2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks[MAX_CLOCKS];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 spin_unlock_irqrestore(&timr->it_lock, flags);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock,
175 tp->tv_nsec = posix_clocks[which_clock].res;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 ktime_get_real_ts(tp);
188 static inline int common_clock_set(const clockid_t which_clock,
191 return do_sys_settimeofday(tp, NULL);
194 static int common_timer_create(struct k_itimer *new_timer)
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
200 static int no_timer_create(struct k_itimer *new_timer)
206 * Return nonzero if we know a priori this clockid_t value is bogus.
208 static inline int invalid_clockid(const clockid_t which_clock)
210 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
212 if ((unsigned) which_clock >= MAX_CLOCKS)
214 if (posix_clocks[which_clock].clock_getres != NULL)
216 if (posix_clocks[which_clock].res != 0)
222 * Get monotonic time for posix timers
224 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
231 * Get monotonic time for posix timers
233 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
240 * Initialize everything, well, just everything in Posix clocks/timers ;)
242 static __init int init_posix_timers(void)
244 struct k_clock clock_realtime = {
245 .clock_getres = hrtimer_get_res,
247 struct k_clock clock_monotonic = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_ktime_get_ts,
250 .clock_set = do_posix_clock_nosettime,
252 struct k_clock clock_monotonic_raw = {
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
255 .clock_set = do_posix_clock_nosettime,
256 .timer_create = no_timer_create,
259 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
260 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
261 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
263 posix_timers_cache = kmem_cache_create("posix_timers_cache",
264 sizeof (struct k_itimer), 0, SLAB_PANIC,
266 idr_init(&posix_timers_id);
270 __initcall(init_posix_timers);
272 static void schedule_next_timer(struct k_itimer *timr)
274 struct hrtimer *timer = &timr->it.real.timer;
276 if (timr->it.real.interval.tv64 == 0)
279 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
280 timer->base->get_time(),
281 timr->it.real.interval);
283 timr->it_overrun_last = timr->it_overrun;
284 timr->it_overrun = -1;
285 ++timr->it_requeue_pending;
286 hrtimer_restart(timer);
290 * This function is exported for use by the signal deliver code. It is
291 * called just prior to the info block being released and passes that
292 * block to us. It's function is to update the overrun entry AND to
293 * restart the timer. It should only be called if the timer is to be
294 * restarted (i.e. we have flagged this in the sys_private entry of the
297 * To protect aginst the timer going away while the interrupt is queued,
298 * we require that the it_requeue_pending flag be set.
300 void do_schedule_next_timer(struct siginfo *info)
302 struct k_itimer *timr;
305 timr = lock_timer(info->si_tid, &flags);
307 if (timr && timr->it_requeue_pending == info->si_sys_private) {
308 if (timr->it_clock < 0)
309 posix_cpu_timer_schedule(timr);
311 schedule_next_timer(timr);
313 info->si_overrun += timr->it_overrun_last;
317 unlock_timer(timr, flags);
320 int posix_timer_event(struct k_itimer *timr, int si_private)
324 * FIXME: if ->sigq is queued we can race with
325 * dequeue_signal()->do_schedule_next_timer().
327 * If dequeue_signal() sees the "right" value of
328 * si_sys_private it calls do_schedule_next_timer().
329 * We re-queue ->sigq and drop ->it_lock().
330 * do_schedule_next_timer() locks the timer
331 * and re-schedules it while ->sigq is pending.
332 * Not really bad, but not that we want.
334 timr->sigq->info.si_sys_private = si_private;
336 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
337 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
338 /* If we failed to send the signal the timer stops. */
341 EXPORT_SYMBOL_GPL(posix_timer_event);
344 * This function gets called when a POSIX.1b interval timer expires. It
345 * is used as a callback from the kernel internal timer. The
346 * run_timer_list code ALWAYS calls with interrupts on.
348 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
350 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
352 struct k_itimer *timr;
355 enum hrtimer_restart ret = HRTIMER_NORESTART;
357 timr = container_of(timer, struct k_itimer, it.real.timer);
358 spin_lock_irqsave(&timr->it_lock, flags);
360 if (timr->it.real.interval.tv64 != 0)
361 si_private = ++timr->it_requeue_pending;
363 if (posix_timer_event(timr, si_private)) {
365 * signal was not sent because of sig_ignor
366 * we will not get a call back to restart it AND
367 * it should be restarted.
369 if (timr->it.real.interval.tv64 != 0) {
370 ktime_t now = hrtimer_cb_get_time(timer);
373 * FIXME: What we really want, is to stop this
374 * timer completely and restart it in case the
375 * SIG_IGN is removed. This is a non trivial
376 * change which involves sighand locking
377 * (sigh !), which we don't want to do late in
380 * For now we just let timers with an interval
381 * less than a jiffie expire every jiffie to
382 * avoid softirq starvation in case of SIG_IGN
383 * and a very small interval, which would put
384 * the timer right back on the softirq pending
385 * list. By moving now ahead of time we trick
386 * hrtimer_forward() to expire the timer
387 * later, while we still maintain the overrun
388 * accuracy, but have some inconsistency in
389 * the timer_gettime() case. This is at least
390 * better than a starved softirq. A more
391 * complex fix which solves also another related
392 * inconsistency is already in the pipeline.
394 #ifdef CONFIG_HIGH_RES_TIMERS
396 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
398 if (timr->it.real.interval.tv64 < kj.tv64)
399 now = ktime_add(now, kj);
402 timr->it_overrun += (unsigned int)
403 hrtimer_forward(timer, now,
404 timr->it.real.interval);
405 ret = HRTIMER_RESTART;
406 ++timr->it_requeue_pending;
410 unlock_timer(timr, flags);
414 static struct task_struct * good_sigevent(sigevent_t * event)
416 struct task_struct *rtn = current->group_leader;
418 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
419 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
420 !same_thread_group(rtn, current) ||
421 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
424 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
425 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
431 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
433 if ((unsigned) clock_id >= MAX_CLOCKS) {
434 printk("POSIX clock register failed for clock_id %d\n",
439 posix_clocks[clock_id] = *new_clock;
441 EXPORT_SYMBOL_GPL(register_posix_clock);
443 static struct k_itimer * alloc_posix_timer(void)
445 struct k_itimer *tmr;
446 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
449 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
450 kmem_cache_free(posix_timers_cache, tmr);
453 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
458 #define IT_ID_NOT_SET 0
459 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
463 spin_lock_irqsave(&idr_lock, flags);
464 idr_remove(&posix_timers_id, tmr->it_id);
465 spin_unlock_irqrestore(&idr_lock, flags);
467 sigqueue_free(tmr->sigq);
468 kmem_cache_free(posix_timers_cache, tmr);
471 /* Create a POSIX.1b interval timer. */
474 sys_timer_create(const clockid_t which_clock,
475 struct sigevent __user *timer_event_spec,
476 timer_t __user * created_timer_id)
478 struct k_itimer *new_timer;
479 int error, new_timer_id;
480 struct task_struct *process;
482 int it_id_set = IT_ID_NOT_SET;
484 if (invalid_clockid(which_clock))
487 new_timer = alloc_posix_timer();
488 if (unlikely(!new_timer))
491 spin_lock_init(&new_timer->it_lock);
493 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
497 spin_lock_irq(&idr_lock);
498 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
499 spin_unlock_irq(&idr_lock);
501 if (error == -EAGAIN)
504 * Weird looking, but we return EAGAIN if the IDR is
505 * full (proper POSIX return value for this)
511 it_id_set = IT_ID_SET;
512 new_timer->it_id = (timer_t) new_timer_id;
513 new_timer->it_clock = which_clock;
514 new_timer->it_overrun = -1;
515 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
520 * return the timer_id now. The next step is hard to
521 * back out if there is an error.
523 if (copy_to_user(created_timer_id,
524 &new_timer_id, sizeof (new_timer_id))) {
528 if (timer_event_spec) {
529 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
534 process = good_sigevent(&event);
536 get_task_struct(process);
543 event.sigev_notify = SIGEV_SIGNAL;
544 event.sigev_signo = SIGALRM;
545 event.sigev_value.sival_int = new_timer->it_id;
546 process = current->group_leader;
547 get_task_struct(process);
550 new_timer->it_sigev_notify = event.sigev_notify;
551 new_timer->sigq->info.si_signo = event.sigev_signo;
552 new_timer->sigq->info.si_value = event.sigev_value;
553 new_timer->sigq->info.si_tid = new_timer->it_id;
554 new_timer->sigq->info.si_code = SI_TIMER;
556 spin_lock_irq(¤t->sighand->siglock);
557 new_timer->it_process = process;
558 list_add(&new_timer->list, ¤t->signal->posix_timers);
559 spin_unlock_irq(¤t->sighand->siglock);
563 * In the case of the timer belonging to another task, after
564 * the task is unlocked, the timer is owned by the other task
565 * and may cease to exist at any time. Don't use or modify
566 * new_timer after the unlock call.
569 release_posix_timer(new_timer, it_id_set);
574 * Locking issues: We need to protect the result of the id look up until
575 * we get the timer locked down so it is not deleted under us. The
576 * removal is done under the idr spinlock so we use that here to bridge
577 * the find to the timer lock. To avoid a dead lock, the timer id MUST
578 * be release with out holding the timer lock.
580 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
582 struct k_itimer *timr;
584 * Watch out here. We do a irqsave on the idr_lock and pass the
585 * flags part over to the timer lock. Must not let interrupts in
586 * while we are moving the lock.
588 spin_lock_irqsave(&idr_lock, *flags);
589 timr = idr_find(&posix_timers_id, (int)timer_id);
591 spin_lock(&timr->it_lock);
592 if (timr->it_process &&
593 same_thread_group(timr->it_process, current)) {
594 spin_unlock(&idr_lock);
597 spin_unlock(&timr->it_lock);
599 spin_unlock_irqrestore(&idr_lock, *flags);
605 * Get the time remaining on a POSIX.1b interval timer. This function
606 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
609 * We have a couple of messes to clean up here. First there is the case
610 * of a timer that has a requeue pending. These timers should appear to
611 * be in the timer list with an expiry as if we were to requeue them
614 * The second issue is the SIGEV_NONE timer which may be active but is
615 * not really ever put in the timer list (to save system resources).
616 * This timer may be expired, and if so, we will do it here. Otherwise
617 * it is the same as a requeue pending timer WRT to what we should
621 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
623 ktime_t now, remaining, iv;
624 struct hrtimer *timer = &timr->it.real.timer;
626 memset(cur_setting, 0, sizeof(struct itimerspec));
628 iv = timr->it.real.interval;
630 /* interval timer ? */
632 cur_setting->it_interval = ktime_to_timespec(iv);
633 else if (!hrtimer_active(timer) &&
634 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
637 now = timer->base->get_time();
640 * When a requeue is pending or this is a SIGEV_NONE
641 * timer move the expiry time forward by intervals, so
644 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
645 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
646 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
648 remaining = ktime_sub(hrtimer_get_expires(timer), now);
649 /* Return 0 only, when the timer is expired and not pending */
650 if (remaining.tv64 <= 0) {
652 * A single shot SIGEV_NONE timer must return 0, when
655 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
656 cur_setting->it_value.tv_nsec = 1;
658 cur_setting->it_value = ktime_to_timespec(remaining);
661 /* Get the time remaining on a POSIX.1b interval timer. */
663 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
665 struct k_itimer *timr;
666 struct itimerspec cur_setting;
669 timr = lock_timer(timer_id, &flags);
673 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
675 unlock_timer(timr, flags);
677 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
684 * Get the number of overruns of a POSIX.1b interval timer. This is to
685 * be the overrun of the timer last delivered. At the same time we are
686 * accumulating overruns on the next timer. The overrun is frozen when
687 * the signal is delivered, either at the notify time (if the info block
688 * is not queued) or at the actual delivery time (as we are informed by
689 * the call back to do_schedule_next_timer(). So all we need to do is
690 * to pick up the frozen overrun.
693 sys_timer_getoverrun(timer_t timer_id)
695 struct k_itimer *timr;
699 timr = lock_timer(timer_id, &flags);
703 overrun = timr->it_overrun_last;
704 unlock_timer(timr, flags);
709 /* Set a POSIX.1b interval timer. */
710 /* timr->it_lock is taken. */
712 common_timer_set(struct k_itimer *timr, int flags,
713 struct itimerspec *new_setting, struct itimerspec *old_setting)
715 struct hrtimer *timer = &timr->it.real.timer;
716 enum hrtimer_mode mode;
719 common_timer_get(timr, old_setting);
721 /* disable the timer */
722 timr->it.real.interval.tv64 = 0;
724 * careful here. If smp we could be in the "fire" routine which will
725 * be spinning as we hold the lock. But this is ONLY an SMP issue.
727 if (hrtimer_try_to_cancel(timer) < 0)
730 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
732 timr->it_overrun_last = 0;
734 /* switch off the timer when it_value is zero */
735 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
738 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
739 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
740 timr->it.real.timer.function = posix_timer_fn;
742 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
744 /* Convert interval */
745 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
747 /* SIGEV_NONE timers are not queued ! See common_timer_get */
748 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
749 /* Setup correct expiry time for relative timers */
750 if (mode == HRTIMER_MODE_REL) {
751 hrtimer_add_expires(timer, timer->base->get_time());
756 hrtimer_start_expires(timer, mode);
760 /* Set a POSIX.1b interval timer */
762 sys_timer_settime(timer_t timer_id, int flags,
763 const struct itimerspec __user *new_setting,
764 struct itimerspec __user *old_setting)
766 struct k_itimer *timr;
767 struct itimerspec new_spec, old_spec;
770 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
775 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
778 if (!timespec_valid(&new_spec.it_interval) ||
779 !timespec_valid(&new_spec.it_value))
782 timr = lock_timer(timer_id, &flag);
786 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
787 (timr, flags, &new_spec, rtn));
789 unlock_timer(timr, flag);
790 if (error == TIMER_RETRY) {
791 rtn = NULL; // We already got the old time...
795 if (old_setting && !error &&
796 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
802 static inline int common_timer_del(struct k_itimer *timer)
804 timer->it.real.interval.tv64 = 0;
806 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
811 static inline int timer_delete_hook(struct k_itimer *timer)
813 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
816 /* Delete a POSIX.1b interval timer. */
818 sys_timer_delete(timer_t timer_id)
820 struct k_itimer *timer;
824 timer = lock_timer(timer_id, &flags);
828 if (timer_delete_hook(timer) == TIMER_RETRY) {
829 unlock_timer(timer, flags);
833 spin_lock(¤t->sighand->siglock);
834 list_del(&timer->list);
835 spin_unlock(¤t->sighand->siglock);
837 * This keeps any tasks waiting on the spin lock from thinking
838 * they got something (see the lock code above).
840 put_task_struct(timer->it_process);
841 timer->it_process = NULL;
843 unlock_timer(timer, flags);
844 release_posix_timer(timer, IT_ID_SET);
849 * return timer owned by the process, used by exit_itimers
851 static void itimer_delete(struct k_itimer *timer)
856 spin_lock_irqsave(&timer->it_lock, flags);
858 if (timer_delete_hook(timer) == TIMER_RETRY) {
859 unlock_timer(timer, flags);
862 list_del(&timer->list);
864 * This keeps any tasks waiting on the spin lock from thinking
865 * they got something (see the lock code above).
867 put_task_struct(timer->it_process);
868 timer->it_process = NULL;
870 unlock_timer(timer, flags);
871 release_posix_timer(timer, IT_ID_SET);
875 * This is called by do_exit or de_thread, only when there are no more
876 * references to the shared signal_struct.
878 void exit_itimers(struct signal_struct *sig)
880 struct k_itimer *tmr;
882 while (!list_empty(&sig->posix_timers)) {
883 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
888 /* Not available / possible... functions */
889 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
893 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
895 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
896 struct timespec *t, struct timespec __user *r)
899 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
900 #else /* parisc does define it separately. */
904 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
906 asmlinkage long sys_clock_settime(const clockid_t which_clock,
907 const struct timespec __user *tp)
909 struct timespec new_tp;
911 if (invalid_clockid(which_clock))
913 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
916 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
920 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
922 struct timespec kernel_tp;
925 if (invalid_clockid(which_clock))
927 error = CLOCK_DISPATCH(which_clock, clock_get,
928 (which_clock, &kernel_tp));
929 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
937 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
939 struct timespec rtn_tp;
942 if (invalid_clockid(which_clock))
945 error = CLOCK_DISPATCH(which_clock, clock_getres,
946 (which_clock, &rtn_tp));
948 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
956 * nanosleep for monotonic and realtime clocks
958 static int common_nsleep(const clockid_t which_clock, int flags,
959 struct timespec *tsave, struct timespec __user *rmtp)
961 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
962 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
967 sys_clock_nanosleep(const clockid_t which_clock, int flags,
968 const struct timespec __user *rqtp,
969 struct timespec __user *rmtp)
973 if (invalid_clockid(which_clock))
976 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
979 if (!timespec_valid(&t))
982 return CLOCK_DISPATCH(which_clock, nsleep,
983 (which_clock, flags, &t, rmtp));
987 * nanosleep_restart for monotonic and realtime clocks
989 static int common_nsleep_restart(struct restart_block *restart_block)
991 return hrtimer_nanosleep_restart(restart_block);
995 * This will restart clock_nanosleep. This is required only by
996 * compat_clock_nanosleep_restart for now.
999 clock_nanosleep_restart(struct restart_block *restart_block)
1001 clockid_t which_clock = restart_block->arg0;
1003 return CLOCK_DISPATCH(which_clock, nsleep_restart,