744                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8745         if (target_rate == 36000000)
8746                 goto apply;
8747
8748         if (target_rate == 48000000 || !fixed)
8749                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8750         if (target_rate == 48000000)
8751                 goto apply;
8752
8753         if (target_rate == 54000000 || !fixed)
8754                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8755         if (target_rate == 54000000)
8756                 goto apply;
8757
8758         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8759         return -EINVAL;
8760
8761       apply:
8762         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8763                      mask, fixed ? "fixed" : "sub-rates");
8764         down(&priv->sem);
8765         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8766                 priv->config &= ~CFG_FIXED_RATE;
8767                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8768         } else
8769                 priv->config |= CFG_FIXED_RATE;
8770
8771         if (priv->rates_mask == mask) {
8772                 IPW_DEBUG_WX("Mask set to current mask.\n");
8773                 up(&priv->sem);
8774                 return 0;
8775         }
8776
8777         priv->rates_mask = mask;
8778
8779         /* Network configuration changed -- force [re]association */
8780         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8781         if (!ipw_disassociate(priv))
8782                 ipw_associate(priv);
8783
8784         up(&priv->sem);
8785         return 0;
8786 }
8787
8788 static int ipw_wx_get_rate(struct net_device *dev,
8789                            struct iw_request_info *info,
8790                            union iwreq_data *wrqu, char *extra)
8791 {
8792         struct ipw_priv *priv = ieee80211_priv(dev);
8793         down(&priv->sem);
8794         wrqu->bitrate.value = priv->last_rate;
8795         up(&priv->sem);
8796         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8797         return 0;
8798 }
8799
8800 static int ipw_wx_set_rts(struct net_device *dev,
8801                           struct iw_request_info *info,
8802                           union iwreq_data *wrqu, char *extra)
8803 {
8804         struct ipw_priv *priv = ieee80211_priv(dev);
8805         down(&priv->sem);
8806         if (wrqu->rts.disabled)
8807                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8808         else {
8809                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8810                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8811                         up(&priv->sem);
8812                         return -EINVAL;
8813                 }
8814                 priv->rts_threshold = wrqu->rts.value;
8815         }
8816
8817         ipw_send_rts_threshold(priv, priv->rts_threshold);
8818         up(&priv->sem);
8819         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8820         return 0;
8821 }
8822
8823 static int ipw_wx_get_rts(struct net_device *dev,
8824                           struct iw_request_info *info,
8825                           union iwreq_data *wrqu, char *extra)
8826 {
8827         struct ipw_priv *priv = ieee80211_priv(dev);
8828         down(&priv->sem);
8829         wrqu->rts.value = priv->rts_threshold;
8830         wrqu->rts.fixed = 0;    /* no auto select */
8831         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8832         up(&priv->sem);
8833         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8834         return 0;
8835 }
8836
8837 static int ipw_wx_set_txpow(struct net_device *dev,
8838                             struct iw_request_info *info,
8839                             union iwreq_data *wrqu, char *extra)
8840 {
8841         struct ipw_priv *priv = ieee80211_priv(dev);
8842         int err = 0;
8843
8844         down(&priv->sem);
8845         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8846                 err = -EINPROGRESS;
8847                 goto out;
8848         }
8849
8850         if (!wrqu->power.fixed)
8851                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8852
8853         if (wrqu->power.flags != IW_TXPOW_DBM) {
8854                 err = -EINVAL;
8855                 goto out;
8856         }
8857
8858         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8859             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8860                 err = -EINVAL;
8861                 goto out;
8862         }
8863
8864         priv->tx_power = wrqu->power.value;
8865         err = ipw_set_tx_power(priv);
8866       out:
8867         up(&priv->sem);
8868         return err;
8869 }
8870
8871 static int ipw_wx_get_txpow(struct net_device *dev,
8872                             struct iw_request_info *info,
8873                             union iwreq_data *wrqu, char *extra)
8874 {
8875         struct ipw_priv *priv = ieee80211_priv(dev);
8876         down(&priv->sem);
8877         wrqu->power.value = priv->tx_power;
8878         wrqu->power.fixed = 1;
8879         wrqu->power.flags = IW_TXPOW_DBM;
8880         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8881         up(&priv->sem);
8882
8883         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8884                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8885
8886         return 0;
8887 }
8888
8889 static int ipw_wx_set_frag(struct net_device *dev,
8890                            struct iw_request_info *info,
8891                            union iwreq_data *wrqu, char *extra)
8892 {
8893         struct ipw_priv *priv = ieee80211_priv(dev);
8894         down(&priv->sem);
8895         if (wrqu->frag.disabled)
8896                 priv->ieee->fts = DEFAULT_FTS;
8897         else {
8898                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8899                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8900                         up(&priv->sem);
8901                         return -EINVAL;
8902                 }
8903
8904                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8905         }
8906
8907         ipw_send_frag_threshold(priv, wrqu->frag.value);
8908         up(&priv->sem);
8909         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8910         return 0;
8911 }
8912
8913 static int ipw_wx_get_frag(struct net_device *dev,
8914                            struct iw_request_info *info,
8915                            union iwreq_data *wrqu, char *extra)
8916 {
8917         struct ipw_priv *priv = ieee80211_priv(dev);
8918         down(&priv->sem);
8919         wrqu->frag.value = priv->ieee->fts;
8920         wrqu->frag.fixed = 0;   /* no auto select */
8921         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8922         up(&priv->sem);
8923         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8924
8925         return 0;
8926 }
8927
8928 static int ipw_wx_set_retry(struct net_device *dev,
8929                             struct iw_request_info *info,
8930                             union iwreq_data *wrqu, char *extra)
8931 {
8932         struct ipw_priv *priv = ieee80211_priv(dev);
8933
8934         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8935                 return -EINVAL;
8936
8937         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8938                 return 0;
8939
8940         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8941                 return -EINVAL;
8942
8943         down(&priv->sem);
8944         if (wrqu->retry.flags & IW_RETRY_MIN)
8945                 priv->short_retry_limit = (u8) wrqu->retry.value;
8946         else if (wrqu->retry.flags & IW_RETRY_MAX)
8947                 priv->long_retry_limit = (u8) wrqu->retry.value;
8948         else {
8949                 priv->short_retry_limit = (u8) wrqu->retry.value;
8950                 priv->long_retry_limit = (u8) wrqu->retry.value;
8951         }
8952
8953         ipw_send_retry_limit(priv, priv->short_retry_limit,
8954                              priv->long_retry_limit);
8955         up(&priv->sem);
8956         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8957                      priv->short_retry_limit, priv->long_retry_limit);
8958         return 0;
8959 }
8960
8961 static int ipw_wx_get_retry(struct net_device *dev,
8962                             struct iw_request_info *info,
8963                             union iwreq_data *wrqu, char *extra)
8964 {
8965         struct ipw_priv *priv = ieee80211_priv(dev);
8966
8967         down(&priv->sem);
8968         wrqu->retry.disabled = 0;
8969
8970         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8971                 up(&priv->sem);
8972                 return -EINVAL;
8973         }
8974
8975         if (wrqu->retry.flags & IW_RETRY_MAX) {
8976                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8977                 wrqu->retry.value = priv->long_retry_limit;
8978         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8979                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8980                 wrqu->retry.value = priv->short_retry_limit;
8981         } else {
8982                 wrqu->retry.flags = IW_RETRY_LIMIT;
8983                 wrqu->retry.value = priv->short_retry_limit;
8984         }
8985         up(&priv->sem);
8986
8987         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8988
8989         return 0;
8990 }
8991
8992 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8993                                    int essid_len)
8994 {
8995         struct ipw_scan_request_ext scan;
8996         int err = 0, scan_type;
8997
8998         if (!(priv->status & STATUS_INIT) ||
8999             (priv->status & STATUS_EXIT_PENDING))
9000                 return 0;
9001
9002         down(&priv->sem);
9003
9004         if (priv->status & STATUS_RF_KILL_MASK) {
9005                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9006                 priv->status |= STATUS_SCAN_PENDING;
9007                 goto done;
9008         }
9009
9010         IPW_DEBUG_HC("starting request direct scan!\n");
9011
9012         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9013                 /* We should not sleep here; otherwise we will block most
9014                  * of the system (for instance, we hold rtnl_lock when we
9015                  * get here).
9016                  */
9017                 err = -EAGAIN;
9018                 goto done;
9019         }
9020         memset(&scan, 0, sizeof(scan));
9021
9022         if (priv->config & CFG_SPEED_SCAN)
9023                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9024                     cpu_to_le16(30);
9025         else
9026                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9027                     cpu_to_le16(20);
9028
9029         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9030             cpu_to_le16(20);
9031         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9032         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9033
9034         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9035
9036         err = ipw_send_ssid(priv, essid, essid_len);
9037         if (err) {
9038                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9039                 goto done;
9040         }
9041         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9042
9043         ipw_add_scan_channels(priv, &scan, scan_type);
9044
9045         err = ipw_send_scan_request_ext(priv, &scan);
9046         if (err) {
9047                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9048                 goto done;
9049         }
9050
9051         priv->status |= STATUS_SCANNING;
9052
9053       done:
9054         up(&priv->sem);
9055         return err;
9056 }
9057
9058 static int ipw_wx_set_scan(struct net_device *dev,
9059                            struct iw_request_info *info,
9060                            union iwreq_data *wrqu, char *extra)
9061 {
9062         struct ipw_priv *priv = ieee80211_priv(dev);
9063         struct iw_scan_req *req = NULL;
9064         if (wrqu->data.length
9065             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9066                 req = (struct iw_scan_req *)extra;
9067                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9068                         ipw_request_direct_scan(priv, req->essid,
9069                                                 req->essid_len);
9070                         return 0;
9071                 }
9072         }
9073
9074         IPW_DEBUG_WX("Start scan\n");
9075
9076         queue_work(priv->workqueue, &priv->request_scan);
9077
9078         return 0;
9079 }
9080
9081 static int ipw_wx_get_scan(struct net_device *dev,
9082                            struct iw_request_info *info,
9083                            union iwreq_data *wrqu, char *extra)
9084 {
9085         struct ipw_priv *priv = ieee80211_priv(dev);
9086         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9087 }
9088
9089 static int ipw_wx_set_encode(struct net_device *dev,
9090                              struct iw_request_info *info,
9091                              union iwreq_data *wrqu, char *key)
9092 {
9093         struct ipw_priv *priv = ieee80211_priv(dev);
9094         int ret;
9095         u32 cap = priv->capability;
9096
9097         down(&priv->sem);
9098         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9099
9100         /* In IBSS mode, we need to notify the firmware to update
9101          * the beacon info after we changed the capability. */
9102         if (cap != priv->capability &&
9103             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9104             priv->status & STATUS_ASSOCIATED)
9105                 ipw_disassociate(priv);
9106
9107         up(&priv->sem);
9108         return ret;
9109 }
9110
9111 static int ipw_wx_get_encode(struct net_device *dev,
9112                              struct iw_request_info *info,
9113                              union iwreq_data *wrqu, char *key)
9114 {
9115         struct ipw_priv *priv = ieee80211_priv(dev);
9116         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9117 }
9118
9119 static int ipw_wx_set_power(struct net_device *dev,
9120                             struct iw_request_info *info,
9121                             union iwreq_data *wrqu, char *extra)
9122 {
9123         struct ipw_priv *priv = ieee80211_priv(dev);
9124         int err;
9125         down(&priv->sem);
9126         if (wrqu->power.disabled) {
9127                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9128                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9129                 if (err) {
9130                         IPW_DEBUG_WX("failed setting power mode.\n");
9131                         up(&priv->sem);
9132                         return err;
9133                 }
9134                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9135                 up(&priv->sem);
9136                 return 0;
9137         }
9138
9139         switch (wrqu->power.flags & IW_POWER_MODE) {
9140         case IW_POWER_ON:       /* If not specified */
9141         case IW_POWER_MODE:     /* If set all mask */
9142         case IW_POWER_ALL_R:    /* If explicitely state all */
9143                 break;
9144         default:                /* Otherwise we don't support it */
9145                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9146                              wrqu->power.flags);
9147                 up(&priv->sem);
9148                 return -EOPNOTSUPP;
9149         }
9150
9151         /* If the user hasn't specified a power management mode yet, default
9152          * to BATTERY */
9153         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9154                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9155         else
9156                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9157         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9158         if (err) {
9159                 IPW_DEBUG_WX("failed setting power mode.\n");
9160                 up(&priv->sem);
9161                 return err;
9162         }
9163
9164         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9165         up(&priv->sem);
9166         return 0;
9167 }
9168
9169 static int ipw_wx_get_power(struct net_device *dev,
9170                             struct iw_request_info *info,
9171                             union iwreq_data *wrqu, char *extra)
9172 {
9173         struct ipw_priv *priv = ieee80211_priv(dev);
9174         down(&priv->sem);
9175         if (!(priv->power_mode & IPW_POWER_ENABLED))
9176                 wrqu->power.disabled = 1;
9177         else
9178                 wrqu->power.disabled = 0;
9179
9180         up(&priv->sem);
9181         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9182
9183         return 0;
9184 }
9185
9186 static int ipw_wx_set_powermode(struct net_device *dev,
9187                                 struct iw_request_info *info,
9188                                 union iwreq_data *wrqu, char *extra)
9189 {
9190         struct ipw_priv *priv = ieee80211_priv(dev);
9191         int mode = *(int *)extra;
9192         int err;
9193         down(&priv->sem);
9194         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9195                 mode = IPW_POWER_AC;
9196                 priv->power_mode = mode;
9197         } else {
9198                 priv->power_mode = IPW_POWER_ENABLED | mode;
9199         }
9200
9201         if (priv->power_mode != mode) {
9202                 err = ipw_send_power_mode(priv, mode);
9203
9204                 if (err) {
9205                         IPW_DEBUG_WX("failed setting power mode.\n");
9206                         up(&priv->sem);
9207                         return err;
9208                 }
9209         }
9210         up(&priv->sem);
9211         return 0;
9212 }
9213
9214 #define MAX_WX_STRING 80
9215 static int ipw_wx_get_powermode(struct net_device *dev,
9216                                 struct iw_request_info *info,
9217                                 union iwreq_data *wrqu, char *extra)
9218 {
9219         struct ipw_priv *priv = ieee80211_priv(dev);
9220         int level = IPW_POWER_LEVEL(priv->power_mode);
9221         char *p = extra;
9222
9223         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9224
9225         switch (level) {
9226         case IPW_POWER_AC:
9227                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9228                 break;
9229         case IPW_POWER_BATTERY:
9230                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9231                 break;
9232         default:
9233                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9234                               "(Timeout %dms, Period %dms)",
9235                               timeout_duration[level - 1] / 1000,
9236                               period_duration[level - 1] / 1000);
9237         }
9238
9239         if (!(priv->power_mode & IPW_POWER_ENABLED))
9240                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9241
9242         wrqu->data.length = p - extra + 1;
9243
9244         return 0;
9245 }
9246
9247 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9248                                     struct iw_request_info *info,
9249                                     union iwreq_data *wrqu, char *extra)
9250 {
9251         struct ipw_priv *priv = ieee80211_priv(dev);
9252         int mode = *(int *)extra;
9253         u8 band = 0, modulation = 0;
9254
9255         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9256                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9257                 return -EINVAL;
9258         }
9259         down(&priv->sem);
9260         if (priv->adapter == IPW_2915ABG) {
9261                 priv->ieee->abg_true = 1;
9262                 if (mode & IEEE_A) {
9263                         band |= IEEE80211_52GHZ_BAND;
9264                         modulation |= IEEE80211_OFDM_MODULATION;
9265                 } else
9266                         priv->ieee->abg_true = 0;
9267         } else {
9268                 if (mode & IEEE_A) {
9269                         IPW_WARNING("Attempt to set 2200BG into "
9270                                     "802.11a mode\n");
9271                         up(&priv->sem);
9272                         return -EINVAL;
9273                 }
9274
9275                 priv->ieee->abg_true = 0;
9276         }
9277
9278         if (mode & IEEE_B) {
9279                 band |= IEEE80211_24GHZ_BAND;
9280                 modulation |= IEEE80211_CCK_MODULATION;
9281         } else
9282                 priv->ieee->abg_true = 0;
9283
9284         if (mode & IEEE_G) {
9285                 band |= IEEE80211_24GHZ_BAND;
9286                 modulation |= IEEE80211_OFDM_MODULATION;
9287         } else
9288                 priv->ieee->abg_true = 0;
9289
9290         priv->ieee->mode = mode;
9291         priv->ieee->freq_band = band;
9292         priv->ieee->modulation = modulation;
9293         init_supported_rates(priv, &priv->rates);
9294
9295         /* Network configuration changed -- force [re]association */
9296         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9297         if (!ipw_disassociate(priv)) {
9298                 ipw_send_supported_rates(priv, &priv->rates);
9299                 ipw_associate(priv);
9300         }
9301
9302         /* Update the band LEDs */
9303         ipw_led_band_on(priv);
9304
9305         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9306                      mode & IEEE_A ? 'a' : '.',
9307                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9308         up(&priv->sem);
9309         return 0;
9310 }
9311
9312 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9313                                     struct iw_request_info *info,
9314                                     union iwreq_data *wrqu, char *extra)
9315 {
9316         struct ipw_priv *priv = ieee80211_priv(dev);
9317         down(&priv->sem);
9318         switch (priv->ieee->mode) {
9319         case IEEE_A:
9320                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9321                 break;
9322         case IEEE_B:
9323                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9324                 break;
9325         case IEEE_A | IEEE_B:
9326                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9327                 break;
9328         case IEEE_G:
9329                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9330                 break;
9331         case IEEE_A | IEEE_G:
9332                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9333                 break;
9334         case IEEE_B | IEEE_G:
9335                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9336                 break;
9337         case IEEE_A | IEEE_B | IEEE_G:
9338                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9339                 break;
9340         default:
9341                 strncpy(extra, "unknown", MAX_WX_STRING);
9342                 break;
9343         }
9344
9345         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9346
9347         wrqu->data.length = strlen(extra) + 1;
9348         up(&priv->sem);
9349
9350         return 0;
9351 }
9352
9353 static int ipw_wx_set_preamble(struct net_device *dev,
9354                                struct iw_request_info *info,
9355                                union iwreq_data *wrqu, char *extra)
9356 {
9357         struct ipw_priv *priv = ieee80211_priv(dev);
9358         int mode = *(int *)extra;
9359         down(&priv->sem);
9360         /* Switching from SHORT -> LONG requires a disassociation */
9361         if (mode == 1) {
9362                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9363                         priv->config |= CFG_PREAMBLE_LONG;
9364
9365                         /* Network configuration changed -- force [re]association */
9366                         IPW_DEBUG_ASSOC
9367                             ("[re]association triggered due to preamble change.\n");
9368                         if (!ipw_disassociate(priv))
9369                                 ipw_associate(priv);
9370                 }
9371                 goto done;
9372         }
9373
9374         if (mode == 0) {
9375                 priv->config &= ~CFG_PREAMBLE_LONG;
9376                 goto done;
9377         }
9378         up(&priv->sem);
9379         return -EINVAL;
9380
9381       done:
9382         up(&priv->sem);
9383         return 0;
9384 }
9385
9386 static int ipw_wx_get_preamble(struct net_device *dev,
9387                                struct iw_request_info *info,
9388                                union iwreq_data *wrqu, char *extra)
9389 {
9390         struct ipw_priv *priv = ieee80211_priv(dev);
9391         down(&priv->sem);
9392         if (priv->config & CFG_PREAMBLE_LONG)
9393                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9394         else
9395                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9396         up(&priv->sem);
9397         return 0;
9398 }
9399
9400 #ifdef CONFIG_IPW2200_MONITOR
9401 static int ipw_wx_set_monitor(struct net_device *dev,
9402                               struct iw_request_info *info,
9403                               union iwreq_data *wrqu, char *extra)
9404 {
9405         struct ipw_priv *priv = ieee80211_priv(dev);
9406         int *parms = (int *)extra;
9407         int enable = (parms[0] > 0);
9408         down(&priv->sem);
9409         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9410         if (enable) {
9411                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9412 #ifdef CONFIG_IEEE80211_RADIOTAP
9413                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9414 #else
9415                         priv->net_dev->type = ARPHRD_IEEE80211;
9416 #endif
9417                         queue_work(priv->workqueue, &priv->adapter_restart);
9418                 }
9419
9420                 ipw_set_channel(priv, parms[1]);
9421         } else {
9422                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9423                         up(&priv->sem);
9424                         return 0;
9425                 }
9426                 priv->net_dev->type = ARPHRD_ETHER;
9427                 queue_work(priv->workqueue, &priv->adapter_restart);
9428         }
9429         up(&priv->sem);
9430         return 0;
9431 }
9432
9433 #endif                          // CONFIG_IPW2200_MONITOR
9434
9435 static int ipw_wx_reset(struct net_device *dev,
9436                         struct iw_request_info *info,
9437                         union iwreq_data *wrqu, char *extra)
9438 {
9439         struct ipw_priv *priv = ieee80211_priv(dev);
9440         IPW_DEBUG_WX("RESET\n");
9441         queue_work(priv->workqueue, &priv->adapter_restart);
9442         return 0;
9443 }
9444
9445 static int ipw_wx_sw_reset(struct net_device *dev,
9446                            struct iw_request_info *info,
9447                            union iwreq_data *wrqu, char *extra)
9448 {
9449         struct ipw_priv *priv = ieee80211_priv(dev);
9450         union iwreq_data wrqu_sec = {
9451                 .encoding = {
9452                              .flags = IW_ENCODE_DISABLED,
9453                              },
9454         };
9455         int ret;
9456
9457         IPW_DEBUG_WX("SW_RESET\n");
9458
9459         down(&priv->sem);
9460
9461         ret = ipw_sw_reset(priv, 0);
9462         if (!ret) {
9463                 free_firmware();
9464                 ipw_adapter_restart(priv);
9465         }
9466
9467         /* The SW reset bit might have been toggled on by the 'disable'
9468          * module parameter, so take appropriate action */
9469         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9470
9471         up(&priv->sem);
9472         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9473         down(&priv->sem);
9474
9475         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9476                 /* Configuration likely changed -- force [re]association */
9477                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9478                                 "reset.\n");
9479                 if (!ipw_disassociate(priv))
9480                         ipw_associate(priv);
9481         }
9482
9483         up(&priv->sem);
9484
9485         return 0;
9486 }
9487
9488 /* Rebase the WE IOCTLs to zero for the handler array */
9489 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9490 static iw_handler ipw_wx_handlers[] = {
9491         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9492         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9493         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9494         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9495         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9496         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9497         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9498         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9499         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9500         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9501         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9502         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9503         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9504         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9505         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9506         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9507         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9508         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9509         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9510         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9511         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9512         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9513         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9514         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9515         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9516         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9517         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9518         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9519         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9520         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9521         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9522         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9523         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9524         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9525         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9526         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9527         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9528         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9529         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9530 };
9531
9532 enum {
9533         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9534         IPW_PRIV_GET_POWER,
9535         IPW_PRIV_SET_MODE,
9536         IPW_PRIV_GET_MODE,
9537         IPW_PRIV_SET_PREAMBLE,
9538         IPW_PRIV_GET_PREAMBLE,
9539         IPW_PRIV_RESET,
9540         IPW_PRIV_SW_RESET,
9541 #ifdef CONFIG_IPW2200_MONITOR
9542         IPW_PRIV_SET_MONITOR,
9543 #endif
9544 };
9545
9546 static struct iw_priv_args ipw_priv_args[] = {
9547         {
9548          .cmd = IPW_PRIV_SET_POWER,
9549          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9550          .name = "set_power"},
9551         {
9552          .cmd = IPW_PRIV_GET_POWER,
9553          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9554          .name = "get_power"},
9555         {
9556          .cmd = IPW_PRIV_SET_MODE,
9557          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9558          .name = "set_mode"},
9559         {
9560          .cmd = IPW_PRIV_GET_MODE,
9561          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9562          .name = "get_mode"},
9563         {
9564          .cmd = IPW_PRIV_SET_PREAMBLE,
9565          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9566          .name = "set_preamble"},
9567         {
9568          .cmd = IPW_PRIV_GET_PREAMBLE,
9569          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9570          .name = "get_preamble"},
9571         {
9572          IPW_PRIV_RESET,
9573          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9574         {
9575          IPW_PRIV_SW_RESET,
9576          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9577 #ifdef CONFIG_IPW2200_MONITOR
9578         {
9579          IPW_PRIV_SET_MONITOR,
9580          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9581 #endif                          /* CONFIG_IPW2200_MONITOR */
9582 };
9583
9584 static iw_handler ipw_priv_handler[] = {
9585         ipw_wx_set_powermode,
9586         ipw_wx_get_powermode,
9587         ipw_wx_set_wireless_mode,
9588         ipw_wx_get_wireless_mode,
9589         ipw_wx_set_preamble,
9590         ipw_wx_get_preamble,
9591         ipw_wx_reset,
9592         ipw_wx_sw_reset,
9593 #ifdef CONFIG_IPW2200_MONITOR
9594         ipw_wx_set_monitor,
9595 #endif
9596 };
9597
9598 static struct iw_handler_def ipw_wx_handler_def = {
9599         .standard = ipw_wx_handlers,
9600         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9601         .num_private = ARRAY_SIZE(ipw_priv_handler),
9602         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9603         .private = ipw_priv_handler,
9604         .private_args = ipw_priv_args,
9605         .get_wireless_stats = ipw_get_wireless_stats,
9606 };
9607
9608 /*
9609  * Get wireless statistics.
9610  * Called by /proc/net/wireless
9611  * Also called by SIOCGIWSTATS
9612  */
9613 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9614 {
9615         struct ipw_priv *priv = ieee80211_priv(dev);
9616         struct iw_statistics *wstats;
9617
9618         wstats = &priv->wstats;
9619
9620         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9621          * netdev->get_wireless_stats seems to be called before fw is
9622          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9623          * and associated; if not associcated, the values are all meaningless
9624          * anyway, so set them all to NULL and INVALID */
9625         if (!(priv->status & STATUS_ASSOCIATED)) {
9626                 wstats->miss.beacon = 0;
9627                 wstats->discard.retries = 0;
9628                 wstats->qual.qual = 0;
9629                 wstats->qual.level = 0;
9630                 wstats->qual.noise = 0;
9631                 wstats->qual.updated = 7;
9632                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9633                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9634                 return wstats;
9635         }
9636
9637         wstats->qual.qual = priv->quality;
9638         wstats->qual.level = average_value(&priv->average_rssi);
9639         wstats->qual.noise = average_value(&priv->average_noise);
9640         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9641             IW_QUAL_NOISE_UPDATED;
9642
9643         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9644         wstats->discard.retries = priv->last_tx_failures;
9645         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9646
9647 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9648         goto fail_get_ordinal;
9649         wstats->discard.retries += tx_retry; */
9650
9651         return wstats;
9652 }
9653
9654 /* net device stuff */
9655
9656 static  void init_sys_config(struct ipw_sys_config *sys_config)
9657 {
9658         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9659         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
9660         sys_config->answer_broadcast_ssid_probe = 0;
9661         sys_config->accept_all_data_frames = 0;
9662         sys_config->accept_non_directed_frames = 1;
9663         sys_config->exclude_unicast_unencrypted = 0;
9664         sys_config->disable_unicast_decryption = 1;
9665         sys_config->exclude_multicast_unencrypted = 0;
9666         sys_config->disable_multicast_decryption = 1;
9667         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9668         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9669         sys_config->dot11g_auto_detection = 0;
9670         sys_config->enable_cts_to_self = 0;
9671         sys_config->bt_coexist_collision_thr = 0;
9672         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9673 }
9674
9675 static int ipw_net_open(struct net_device *dev)
9676 {
9677         struct ipw_priv *priv = ieee80211_priv(dev);
9678         IPW_DEBUG_INFO("dev->open\n");
9679         /* we should be verifying the device is ready to be opened */
9680         down(&priv->sem);
9681         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9682             (priv->status & STATUS_ASSOCIATED))
9683                 netif_start_queue(dev);
9684         up(&priv->sem);
9685         return 0;
9686 }
9687
9688 static int ipw_net_stop(struct net_device *dev)
9689 {
9690         IPW_DEBUG_INFO("dev->close\n");
9691         netif_stop_queue(dev);
9692         return 0;
9693 }
9694
9695 /*
9696 todo:
9697
9698 modify to send one tfd per fragment instead of using chunking.  otherwise
9699 we need to heavily modify the ieee80211_skb_to_txb.
9700 */
9701
9702 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9703                              int pri)
9704 {
9705         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9706             txb->fragments[0]->data;
9707         int i = 0;
9708         struct tfd_frame *tfd;
9709 #ifdef CONFIG_IPW_QOS
9710         int tx_id = ipw_get_tx_queue_number(priv, pri);
9711         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9712 #else
9713         struct clx2_tx_queue *txq = &priv->txq[0];
9714 #endif
9715         struct clx2_queue *q = &txq->q;
9716         u8 id, hdr_len, unicast;
9717         u16 remaining_bytes;
9718         int fc;
9719
9720         /* If there isn't room in the queue, we return busy and let the
9721          * network stack requeue the packet for us */
9722         if (ipw_queue_space(q) < q->high_mark)
9723                 return NETDEV_TX_BUSY;
9724
9725         switch (priv->ieee->iw_mode) {
9726         case IW_MODE_ADHOC:
9727                 hdr_len = IEEE80211_3ADDR_LEN;
9728                 unicast = !is_multicast_ether_addr(hdr->addr1);
9729                 id = ipw_find_station(priv, hdr->addr1);
9730                 if (id == IPW_INVALID_STATION) {
9731                         id = ipw_add_station(priv, hdr->addr1);
9732                         if (id == IPW_INVALID_STATION) {
9733                                 IPW_WARNING("Attempt to send data to "
9734                                             "invalid cell: " MAC_FMT "\n",
9735                                             MAC_ARG(hdr->addr1));
9736                                 goto drop;
9737                         }
9738                 }
9739                 break;
9740
9741         case IW_MODE_INFRA:
9742         default:
9743                 unicast = !is_multicast_ether_addr(hdr->addr3);
9744                 hdr_len = IEEE80211_3ADDR_LEN;
9745                 id = 0;
9746                 break;
9747         }
9748
9749         tfd = &txq->bd[q->first_empty];
9750         txq->txb[q->first_empty] = txb;
9751         memset(tfd, 0, sizeof(*tfd));
9752         tfd->u.data.station_number = id;
9753
9754         tfd->control_flags.message_type = TX_FRAME_TYPE;
9755         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9756
9757         tfd->u.data.cmd_id = DINO_CMD_TX;
9758         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9759         remaining_bytes = txb->payload_size;
9760
9761         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9762                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9763         else
9764                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9765
9766         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9767                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9768
9769         fc = le16_to_cpu(hdr->frame_ctl);
9770         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9771
9772         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9773
9774         if (likely(unicast))
9775                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9776
9777         if (txb->encrypted && !priv->ieee->host_encrypt) {
9778                 switch (priv->ieee->sec.level) {
9779                 case SEC_LEVEL_3:
9780                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9781                             IEEE80211_FCTL_PROTECTED;
9782                         /* XXX: ACK flag must be set for CCMP even if it
9783                          * is a multicast/broadcast packet, because CCMP
9784                          * group communication encrypted by GTK is
9785                          * actually done by the AP. */
9786                         if (!unicast)
9787                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9788
9789                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9790                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9791                         tfd->u.data.key_index = 0;
9792                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9793                         break;
9794                 case SEC_LEVEL_2:
9795                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9796                             IEEE80211_FCTL_PROTECTED;
9797                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9798                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9799                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9800                         break;
9801                 case SEC_LEVEL_1:
9802                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9803                             IEEE80211_FCTL_PROTECTED;
9804                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9805                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9806                             40)
9807                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9808                         else
9809                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9810                         break;
9811                 case SEC_LEVEL_0:
9812                         break;
9813                 default:
9814                         printk(KERN_ERR "Unknow security level %d\n",
9815                                priv->ieee->sec.level);
9816                         break;
9817                 }
9818         } else
9819                 /* No hardware encryption */
9820                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9821
9822 #ifdef CONFIG_IPW_QOS
9823         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9824 #endif                          /* CONFIG_IPW_QOS */
9825
9826         /* payload */
9827         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9828                                                  txb->nr_frags));
9829         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9830                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9831         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9832                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9833                                i, le32_to_cpu(tfd->u.data.num_chunks),
9834                                txb->fragments[i]->len - hdr_len);
9835                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9836                              i, tfd->u.data.num_chunks,
9837                              txb->fragments[i]->len - hdr_len);
9838                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9839                            txb->fragments[i]->len - hdr_len);
9840
9841                 tfd->u.data.chunk_ptr[i] =
9842                     cpu_to_le32(pci_map_single
9843                                 (priv->pci_dev,
9844                                  txb->fragments[i]->data + hdr_len,
9845                                  txb->fragments[i]->len - hdr_len,
9846                                  PCI_DMA_TODEVICE));
9847                 tfd->u.data.chunk_len[i] =
9848                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9849         }
9850
9851         if (i != txb->nr_frags) {
9852                 struct sk_buff *skb;
9853                 u16 remaining_bytes = 0;
9854                 int j;
9855
9856                 for (j = i; j < txb->nr_frags; j++)
9857                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9858
9859                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9860                        remaining_bytes);
9861                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9862                 if (skb != NULL) {
9863                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9864                         for (j = i; j < txb->nr_frags; j++) {
9865                                 int size = txb->fragments[j]->len - hdr_len;
9866
9867                                 printk(KERN_INFO "Adding frag %d %d...\n",
9868                                        j, size);
9869                                 memcpy(skb_put(skb, size),
9870                                        txb->fragments[j]->data + hdr_len, size);
9871                         }
9872                         dev_kfree_skb_any(txb->fragments[i]);
9873                         txb->fragments[i] = skb;
9874                         tfd->u.data.chunk_ptr[i] =
9875                             cpu_to_le32(pci_map_single
9876                                         (priv->pci_dev, skb->data,
9877                                          tfd->u.data.chunk_len[i],
9878                                          PCI_DMA_TODEVICE));
9879
9880                         tfd->u.data.num_chunks =
9881                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9882                                         1);
9883                 }
9884         }
9885
9886         /* kick DMA */
9887         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9888         ipw_write32(priv, q->reg_w, q->first_empty);
9889
9890         return NETDEV_TX_OK;
9891
9892       drop:
9893         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9894         ieee80211_txb_free(txb);
9895         return NETDEV_TX_OK;
9896 }
9897
9898 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9899 {
9900         struct ipw_priv *priv = ieee80211_priv(dev);
9901 #ifdef CONFIG_IPW_QOS
9902         int tx_id = ipw_get_tx_queue_number(priv, pri);
9903         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9904 #else
9905         struct clx2_tx_queue *txq = &priv->txq[0];
9906 #endif                          /* CONFIG_IPW_QOS */
9907
9908         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9909                 return 1;
9910
9911         return 0;
9912 }
9913
9914 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9915                                    struct net_device *dev, int pri)
9916 {
9917         struct ipw_priv *priv = ieee80211_priv(dev);
9918         unsigned long flags;
9919         int ret;
9920
9921         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9922         spin_lock_irqsave(&priv->lock, flags);
9923
9924         if (!(priv->status & STATUS_ASSOCIATED)) {
9925                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9926                 priv->ieee->stats.tx_carrier_errors++;
9927                 netif_stop_queue(dev);
9928                 goto fail_unlock;
9929         }
9930
9931         ret = ipw_tx_skb(priv, txb, pri);
9932         if (ret == NETDEV_TX_OK)
9933                 __ipw_led_activity_on(priv);
9934         spin_unlock_irqrestore(&priv->lock, flags);
9935
9936         return ret;
9937
9938       fail_unlock:
9939         spin_unlock_irqrestore(&priv->lock, flags);
9940         return 1;
9941 }
9942
9943 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9944 {
9945         struct ipw_priv *priv = ieee80211_priv(dev);
9946
9947         priv->ieee->stats.tx_packets = priv->tx_packets;
9948         priv->ieee->stats.rx_packets = priv->rx_packets;
9949         return &priv->ieee->stats;
9950 }
9951
9952 static void ipw_net_set_multicast_list(struct net_device *dev)
9953 {
9954
9955 }
9956
9957 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9958 {
9959         struct ipw_priv *priv = ieee80211_priv(dev);
9960         struct sockaddr *addr = p;
9961         if (!is_valid_ether_addr(addr->sa_data))
9962                 return -EADDRNOTAVAIL;
9963         down(&priv->sem);
9964         priv->config |= CFG_CUSTOM_MAC;
9965         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9966         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9967                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9968         queue_work(priv->workqueue, &priv->adapter_restart);
9969         up(&priv->sem);
9970         return 0;
9971 }
9972
9973 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9974                                     struct ethtool_drvinfo *info)
9975 {
9976         struct ipw_priv *p = ieee80211_priv(dev);
9977         char vers[64];
9978         char date[32];
9979         u32 len;
9980
9981         strcpy(info->driver, DRV_NAME);
9982         strcpy(info->version, DRV_VERSION);
9983
9984         len = sizeof(vers);
9985         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9986         len = sizeof(date);
9987         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9988
9989         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9990                  vers, date);
9991         strcpy(info->bus_info, pci_name(p->pci_dev));
9992         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9993 }
9994
9995 static u32 ipw_ethtool_get_link(struct net_device *dev)
9996 {
9997         struct ipw_priv *priv = ieee80211_priv(dev);
9998         return (priv->status & STATUS_ASSOCIATED) != 0;
9999 }
10000
10001 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10002 {
10003         return IPW_EEPROM_IMAGE_SIZE;
10004 }
10005
10006 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10007                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10008 {
10009         struct ipw_priv *p = ieee80211_priv(dev);
10010
10011         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10012                 return -EINVAL;
10013         down(&p->sem);
10014         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10015         up(&p->sem);
10016         return 0;
10017 }
10018
10019 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10020                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10021 {
10022         struct ipw_priv *p = ieee80211_priv(dev);
10023         int i;
10024
10025         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10026                 return -EINVAL;
10027         down(&p->sem);
10028         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10029         for (i = IPW_EEPROM_DATA;
10030              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
10031                 ipw_write8(p, i, p->eeprom[i]);
10032         up(&p->sem);
10033         return 0;
10034 }
10035
10036 static struct ethtool_ops ipw_ethtool_ops = {
10037         .get_link = ipw_ethtool_get_link,
10038         .get_drvinfo = ipw_ethtool_get_drvinfo,
10039         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10040         .get_eeprom = ipw_ethtool_get_eeprom,
10041         .set_eeprom = ipw_ethtool_set_eeprom,
10042 };
10043
10044 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10045 {
10046         struct ipw_priv *priv = data;
10047         u32 inta, inta_mask;
10048
10049         if (!priv)
10050                 return IRQ_NONE;
10051
10052         spin_lock(&priv->lock);
10053
10054         if (!(priv->status & STATUS_INT_ENABLED)) {
10055                 /* Shared IRQ */
10056                 goto none;
10057         }
10058
10059         inta = ipw_read32(priv, IPW_INTA_RW);
10060         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10061
10062         if (inta == 0xFFFFFFFF) {
10063                 /* Hardware disappeared */
10064                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10065                 goto none;
10066         }
10067
10068         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10069                 /* Shared interrupt */
10070                 goto none;
10071         }
10072
10073         /* tell the device to stop sending interrupts */
10074         ipw_disable_interrupts(priv);
10075
10076         /* ack current interrupts */
10077         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10078         ipw_write32(priv, IPW_INTA_RW, inta);
10079
10080         /* Cache INTA value for our tasklet */
10081         priv->isr_inta = inta;
10082
10083         tasklet_schedule(&priv->irq_tasklet);
10084
10085         spin_unlock(&priv->lock);
10086
10087         return IRQ_HANDLED;
10088       none:
10089         spin_unlock(&priv->lock);
10090         return IRQ_NONE;
10091 }
10092
10093 static void ipw_rf_kill(void *adapter)
10094 {
10095         struct ipw_priv *priv = adapter;
10096         unsigned long flags;
10097
10098         spin_lock_irqsave(&priv->lock, flags);
10099
10100         if (rf_kill_active(priv)) {
10101                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10102                 if (priv->workqueue)
10103                         queue_delayed_work(priv->workqueue,
10104                                            &priv->rf_kill, 2 * HZ);
10105                 goto exit_unlock;
10106         }
10107
10108         /* RF Kill is now disabled, so bring the device back up */
10109
10110         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10111                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10112                                   "device\n");
10113
10114                 /* we can not do an adapter restart while inside an irq lock */
10115                 queue_work(priv->workqueue, &priv->adapter_restart);
10116         } else
10117                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10118                                   "enabled\n");
10119
10120       exit_unlock:
10121         spin_unlock_irqrestore(&priv->lock, flags);
10122 }
10123
10124 static void ipw_bg_rf_kill(void *data)
10125 {
10126         struct ipw_priv *priv = data;
10127         down(&priv->sem);
10128         ipw_rf_kill(data);
10129         up(&priv->sem);
10130 }
10131
10132 static void ipw_link_up(struct ipw_priv *priv)
10133 {
10134         priv->last_seq_num = -1;
10135         priv->last_frag_num = -1;
10136         priv->last_packet_time = 0;
10137
10138         netif_carrier_on(priv->net_dev);
10139         if (netif_queue_stopped(priv->net_dev)) {
10140                 IPW_DEBUG_NOTIF("waking queue\n");
10141                 netif_wake_queue(priv->net_dev);
10142         } else {
10143                 IPW_DEBUG_NOTIF("starting queue\n");
10144                 netif_start_queue(priv->net_dev);
10145         }
10146
10147         cancel_delayed_work(&priv->request_scan);
10148         ipw_reset_stats(priv);
10149         /* Ensure the rate is updated immediately */
10150         priv->last_rate = ipw_get_current_rate(priv);
10151         ipw_gather_stats(priv);
10152         ipw_led_link_up(priv);
10153         notify_wx_assoc_event(priv);
10154
10155         if (priv->config & CFG_BACKGROUND_SCAN)
10156                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10157 }
10158
10159 static void ipw_bg_link_up(void *data)
10160 {
10161         struct ipw_priv *priv = data;
10162         down(&priv->sem);
10163         ipw_link_up(data);
10164         up(&priv->sem);
10165 }
10166
10167 static void ipw_link_down(struct ipw_priv *priv)
10168 {
10169         ipw_led_link_down(priv);
10170         netif_carrier_off(priv->net_dev);
10171         netif_stop_queue(priv->net_dev);
10172         notify_wx_assoc_event(priv);
10173
10174         /* Cancel any queued work ... */
10175         cancel_delayed_work(&priv->request_scan);
10176         cancel_delayed_work(&priv->adhoc_check);
10177         cancel_delayed_work(&priv->gather_stats);
10178
10179         ipw_reset_stats(priv);
10180
10181         if (!(priv->status & STATUS_EXIT_PENDING)) {
10182                 /* Queue up another scan... */
10183                 queue_work(priv->workqueue, &priv->request_scan);
10184         }
10185 }
10186
10187 static void ipw_bg_link_down(void *data)
10188 {
10189         struct ipw_priv *priv = data;
10190         down(&priv->sem);
10191         ipw_link_down(data);
10192         up(&priv->sem);
10193 }
10194
10195 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10196 {
10197         int ret = 0;
10198
10199         priv->workqueue = create_workqueue(DRV_NAME);
10200         init_waitqueue_head(&priv->wait_command_queue);
10201         init_waitqueue_head(&priv->wait_state);
10202
10203         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10204         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10205         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10206         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10207         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10208         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10209         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10210         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10211         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10212         INIT_WORK(&priv->request_scan,
10213                   (void (*)(void *))ipw_request_scan, priv);
10214         INIT_WORK(&priv->gather_stats,
10215                   (void (*)(void *))ipw_bg_gather_stats, priv);
10216         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10217         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10218         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10219         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10220         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10221         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10222                   priv);
10223         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10224                   priv);
10225         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10226                   priv);
10227         INIT_WORK(&priv->merge_networks,
10228                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10229
10230 #ifdef CONFIG_IPW_QOS
10231         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10232                   priv);
10233 #endif                          /* CONFIG_IPW_QOS */
10234
10235         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10236                      ipw_irq_tasklet, (unsigned long)priv);
10237
10238         return ret;
10239 }
10240
10241 static void shim__set_security(struct net_device *dev,
10242                                struct ieee80211_security *sec)
10243 {
10244         struct ipw_priv *priv = ieee80211_priv(dev);
10245         int i;
10246         for (i = 0; i < 4; i++) {
10247                 if (sec->flags & (1 << i)) {
10248                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10249                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10250                         if (sec->key_sizes[i] == 0)
10251                                 priv->ieee->sec.flags &= ~(1 << i);
10252                         else {
10253                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10254                                        sec->key_sizes[i]);
10255                                 priv->ieee->sec.flags |= (1 << i);
10256                         }
10257                         priv->status |= STATUS_SECURITY_UPDATED;
10258                 } else if (sec->level != SEC_LEVEL_1)
10259                         priv->ieee->sec.flags &= ~(1 << i);
10260         }
10261
10262         if (sec->flags & SEC_ACTIVE_KEY) {
10263                 if (sec->active_key <= 3) {
10264                         priv->ieee->sec.active_key = sec->active_key;
10265                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10266                 } else
10267                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10268                 priv->status |= STATUS_SECURITY_UPDATED;
10269         } else
10270                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10271
10272         if ((sec->flags & SEC_AUTH_MODE) &&
10273             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10274                 priv->ieee->sec.auth_mode = sec->auth_mode;
10275                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10276                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10277                         priv->capability |= CAP_SHARED_KEY;
10278                 else
10279                         priv->capability &= ~CAP_SHARED_KEY;
10280                 priv->status |= STATUS_SECURITY_UPDATED;
10281         }
10282
10283         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10284                 priv->ieee->sec.flags |= SEC_ENABLED;
10285                 priv->ieee->sec.enabled = sec->enabled;
10286                 priv->status |= STATUS_SECURITY_UPDATED;
10287                 if (sec->enabled)
10288                         priv->capability |= CAP_PRIVACY_ON;
10289                 else
10290                         priv->capability &= ~CAP_PRIVACY_ON;
10291         }
10292
10293         if (sec->flags & SEC_ENCRYPT)
10294                 priv->ieee->sec.encrypt = sec->encrypt;
10295
10296         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10297                 priv->ieee->sec.level = sec->level;
10298                 priv->ieee->sec.flags |= SEC_LEVEL;
10299                 priv->status |= STATUS_SECURITY_UPDATED;
10300         }
10301
10302         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10303                 ipw_set_hwcrypto_keys(priv);
10304
10305         /* To match current functionality of ipw2100 (which works well w/
10306          * various supplicants, we don't force a disassociate if the
10307          * privacy capability changes ... */
10308 #if 0
10309         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10310             (((priv->assoc_request.capability &
10311                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10312              (!(priv->assoc_request.capability &
10313                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10314                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10315                                 "change.\n");
10316                 ipw_disassociate(priv);
10317         }
10318 #endif
10319 }
10320
10321 static int init_supported_rates(struct ipw_priv *priv,
10322                                 struct ipw_supported_rates *rates)
10323 {
10324         /* TODO: Mask out rates based on priv->rates_mask */
10325
10326         memset(rates, 0, sizeof(*rates));
10327         /* configure supported rates */
10328         switch (priv->ieee->freq_band) {
10329         case IEEE80211_52GHZ_BAND:
10330                 rates->ieee_mode = IPW_A_MODE;
10331                 rates->purpose = IPW_RATE_CAPABILITIES;
10332                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10333                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10334                 break;
10335
10336         default:                /* Mixed or 2.4Ghz */
10337                 rates->ieee_mode = IPW_G_MODE;
10338                 rates->purpose = IPW_RATE_CAPABILITIES;
10339                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10340                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10341                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10342                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10343                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10344                 }
10345                 break;
10346         }
10347
10348         return 0;
10349 }
10350
10351 static int ipw_config(struct ipw_priv *priv)
10352 {
10353         /* This is only called from ipw_up, which resets/reloads the firmware
10354            so, we don't need to first disable the card before we configure
10355            it */
10356         if (ipw_set_tx_power(priv))
10357                 goto error;
10358
10359         /* initialize adapter address */
10360         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10361                 goto error;
10362
10363         /* set basic system config settings */
10364         init_sys_config(&priv->sys_config);
10365         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10366                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10367         else
10368                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10369
10370         if (ipw_send_system_config(priv, &priv->sys_config))
10371                 goto error;
10372
10373         init_supported_rates(priv, &priv->rates);
10374         if (ipw_send_supported_rates(priv, &priv->rates))
10375                 goto error;
10376
10377         /* Set request-to-send threshold */
10378         if (priv->rts_threshold) {
10379                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10380                         goto error;
10381         }
10382 #ifdef CONFIG_IPW_QOS
10383         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10384         ipw_qos_activate(priv, NULL);
10385 #endif                          /* CONFIG_IPW_QOS */
10386
10387         if (ipw_set_random_seed(priv))
10388                 goto error;
10389
10390         /* final state transition to the RUN state */
10391         if (ipw_send_host_complete(priv))
10392                 goto error;
10393
10394         priv->status |= STATUS_INIT;
10395
10396         ipw_led_init(priv);
10397         ipw_led_radio_on(priv);
10398         priv->notif_missed_beacons = 0;
10399
10400         /* Set hardware WEP key if it is configured. */
10401         if ((priv->capability & CAP_PRIVACY_ON) &&
10402             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10403             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10404                 ipw_set_hwcrypto_keys(priv);
10405
10406         return 0;
10407
10408       error:
10409         return -EIO;
10410 }
10411
10412 /*
10413  * NOTE:
10414  *
10415  * These tables have been tested in conjunction with the
10416  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10417  *
10418  * Altering this values, using it on other hardware, or in geographies
10419  * not intended for resale of the above mentioned Intel adapters has
10420  * not been tested.
10421  *
10422  */
10423 static const struct ieee80211_geo ipw_geos[] = {
10424         {                       /* Restricted */
10425          "---",
10426          .bg_channels = 11,
10427          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10428                 {2427, 4}, {2432, 5}, {2437, 6},
10429                 {2442, 7}, {2447, 8}, {2452, 9},
10430                 {2457, 10}, {2462, 11}},
10431          },
10432
10433         {                       /* Custom US/Canada */
10434          "ZZF",
10435          .bg_channels = 11,
10436          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10437                 {2427, 4}, {2432, 5}, {2437, 6},
10438                 {2442, 7}, {2447, 8}, {2452, 9},
10439                 {2457, 10}, {2462, 11}},
10440          .a_channels = 8,
10441          .a = {{5180, 36},
10442                {5200, 40},
10443                {5220, 44},
10444                {5240, 48},
10445                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10446                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10447                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10448                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10449          },
10450
10451         {                       /* Rest of World */
10452          "ZZD",
10453          .bg_channels = 13,
10454          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10455                 {2427, 4}, {2432, 5}, {2437, 6},
10456                 {2442, 7}, {2447, 8}, {2452, 9},
10457                 {2457, 10}, {2462, 11}, {2467, 12},
10458                 {2472, 13}},
10459          },
10460
10461         {                       /* Custom USA & Europe & High */
10462          "ZZA",
10463          .bg_channels = 11,
10464          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10465                 {2427, 4}, {2432, 5}, {2437, 6},
10466                 {2442, 7}, {2447, 8}, {2452, 9},
10467                 {2457, 10}, {2462, 11}},
10468          .a_channels = 13,
10469          .a = {{5180, 36},
10470                {5200, 40},
10471                {5220, 44},
10472                {5240, 48},
10473                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10474                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10475                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10476                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10477                {5745, 149},
10478                {5765, 153},
10479                {5785, 157},
10480                {5805, 161},
10481                {5825, 165}},
10482          },
10483
10484         {                       /* Custom NA & Europe */
10485          "ZZB",
10486          .bg_channels = 11,
10487          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10488                 {2427, 4}, {2432, 5}, {2437, 6},
10489                 {2442, 7}, {2447, 8}, {2452, 9},
10490                 {2457, 10}, {2462, 11}},
10491          .a_channels = 13,
10492          .a = {{5180, 36},
10493                {5200, 40},
10494                {5220, 44},
10495                {5240, 48},
10496                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10497                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10498                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10499                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10500                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10501                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10502                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10503                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10504                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10505          },
10506
10507         {                       /* Custom Japan */
10508          "ZZC",
10509          .bg_channels = 11,
10510          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10511                 {2427, 4}, {2432, 5}, {2437, 6},
10512                 {2442, 7}, {2447, 8}, {2452, 9},
10513                 {2457, 10}, {2462, 11}},
10514          .a_channels = 4,
10515          .a = {{5170, 34}, {5190, 38},
10516                {5210, 42}, {5230, 46}},
10517          },
10518
10519         {                       /* Custom */
10520          "ZZM",
10521          .bg_channels = 11,
10522          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10523                 {2427, 4}, {2432, 5}, {2437, 6},
10524                 {2442, 7}, {2447, 8}, {2452, 9},
10525                 {2457, 10}, {2462, 11}},
10526          },
10527
10528         {                       /* Europe */
10529          "ZZE",
10530          .bg_channels = 13,
10531          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10532                 {2427, 4}, {2432, 5}, {2437, 6},
10533                 {2442, 7}, {2447, 8}, {2452, 9},
10534                 {2457, 10}, {2462, 11}, {2467, 12},
10535                 {2472, 13}},
10536          .a_channels = 19,
10537          .a = {{5180, 36},
10538                {5200, 40},
10539                {5220, 44},
10540                {5240, 48},
10541                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10542                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10543                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10544                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10545                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10546                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10547                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10548                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10549                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10550                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10551                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10552                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10553                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10554                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10555                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10556          },
10557
10558         {                       /* Custom Japan */
10559          "ZZJ",
10560          .bg_channels = 14,
10561          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10562                 {2427, 4}, {2432, 5}, {2437, 6},
10563                 {2442, 7}, {2447, 8}, {2452, 9},
10564                 {2457, 10}, {2462, 11}, {2467, 12},
10565                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10566          .a_channels = 4,
10567          .a = {{5170, 34}, {5190, 38},
10568                {5210, 42}, {5230, 46}},
10569          },
10570
10571         {                       /* Rest of World */
10572          "ZZR",
10573          .bg_channels = 14,
10574          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10575                 {2427, 4}, {2432, 5}, {2437, 6},
10576                 {2442, 7}, {2447, 8}, {2452, 9},
10577                 {2457, 10}, {2462, 11}, {2467, 12},
10578                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10579                              IEEE80211_CH_PASSIVE_ONLY}},
10580          },
10581
10582         {                       /* High Band */
10583          "ZZH",
10584          .bg_channels = 13,
10585          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10586                 {2427, 4}, {2432, 5}, {2437, 6},
10587                 {2442, 7}, {2447, 8}, {2452, 9},
10588                 {2457, 10}, {2462, 11},
10589                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10590                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10591          .a_channels = 4,
10592          .a = {{5745, 149}, {5765, 153},
10593                {5785, 157}, {5805, 161}},
10594          },
10595
10596         {                       /* Custom Europe */
10597          "ZZG",
10598          .bg_channels = 13,
10599          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10600                 {2427, 4}, {2432, 5}, {2437, 6},
10601                 {2442, 7}, {2447, 8}, {2452, 9},
10602                 {2457, 10}, {2462, 11},
10603                 {2467, 12}, {2472, 13}},
10604          .a_channels = 4,
10605          .a = {{5180, 36}, {5200, 40},
10606                {5220, 44}, {5240, 48}},
10607          },
10608
10609         {                       /* Europe */
10610          "ZZK",
10611          .bg_channels = 13,
10612          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10613                 {2427, 4}, {2432, 5}, {2437, 6},
10614                 {2442, 7}, {2447, 8}, {2452, 9},
10615                 {2457, 10}, {2462, 11},
10616                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10617                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10618          .a_channels = 24,
10619          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10620                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10621                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10622                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10623                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10624                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10625                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10626                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10627                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10628                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10629                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10630                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10631                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10632                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10633                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10634                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10635                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10636                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10637                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10638                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10639                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10640                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10641                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10642                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10643          },
10644
10645         {                       /* Europe */
10646          "ZZL",
10647          .bg_channels = 11,
10648          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10649                 {2427, 4}, {2432, 5}, {2437, 6},
10650                 {2442, 7}, {2447, 8}, {2452, 9},
10651                 {2457, 10}, {2462, 11}},
10652          .a_channels = 13,
10653          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10654                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10655                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10656                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10657                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10658                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10659                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10660                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10661                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10662                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10663                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10664                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10665                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10666          }
10667 };
10668
10669 /* GEO code borrowed from ieee80211_geo.c */
10670 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
10671 {
10672         int i;
10673
10674         /* Driver needs to initialize the geography map before using
10675          * these helper functions */
10676         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10677
10678         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10679                 for (i = 0; i < ieee->geo.bg_channels; i++)
10680                         /* NOTE: If G mode is currently supported but
10681                          * this is a B only channel, we don't see it
10682                          * as valid. */
10683                         if ((ieee->geo.bg[i].channel == channel) &&
10684                             (!(ieee->mode & IEEE_G) ||
10685                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
10686                                 return IEEE80211_24GHZ_BAND;
10687
10688         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10689                 for (i = 0; i < ieee->geo.a_channels; i++)
10690                         if (ieee->geo.a[i].channel == channel)
10691                                 return IEEE80211_52GHZ_BAND;
10692
10693         return 0;
10694 }
10695
10696 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
10697 {
10698         int i;
10699
10700         /* Driver needs to initialize the geography map before using
10701          * these helper functions */
10702         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10703
10704         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10705                 for (i = 0; i < ieee->geo.bg_channels; i++)
10706                         if (ieee->geo.bg[i].channel == channel)
10707                                 return i;
10708
10709         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10710                 for (i = 0; i < ieee->geo.a_channels; i++)
10711                         if (ieee->geo.a[i].channel == channel)
10712                                 return i;
10713
10714         return -1;
10715 }
10716
10717 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
10718 {
10719         int i;
10720
10721         /* Driver needs to initialize the geography map before using
10722          * these helper functions */
10723         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10724
10725         freq /= 100000;
10726
10727         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10728                 for (i = 0; i < ieee->geo.bg_channels; i++)
10729                         if (ieee->geo.bg[i].freq == freq)
10730                                 return ieee->geo.bg[i].channel;
10731
10732         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10733                 for (i = 0; i < ieee->geo.a_channels; i++)
10734                         if (ieee->geo.a[i].freq == freq)
10735                                 return ieee->geo.a[i].channel;
10736
10737         return 0;
10738 }
10739
10740 static int ipw_set_geo(struct ieee80211_device *ieee,
10741                        const struct ieee80211_geo *geo)
10742 {
10743         memcpy(ieee->geo.name, geo->name, 3);
10744         ieee->geo.name[3] = '\0';
10745         ieee->geo.bg_channels = geo->bg_channels;
10746         ieee->geo.a_channels = geo->a_channels;
10747         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
10748                sizeof(struct ieee80211_channel));
10749         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
10750                sizeof(struct ieee80211_channel));
10751         return 0;
10752 }
10753
10754 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
10755 {
10756         return &ieee->geo;
10757 }
10758
10759 #define MAX_HW_RESTARTS 5
10760 static int ipw_up(struct ipw_priv *priv)
10761 {
10762         int rc, i, j;
10763
10764         if (priv->status & STATUS_EXIT_PENDING)
10765                 return -EIO;
10766
10767         if (cmdlog && !priv->cmdlog) {
10768                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10769                                        GFP_KERNEL);
10770                 if (priv->cmdlog == NULL) {
10771                         IPW_ERROR("Error allocating %d command log entries.\n",
10772                                   cmdlog);
10773                 } else {
10774                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10775                         priv->cmdlog_len = cmdlog;
10776                 }
10777         }
10778
10779         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10780                 /* Load the microcode, firmware, and eeprom.
10781                  * Also start the clocks. */
10782                 rc = ipw_load(priv);
10783                 if (rc) {
10784                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10785                         return rc;
10786                 }
10787
10788                 ipw_init_ordinals(priv);
10789                 if (!(priv->config & CFG_CUSTOM_MAC))
10790                         eeprom_parse_mac(priv, priv->mac_addr);
10791                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10792
10793                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10794                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10795                                     ipw_geos[j].name, 3))
10796                                 break;
10797                 }
10798                 if (j == ARRAY_SIZE(ipw_geos)) {
10799                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10800                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10801                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10802                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10803                         j = 0;
10804                 }
10805                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
10806                         IPW_WARNING("Could not set geography.");
10807                         return 0;
10808                 }
10809
10810                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10811                                j, priv->ieee->geo.name);
10812
10813                 if (priv->status & STATUS_RF_KILL_SW) {
10814                         IPW_WARNING("Radio disabled by module parameter.\n");
10815                         return 0;
10816                 } else if (rf_kill_active(priv)) {
10817                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10818                                     "Kill switch must be turned off for "
10819                                     "wireless networking to work.\n");
10820                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10821                                            2 * HZ);
10822                         return 0;
10823                 }
10824
10825                 rc = ipw_config(priv);
10826                 if (!rc) {
10827                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10828
10829                         /* If configure to try and auto-associate, kick
10830                          * off a scan. */
10831                         queue_work(priv->workqueue, &priv->request_scan);
10832
10833                         return 0;
10834                 }
10835
10836                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10837                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10838                                i, MAX_HW_RESTARTS);
10839
10840                 /* We had an error bringing up the hardware, so take it
10841                  * all the way back down so we can try again */
10842                 ipw_down(priv);
10843         }
10844
10845         /* tried to restart and config the device for as long as our
10846          * patience could withstand */
10847         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10848
10849         return -EIO;
10850 }
10851
10852 static void ipw_bg_up(void *data)
10853 {
10854         struct ipw_priv *priv = data;
10855         down(&priv->sem);
10856         ipw_up(data);
10857         up(&priv->sem);
10858 }
10859
10860 static void ipw_deinit(struct ipw_priv *priv)
10861 {
10862         int i;
10863
10864         if (priv->status & STATUS_SCANNING) {
10865                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10866                 ipw_abort_scan(priv);
10867         }
10868
10869         if (priv->status & STATUS_ASSOCIATED) {
10870                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10871                 ipw_disassociate(priv);
10872         }
10873
10874         ipw_led_shutdown(priv);
10875
10876         /* Wait up to 1s for status to change to not scanning and not
10877          * associated (disassociation can take a while for a ful 802.11
10878          * exchange */
10879         for (i = 1000; i && (priv->status &
10880                              (STATUS_DISASSOCIATING |
10881                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10882                 udelay(10);
10883
10884         if (priv->status & (STATUS_DISASSOCIATING |
10885                             STATUS_ASSOCIATED | STATUS_SCANNING))
10886                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10887         else
10888                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10889
10890         /* Attempt to disable the card */
10891         ipw_send_card_disable(priv, 0);
10892
10893         priv->status &= ~STATUS_INIT;
10894 }
10895
10896 static void ipw_down(struct ipw_priv *priv)
10897 {
10898         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10899
10900         priv->status |= STATUS_EXIT_PENDING;
10901
10902         if (ipw_is_init(priv))
10903                 ipw_deinit(priv);
10904
10905         /* Wipe out the EXIT_PENDING status bit if we are not actually
10906          * exiting the module */
10907         if (!exit_pending)
10908                 priv->status &= ~STATUS_EXIT_PENDING;
10909
10910         /* tell the device to stop sending interrupts */
10911         ipw_disable_interrupts(priv);
10912
10913         /* Clear all bits but the RF Kill */
10914         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10915         netif_carrier_off(priv->net_dev);
10916         netif_stop_queue(priv->net_dev);
10917
10918         ipw_stop_nic(priv);
10919
10920         ipw_led_radio_off(priv);
10921 }
10922
10923 static void ipw_bg_down(void *data)
10924 {
10925         struct ipw_priv *priv = data;
10926         down(&priv->sem);
10927         ipw_down(data);
10928         up(&priv->sem);
10929 }
10930
10931 /* Called by register_netdev() */
10932 static int ipw_net_init(struct net_device *dev)
10933 {
10934         struct ipw_priv *priv = ieee80211_priv(dev);
10935         down(&priv->sem);
10936
10937         if (ipw_up(priv)) {
10938                 up(&priv->sem);
10939                 return -EIO;
10940         }
10941
10942         up(&priv->sem);
10943         return 0;
10944 }
10945
10946 /* PCI driver stuff */
10947 static struct pci_device_id card_ids[] = {
10948         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10949         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10950         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10951         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10952         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10953         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10954         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10955         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10956         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10957         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10958         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10959         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10960         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10961         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10962         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10963         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10964         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10965         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10966         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10967         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10968         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10969         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10970
10971         /* required last entry */
10972         {0,}
10973 };
10974
10975 MODULE_DEVICE_TABLE(pci, card_ids);
10976
10977 static struct attribute *ipw_sysfs_entries[] = {
10978         &dev_attr_rf_kill.attr,
10979         &dev_attr_direct_dword.attr,
10980         &dev_attr_indirect_byte.attr,
10981         &dev_attr_indirect_dword.attr,
10982         &dev_attr_mem_gpio_reg.attr,
10983         &dev_attr_command_event_reg.attr,
10984         &dev_attr_nic_type.attr,
10985         &dev_attr_status.attr,
10986         &dev_attr_cfg.attr,
10987         &dev_attr_error.attr,
10988         &dev_attr_event_log.attr,
10989         &dev_attr_cmd_log.attr,
10990         &dev_attr_eeprom_delay.attr,
10991         &dev_attr_ucode_version.attr,
10992         &dev_attr_rtc.attr,
10993         &dev_attr_scan_age.attr,
10994         &dev_attr_led.attr,
10995         &dev_attr_speed_scan.attr,
10996         &dev_attr_net_stats.attr,
10997         NULL
10998 };
10999
11000 static struct attribute_group ipw_attribute_group = {
11001         .name = NULL,           /* put in device directory */
11002         .attrs = ipw_sysfs_entries,
11003 };
11004
11005 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11006 {
11007         int err = 0;
11008         struct net_device *net_dev;
11009         void __iomem *base;
11010         u32 length, val;
11011         struct ipw_priv *priv;
11012         int i;
11013
11014         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11015         if (net_dev == NULL) {
11016                 err = -ENOMEM;
11017                 goto out;
11018         }
11019
11020         priv = ieee80211_priv(net_dev);
11021         priv->ieee = netdev_priv(net_dev);
11022
11023         priv->net_dev = net_dev;
11024         priv->pci_dev = pdev;
11025 #ifdef CONFIG_IPW2200_DEBUG
11026         ipw_debug_level = debug;
11027 #endif
11028         spin_lock_init(&priv->lock);
11029         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11030                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11031
11032         init_MUTEX(&priv->sem);
11033         if (pci_enable_device(pdev)) {
11034                 err = -ENODEV;
11035                 goto out_free_ieee80211;
11036         }
11037
11038         pci_set_master(pdev);
11039
11040         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11041         if (!err)
11042                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11043         if (err) {
11044                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11045                 goto out_pci_disable_device;
11046         }
11047
11048         pci_set_drvdata(pdev, priv);
11049
11050         err = pci_request_regions(pdev, DRV_NAME);
11051         if (err)
11052                 goto out_pci_disable_device;
11053
11054         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11055          * PCI Tx retries from interfering with C3 CPU state */
11056         pci_read_config_dword(pdev, 0x40, &val);
11057         if ((val & 0x0000ff00) != 0)
11058                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11059
11060         length = pci_resource_len(pdev, 0);
11061         priv->hw_len = length;
11062
11063         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11064         if (!base) {
11065                 err = -ENODEV;
11066                 goto out_pci_release_regions;
11067         }
11068
11069         priv->hw_base = base;
11070         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11071         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11072
11073         err = ipw_setup_deferred_work(priv);
11074         if (err) {
11075                 IPW_ERROR("Unable to setup deferred work\n");
11076                 goto out_iounmap;
11077         }
11078
11079         ipw_sw_reset(priv, 1);
11080
11081         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11082         if (err) {
11083                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11084                 goto out_destroy_workqueue;
11085         }
11086
11087         SET_MODULE_OWNER(net_dev);
11088         SET_NETDEV_DEV(net_dev, &pdev->dev);
11089
11090         down(&priv->sem);
11091
11092         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11093         priv->ieee->set_security = shim__set_security;
11094         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11095
11096 #ifdef CONFIG_IPW_QOS
11097         priv->ieee->handle_probe_response = ipw_handle_beacon;
11098         priv->ieee->handle_beacon = ipw_handle_probe_response;
11099         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11100 #endif                          /* CONFIG_IPW_QOS */
11101
11102         priv->ieee->perfect_rssi = -20;
11103         priv->ieee->worst_rssi = -85;
11104
11105         net_dev->open = ipw_net_open;
11106         net_dev->stop = ipw_net_stop;
11107         net_dev->init = ipw_net_init;
11108         net_dev->get_stats = ipw_net_get_stats;
11109         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11110         net_dev->set_mac_address = ipw_net_set_mac_address;
11111         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11112         net_dev->wireless_data = &priv->wireless_data;
11113         net_dev->wireless_handlers = &ipw_wx_handler_def;
11114         net_dev->ethtool_ops = &ipw_ethtool_ops;
11115         net_dev->irq = pdev->irq;
11116         net_dev->base_addr = (unsigned long)priv->hw_base;
11117         net_dev->mem_start = pci_resource_start(pdev, 0);
11118         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11119
11120         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11121         if (err) {
11122                 IPW_ERROR("failed to create sysfs device attributes\n");
11123                 up(&priv->sem);
11124                 goto out_release_irq;
11125         }
11126
11127         up(&priv->sem);
11128         err = register_netdev(net_dev);
11129         if (err) {
11130                 IPW_ERROR("failed to register network device\n");
11131                 goto out_remove_sysfs;
11132         }
11133         return 0;
11134
11135       out_remove_sysfs:
11136         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11137       out_release_irq:
11138         free_irq(pdev->irq, priv);
11139       out_destroy_workqueue:
11140         destroy_workqueue(priv->workqueue);
11141         priv->workqueue = NULL;
11142       out_iounmap:
11143         iounmap(priv->hw_base);
11144       out_pci_release_regions:
11145         pci_release_regions(pdev);
11146       out_pci_disable_device:
11147         pci_disable_device(pdev);
11148         pci_set_drvdata(pdev, NULL);
11149       out_free_ieee80211:
11150         free_ieee80211(priv->net_dev);
11151       out:
11152         return err;
11153 }
11154
11155 static void ipw_pci_remove(struct pci_dev *pdev)
11156 {
11157         struct ipw_priv *priv = pci_get_drvdata(pdev);
11158         struct list_head *p, *q;
11159         int i;
11160
11161         if (!priv)
11162                 return;
11163
11164         down(&priv->sem);
11165
11166         priv->status |= STATUS_EXIT_PENDING;
11167         ipw_down(priv);
11168         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11169
11170         up(&priv->sem);
11171
11172         unregister_netdev(priv->net_dev);
11173
11174         if (priv->rxq) {
11175                 ipw_rx_queue_free(priv, priv->rxq);
11176                 priv->rxq = NULL;
11177         }
11178         ipw_tx_queue_free(priv);
11179
11180         if (priv->cmdlog) {
11181                 kfree(priv->cmdlog);
11182                 priv->cmdlog = NULL;
11183         }
11184         /* ipw_down will ensure that there is no more pending work
11185          * in the workqueue's, so we can safely remove them now. */
11186         cancel_delayed_work(&priv->adhoc_check);
11187         cancel_delayed_work(&priv->gather_stats);
11188         cancel_delayed_work(&priv->request_scan);
11189         cancel_delayed_work(&priv->rf_kill);
11190         cancel_delayed_work(&priv->scan_check);
11191         destroy_workqueue(priv->workqueue);
11192         priv->workqueue = NULL;
11193
11194         /* Free MAC hash list for ADHOC */
11195         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11196                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11197                         list_del(p);
11198                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11199                 }
11200         }
11201
11202         if (priv->error) {
11203                 ipw_free_error_log(priv->error);
11204                 priv->error = NULL;
11205         }
11206
11207         free_irq(pdev->irq, priv);
11208         iounmap(priv->hw_base);
11209         pci_release_regions(pdev);
11210         pci_disable_device(pdev);
11211         pci_set_drvdata(pdev, NULL);
11212         free_ieee80211(priv->net_dev);
11213         free_firmware();
11214 }
11215
11216 #ifdef CONFIG_PM
11217 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11218 {
11219         struct ipw_priv *priv = pci_get_drvdata(pdev);
11220         struct net_device *dev = priv->net_dev;
11221
11222         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11223
11224         /* Take down the device; powers it off, etc. */
11225         ipw_down(priv);
11226
11227         /* Remove the PRESENT state of the device */
11228         netif_device_detach(dev);
11229
11230         pci_save_state(pdev);
11231         pci_disable_device(pdev);
11232         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11233
11234         return 0;
11235 }
11236
11237 static int ipw_pci_resume(struct pci_dev *pdev)
11238 {
11239         struct ipw_priv *priv = pci_get_drvdata(pdev);
11240         struct net_device *dev = priv->net_dev;
11241         u32 val;
11242
11243         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11244
11245         pci_set_power_state(pdev, PCI_D0);
11246         pci_enable_device(pdev);
11247         pci_restore_state(pdev);
11248
11249         /*
11250          * Suspend/Resume resets the PCI configuration space, so we have to
11251          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11252          * from interfering with C3 CPU state. pci_restore_state won't help
11253          * here since it only restores the first 64 bytes pci config header.
11254          */
11255         pci_read_config_dword(pdev, 0x40, &val);
11256         if ((val & 0x0000ff00) != 0)
11257                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11258
11259         /* Set the device back into the PRESENT state; this will also wake
11260          * the queue of needed */
11261         netif_device_attach(dev);
11262
11263         /* Bring the device back up */
11264         queue_work(priv->workqueue, &priv->up);
11265
11266         return 0;
11267 }
11268 #endif
11269
11270 /* driver initialization stuff */
11271 static struct pci_driver ipw_driver = {
11272         .name = DRV_NAME,
11273         .id_table = card_ids,
11274         .probe = ipw_pci_probe,
11275         .remove = __devexit_p(ipw_pci_remove),
11276 #ifdef CONFIG_PM
11277         .suspend = ipw_pci_suspend,
11278         .resume = ipw_pci_resume,
11279 #endif
11280 };
11281
11282 static int __init ipw_init(void)
11283 {
11284         int ret;
11285
11286         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11287         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11288
11289         ret = pci_module_init(&ipw_driver);
11290         if (ret) {
11291                 IPW_ERROR("Unable to initialize PCI module\n");
11292                 return ret;
11293         }
11294
11295         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11296         if (ret) {
11297                 IPW_ERROR("Unable to create driver sysfs file\n");
11298                 pci_unregister_driver(&ipw_driver);
11299                 return ret;
11300         }
11301
11302         return ret;
11303 }
11304
11305 static void __exit ipw_exit(void)
11306 {
11307         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11308         pci_unregister_driver(&ipw_driver);
11309 }
11310
11311 module_param(disable, int, 0444);
11312 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11313
11314 module_param(associate, int, 0444);
11315 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11316
11317 module_param(auto_create, int, 0444);
11318 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11319
11320 module_param(led, int, 0444);
11321 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11322
11323 module_param(debug, int, 0444);
11324 MODULE_PARM_DESC(debug, "debug output mask");
11325
11326 module_param(channel, int, 0444);
11327 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11328
11329 #ifdef CONFIG_IPW_QOS
11330 module_param(qos_enable, int, 0444);
11331 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11332
11333 module_param(qos_burst_enable, int, 0444);
11334 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11335
11336 module_param(qos_no_ack_mask, int, 0444);
11337 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11338
11339 module_param(burst_duration_CCK, int, 0444);
11340 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11341
11342 module_param(burst_duration_OFDM, int, 0444);
11343 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11344 #endif                          /* CONFIG_IPW_QOS */
11345
11346 #ifdef CONFIG_IPW2200_MONITOR
11347 module_param(mode, int, 0444);
11348 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11349 #else
11350 module_param(mode, int, 0444);
11351 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11352 #endif
11353
11354 module_param(hwcrypto, int, 0444);
11355 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11356
11357 module_param(cmdlog, int, 0444);
11358 MODULE_PARM_DESC(cmdlog,
11359                  "allocate a ring buffer for logging firmware commands");
11360
11361 module_exit(ipw_exit);
11362 module_init(ipw_init);