Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / staging / winbond / wb35reg.c
1 #include "sysdef.h"
2 #include "wb35reg_f.h"
3
4 #include <linux/usb.h>
5
6 extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
7
8 // true  : read command process successfully
9 // false : register not support
10 // RegisterNo : start base
11 // pRegisterData : data point
12 // NumberOfData : number of register data
13 // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
14 //                NO_INCREMENT - Function will write data into the same register
15 unsigned char
16 Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
17 {
18         struct wb35_reg *reg = &pHwData->reg;
19         struct urb      *urb = NULL;
20         struct wb35_reg_queue *reg_queue = NULL;
21         u16             UrbSize;
22         struct      usb_ctrlrequest *dr;
23         u16             i, DataSize = NumberOfData*4;
24
25         // Module shutdown
26         if (pHwData->SurpriseRemove)
27                 return false;
28
29         // Trying to use burst write function if use new hardware
30         UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
31         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
32         urb = usb_alloc_urb(0, GFP_ATOMIC);
33         if( urb && reg_queue ) {
34                 reg_queue->DIRECT = 2;// burst write register
35                 reg_queue->INDEX = RegisterNo;
36                 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
37                 memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
38                 //the function for reversing register data from little endian to big endian
39                 for( i=0; i<NumberOfData ; i++ )
40                         reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
41
42                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
43                 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
44                 dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
45                 dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
46                 dr->wIndex = cpu_to_le16( RegisterNo );
47                 dr->wLength = cpu_to_le16( DataSize );
48                 reg_queue->Next = NULL;
49                 reg_queue->pUsbReq = dr;
50                 reg_queue->urb = urb;
51
52                 spin_lock_irq( &reg->EP0VM_spin_lock );
53                 if (reg->reg_first == NULL)
54                         reg->reg_first = reg_queue;
55                 else
56                         reg->reg_last->Next = reg_queue;
57                 reg->reg_last = reg_queue;
58
59                 spin_unlock_irq( &reg->EP0VM_spin_lock );
60
61                 // Start EP0VM
62                 Wb35Reg_EP0VM_start(pHwData);
63
64                 return true;
65         } else {
66                 if (urb)
67                         usb_free_urb(urb);
68                 if (reg_queue)
69                         kfree(reg_queue);
70                 return false;
71         }
72    return false;
73 }
74
75 void
76 Wb35Reg_Update(struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue)
77 {
78         struct wb35_reg *reg = &pHwData->reg;
79         switch (RegisterNo) {
80         case 0x3b0: reg->U1B0 = RegisterValue; break;
81         case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
82         case 0x400: reg->D00_DmaControl = RegisterValue; break;
83         case 0x800: reg->M00_MacControl = RegisterValue; break;
84         case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
85         case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
86         case 0x824: reg->M24_MacControl = RegisterValue; break;
87         case 0x828: reg->M28_MacControl = RegisterValue; break;
88         case 0x82c: reg->M2C_MacControl = RegisterValue; break;
89         case 0x838: reg->M38_MacControl = RegisterValue; break;
90         case 0x840: reg->M40_MacControl = RegisterValue; break;
91         case 0x844: reg->M44_MacControl = RegisterValue; break;
92         case 0x848: reg->M48_MacControl = RegisterValue; break;
93         case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
94         case 0x860: reg->M60_MacControl = RegisterValue; break;
95         case 0x868: reg->M68_MacControl = RegisterValue; break;
96         case 0x870: reg->M70_MacControl = RegisterValue; break;
97         case 0x874: reg->M74_MacControl = RegisterValue; break;
98         case 0x878: reg->M78_ERPInformation = RegisterValue; break;
99         case 0x87C: reg->M7C_MacControl = RegisterValue; break;
100         case 0x880: reg->M80_MacControl = RegisterValue; break;
101         case 0x884: reg->M84_MacControl = RegisterValue; break;
102         case 0x888: reg->M88_MacControl = RegisterValue; break;
103         case 0x898: reg->M98_MacControl = RegisterValue; break;
104         case 0x100c: reg->BB0C = RegisterValue; break;
105         case 0x102c: reg->BB2C = RegisterValue; break;
106         case 0x1030: reg->BB30 = RegisterValue; break;
107         case 0x103c: reg->BB3C = RegisterValue; break;
108         case 0x1048: reg->BB48 = RegisterValue; break;
109         case 0x104c: reg->BB4C = RegisterValue; break;
110         case 0x1050: reg->BB50 = RegisterValue; break;
111         case 0x1054: reg->BB54 = RegisterValue; break;
112         case 0x1058: reg->BB58 = RegisterValue; break;
113         case 0x105c: reg->BB5C = RegisterValue; break;
114         case 0x1060: reg->BB60 = RegisterValue; break;
115         }
116 }
117
118 // true  : read command process successfully
119 // false : register not support
120 unsigned char
121 Wb35Reg_WriteSync(  struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue )
122 {
123         struct wb35_reg *reg = &pHwData->reg;
124         int ret = -1;
125
126         // Module shutdown
127         if (pHwData->SurpriseRemove)
128                 return false;
129
130         RegisterValue = cpu_to_le32(RegisterValue);
131
132         // update the register by send usb message------------------------------------
133         reg->SyncIoPause = 1;
134
135         // 20060717.5 Wait until EP0VM stop
136         while (reg->EP0vm_state != VM_STOP)
137                 msleep(10);
138
139         // Sync IoCallDriver
140         reg->EP0vm_state = VM_RUNNING;
141         ret = usb_control_msg( pHwData->WbUsb.udev,
142                                usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
143                                0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
144                                0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
145         reg->EP0vm_state = VM_STOP;
146         reg->SyncIoPause = 0;
147
148         Wb35Reg_EP0VM_start(pHwData);
149
150         if (ret < 0) {
151                 #ifdef _PE_REG_DUMP_
152                 printk("EP0 Write register usb message sending error\n");
153                 #endif
154
155                 pHwData->SurpriseRemove = 1; // 20060704.2
156                 return false;
157         }
158
159         return true;
160 }
161
162 // true  : read command process successfully
163 // false : register not support
164 unsigned char
165 Wb35Reg_Write(  struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue )
166 {
167         struct wb35_reg *reg = &pHwData->reg;
168         struct usb_ctrlrequest *dr;
169         struct urb      *urb = NULL;
170         struct wb35_reg_queue *reg_queue = NULL;
171         u16             UrbSize;
172
173
174         // Module shutdown
175         if (pHwData->SurpriseRemove)
176                 return false;
177
178         // update the register by send urb request------------------------------------
179         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
180         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
181         urb = usb_alloc_urb(0, GFP_ATOMIC);
182         if (urb && reg_queue) {
183                 reg_queue->DIRECT = 1;// burst write register
184                 reg_queue->INDEX = RegisterNo;
185                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
186                 reg_queue->RESERVED_VALID = false;
187                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
188                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
189                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
190                 dr->wValue = cpu_to_le16(0x0);
191                 dr->wIndex = cpu_to_le16(RegisterNo);
192                 dr->wLength = cpu_to_le16(4);
193
194                 // Enter the sending queue
195                 reg_queue->Next = NULL;
196                 reg_queue->pUsbReq = dr;
197                 reg_queue->urb = urb;
198
199                 spin_lock_irq(&reg->EP0VM_spin_lock );
200                 if (reg->reg_first == NULL)
201                         reg->reg_first = reg_queue;
202                 else
203                         reg->reg_last->Next = reg_queue;
204                 reg->reg_last = reg_queue;
205
206                 spin_unlock_irq( &reg->EP0VM_spin_lock );
207
208                 // Start EP0VM
209                 Wb35Reg_EP0VM_start(pHwData);
210
211                 return true;
212         } else {
213                 if (urb)
214                         usb_free_urb(urb);
215                 kfree(reg_queue);
216                 return false;
217         }
218 }
219
220 //This command will be executed with a user defined value. When it completes,
221 //this value is useful. For example, hal_set_current_channel will use it.
222 // true  : read command process successfully
223 // false : register not support
224 unsigned char
225 Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue,
226                                 s8 *pValue, s8 Len)
227 {
228         struct wb35_reg *reg = &pHwData->reg;
229         struct usb_ctrlrequest *dr;
230         struct urb      *urb = NULL;
231         struct wb35_reg_queue *reg_queue = NULL;
232         u16             UrbSize;
233
234         // Module shutdown
235         if (pHwData->SurpriseRemove)
236                 return false;
237
238         // update the register by send urb request------------------------------------
239         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
240         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
241         urb = usb_alloc_urb(0, GFP_ATOMIC);
242         if (urb && reg_queue) {
243                 reg_queue->DIRECT = 1;// burst write register
244                 reg_queue->INDEX = RegisterNo;
245                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
246                 //NOTE : Users must guarantee the size of value will not exceed the buffer size.
247                 memcpy(reg_queue->RESERVED, pValue, Len);
248                 reg_queue->RESERVED_VALID = true;
249                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
250                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
251                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
252                 dr->wValue = cpu_to_le16(0x0);
253                 dr->wIndex = cpu_to_le16(RegisterNo);
254                 dr->wLength = cpu_to_le16(4);
255
256                 // Enter the sending queue
257                 reg_queue->Next = NULL;
258                 reg_queue->pUsbReq = dr;
259                 reg_queue->urb = urb;
260                 spin_lock_irq (&reg->EP0VM_spin_lock );
261                 if( reg->reg_first == NULL )
262                         reg->reg_first = reg_queue;
263                 else
264                         reg->reg_last->Next = reg_queue;
265                 reg->reg_last = reg_queue;
266
267                 spin_unlock_irq ( &reg->EP0VM_spin_lock );
268
269                 // Start EP0VM
270                 Wb35Reg_EP0VM_start(pHwData);
271                 return true;
272         } else {
273                 if (urb)
274                         usb_free_urb(urb);
275                 kfree(reg_queue);
276                 return false;
277         }
278 }
279
280 // true  : read command process successfully
281 // false : register not support
282 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
283 unsigned char
284 Wb35Reg_ReadSync(  struct hw_data * pHwData,  u16 RegisterNo,   u32 * pRegisterValue )
285 {
286         struct wb35_reg *reg = &pHwData->reg;
287         u32 *   pltmp = pRegisterValue;
288         int ret = -1;
289
290         // Module shutdown
291         if (pHwData->SurpriseRemove)
292                 return false;
293
294         // Read the register by send usb message------------------------------------
295
296         reg->SyncIoPause = 1;
297
298         // 20060717.5 Wait until EP0VM stop
299         while (reg->EP0vm_state != VM_STOP)
300                 msleep(10);
301
302         reg->EP0vm_state = VM_RUNNING;
303         ret = usb_control_msg( pHwData->WbUsb.udev,
304                                usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
305                                0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
306                                0x0, RegisterNo, pltmp, 4, HZ*100 );
307
308         *pRegisterValue = cpu_to_le32(*pltmp);
309
310         reg->EP0vm_state = VM_STOP;
311
312         Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
313         reg->SyncIoPause = 0;
314
315         Wb35Reg_EP0VM_start( pHwData );
316
317         if (ret < 0) {
318                 #ifdef _PE_REG_DUMP_
319                 printk("EP0 Read register usb message sending error\n");
320                 #endif
321
322                 pHwData->SurpriseRemove = 1; // 20060704.2
323                 return false;
324         }
325
326         return true;
327 }
328
329 // true  : read command process successfully
330 // false : register not support
331 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
332 unsigned char
333 Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo,  u32 * pRegisterValue )
334 {
335         struct wb35_reg *reg = &pHwData->reg;
336         struct usb_ctrlrequest * dr;
337         struct urb      *urb;
338         struct wb35_reg_queue *reg_queue;
339         u16             UrbSize;
340
341         // Module shutdown
342         if (pHwData->SurpriseRemove)
343                 return false;
344
345         // update the variable by send Urb to read register ------------------------------------
346         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
347         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
348         urb = usb_alloc_urb(0, GFP_ATOMIC);
349         if( urb && reg_queue )
350         {
351                 reg_queue->DIRECT = 0;// read register
352                 reg_queue->INDEX = RegisterNo;
353                 reg_queue->pBuffer = pRegisterValue;
354                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
355                 dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
356                 dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
357                 dr->wValue = cpu_to_le16(0x0);
358                 dr->wIndex = cpu_to_le16 (RegisterNo);
359                 dr->wLength = cpu_to_le16 (4);
360
361                 // Enter the sending queue
362                 reg_queue->Next = NULL;
363                 reg_queue->pUsbReq = dr;
364                 reg_queue->urb = urb;
365                 spin_lock_irq ( &reg->EP0VM_spin_lock );
366                 if( reg->reg_first == NULL )
367                         reg->reg_first = reg_queue;
368                 else
369                         reg->reg_last->Next = reg_queue;
370                 reg->reg_last = reg_queue;
371
372                 spin_unlock_irq( &reg->EP0VM_spin_lock );
373
374                 // Start EP0VM
375                 Wb35Reg_EP0VM_start( pHwData );
376
377                 return true;
378         } else {
379                 if (urb)
380                         usb_free_urb( urb );
381                 kfree(reg_queue);
382                 return false;
383         }
384 }
385
386
387 void
388 Wb35Reg_EP0VM_start(  struct hw_data * pHwData )
389 {
390         struct wb35_reg *reg = &pHwData->reg;
391
392         if (atomic_inc_return(&reg->RegFireCount) == 1) {
393                 reg->EP0vm_state = VM_RUNNING;
394                 Wb35Reg_EP0VM(pHwData);
395         } else
396                 atomic_dec(&reg->RegFireCount);
397 }
398
399 void
400 Wb35Reg_EP0VM(struct hw_data * pHwData )
401 {
402         struct wb35_reg *reg = &pHwData->reg;
403         struct urb      *urb;
404         struct usb_ctrlrequest *dr;
405         u32 *           pBuffer;
406         int                     ret = -1;
407         struct wb35_reg_queue *reg_queue;
408
409
410         if (reg->SyncIoPause)
411                 goto cleanup;
412
413         if (pHwData->SurpriseRemove)
414                 goto cleanup;
415
416         // Get the register data and send to USB through Irp
417         spin_lock_irq( &reg->EP0VM_spin_lock );
418         reg_queue = reg->reg_first;
419         spin_unlock_irq( &reg->EP0VM_spin_lock );
420
421         if (!reg_queue)
422                 goto cleanup;
423
424         // Get an Urb, send it
425         urb = (struct urb *)reg_queue->urb;
426
427         dr = reg_queue->pUsbReq;
428         urb = reg_queue->urb;
429         pBuffer = reg_queue->pBuffer;
430         if (reg_queue->DIRECT == 1) // output
431                 pBuffer = &reg_queue->VALUE;
432
433         usb_fill_control_urb( urb, pHwData->WbUsb.udev,
434                               REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
435                               (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
436                               Wb35Reg_EP0VM_complete, (void*)pHwData);
437
438         reg->EP0vm_state = VM_RUNNING;
439
440         ret = usb_submit_urb(urb, GFP_ATOMIC);
441
442         if (ret < 0) {
443 #ifdef _PE_REG_DUMP_
444                 printk("EP0 Irp sending error\n");
445 #endif
446                 goto cleanup;
447         }
448
449         return;
450
451  cleanup:
452         reg->EP0vm_state = VM_STOP;
453         atomic_dec(&reg->RegFireCount);
454 }
455
456
457 void
458 Wb35Reg_EP0VM_complete(struct urb *urb)
459 {
460         struct hw_data *  pHwData = (struct hw_data *)urb->context;
461         struct wb35_reg *reg = &pHwData->reg;
462         struct wb35_reg_queue *reg_queue;
463
464
465         // Variable setting
466         reg->EP0vm_state = VM_COMPLETED;
467         reg->EP0VM_status = urb->status;
468
469         if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
470                 reg->EP0vm_state = VM_STOP;
471                 atomic_dec(&reg->RegFireCount);
472         } else {
473                 // Complete to send, remove the URB from the first
474                 spin_lock_irq( &reg->EP0VM_spin_lock );
475                 reg_queue = reg->reg_first;
476                 if (reg_queue == reg->reg_last)
477                         reg->reg_last = NULL;
478                 reg->reg_first = reg->reg_first->Next;
479                 spin_unlock_irq( &reg->EP0VM_spin_lock );
480
481                 if (reg->EP0VM_status) {
482 #ifdef _PE_REG_DUMP_
483                         printk("EP0 IoCompleteRoutine return error\n");
484 #endif
485                         reg->EP0vm_state = VM_STOP;
486                         pHwData->SurpriseRemove = 1;
487                 } else {
488                         // Success. Update the result
489
490                         // Start the next send
491                         Wb35Reg_EP0VM(pHwData);
492                 }
493
494                 kfree(reg_queue);
495         }
496
497         usb_free_urb(urb);
498 }
499
500
501 void
502 Wb35Reg_destroy(struct hw_data * pHwData)
503 {
504         struct wb35_reg *reg = &pHwData->reg;
505         struct urb      *urb;
506         struct wb35_reg_queue *reg_queue;
507
508
509         Uxx_power_off_procedure(pHwData);
510
511         // Wait for Reg operation completed
512         do {
513                 msleep(10); // Delay for waiting function enter 940623.1.a
514         } while (reg->EP0vm_state != VM_STOP);
515         msleep(10);  // Delay for waiting function enter 940623.1.b
516
517         // Release all the data in RegQueue
518         spin_lock_irq( &reg->EP0VM_spin_lock );
519         reg_queue = reg->reg_first;
520         while (reg_queue) {
521                 if (reg_queue == reg->reg_last)
522                         reg->reg_last = NULL;
523                 reg->reg_first = reg->reg_first->Next;
524
525                 urb = reg_queue->urb;
526                 spin_unlock_irq( &reg->EP0VM_spin_lock );
527                 if (urb) {
528                         usb_free_urb(urb);
529                         kfree(reg_queue);
530                 } else {
531                         #ifdef _PE_REG_DUMP_
532                         printk("EP0 queue release error\n");
533                         #endif
534                 }
535                 spin_lock_irq( &reg->EP0VM_spin_lock );
536
537                 reg_queue = reg->reg_first;
538         }
539         spin_unlock_irq( &reg->EP0VM_spin_lock );
540 }
541
542 //====================================================================================
543 // The function can be run in passive-level only.
544 //====================================================================================
545 unsigned char Wb35Reg_initial(struct hw_data * pHwData)
546 {
547         struct wb35_reg *reg=&pHwData->reg;
548         u32 ltmp;
549         u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
550
551         // Spin lock is acquired for read and write IRP command
552         spin_lock_init( &reg->EP0VM_spin_lock );
553
554         // Getting RF module type from EEPROM ------------------------------------
555         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
556         Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
557
558         //Update RF module type and determine the PHY type by inf or EEPROM
559         reg->EEPROMPhyType = (u8)( ltmp & 0xff );
560         // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
561         // 16V AL2230, 17 - AL7230, 18 - AL2230S
562         // 32 Reserved
563         // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
564         if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
565                 if( (reg->EEPROMPhyType == RF_MAXIM_2825)       ||
566                         (reg->EEPROMPhyType == RF_MAXIM_2827)   ||
567                         (reg->EEPROMPhyType == RF_MAXIM_2828)   ||
568                         (reg->EEPROMPhyType == RF_MAXIM_2829)   ||
569                         (reg->EEPROMPhyType == RF_MAXIM_V1)     ||
570                         (reg->EEPROMPhyType == RF_AIROHA_2230)  ||
571                         (reg->EEPROMPhyType == RF_AIROHA_2230S)    ||
572                         (reg->EEPROMPhyType == RF_AIROHA_7230)  ||
573                         (reg->EEPROMPhyType == RF_WB_242)               ||
574                         (reg->EEPROMPhyType == RF_WB_242_1))
575                         pHwData->phy_type = reg->EEPROMPhyType;
576         }
577
578         // Power On procedure running. The relative parameter will be set according to phy_type
579         Uxx_power_on_procedure( pHwData );
580
581         // Reading MAC address
582         Uxx_ReadEthernetAddress( pHwData );
583
584         // Read VCO trim for RF parameter
585         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
586         Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
587
588         // Read Antenna On/Off of software flag
589         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
590         Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
591
592         // Read TXVGA
593         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
594         Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
595
596         // Get Scan interval setting from EEPROM offset 0x1c
597         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
598         Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
599
600         // Update Ethernet address
601         memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN );
602
603         // Update software variable
604         pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
605         TxVga &= 0x000000ff;
606         pHwData->PowerIndexFromEEPROM = (u8)TxVga;
607         pHwData->VCO_trim = (u8)VCO_trim & 0xff;
608         if (pHwData->VCO_trim == 0xff)
609                 pHwData->VCO_trim = 0x28;
610
611         reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
612         if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
613                 reg->EEPROMRegion = REGION_AUTO;
614
615         //For Get Tx VGA from EEPROM 20060315.5 move here
616         GetTxVgaFromEEPROM( pHwData );
617
618         // Set Scan Interval
619         pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
620         if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
621                 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
622
623         // Initial register
624         RFSynthesizer_initial(pHwData);
625
626         BBProcessor_initial(pHwData); // Async write, must wait until complete
627
628         Wb35Reg_phy_calibration(pHwData);
629
630         Mxx_initial(pHwData);
631         Dxx_initial(pHwData);
632
633         if (pHwData->SurpriseRemove)
634                 return false;
635         else
636                 return true; // Initial fail
637 }
638
639 //===================================================================================
640 //  CardComputeCrc --
641 //
642 //  Description:
643 //    Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
644 //
645 //  Arguments:
646 //    Buffer - the input buffer
647 //    Length - the length of Buffer
648 //
649 //  Return Value:
650 //    The 32-bit CRC value.
651 //
652 //  Note:
653 //    This is adapted from the comments in the assembly language
654 //    version in _GENREQ.ASM of the DWB NE1000/2000 driver.
655 //==================================================================================
656 u32
657 CardComputeCrc(u8 * Buffer, u32 Length)
658 {
659     u32 Crc, Carry;
660     u32  i, j;
661     u8 CurByte;
662
663     Crc = 0xffffffff;
664
665     for (i = 0; i < Length; i++) {
666
667         CurByte = Buffer[i];
668
669         for (j = 0; j < 8; j++) {
670
671             Carry     = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
672             Crc     <<= 1;
673             CurByte >>= 1;
674
675             if (Carry) {
676                 Crc =(Crc ^ 0x04c11db6) | Carry;
677             }
678         }
679     }
680
681     return Crc;
682 }
683
684
685 //==================================================================
686 // BitReverse --
687 //   Reverse the bits in the input argument, dwData, which is
688 //   regarded as a string of bits with the length, DataLength.
689 //
690 // Arguments:
691 //   dwData     :
692 //   DataLength :
693 //
694 // Return:
695 //   The converted value.
696 //==================================================================
697 u32 BitReverse( u32 dwData, u32 DataLength)
698 {
699         u32   HalfLength, i, j;
700         u32   BitA, BitB;
701
702         if ( DataLength <= 0)       return 0;   // No conversion is done.
703         dwData = dwData & (0xffffffff >> (32 - DataLength));
704
705         HalfLength = DataLength / 2;
706         for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
707         {
708                 BitA = GetBit( dwData, i);
709                 BitB = GetBit( dwData, j);
710                 if (BitA && !BitB) {
711                         dwData = ClearBit( dwData, i);
712                         dwData = SetBit( dwData, j);
713                 } else if (!BitA && BitB) {
714                         dwData = SetBit( dwData, i);
715                         dwData = ClearBit( dwData, j);
716                 } else
717                 {
718                         // Do nothing since these two bits are of the save values.
719                 }
720         }
721
722         return dwData;
723 }
724
725 void Wb35Reg_phy_calibration(  struct hw_data * pHwData )
726 {
727         u32 BB3c, BB54;
728
729         if ((pHwData->phy_type == RF_WB_242) ||
730                 (pHwData->phy_type == RF_WB_242_1)) {
731                 phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
732                 Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
733                 Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
734
735                 pHwData->BB3c_cal = BB3c;
736                 pHwData->BB54_cal = BB54;
737
738                 RFSynthesizer_initial(pHwData);
739                 BBProcessor_initial(pHwData); // Async operation
740
741                 Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
742                 Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );
743         }
744 }
745
746