tty: use prepare/finish_wait
[linux-2.6] / fs / pipe.c
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
21
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
24
25 /*
26  * We use a start+len construction, which provides full use of the 
27  * allocated memory.
28  * -- Florian Coosmann (FGC)
29  * 
30  * Reads with count = 0 should always return 0.
31  * -- Julian Bradfield 1999-06-07.
32  *
33  * FIFOs and Pipes now generate SIGIO for both readers and writers.
34  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35  *
36  * pipe_read & write cleanup
37  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38  */
39
40 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
41 {
42         if (pipe->inode)
43                 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
44 }
45
46 void pipe_lock(struct pipe_inode_info *pipe)
47 {
48         /*
49          * pipe_lock() nests non-pipe inode locks (for writing to a file)
50          */
51         pipe_lock_nested(pipe, I_MUTEX_PARENT);
52 }
53 EXPORT_SYMBOL(pipe_lock);
54
55 void pipe_unlock(struct pipe_inode_info *pipe)
56 {
57         if (pipe->inode)
58                 mutex_unlock(&pipe->inode->i_mutex);
59 }
60 EXPORT_SYMBOL(pipe_unlock);
61
62 void pipe_double_lock(struct pipe_inode_info *pipe1,
63                       struct pipe_inode_info *pipe2)
64 {
65         BUG_ON(pipe1 == pipe2);
66
67         if (pipe1 < pipe2) {
68                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70         } else {
71                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
72                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
73         }
74 }
75
76 /* Drop the inode semaphore and wait for a pipe event, atomically */
77 void pipe_wait(struct pipe_inode_info *pipe)
78 {
79         DEFINE_WAIT(wait);
80
81         /*
82          * Pipes are system-local resources, so sleeping on them
83          * is considered a noninteractive wait:
84          */
85         prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86         pipe_unlock(pipe);
87         schedule();
88         finish_wait(&pipe->wait, &wait);
89         pipe_lock(pipe);
90 }
91
92 static int
93 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94                         int atomic)
95 {
96         unsigned long copy;
97
98         while (len > 0) {
99                 while (!iov->iov_len)
100                         iov++;
101                 copy = min_t(unsigned long, len, iov->iov_len);
102
103                 if (atomic) {
104                         if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105                                 return -EFAULT;
106                 } else {
107                         if (copy_from_user(to, iov->iov_base, copy))
108                                 return -EFAULT;
109                 }
110                 to += copy;
111                 len -= copy;
112                 iov->iov_base += copy;
113                 iov->iov_len -= copy;
114         }
115         return 0;
116 }
117
118 static int
119 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120                       int atomic)
121 {
122         unsigned long copy;
123
124         while (len > 0) {
125                 while (!iov->iov_len)
126                         iov++;
127                 copy = min_t(unsigned long, len, iov->iov_len);
128
129                 if (atomic) {
130                         if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131                                 return -EFAULT;
132                 } else {
133                         if (copy_to_user(iov->iov_base, from, copy))
134                                 return -EFAULT;
135                 }
136                 from += copy;
137                 len -= copy;
138                 iov->iov_base += copy;
139                 iov->iov_len -= copy;
140         }
141         return 0;
142 }
143
144 /*
145  * Attempt to pre-fault in the user memory, so we can use atomic copies.
146  * Returns the number of bytes not faulted in.
147  */
148 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
149 {
150         while (!iov->iov_len)
151                 iov++;
152
153         while (len > 0) {
154                 unsigned long this_len;
155
156                 this_len = min_t(unsigned long, len, iov->iov_len);
157                 if (fault_in_pages_writeable(iov->iov_base, this_len))
158                         break;
159
160                 len -= this_len;
161                 iov++;
162         }
163
164         return len;
165 }
166
167 /*
168  * Pre-fault in the user memory, so we can use atomic copies.
169  */
170 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
171 {
172         while (!iov->iov_len)
173                 iov++;
174
175         while (len > 0) {
176                 unsigned long this_len;
177
178                 this_len = min_t(unsigned long, len, iov->iov_len);
179                 fault_in_pages_readable(iov->iov_base, this_len);
180                 len -= this_len;
181                 iov++;
182         }
183 }
184
185 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186                                   struct pipe_buffer *buf)
187 {
188         struct page *page = buf->page;
189
190         /*
191          * If nobody else uses this page, and we don't already have a
192          * temporary page, let's keep track of it as a one-deep
193          * allocation cache. (Otherwise just release our reference to it)
194          */
195         if (page_count(page) == 1 && !pipe->tmp_page)
196                 pipe->tmp_page = page;
197         else
198                 page_cache_release(page);
199 }
200
201 /**
202  * generic_pipe_buf_map - virtually map a pipe buffer
203  * @pipe:       the pipe that the buffer belongs to
204  * @buf:        the buffer that should be mapped
205  * @atomic:     whether to use an atomic map
206  *
207  * Description:
208  *      This function returns a kernel virtual address mapping for the
209  *      pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210  *      and the caller has to be careful not to fault before calling
211  *      the unmap function.
212  *
213  *      Note that this function occupies KM_USER0 if @atomic != 0.
214  */
215 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216                            struct pipe_buffer *buf, int atomic)
217 {
218         if (atomic) {
219                 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220                 return kmap_atomic(buf->page, KM_USER0);
221         }
222
223         return kmap(buf->page);
224 }
225
226 /**
227  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228  * @pipe:       the pipe that the buffer belongs to
229  * @buf:        the buffer that should be unmapped
230  * @map_data:   the data that the mapping function returned
231  *
232  * Description:
233  *      This function undoes the mapping that ->map() provided.
234  */
235 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236                             struct pipe_buffer *buf, void *map_data)
237 {
238         if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239                 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240                 kunmap_atomic(map_data, KM_USER0);
241         } else
242                 kunmap(buf->page);
243 }
244
245 /**
246  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247  * @pipe:       the pipe that the buffer belongs to
248  * @buf:        the buffer to attempt to steal
249  *
250  * Description:
251  *      This function attempts to steal the &struct page attached to
252  *      @buf. If successful, this function returns 0 and returns with
253  *      the page locked. The caller may then reuse the page for whatever
254  *      he wishes; the typical use is insertion into a different file
255  *      page cache.
256  */
257 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258                            struct pipe_buffer *buf)
259 {
260         struct page *page = buf->page;
261
262         /*
263          * A reference of one is golden, that means that the owner of this
264          * page is the only one holding a reference to it. lock the page
265          * and return OK.
266          */
267         if (page_count(page) == 1) {
268                 lock_page(page);
269                 return 0;
270         }
271
272         return 1;
273 }
274
275 /**
276  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277  * @pipe:       the pipe that the buffer belongs to
278  * @buf:        the buffer to get a reference to
279  *
280  * Description:
281  *      This function grabs an extra reference to @buf. It's used in
282  *      in the tee() system call, when we duplicate the buffers in one
283  *      pipe into another.
284  */
285 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
286 {
287         page_cache_get(buf->page);
288 }
289
290 /**
291  * generic_pipe_buf_confirm - verify contents of the pipe buffer
292  * @info:       the pipe that the buffer belongs to
293  * @buf:        the buffer to confirm
294  *
295  * Description:
296  *      This function does nothing, because the generic pipe code uses
297  *      pages that are always good when inserted into the pipe.
298  */
299 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300                              struct pipe_buffer *buf)
301 {
302         return 0;
303 }
304
305 static const struct pipe_buf_operations anon_pipe_buf_ops = {
306         .can_merge = 1,
307         .map = generic_pipe_buf_map,
308         .unmap = generic_pipe_buf_unmap,
309         .confirm = generic_pipe_buf_confirm,
310         .release = anon_pipe_buf_release,
311         .steal = generic_pipe_buf_steal,
312         .get = generic_pipe_buf_get,
313 };
314
315 static ssize_t
316 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
317            unsigned long nr_segs, loff_t pos)
318 {
319         struct file *filp = iocb->ki_filp;
320         struct inode *inode = filp->f_path.dentry->d_inode;
321         struct pipe_inode_info *pipe;
322         int do_wakeup;
323         ssize_t ret;
324         struct iovec *iov = (struct iovec *)_iov;
325         size_t total_len;
326
327         total_len = iov_length(iov, nr_segs);
328         /* Null read succeeds. */
329         if (unlikely(total_len == 0))
330                 return 0;
331
332         do_wakeup = 0;
333         ret = 0;
334         mutex_lock(&inode->i_mutex);
335         pipe = inode->i_pipe;
336         for (;;) {
337                 int bufs = pipe->nrbufs;
338                 if (bufs) {
339                         int curbuf = pipe->curbuf;
340                         struct pipe_buffer *buf = pipe->bufs + curbuf;
341                         const struct pipe_buf_operations *ops = buf->ops;
342                         void *addr;
343                         size_t chars = buf->len;
344                         int error, atomic;
345
346                         if (chars > total_len)
347                                 chars = total_len;
348
349                         error = ops->confirm(pipe, buf);
350                         if (error) {
351                                 if (!ret)
352                                         error = ret;
353                                 break;
354                         }
355
356                         atomic = !iov_fault_in_pages_write(iov, chars);
357 redo:
358                         addr = ops->map(pipe, buf, atomic);
359                         error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
360                         ops->unmap(pipe, buf, addr);
361                         if (unlikely(error)) {
362                                 /*
363                                  * Just retry with the slow path if we failed.
364                                  */
365                                 if (atomic) {
366                                         atomic = 0;
367                                         goto redo;
368                                 }
369                                 if (!ret)
370                                         ret = error;
371                                 break;
372                         }
373                         ret += chars;
374                         buf->offset += chars;
375                         buf->len -= chars;
376                         if (!buf->len) {
377                                 buf->ops = NULL;
378                                 ops->release(pipe, buf);
379                                 curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
380                                 pipe->curbuf = curbuf;
381                                 pipe->nrbufs = --bufs;
382                                 do_wakeup = 1;
383                         }
384                         total_len -= chars;
385                         if (!total_len)
386                                 break;  /* common path: read succeeded */
387                 }
388                 if (bufs)       /* More to do? */
389                         continue;
390                 if (!pipe->writers)
391                         break;
392                 if (!pipe->waiting_writers) {
393                         /* syscall merging: Usually we must not sleep
394                          * if O_NONBLOCK is set, or if we got some data.
395                          * But if a writer sleeps in kernel space, then
396                          * we can wait for that data without violating POSIX.
397                          */
398                         if (ret)
399                                 break;
400                         if (filp->f_flags & O_NONBLOCK) {
401                                 ret = -EAGAIN;
402                                 break;
403                         }
404                 }
405                 if (signal_pending(current)) {
406                         if (!ret)
407                                 ret = -ERESTARTSYS;
408                         break;
409                 }
410                 if (do_wakeup) {
411                         wake_up_interruptible_sync(&pipe->wait);
412                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
413                 }
414                 pipe_wait(pipe);
415         }
416         mutex_unlock(&inode->i_mutex);
417
418         /* Signal writers asynchronously that there is more room. */
419         if (do_wakeup) {
420                 wake_up_interruptible_sync(&pipe->wait);
421                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
422         }
423         if (ret > 0)
424                 file_accessed(filp);
425         return ret;
426 }
427
428 static ssize_t
429 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
430             unsigned long nr_segs, loff_t ppos)
431 {
432         struct file *filp = iocb->ki_filp;
433         struct inode *inode = filp->f_path.dentry->d_inode;
434         struct pipe_inode_info *pipe;
435         ssize_t ret;
436         int do_wakeup;
437         struct iovec *iov = (struct iovec *)_iov;
438         size_t total_len;
439         ssize_t chars;
440
441         total_len = iov_length(iov, nr_segs);
442         /* Null write succeeds. */
443         if (unlikely(total_len == 0))
444                 return 0;
445
446         do_wakeup = 0;
447         ret = 0;
448         mutex_lock(&inode->i_mutex);
449         pipe = inode->i_pipe;
450
451         if (!pipe->readers) {
452                 send_sig(SIGPIPE, current, 0);
453                 ret = -EPIPE;
454                 goto out;
455         }
456
457         /* We try to merge small writes */
458         chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
459         if (pipe->nrbufs && chars != 0) {
460                 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
461                                                         (PIPE_BUFFERS-1);
462                 struct pipe_buffer *buf = pipe->bufs + lastbuf;
463                 const struct pipe_buf_operations *ops = buf->ops;
464                 int offset = buf->offset + buf->len;
465
466                 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
467                         int error, atomic = 1;
468                         void *addr;
469
470                         error = ops->confirm(pipe, buf);
471                         if (error)
472                                 goto out;
473
474                         iov_fault_in_pages_read(iov, chars);
475 redo1:
476                         addr = ops->map(pipe, buf, atomic);
477                         error = pipe_iov_copy_from_user(offset + addr, iov,
478                                                         chars, atomic);
479                         ops->unmap(pipe, buf, addr);
480                         ret = error;
481                         do_wakeup = 1;
482                         if (error) {
483                                 if (atomic) {
484                                         atomic = 0;
485                                         goto redo1;
486                                 }
487                                 goto out;
488                         }
489                         buf->len += chars;
490                         total_len -= chars;
491                         ret = chars;
492                         if (!total_len)
493                                 goto out;
494                 }
495         }
496
497         for (;;) {
498                 int bufs;
499
500                 if (!pipe->readers) {
501                         send_sig(SIGPIPE, current, 0);
502                         if (!ret)
503                                 ret = -EPIPE;
504                         break;
505                 }
506                 bufs = pipe->nrbufs;
507                 if (bufs < PIPE_BUFFERS) {
508                         int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
509                         struct pipe_buffer *buf = pipe->bufs + newbuf;
510                         struct page *page = pipe->tmp_page;
511                         char *src;
512                         int error, atomic = 1;
513
514                         if (!page) {
515                                 page = alloc_page(GFP_HIGHUSER);
516                                 if (unlikely(!page)) {
517                                         ret = ret ? : -ENOMEM;
518                                         break;
519                                 }
520                                 pipe->tmp_page = page;
521                         }
522                         /* Always wake up, even if the copy fails. Otherwise
523                          * we lock up (O_NONBLOCK-)readers that sleep due to
524                          * syscall merging.
525                          * FIXME! Is this really true?
526                          */
527                         do_wakeup = 1;
528                         chars = PAGE_SIZE;
529                         if (chars > total_len)
530                                 chars = total_len;
531
532                         iov_fault_in_pages_read(iov, chars);
533 redo2:
534                         if (atomic)
535                                 src = kmap_atomic(page, KM_USER0);
536                         else
537                                 src = kmap(page);
538
539                         error = pipe_iov_copy_from_user(src, iov, chars,
540                                                         atomic);
541                         if (atomic)
542                                 kunmap_atomic(src, KM_USER0);
543                         else
544                                 kunmap(page);
545
546                         if (unlikely(error)) {
547                                 if (atomic) {
548                                         atomic = 0;
549                                         goto redo2;
550                                 }
551                                 if (!ret)
552                                         ret = error;
553                                 break;
554                         }
555                         ret += chars;
556
557                         /* Insert it into the buffer array */
558                         buf->page = page;
559                         buf->ops = &anon_pipe_buf_ops;
560                         buf->offset = 0;
561                         buf->len = chars;
562                         pipe->nrbufs = ++bufs;
563                         pipe->tmp_page = NULL;
564
565                         total_len -= chars;
566                         if (!total_len)
567                                 break;
568                 }
569                 if (bufs < PIPE_BUFFERS)
570                         continue;
571                 if (filp->f_flags & O_NONBLOCK) {
572                         if (!ret)
573                                 ret = -EAGAIN;
574                         break;
575                 }
576                 if (signal_pending(current)) {
577                         if (!ret)
578                                 ret = -ERESTARTSYS;
579                         break;
580                 }
581                 if (do_wakeup) {
582                         wake_up_interruptible_sync(&pipe->wait);
583                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
584                         do_wakeup = 0;
585                 }
586                 pipe->waiting_writers++;
587                 pipe_wait(pipe);
588                 pipe->waiting_writers--;
589         }
590 out:
591         mutex_unlock(&inode->i_mutex);
592         if (do_wakeup) {
593                 wake_up_interruptible_sync(&pipe->wait);
594                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595         }
596         if (ret > 0)
597                 file_update_time(filp);
598         return ret;
599 }
600
601 static ssize_t
602 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
603 {
604         return -EBADF;
605 }
606
607 static ssize_t
608 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
609            loff_t *ppos)
610 {
611         return -EBADF;
612 }
613
614 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
615 {
616         struct inode *inode = filp->f_path.dentry->d_inode;
617         struct pipe_inode_info *pipe;
618         int count, buf, nrbufs;
619
620         switch (cmd) {
621                 case FIONREAD:
622                         mutex_lock(&inode->i_mutex);
623                         pipe = inode->i_pipe;
624                         count = 0;
625                         buf = pipe->curbuf;
626                         nrbufs = pipe->nrbufs;
627                         while (--nrbufs >= 0) {
628                                 count += pipe->bufs[buf].len;
629                                 buf = (buf+1) & (PIPE_BUFFERS-1);
630                         }
631                         mutex_unlock(&inode->i_mutex);
632
633                         return put_user(count, (int __user *)arg);
634                 default:
635                         return -EINVAL;
636         }
637 }
638
639 /* No kernel lock held - fine */
640 static unsigned int
641 pipe_poll(struct file *filp, poll_table *wait)
642 {
643         unsigned int mask;
644         struct inode *inode = filp->f_path.dentry->d_inode;
645         struct pipe_inode_info *pipe = inode->i_pipe;
646         int nrbufs;
647
648         poll_wait(filp, &pipe->wait, wait);
649
650         /* Reading only -- no need for acquiring the semaphore.  */
651         nrbufs = pipe->nrbufs;
652         mask = 0;
653         if (filp->f_mode & FMODE_READ) {
654                 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
655                 if (!pipe->writers && filp->f_version != pipe->w_counter)
656                         mask |= POLLHUP;
657         }
658
659         if (filp->f_mode & FMODE_WRITE) {
660                 mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
661                 /*
662                  * Most Unices do not set POLLERR for FIFOs but on Linux they
663                  * behave exactly like pipes for poll().
664                  */
665                 if (!pipe->readers)
666                         mask |= POLLERR;
667         }
668
669         return mask;
670 }
671
672 static int
673 pipe_release(struct inode *inode, int decr, int decw)
674 {
675         struct pipe_inode_info *pipe;
676
677         mutex_lock(&inode->i_mutex);
678         pipe = inode->i_pipe;
679         pipe->readers -= decr;
680         pipe->writers -= decw;
681
682         if (!pipe->readers && !pipe->writers) {
683                 free_pipe_info(inode);
684         } else {
685                 wake_up_interruptible_sync(&pipe->wait);
686                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
687                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
688         }
689         mutex_unlock(&inode->i_mutex);
690
691         return 0;
692 }
693
694 static int
695 pipe_read_fasync(int fd, struct file *filp, int on)
696 {
697         struct inode *inode = filp->f_path.dentry->d_inode;
698         int retval;
699
700         mutex_lock(&inode->i_mutex);
701         retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
702         mutex_unlock(&inode->i_mutex);
703
704         return retval;
705 }
706
707
708 static int
709 pipe_write_fasync(int fd, struct file *filp, int on)
710 {
711         struct inode *inode = filp->f_path.dentry->d_inode;
712         int retval;
713
714         mutex_lock(&inode->i_mutex);
715         retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
716         mutex_unlock(&inode->i_mutex);
717
718         return retval;
719 }
720
721
722 static int
723 pipe_rdwr_fasync(int fd, struct file *filp, int on)
724 {
725         struct inode *inode = filp->f_path.dentry->d_inode;
726         struct pipe_inode_info *pipe = inode->i_pipe;
727         int retval;
728
729         mutex_lock(&inode->i_mutex);
730         retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731         if (retval >= 0) {
732                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733                 if (retval < 0) /* this can happen only if on == T */
734                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
735         }
736         mutex_unlock(&inode->i_mutex);
737         return retval;
738 }
739
740
741 static int
742 pipe_read_release(struct inode *inode, struct file *filp)
743 {
744         return pipe_release(inode, 1, 0);
745 }
746
747 static int
748 pipe_write_release(struct inode *inode, struct file *filp)
749 {
750         return pipe_release(inode, 0, 1);
751 }
752
753 static int
754 pipe_rdwr_release(struct inode *inode, struct file *filp)
755 {
756         int decr, decw;
757
758         decr = (filp->f_mode & FMODE_READ) != 0;
759         decw = (filp->f_mode & FMODE_WRITE) != 0;
760         return pipe_release(inode, decr, decw);
761 }
762
763 static int
764 pipe_read_open(struct inode *inode, struct file *filp)
765 {
766         /* We could have perhaps used atomic_t, but this and friends
767            below are the only places.  So it doesn't seem worthwhile.  */
768         mutex_lock(&inode->i_mutex);
769         inode->i_pipe->readers++;
770         mutex_unlock(&inode->i_mutex);
771
772         return 0;
773 }
774
775 static int
776 pipe_write_open(struct inode *inode, struct file *filp)
777 {
778         mutex_lock(&inode->i_mutex);
779         inode->i_pipe->writers++;
780         mutex_unlock(&inode->i_mutex);
781
782         return 0;
783 }
784
785 static int
786 pipe_rdwr_open(struct inode *inode, struct file *filp)
787 {
788         mutex_lock(&inode->i_mutex);
789         if (filp->f_mode & FMODE_READ)
790                 inode->i_pipe->readers++;
791         if (filp->f_mode & FMODE_WRITE)
792                 inode->i_pipe->writers++;
793         mutex_unlock(&inode->i_mutex);
794
795         return 0;
796 }
797
798 /*
799  * The file_operations structs are not static because they
800  * are also used in linux/fs/fifo.c to do operations on FIFOs.
801  *
802  * Pipes reuse fifos' file_operations structs.
803  */
804 const struct file_operations read_pipefifo_fops = {
805         .llseek         = no_llseek,
806         .read           = do_sync_read,
807         .aio_read       = pipe_read,
808         .write          = bad_pipe_w,
809         .poll           = pipe_poll,
810         .unlocked_ioctl = pipe_ioctl,
811         .open           = pipe_read_open,
812         .release        = pipe_read_release,
813         .fasync         = pipe_read_fasync,
814 };
815
816 const struct file_operations write_pipefifo_fops = {
817         .llseek         = no_llseek,
818         .read           = bad_pipe_r,
819         .write          = do_sync_write,
820         .aio_write      = pipe_write,
821         .poll           = pipe_poll,
822         .unlocked_ioctl = pipe_ioctl,
823         .open           = pipe_write_open,
824         .release        = pipe_write_release,
825         .fasync         = pipe_write_fasync,
826 };
827
828 const struct file_operations rdwr_pipefifo_fops = {
829         .llseek         = no_llseek,
830         .read           = do_sync_read,
831         .aio_read       = pipe_read,
832         .write          = do_sync_write,
833         .aio_write      = pipe_write,
834         .poll           = pipe_poll,
835         .unlocked_ioctl = pipe_ioctl,
836         .open           = pipe_rdwr_open,
837         .release        = pipe_rdwr_release,
838         .fasync         = pipe_rdwr_fasync,
839 };
840
841 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
842 {
843         struct pipe_inode_info *pipe;
844
845         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
846         if (pipe) {
847                 init_waitqueue_head(&pipe->wait);
848                 pipe->r_counter = pipe->w_counter = 1;
849                 pipe->inode = inode;
850         }
851
852         return pipe;
853 }
854
855 void __free_pipe_info(struct pipe_inode_info *pipe)
856 {
857         int i;
858
859         for (i = 0; i < PIPE_BUFFERS; i++) {
860                 struct pipe_buffer *buf = pipe->bufs + i;
861                 if (buf->ops)
862                         buf->ops->release(pipe, buf);
863         }
864         if (pipe->tmp_page)
865                 __free_page(pipe->tmp_page);
866         kfree(pipe);
867 }
868
869 void free_pipe_info(struct inode *inode)
870 {
871         __free_pipe_info(inode->i_pipe);
872         inode->i_pipe = NULL;
873 }
874
875 static struct vfsmount *pipe_mnt __read_mostly;
876 static int pipefs_delete_dentry(struct dentry *dentry)
877 {
878         /*
879          * At creation time, we pretended this dentry was hashed
880          * (by clearing DCACHE_UNHASHED bit in d_flags)
881          * At delete time, we restore the truth : not hashed.
882          * (so that dput() can proceed correctly)
883          */
884         dentry->d_flags |= DCACHE_UNHASHED;
885         return 0;
886 }
887
888 /*
889  * pipefs_dname() is called from d_path().
890  */
891 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
892 {
893         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
894                                 dentry->d_inode->i_ino);
895 }
896
897 static const struct dentry_operations pipefs_dentry_operations = {
898         .d_delete       = pipefs_delete_dentry,
899         .d_dname        = pipefs_dname,
900 };
901
902 static struct inode * get_pipe_inode(void)
903 {
904         struct inode *inode = new_inode(pipe_mnt->mnt_sb);
905         struct pipe_inode_info *pipe;
906
907         if (!inode)
908                 goto fail_inode;
909
910         pipe = alloc_pipe_info(inode);
911         if (!pipe)
912                 goto fail_iput;
913         inode->i_pipe = pipe;
914
915         pipe->readers = pipe->writers = 1;
916         inode->i_fop = &rdwr_pipefifo_fops;
917
918         /*
919          * Mark the inode dirty from the very beginning,
920          * that way it will never be moved to the dirty
921          * list because "mark_inode_dirty()" will think
922          * that it already _is_ on the dirty list.
923          */
924         inode->i_state = I_DIRTY;
925         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
926         inode->i_uid = current_fsuid();
927         inode->i_gid = current_fsgid();
928         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
929
930         return inode;
931
932 fail_iput:
933         iput(inode);
934
935 fail_inode:
936         return NULL;
937 }
938
939 struct file *create_write_pipe(int flags)
940 {
941         int err;
942         struct inode *inode;
943         struct file *f;
944         struct dentry *dentry;
945         struct qstr name = { .name = "" };
946
947         err = -ENFILE;
948         inode = get_pipe_inode();
949         if (!inode)
950                 goto err;
951
952         err = -ENOMEM;
953         dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
954         if (!dentry)
955                 goto err_inode;
956
957         dentry->d_op = &pipefs_dentry_operations;
958         /*
959          * We dont want to publish this dentry into global dentry hash table.
960          * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
961          * This permits a working /proc/$pid/fd/XXX on pipes
962          */
963         dentry->d_flags &= ~DCACHE_UNHASHED;
964         d_instantiate(dentry, inode);
965
966         err = -ENFILE;
967         f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
968         if (!f)
969                 goto err_dentry;
970         f->f_mapping = inode->i_mapping;
971
972         f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
973         f->f_version = 0;
974
975         return f;
976
977  err_dentry:
978         free_pipe_info(inode);
979         dput(dentry);
980         return ERR_PTR(err);
981
982  err_inode:
983         free_pipe_info(inode);
984         iput(inode);
985  err:
986         return ERR_PTR(err);
987 }
988
989 void free_write_pipe(struct file *f)
990 {
991         free_pipe_info(f->f_dentry->d_inode);
992         path_put(&f->f_path);
993         put_filp(f);
994 }
995
996 struct file *create_read_pipe(struct file *wrf, int flags)
997 {
998         struct file *f = get_empty_filp();
999         if (!f)
1000                 return ERR_PTR(-ENFILE);
1001
1002         /* Grab pipe from the writer */
1003         f->f_path = wrf->f_path;
1004         path_get(&wrf->f_path);
1005         f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1006
1007         f->f_pos = 0;
1008         f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1009         f->f_op = &read_pipefifo_fops;
1010         f->f_mode = FMODE_READ;
1011         f->f_version = 0;
1012
1013         return f;
1014 }
1015
1016 int do_pipe_flags(int *fd, int flags)
1017 {
1018         struct file *fw, *fr;
1019         int error;
1020         int fdw, fdr;
1021
1022         if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1023                 return -EINVAL;
1024
1025         fw = create_write_pipe(flags);
1026         if (IS_ERR(fw))
1027                 return PTR_ERR(fw);
1028         fr = create_read_pipe(fw, flags);
1029         error = PTR_ERR(fr);
1030         if (IS_ERR(fr))
1031                 goto err_write_pipe;
1032
1033         error = get_unused_fd_flags(flags);
1034         if (error < 0)
1035                 goto err_read_pipe;
1036         fdr = error;
1037
1038         error = get_unused_fd_flags(flags);
1039         if (error < 0)
1040                 goto err_fdr;
1041         fdw = error;
1042
1043         audit_fd_pair(fdr, fdw);
1044         fd_install(fdr, fr);
1045         fd_install(fdw, fw);
1046         fd[0] = fdr;
1047         fd[1] = fdw;
1048
1049         return 0;
1050
1051  err_fdr:
1052         put_unused_fd(fdr);
1053  err_read_pipe:
1054         path_put(&fr->f_path);
1055         put_filp(fr);
1056  err_write_pipe:
1057         free_write_pipe(fw);
1058         return error;
1059 }
1060
1061 /*
1062  * sys_pipe() is the normal C calling standard for creating
1063  * a pipe. It's not the way Unix traditionally does this, though.
1064  */
1065 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1066 {
1067         int fd[2];
1068         int error;
1069
1070         error = do_pipe_flags(fd, flags);
1071         if (!error) {
1072                 if (copy_to_user(fildes, fd, sizeof(fd))) {
1073                         sys_close(fd[0]);
1074                         sys_close(fd[1]);
1075                         error = -EFAULT;
1076                 }
1077         }
1078         return error;
1079 }
1080
1081 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1082 {
1083         return sys_pipe2(fildes, 0);
1084 }
1085
1086 /*
1087  * pipefs should _never_ be mounted by userland - too much of security hassle,
1088  * no real gain from having the whole whorehouse mounted. So we don't need
1089  * any operations on the root directory. However, we need a non-trivial
1090  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1091  */
1092 static int pipefs_get_sb(struct file_system_type *fs_type,
1093                          int flags, const char *dev_name, void *data,
1094                          struct vfsmount *mnt)
1095 {
1096         return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1097 }
1098
1099 static struct file_system_type pipe_fs_type = {
1100         .name           = "pipefs",
1101         .get_sb         = pipefs_get_sb,
1102         .kill_sb        = kill_anon_super,
1103 };
1104
1105 static int __init init_pipe_fs(void)
1106 {
1107         int err = register_filesystem(&pipe_fs_type);
1108
1109         if (!err) {
1110                 pipe_mnt = kern_mount(&pipe_fs_type);
1111                 if (IS_ERR(pipe_mnt)) {
1112                         err = PTR_ERR(pipe_mnt);
1113                         unregister_filesystem(&pipe_fs_type);
1114                 }
1115         }
1116         return err;
1117 }
1118
1119 static void __exit exit_pipe_fs(void)
1120 {
1121         unregister_filesystem(&pipe_fs_type);
1122         mntput(pipe_mnt);
1123 }
1124
1125 fs_initcall(init_pipe_fs);
1126 module_exit(exit_pipe_fs);