Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / drivers / media / dvb / frontends / nxt6000.c
1 /*
2         NxtWave Communications - NXT6000 demodulator driver
3
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31
32
33
34 struct nxt6000_state {
35         struct i2c_adapter* i2c;
36         /* configuration settings */
37         const struct nxt6000_config* config;
38         struct dvb_frontend frontend;
39 };
40
41 static int debug;
42 #define dprintk if (debug) printk
43
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
45 {
46         u8 buf[] = { reg, data };
47         struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48         int ret;
49
50         if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51                 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
52
53         return (ret != 1) ? -EFAULT : 0;
54 }
55
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
57 {
58         int ret;
59         u8 b0[] = { reg };
60         u8 b1[] = { 0 };
61         struct i2c_msg msgs[] = {
62                 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63                 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
64         };
65
66         ret = i2c_transfer(state->i2c, msgs, 2);
67
68         if (ret != 2)
69                 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
70
71         return b1[0];
72 }
73
74 static void nxt6000_reset(struct nxt6000_state* state)
75 {
76         u8 val;
77
78         val = nxt6000_readreg(state, OFDM_COR_CTL);
79
80         nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81         nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
82 }
83
84 static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
85 {
86         u16 nominal_rate;
87         int result;
88
89         switch (bandwidth) {
90
91         case BANDWIDTH_6_MHZ:
92                 nominal_rate = 0x55B7;
93                 break;
94
95         case BANDWIDTH_7_MHZ:
96                 nominal_rate = 0x6400;
97                 break;
98
99         case BANDWIDTH_8_MHZ:
100                 nominal_rate = 0x7249;
101                 break;
102
103         default:
104                 return -EINVAL;
105         }
106
107         if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
108                 return result;
109
110         return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
111 }
112
113 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
114 {
115         switch (guard_interval) {
116
117         case GUARD_INTERVAL_1_32:
118                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
119
120         case GUARD_INTERVAL_1_16:
121                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
122
123         case GUARD_INTERVAL_AUTO:
124         case GUARD_INTERVAL_1_8:
125                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
126
127         case GUARD_INTERVAL_1_4:
128                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
129
130         default:
131                 return -EINVAL;
132         }
133 }
134
135 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
136 {
137         switch (inversion) {
138
139         case INVERSION_OFF:
140                 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
141
142         case INVERSION_ON:
143                 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
144
145         default:
146                 return -EINVAL;
147
148         }
149 }
150
151 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
152 {
153         int result;
154
155         switch (transmission_mode) {
156
157         case TRANSMISSION_MODE_2K:
158                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
159                         return result;
160
161                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
162
163         case TRANSMISSION_MODE_8K:
164         case TRANSMISSION_MODE_AUTO:
165                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
166                         return result;
167
168                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
169
170         default:
171                 return -EINVAL;
172
173         }
174 }
175
176 static void nxt6000_setup(struct dvb_frontend* fe)
177 {
178         struct nxt6000_state* state = fe->demodulator_priv;
179
180         nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
181         nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
182         nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
183         nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
184         nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
185         nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
186         nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
187         nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
188         nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
189         nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
190         nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
191         nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
192         nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
193         nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
194         nxt6000_writereg(state, CAS_FREQ, 0xBB);        /* CHECKME */
195         nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
196         nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
197         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
198         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
199         nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
200         nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
201         nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
202
203         if (state->config->clock_inversion)
204                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
205         else
206                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
207
208         nxt6000_writereg(state, TS_FORMAT, 0);
209 }
210
211 static void nxt6000_dump_status(struct nxt6000_state *state)
212 {
213         u8 val;
214
215 /*
216         printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
217         printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
218         printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
219         printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
220         printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
221         printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
222         printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
223         printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
224         printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
225         printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
226 */
227         printk("NXT6000 status:");
228
229         val = nxt6000_readreg(state, RS_COR_STAT);
230
231         printk(" DATA DESCR LOCK: %d,", val & 0x01);
232         printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
233
234         val = nxt6000_readreg(state, VIT_SYNC_STATUS);
235
236         printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
237
238         switch ((val >> 4) & 0x07) {
239
240         case 0x00:
241                 printk(" VITERBI CODERATE: 1/2,");
242                 break;
243
244         case 0x01:
245                 printk(" VITERBI CODERATE: 2/3,");
246                 break;
247
248         case 0x02:
249                 printk(" VITERBI CODERATE: 3/4,");
250                 break;
251
252         case 0x03:
253                 printk(" VITERBI CODERATE: 5/6,");
254                 break;
255
256         case 0x04:
257                 printk(" VITERBI CODERATE: 7/8,");
258                 break;
259
260         default:
261                 printk(" VITERBI CODERATE: Reserved,");
262
263         }
264
265         val = nxt6000_readreg(state, OFDM_COR_STAT);
266
267         printk(" CHCTrack: %d,", (val >> 7) & 0x01);
268         printk(" TPSLock: %d,", (val >> 6) & 0x01);
269         printk(" SYRLock: %d,", (val >> 5) & 0x01);
270         printk(" AGCLock: %d,", (val >> 4) & 0x01);
271
272         switch (val & 0x0F) {
273
274         case 0x00:
275                 printk(" CoreState: IDLE,");
276                 break;
277
278         case 0x02:
279                 printk(" CoreState: WAIT_AGC,");
280                 break;
281
282         case 0x03:
283                 printk(" CoreState: WAIT_SYR,");
284                 break;
285
286         case 0x04:
287                 printk(" CoreState: WAIT_PPM,");
288                 break;
289
290         case 0x01:
291                 printk(" CoreState: WAIT_TRL,");
292                 break;
293
294         case 0x05:
295                 printk(" CoreState: WAIT_TPS,");
296                 break;
297
298         case 0x06:
299                 printk(" CoreState: MONITOR_TPS,");
300                 break;
301
302         default:
303                 printk(" CoreState: Reserved,");
304
305         }
306
307         val = nxt6000_readreg(state, OFDM_SYR_STAT);
308
309         printk(" SYRLock: %d,", (val >> 4) & 0x01);
310         printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
311
312         switch ((val >> 4) & 0x03) {
313
314         case 0x00:
315                 printk(" SYRGuard: 1/32,");
316                 break;
317
318         case 0x01:
319                 printk(" SYRGuard: 1/16,");
320                 break;
321
322         case 0x02:
323                 printk(" SYRGuard: 1/8,");
324                 break;
325
326         case 0x03:
327                 printk(" SYRGuard: 1/4,");
328                 break;
329         }
330
331         val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
332
333         switch ((val >> 4) & 0x07) {
334
335         case 0x00:
336                 printk(" TPSLP: 1/2,");
337                 break;
338
339         case 0x01:
340                 printk(" TPSLP: 2/3,");
341                 break;
342
343         case 0x02:
344                 printk(" TPSLP: 3/4,");
345                 break;
346
347         case 0x03:
348                 printk(" TPSLP: 5/6,");
349                 break;
350
351         case 0x04:
352                 printk(" TPSLP: 7/8,");
353                 break;
354
355         default:
356                 printk(" TPSLP: Reserved,");
357
358         }
359
360         switch (val & 0x07) {
361
362         case 0x00:
363                 printk(" TPSHP: 1/2,");
364                 break;
365
366         case 0x01:
367                 printk(" TPSHP: 2/3,");
368                 break;
369
370         case 0x02:
371                 printk(" TPSHP: 3/4,");
372                 break;
373
374         case 0x03:
375                 printk(" TPSHP: 5/6,");
376                 break;
377
378         case 0x04:
379                 printk(" TPSHP: 7/8,");
380                 break;
381
382         default:
383                 printk(" TPSHP: Reserved,");
384
385         }
386
387         val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
388
389         printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
390
391         switch ((val >> 4) & 0x03) {
392
393         case 0x00:
394                 printk(" TPSGuard: 1/32,");
395                 break;
396
397         case 0x01:
398                 printk(" TPSGuard: 1/16,");
399                 break;
400
401         case 0x02:
402                 printk(" TPSGuard: 1/8,");
403                 break;
404
405         case 0x03:
406                 printk(" TPSGuard: 1/4,");
407                 break;
408
409         }
410
411         /* Strange magic required to gain access to RF_AGC_STATUS */
412         nxt6000_readreg(state, RF_AGC_VAL_1);
413         val = nxt6000_readreg(state, RF_AGC_STATUS);
414         val = nxt6000_readreg(state, RF_AGC_STATUS);
415
416         printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
417         printk("\n");
418 }
419
420 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
421 {
422         u8 core_status;
423         struct nxt6000_state* state = fe->demodulator_priv;
424
425         *status = 0;
426
427         core_status = nxt6000_readreg(state, OFDM_COR_STAT);
428
429         if (core_status & AGCLOCKED)
430                 *status |= FE_HAS_SIGNAL;
431
432         if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
433                 *status |= FE_HAS_CARRIER;
434
435         if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
436                 *status |= FE_HAS_VITERBI;
437
438         if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
439                 *status |= FE_HAS_SYNC;
440
441         if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
442                 *status |= FE_HAS_LOCK;
443
444         if (debug)
445                 nxt6000_dump_status(state);
446
447         return 0;
448 }
449
450 static int nxt6000_init(struct dvb_frontend* fe)
451 {
452         struct nxt6000_state* state = fe->demodulator_priv;
453
454         nxt6000_reset(state);
455         nxt6000_setup(fe);
456
457         return 0;
458 }
459
460 static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
461 {
462         struct nxt6000_state* state = fe->demodulator_priv;
463         int result;
464
465         if (fe->ops.tuner_ops.set_params) {
466                 fe->ops.tuner_ops.set_params(fe, param);
467                 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
468         }
469
470         if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
471                 return result;
472         if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
473                 return result;
474         if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
475                 return result;
476         if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
477                 return result;
478
479         msleep(500);
480         return 0;
481 }
482
483 static void nxt6000_release(struct dvb_frontend* fe)
484 {
485         struct nxt6000_state* state = fe->demodulator_priv;
486         kfree(state);
487 }
488
489 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
490 {
491         struct nxt6000_state* state = fe->demodulator_priv;
492
493         *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
494
495         return 0;
496 }
497
498 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
499 {
500         struct nxt6000_state* state = fe->demodulator_priv;
501
502         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
503
504         *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
505                 nxt6000_readreg( state, VIT_BER_0 );
506
507         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
508
509         return 0;
510 }
511
512 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
513 {
514         struct nxt6000_state* state = fe->demodulator_priv;
515
516         *signal_strength = (short) (511 -
517                 (nxt6000_readreg(state, AGC_GAIN_1) +
518                 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
519
520         return 0;
521 }
522
523 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
524 {
525         tune->min_delay_ms = 500;
526         return 0;
527 }
528
529 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
530 {
531         struct nxt6000_state* state = fe->demodulator_priv;
532
533         if (enable) {
534                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
535         } else {
536                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
537         }
538 }
539
540 static struct dvb_frontend_ops nxt6000_ops;
541
542 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
543                                     struct i2c_adapter* i2c)
544 {
545         struct nxt6000_state* state = NULL;
546
547         /* allocate memory for the internal state */
548         state = kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
549         if (state == NULL) goto error;
550
551         /* setup the state */
552         state->config = config;
553         state->i2c = i2c;
554
555         /* check if the demod is there */
556         if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
557
558         /* create dvb_frontend */
559         memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
560         state->frontend.demodulator_priv = state;
561         return &state->frontend;
562
563 error:
564         kfree(state);
565         return NULL;
566 }
567
568 static struct dvb_frontend_ops nxt6000_ops = {
569
570         .info = {
571                 .name = "NxtWave NXT6000 DVB-T",
572                 .type = FE_OFDM,
573                 .frequency_min = 0,
574                 .frequency_max = 863250000,
575                 .frequency_stepsize = 62500,
576                 /*.frequency_tolerance = *//* FIXME: 12% of SR */
577                 .symbol_rate_min = 0,   /* FIXME */
578                 .symbol_rate_max = 9360000,     /* FIXME */
579                 .symbol_rate_tolerance = 4000,
580                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
581                         FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
582                         FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
583                         FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
584                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
585                         FE_CAN_HIERARCHY_AUTO,
586         },
587
588         .release = nxt6000_release,
589
590         .init = nxt6000_init,
591         .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
592
593         .get_tune_settings = nxt6000_fe_get_tune_settings,
594
595         .set_frontend = nxt6000_set_frontend,
596
597         .read_status = nxt6000_read_status,
598         .read_ber = nxt6000_read_ber,
599         .read_signal_strength = nxt6000_read_signal_strength,
600         .read_snr = nxt6000_read_snr,
601 };
602
603 module_param(debug, int, 0644);
604 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
605
606 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
607 MODULE_AUTHOR("Florian Schirmer");
608 MODULE_LICENSE("GPL");
609
610 EXPORT_SYMBOL(nxt6000_attach);