Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94
95 #include "gianfar.h"
96 #include "gianfar_mii.h"
97
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122                 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135                               int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137                                 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 extern const struct ethtool_ops gfar_ethtool_ops;
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153         return priv->vlgrp || priv->rx_csum_enable;
154 }
155
156 static int gfar_of_init(struct net_device *dev)
157 {
158         struct device_node *phy, *mdio;
159         const unsigned int *id;
160         const char *model;
161         const char *ctype;
162         const void *mac_addr;
163         const phandle *ph;
164         u64 addr, size;
165         int err = 0;
166         struct gfar_private *priv = netdev_priv(dev);
167         struct device_node *np = priv->node;
168         char bus_name[MII_BUS_ID_SIZE];
169
170         if (!np || !of_device_is_available(np))
171                 return -ENODEV;
172
173         /* get a pointer to the register memory */
174         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175         priv->regs = ioremap(addr, size);
176
177         if (priv->regs == NULL)
178                 return -ENOMEM;
179
180         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
181
182         model = of_get_property(np, "model", NULL);
183
184         /* If we aren't the FEC we have multiple interrupts */
185         if (model && strcasecmp(model, "FEC")) {
186                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
187
188                 priv->interruptError = irq_of_parse_and_map(np, 2);
189
190                 if (priv->interruptTransmit < 0 ||
191                                 priv->interruptReceive < 0 ||
192                                 priv->interruptError < 0) {
193                         err = -EINVAL;
194                         goto err_out;
195                 }
196         }
197
198         mac_addr = of_get_mac_address(np);
199         if (mac_addr)
200                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
201
202         if (model && !strcasecmp(model, "TSEC"))
203                 priv->device_flags =
204                         FSL_GIANFAR_DEV_HAS_GIGABIT |
205                         FSL_GIANFAR_DEV_HAS_COALESCE |
206                         FSL_GIANFAR_DEV_HAS_RMON |
207                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208         if (model && !strcasecmp(model, "eTSEC"))
209                 priv->device_flags =
210                         FSL_GIANFAR_DEV_HAS_GIGABIT |
211                         FSL_GIANFAR_DEV_HAS_COALESCE |
212                         FSL_GIANFAR_DEV_HAS_RMON |
213                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214                         FSL_GIANFAR_DEV_HAS_PADDING |
215                         FSL_GIANFAR_DEV_HAS_CSUM |
216                         FSL_GIANFAR_DEV_HAS_VLAN |
217                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
219
220         ctype = of_get_property(np, "phy-connection-type", NULL);
221
222         /* We only care about rgmii-id.  The rest are autodetected */
223         if (ctype && !strcmp(ctype, "rgmii-id"))
224                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
225         else
226                 priv->interface = PHY_INTERFACE_MODE_MII;
227
228         if (of_get_property(np, "fsl,magic-packet", NULL))
229                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
230
231         ph = of_get_property(np, "phy-handle", NULL);
232         if (ph == NULL) {
233                 u32 *fixed_link;
234
235                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
236                 if (!fixed_link) {
237                         err = -ENODEV;
238                         goto err_out;
239                 }
240
241                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
242                                 PHY_ID_FMT, "0", fixed_link[0]);
243         } else {
244                 phy = of_find_node_by_phandle(*ph);
245
246                 if (phy == NULL) {
247                         err = -ENODEV;
248                         goto err_out;
249                 }
250
251                 mdio = of_get_parent(phy);
252
253                 id = of_get_property(phy, "reg", NULL);
254
255                 of_node_put(phy);
256                 of_node_put(mdio);
257
258                 gfar_mdio_bus_name(bus_name, mdio);
259                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
260                                 bus_name, *id);
261         }
262
263         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
264         ph = of_get_property(np, "tbi-handle", NULL);
265         if (ph) {
266                 struct device_node *tbi = of_find_node_by_phandle(*ph);
267                 struct of_device *ofdev;
268                 struct mii_bus *bus;
269
270                 if (!tbi)
271                         return 0;
272
273                 mdio = of_get_parent(tbi);
274                 if (!mdio)
275                         return 0;
276
277                 ofdev = of_find_device_by_node(mdio);
278
279                 of_node_put(mdio);
280
281                 id = of_get_property(tbi, "reg", NULL);
282                 if (!id)
283                         return 0;
284
285                 of_node_put(tbi);
286
287                 bus = dev_get_drvdata(&ofdev->dev);
288
289                 priv->tbiphy = bus->phy_map[*id];
290         }
291
292         return 0;
293
294 err_out:
295         iounmap(priv->regs);
296         return err;
297 }
298
299 /* Ioctl MII Interface */
300 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
301 {
302         struct gfar_private *priv = netdev_priv(dev);
303
304         if (!netif_running(dev))
305                 return -EINVAL;
306
307         if (!priv->phydev)
308                 return -ENODEV;
309
310         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
311 }
312
313 /* Set up the ethernet device structure, private data,
314  * and anything else we need before we start */
315 static int gfar_probe(struct of_device *ofdev,
316                 const struct of_device_id *match)
317 {
318         u32 tempval;
319         struct net_device *dev = NULL;
320         struct gfar_private *priv = NULL;
321         DECLARE_MAC_BUF(mac);
322         int err = 0;
323         int len_devname;
324
325         /* Create an ethernet device instance */
326         dev = alloc_etherdev(sizeof (*priv));
327
328         if (NULL == dev)
329                 return -ENOMEM;
330
331         priv = netdev_priv(dev);
332         priv->dev = dev;
333         priv->node = ofdev->node;
334
335         err = gfar_of_init(dev);
336
337         if (err)
338                 goto regs_fail;
339
340         spin_lock_init(&priv->txlock);
341         spin_lock_init(&priv->rxlock);
342         spin_lock_init(&priv->bflock);
343         INIT_WORK(&priv->reset_task, gfar_reset_task);
344
345         dev_set_drvdata(&ofdev->dev, priv);
346
347         /* Stop the DMA engine now, in case it was running before */
348         /* (The firmware could have used it, and left it running). */
349         gfar_halt(dev);
350
351         /* Reset MAC layer */
352         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
353
354         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
355         gfar_write(&priv->regs->maccfg1, tempval);
356
357         /* Initialize MACCFG2. */
358         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
359
360         /* Initialize ECNTRL */
361         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
362
363         /* Set the dev->base_addr to the gfar reg region */
364         dev->base_addr = (unsigned long) (priv->regs);
365
366         SET_NETDEV_DEV(dev, &ofdev->dev);
367
368         /* Fill in the dev structure */
369         dev->open = gfar_enet_open;
370         dev->hard_start_xmit = gfar_start_xmit;
371         dev->tx_timeout = gfar_timeout;
372         dev->watchdog_timeo = TX_TIMEOUT;
373         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
374 #ifdef CONFIG_NET_POLL_CONTROLLER
375         dev->poll_controller = gfar_netpoll;
376 #endif
377         dev->stop = gfar_close;
378         dev->change_mtu = gfar_change_mtu;
379         dev->mtu = 1500;
380         dev->set_multicast_list = gfar_set_multi;
381
382         dev->ethtool_ops = &gfar_ethtool_ops;
383         dev->do_ioctl = gfar_ioctl;
384
385         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
386                 priv->rx_csum_enable = 1;
387                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
388         } else
389                 priv->rx_csum_enable = 0;
390
391         priv->vlgrp = NULL;
392
393         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
394                 dev->vlan_rx_register = gfar_vlan_rx_register;
395
396                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
397         }
398
399         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
400                 priv->extended_hash = 1;
401                 priv->hash_width = 9;
402
403                 priv->hash_regs[0] = &priv->regs->igaddr0;
404                 priv->hash_regs[1] = &priv->regs->igaddr1;
405                 priv->hash_regs[2] = &priv->regs->igaddr2;
406                 priv->hash_regs[3] = &priv->regs->igaddr3;
407                 priv->hash_regs[4] = &priv->regs->igaddr4;
408                 priv->hash_regs[5] = &priv->regs->igaddr5;
409                 priv->hash_regs[6] = &priv->regs->igaddr6;
410                 priv->hash_regs[7] = &priv->regs->igaddr7;
411                 priv->hash_regs[8] = &priv->regs->gaddr0;
412                 priv->hash_regs[9] = &priv->regs->gaddr1;
413                 priv->hash_regs[10] = &priv->regs->gaddr2;
414                 priv->hash_regs[11] = &priv->regs->gaddr3;
415                 priv->hash_regs[12] = &priv->regs->gaddr4;
416                 priv->hash_regs[13] = &priv->regs->gaddr5;
417                 priv->hash_regs[14] = &priv->regs->gaddr6;
418                 priv->hash_regs[15] = &priv->regs->gaddr7;
419
420         } else {
421                 priv->extended_hash = 0;
422                 priv->hash_width = 8;
423
424                 priv->hash_regs[0] = &priv->regs->gaddr0;
425                 priv->hash_regs[1] = &priv->regs->gaddr1;
426                 priv->hash_regs[2] = &priv->regs->gaddr2;
427                 priv->hash_regs[3] = &priv->regs->gaddr3;
428                 priv->hash_regs[4] = &priv->regs->gaddr4;
429                 priv->hash_regs[5] = &priv->regs->gaddr5;
430                 priv->hash_regs[6] = &priv->regs->gaddr6;
431                 priv->hash_regs[7] = &priv->regs->gaddr7;
432         }
433
434         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
435                 priv->padding = DEFAULT_PADDING;
436         else
437                 priv->padding = 0;
438
439         if (dev->features & NETIF_F_IP_CSUM)
440                 dev->hard_header_len += GMAC_FCB_LEN;
441
442         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
443         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
444         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
445         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
446
447         priv->txcoalescing = DEFAULT_TX_COALESCE;
448         priv->txic = DEFAULT_TXIC;
449         priv->rxcoalescing = DEFAULT_RX_COALESCE;
450         priv->rxic = DEFAULT_RXIC;
451
452         /* Enable most messages by default */
453         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
454
455         /* Carrier starts down, phylib will bring it up */
456         netif_carrier_off(dev);
457
458         err = register_netdev(dev);
459
460         if (err) {
461                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
462                                 dev->name);
463                 goto register_fail;
464         }
465
466         /* fill out IRQ number and name fields */
467         len_devname = strlen(dev->name);
468         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
469         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
470                 strncpy(&priv->int_name_tx[len_devname],
471                         "_tx", sizeof("_tx") + 1);
472
473                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
474                 strncpy(&priv->int_name_rx[len_devname],
475                         "_rx", sizeof("_rx") + 1);
476
477                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
478                 strncpy(&priv->int_name_er[len_devname],
479                         "_er", sizeof("_er") + 1);
480         } else
481                 priv->int_name_tx[len_devname] = '\0';
482
483         /* Create all the sysfs files */
484         gfar_init_sysfs(dev);
485
486         /* Print out the device info */
487         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
488
489         /* Even more device info helps when determining which kernel */
490         /* provided which set of benchmarks. */
491         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
492         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
493                dev->name, priv->rx_ring_size, priv->tx_ring_size);
494
495         return 0;
496
497 register_fail:
498         iounmap(priv->regs);
499 regs_fail:
500         free_netdev(dev);
501         return err;
502 }
503
504 static int gfar_remove(struct of_device *ofdev)
505 {
506         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
507
508         dev_set_drvdata(&ofdev->dev, NULL);
509
510         iounmap(priv->regs);
511         free_netdev(priv->dev);
512
513         return 0;
514 }
515
516 #ifdef CONFIG_PM
517 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
518 {
519         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
520         struct net_device *dev = priv->dev;
521         unsigned long flags;
522         u32 tempval;
523
524         int magic_packet = priv->wol_en &&
525                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
526
527         netif_device_detach(dev);
528
529         if (netif_running(dev)) {
530                 spin_lock_irqsave(&priv->txlock, flags);
531                 spin_lock(&priv->rxlock);
532
533                 gfar_halt_nodisable(dev);
534
535                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
536                 tempval = gfar_read(&priv->regs->maccfg1);
537
538                 tempval &= ~MACCFG1_TX_EN;
539
540                 if (!magic_packet)
541                         tempval &= ~MACCFG1_RX_EN;
542
543                 gfar_write(&priv->regs->maccfg1, tempval);
544
545                 spin_unlock(&priv->rxlock);
546                 spin_unlock_irqrestore(&priv->txlock, flags);
547
548                 napi_disable(&priv->napi);
549
550                 if (magic_packet) {
551                         /* Enable interrupt on Magic Packet */
552                         gfar_write(&priv->regs->imask, IMASK_MAG);
553
554                         /* Enable Magic Packet mode */
555                         tempval = gfar_read(&priv->regs->maccfg2);
556                         tempval |= MACCFG2_MPEN;
557                         gfar_write(&priv->regs->maccfg2, tempval);
558                 } else {
559                         phy_stop(priv->phydev);
560                 }
561         }
562
563         return 0;
564 }
565
566 static int gfar_resume(struct of_device *ofdev)
567 {
568         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
569         struct net_device *dev = priv->dev;
570         unsigned long flags;
571         u32 tempval;
572         int magic_packet = priv->wol_en &&
573                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
574
575         if (!netif_running(dev)) {
576                 netif_device_attach(dev);
577                 return 0;
578         }
579
580         if (!magic_packet && priv->phydev)
581                 phy_start(priv->phydev);
582
583         /* Disable Magic Packet mode, in case something
584          * else woke us up.
585          */
586
587         spin_lock_irqsave(&priv->txlock, flags);
588         spin_lock(&priv->rxlock);
589
590         tempval = gfar_read(&priv->regs->maccfg2);
591         tempval &= ~MACCFG2_MPEN;
592         gfar_write(&priv->regs->maccfg2, tempval);
593
594         gfar_start(dev);
595
596         spin_unlock(&priv->rxlock);
597         spin_unlock_irqrestore(&priv->txlock, flags);
598
599         netif_device_attach(dev);
600
601         napi_enable(&priv->napi);
602
603         return 0;
604 }
605 #else
606 #define gfar_suspend NULL
607 #define gfar_resume NULL
608 #endif
609
610 /* Reads the controller's registers to determine what interface
611  * connects it to the PHY.
612  */
613 static phy_interface_t gfar_get_interface(struct net_device *dev)
614 {
615         struct gfar_private *priv = netdev_priv(dev);
616         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
617
618         if (ecntrl & ECNTRL_SGMII_MODE)
619                 return PHY_INTERFACE_MODE_SGMII;
620
621         if (ecntrl & ECNTRL_TBI_MODE) {
622                 if (ecntrl & ECNTRL_REDUCED_MODE)
623                         return PHY_INTERFACE_MODE_RTBI;
624                 else
625                         return PHY_INTERFACE_MODE_TBI;
626         }
627
628         if (ecntrl & ECNTRL_REDUCED_MODE) {
629                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
630                         return PHY_INTERFACE_MODE_RMII;
631                 else {
632                         phy_interface_t interface = priv->interface;
633
634                         /*
635                          * This isn't autodetected right now, so it must
636                          * be set by the device tree or platform code.
637                          */
638                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
639                                 return PHY_INTERFACE_MODE_RGMII_ID;
640
641                         return PHY_INTERFACE_MODE_RGMII;
642                 }
643         }
644
645         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
646                 return PHY_INTERFACE_MODE_GMII;
647
648         return PHY_INTERFACE_MODE_MII;
649 }
650
651
652 /* Initializes driver's PHY state, and attaches to the PHY.
653  * Returns 0 on success.
654  */
655 static int init_phy(struct net_device *dev)
656 {
657         struct gfar_private *priv = netdev_priv(dev);
658         uint gigabit_support =
659                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
660                 SUPPORTED_1000baseT_Full : 0;
661         struct phy_device *phydev;
662         phy_interface_t interface;
663
664         priv->oldlink = 0;
665         priv->oldspeed = 0;
666         priv->oldduplex = -1;
667
668         interface = gfar_get_interface(dev);
669
670         phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
671
672         if (interface == PHY_INTERFACE_MODE_SGMII)
673                 gfar_configure_serdes(dev);
674
675         if (IS_ERR(phydev)) {
676                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
677                 return PTR_ERR(phydev);
678         }
679
680         /* Remove any features not supported by the controller */
681         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
682         phydev->advertising = phydev->supported;
683
684         priv->phydev = phydev;
685
686         return 0;
687 }
688
689 /*
690  * Initialize TBI PHY interface for communicating with the
691  * SERDES lynx PHY on the chip.  We communicate with this PHY
692  * through the MDIO bus on each controller, treating it as a
693  * "normal" PHY at the address found in the TBIPA register.  We assume
694  * that the TBIPA register is valid.  Either the MDIO bus code will set
695  * it to a value that doesn't conflict with other PHYs on the bus, or the
696  * value doesn't matter, as there are no other PHYs on the bus.
697  */
698 static void gfar_configure_serdes(struct net_device *dev)
699 {
700         struct gfar_private *priv = netdev_priv(dev);
701
702         if (!priv->tbiphy) {
703                 printk(KERN_WARNING "SGMII mode requires that the device "
704                                 "tree specify a tbi-handle\n");
705                 return;
706         }
707
708         /*
709          * If the link is already up, we must already be ok, and don't need to
710          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
711          * everything for us?  Resetting it takes the link down and requires
712          * several seconds for it to come back.
713          */
714         if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
715                 return;
716
717         /* Single clk mode, mii mode off(for serdes communication) */
718         phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
719
720         phy_write(priv->tbiphy, MII_ADVERTISE,
721                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
722                         ADVERTISE_1000XPSE_ASYM);
723
724         phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
725                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
726 }
727
728 static void init_registers(struct net_device *dev)
729 {
730         struct gfar_private *priv = netdev_priv(dev);
731
732         /* Clear IEVENT */
733         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
734
735         /* Initialize IMASK */
736         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
737
738         /* Init hash registers to zero */
739         gfar_write(&priv->regs->igaddr0, 0);
740         gfar_write(&priv->regs->igaddr1, 0);
741         gfar_write(&priv->regs->igaddr2, 0);
742         gfar_write(&priv->regs->igaddr3, 0);
743         gfar_write(&priv->regs->igaddr4, 0);
744         gfar_write(&priv->regs->igaddr5, 0);
745         gfar_write(&priv->regs->igaddr6, 0);
746         gfar_write(&priv->regs->igaddr7, 0);
747
748         gfar_write(&priv->regs->gaddr0, 0);
749         gfar_write(&priv->regs->gaddr1, 0);
750         gfar_write(&priv->regs->gaddr2, 0);
751         gfar_write(&priv->regs->gaddr3, 0);
752         gfar_write(&priv->regs->gaddr4, 0);
753         gfar_write(&priv->regs->gaddr5, 0);
754         gfar_write(&priv->regs->gaddr6, 0);
755         gfar_write(&priv->regs->gaddr7, 0);
756
757         /* Zero out the rmon mib registers if it has them */
758         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
759                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
760
761                 /* Mask off the CAM interrupts */
762                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
763                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
764         }
765
766         /* Initialize the max receive buffer length */
767         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
768
769         /* Initialize the Minimum Frame Length Register */
770         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
771 }
772
773
774 /* Halt the receive and transmit queues */
775 static void gfar_halt_nodisable(struct net_device *dev)
776 {
777         struct gfar_private *priv = netdev_priv(dev);
778         struct gfar __iomem *regs = priv->regs;
779         u32 tempval;
780
781         /* Mask all interrupts */
782         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
783
784         /* Clear all interrupts */
785         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
786
787         /* Stop the DMA, and wait for it to stop */
788         tempval = gfar_read(&priv->regs->dmactrl);
789         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
790             != (DMACTRL_GRS | DMACTRL_GTS)) {
791                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
792                 gfar_write(&priv->regs->dmactrl, tempval);
793
794                 while (!(gfar_read(&priv->regs->ievent) &
795                          (IEVENT_GRSC | IEVENT_GTSC)))
796                         cpu_relax();
797         }
798 }
799
800 /* Halt the receive and transmit queues */
801 void gfar_halt(struct net_device *dev)
802 {
803         struct gfar_private *priv = netdev_priv(dev);
804         struct gfar __iomem *regs = priv->regs;
805         u32 tempval;
806
807         gfar_halt_nodisable(dev);
808
809         /* Disable Rx and Tx */
810         tempval = gfar_read(&regs->maccfg1);
811         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
812         gfar_write(&regs->maccfg1, tempval);
813 }
814
815 void stop_gfar(struct net_device *dev)
816 {
817         struct gfar_private *priv = netdev_priv(dev);
818         struct gfar __iomem *regs = priv->regs;
819         unsigned long flags;
820
821         phy_stop(priv->phydev);
822
823         /* Lock it down */
824         spin_lock_irqsave(&priv->txlock, flags);
825         spin_lock(&priv->rxlock);
826
827         gfar_halt(dev);
828
829         spin_unlock(&priv->rxlock);
830         spin_unlock_irqrestore(&priv->txlock, flags);
831
832         /* Free the IRQs */
833         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
834                 free_irq(priv->interruptError, dev);
835                 free_irq(priv->interruptTransmit, dev);
836                 free_irq(priv->interruptReceive, dev);
837         } else {
838                 free_irq(priv->interruptTransmit, dev);
839         }
840
841         free_skb_resources(priv);
842
843         dma_free_coherent(&dev->dev,
844                         sizeof(struct txbd8)*priv->tx_ring_size
845                         + sizeof(struct rxbd8)*priv->rx_ring_size,
846                         priv->tx_bd_base,
847                         gfar_read(&regs->tbase0));
848 }
849
850 /* If there are any tx skbs or rx skbs still around, free them.
851  * Then free tx_skbuff and rx_skbuff */
852 static void free_skb_resources(struct gfar_private *priv)
853 {
854         struct rxbd8 *rxbdp;
855         struct txbd8 *txbdp;
856         int i, j;
857
858         /* Go through all the buffer descriptors and free their data buffers */
859         txbdp = priv->tx_bd_base;
860
861         for (i = 0; i < priv->tx_ring_size; i++) {
862                 if (!priv->tx_skbuff[i])
863                         continue;
864
865                 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
866                                 txbdp->length, DMA_TO_DEVICE);
867                 txbdp->lstatus = 0;
868                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
869                         txbdp++;
870                         dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
871                                         txbdp->length, DMA_TO_DEVICE);
872                 }
873                 txbdp++;
874                 dev_kfree_skb_any(priv->tx_skbuff[i]);
875                 priv->tx_skbuff[i] = NULL;
876         }
877
878         kfree(priv->tx_skbuff);
879
880         rxbdp = priv->rx_bd_base;
881
882         /* rx_skbuff is not guaranteed to be allocated, so only
883          * free it and its contents if it is allocated */
884         if(priv->rx_skbuff != NULL) {
885                 for (i = 0; i < priv->rx_ring_size; i++) {
886                         if (priv->rx_skbuff[i]) {
887                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
888                                                 priv->rx_buffer_size,
889                                                 DMA_FROM_DEVICE);
890
891                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
892                                 priv->rx_skbuff[i] = NULL;
893                         }
894
895                         rxbdp->lstatus = 0;
896                         rxbdp->bufPtr = 0;
897
898                         rxbdp++;
899                 }
900
901                 kfree(priv->rx_skbuff);
902         }
903 }
904
905 void gfar_start(struct net_device *dev)
906 {
907         struct gfar_private *priv = netdev_priv(dev);
908         struct gfar __iomem *regs = priv->regs;
909         u32 tempval;
910
911         /* Enable Rx and Tx in MACCFG1 */
912         tempval = gfar_read(&regs->maccfg1);
913         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
914         gfar_write(&regs->maccfg1, tempval);
915
916         /* Initialize DMACTRL to have WWR and WOP */
917         tempval = gfar_read(&priv->regs->dmactrl);
918         tempval |= DMACTRL_INIT_SETTINGS;
919         gfar_write(&priv->regs->dmactrl, tempval);
920
921         /* Make sure we aren't stopped */
922         tempval = gfar_read(&priv->regs->dmactrl);
923         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
924         gfar_write(&priv->regs->dmactrl, tempval);
925
926         /* Clear THLT/RHLT, so that the DMA starts polling now */
927         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
928         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
929
930         /* Unmask the interrupts we look for */
931         gfar_write(&regs->imask, IMASK_DEFAULT);
932
933         dev->trans_start = jiffies;
934 }
935
936 /* Bring the controller up and running */
937 int startup_gfar(struct net_device *dev)
938 {
939         struct txbd8 *txbdp;
940         struct rxbd8 *rxbdp;
941         dma_addr_t addr = 0;
942         unsigned long vaddr;
943         int i;
944         struct gfar_private *priv = netdev_priv(dev);
945         struct gfar __iomem *regs = priv->regs;
946         int err = 0;
947         u32 rctrl = 0;
948         u32 attrs = 0;
949
950         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
951
952         /* Allocate memory for the buffer descriptors */
953         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
954                         sizeof (struct txbd8) * priv->tx_ring_size +
955                         sizeof (struct rxbd8) * priv->rx_ring_size,
956                         &addr, GFP_KERNEL);
957
958         if (vaddr == 0) {
959                 if (netif_msg_ifup(priv))
960                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
961                                         dev->name);
962                 return -ENOMEM;
963         }
964
965         priv->tx_bd_base = (struct txbd8 *) vaddr;
966
967         /* enet DMA only understands physical addresses */
968         gfar_write(&regs->tbase0, addr);
969
970         /* Start the rx descriptor ring where the tx ring leaves off */
971         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
972         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
973         priv->rx_bd_base = (struct rxbd8 *) vaddr;
974         gfar_write(&regs->rbase0, addr);
975
976         /* Setup the skbuff rings */
977         priv->tx_skbuff =
978             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
979                                         priv->tx_ring_size, GFP_KERNEL);
980
981         if (NULL == priv->tx_skbuff) {
982                 if (netif_msg_ifup(priv))
983                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
984                                         dev->name);
985                 err = -ENOMEM;
986                 goto tx_skb_fail;
987         }
988
989         for (i = 0; i < priv->tx_ring_size; i++)
990                 priv->tx_skbuff[i] = NULL;
991
992         priv->rx_skbuff =
993             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
994                                         priv->rx_ring_size, GFP_KERNEL);
995
996         if (NULL == priv->rx_skbuff) {
997                 if (netif_msg_ifup(priv))
998                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
999                                         dev->name);
1000                 err = -ENOMEM;
1001                 goto rx_skb_fail;
1002         }
1003
1004         for (i = 0; i < priv->rx_ring_size; i++)
1005                 priv->rx_skbuff[i] = NULL;
1006
1007         /* Initialize some variables in our dev structure */
1008         priv->num_txbdfree = priv->tx_ring_size;
1009         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1010         priv->cur_rx = priv->rx_bd_base;
1011         priv->skb_curtx = priv->skb_dirtytx = 0;
1012         priv->skb_currx = 0;
1013
1014         /* Initialize Transmit Descriptor Ring */
1015         txbdp = priv->tx_bd_base;
1016         for (i = 0; i < priv->tx_ring_size; i++) {
1017                 txbdp->lstatus = 0;
1018                 txbdp->bufPtr = 0;
1019                 txbdp++;
1020         }
1021
1022         /* Set the last descriptor in the ring to indicate wrap */
1023         txbdp--;
1024         txbdp->status |= TXBD_WRAP;
1025
1026         rxbdp = priv->rx_bd_base;
1027         for (i = 0; i < priv->rx_ring_size; i++) {
1028                 struct sk_buff *skb;
1029
1030                 skb = gfar_new_skb(dev);
1031
1032                 if (!skb) {
1033                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1034                                         dev->name);
1035
1036                         goto err_rxalloc_fail;
1037                 }
1038
1039                 priv->rx_skbuff[i] = skb;
1040
1041                 gfar_new_rxbdp(dev, rxbdp, skb);
1042
1043                 rxbdp++;
1044         }
1045
1046         /* Set the last descriptor in the ring to wrap */
1047         rxbdp--;
1048         rxbdp->status |= RXBD_WRAP;
1049
1050         /* If the device has multiple interrupts, register for
1051          * them.  Otherwise, only register for the one */
1052         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1053                 /* Install our interrupt handlers for Error,
1054                  * Transmit, and Receive */
1055                 if (request_irq(priv->interruptError, gfar_error,
1056                                 0, priv->int_name_er, dev) < 0) {
1057                         if (netif_msg_intr(priv))
1058                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1059                                         dev->name, priv->interruptError);
1060
1061                         err = -1;
1062                         goto err_irq_fail;
1063                 }
1064
1065                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1066                                 0, priv->int_name_tx, dev) < 0) {
1067                         if (netif_msg_intr(priv))
1068                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1069                                         dev->name, priv->interruptTransmit);
1070
1071                         err = -1;
1072
1073                         goto tx_irq_fail;
1074                 }
1075
1076                 if (request_irq(priv->interruptReceive, gfar_receive,
1077                                 0, priv->int_name_rx, dev) < 0) {
1078                         if (netif_msg_intr(priv))
1079                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1080                                                 dev->name, priv->interruptReceive);
1081
1082                         err = -1;
1083                         goto rx_irq_fail;
1084                 }
1085         } else {
1086                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1087                                 0, priv->int_name_tx, dev) < 0) {
1088                         if (netif_msg_intr(priv))
1089                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1090                                         dev->name, priv->interruptTransmit);
1091
1092                         err = -1;
1093                         goto err_irq_fail;
1094                 }
1095         }
1096
1097         phy_start(priv->phydev);
1098
1099         /* Configure the coalescing support */
1100         gfar_write(&regs->txic, 0);
1101         if (priv->txcoalescing)
1102                 gfar_write(&regs->txic, priv->txic);
1103
1104         gfar_write(&regs->rxic, 0);
1105         if (priv->rxcoalescing)
1106                 gfar_write(&regs->rxic, priv->rxic);
1107
1108         if (priv->rx_csum_enable)
1109                 rctrl |= RCTRL_CHECKSUMMING;
1110
1111         if (priv->extended_hash) {
1112                 rctrl |= RCTRL_EXTHASH;
1113
1114                 gfar_clear_exact_match(dev);
1115                 rctrl |= RCTRL_EMEN;
1116         }
1117
1118         if (priv->padding) {
1119                 rctrl &= ~RCTRL_PAL_MASK;
1120                 rctrl |= RCTRL_PADDING(priv->padding);
1121         }
1122
1123         /* Init rctrl based on our settings */
1124         gfar_write(&priv->regs->rctrl, rctrl);
1125
1126         if (dev->features & NETIF_F_IP_CSUM)
1127                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1128
1129         /* Set the extraction length and index */
1130         attrs = ATTRELI_EL(priv->rx_stash_size) |
1131                 ATTRELI_EI(priv->rx_stash_index);
1132
1133         gfar_write(&priv->regs->attreli, attrs);
1134
1135         /* Start with defaults, and add stashing or locking
1136          * depending on the approprate variables */
1137         attrs = ATTR_INIT_SETTINGS;
1138
1139         if (priv->bd_stash_en)
1140                 attrs |= ATTR_BDSTASH;
1141
1142         if (priv->rx_stash_size != 0)
1143                 attrs |= ATTR_BUFSTASH;
1144
1145         gfar_write(&priv->regs->attr, attrs);
1146
1147         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1148         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1149         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1150
1151         /* Start the controller */
1152         gfar_start(dev);
1153
1154         return 0;
1155
1156 rx_irq_fail:
1157         free_irq(priv->interruptTransmit, dev);
1158 tx_irq_fail:
1159         free_irq(priv->interruptError, dev);
1160 err_irq_fail:
1161 err_rxalloc_fail:
1162 rx_skb_fail:
1163         free_skb_resources(priv);
1164 tx_skb_fail:
1165         dma_free_coherent(&dev->dev,
1166                         sizeof(struct txbd8)*priv->tx_ring_size
1167                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1168                         priv->tx_bd_base,
1169                         gfar_read(&regs->tbase0));
1170
1171         return err;
1172 }
1173
1174 /* Called when something needs to use the ethernet device */
1175 /* Returns 0 for success. */
1176 static int gfar_enet_open(struct net_device *dev)
1177 {
1178         struct gfar_private *priv = netdev_priv(dev);
1179         int err;
1180
1181         napi_enable(&priv->napi);
1182
1183         /* Initialize a bunch of registers */
1184         init_registers(dev);
1185
1186         gfar_set_mac_address(dev);
1187
1188         err = init_phy(dev);
1189
1190         if(err) {
1191                 napi_disable(&priv->napi);
1192                 return err;
1193         }
1194
1195         err = startup_gfar(dev);
1196         if (err) {
1197                 napi_disable(&priv->napi);
1198                 return err;
1199         }
1200
1201         netif_start_queue(dev);
1202
1203         return err;
1204 }
1205
1206 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1207 {
1208         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1209
1210         cacheable_memzero(fcb, GMAC_FCB_LEN);
1211
1212         return fcb;
1213 }
1214
1215 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1216 {
1217         u8 flags = 0;
1218
1219         /* If we're here, it's a IP packet with a TCP or UDP
1220          * payload.  We set it to checksum, using a pseudo-header
1221          * we provide
1222          */
1223         flags = TXFCB_DEFAULT;
1224
1225         /* Tell the controller what the protocol is */
1226         /* And provide the already calculated phcs */
1227         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1228                 flags |= TXFCB_UDP;
1229                 fcb->phcs = udp_hdr(skb)->check;
1230         } else
1231                 fcb->phcs = tcp_hdr(skb)->check;
1232
1233         /* l3os is the distance between the start of the
1234          * frame (skb->data) and the start of the IP hdr.
1235          * l4os is the distance between the start of the
1236          * l3 hdr and the l4 hdr */
1237         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1238         fcb->l4os = skb_network_header_len(skb);
1239
1240         fcb->flags = flags;
1241 }
1242
1243 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1244 {
1245         fcb->flags |= TXFCB_VLN;
1246         fcb->vlctl = vlan_tx_tag_get(skb);
1247 }
1248
1249 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1250                                struct txbd8 *base, int ring_size)
1251 {
1252         struct txbd8 *new_bd = bdp + stride;
1253
1254         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1255 }
1256
1257 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1258                 int ring_size)
1259 {
1260         return skip_txbd(bdp, 1, base, ring_size);
1261 }
1262
1263 /* This is called by the kernel when a frame is ready for transmission. */
1264 /* It is pointed to by the dev->hard_start_xmit function pointer */
1265 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1266 {
1267         struct gfar_private *priv = netdev_priv(dev);
1268         struct txfcb *fcb = NULL;
1269         struct txbd8 *txbdp, *txbdp_start, *base;
1270         u32 lstatus;
1271         int i;
1272         u32 bufaddr;
1273         unsigned long flags;
1274         unsigned int nr_frags, length;
1275
1276         base = priv->tx_bd_base;
1277
1278         /* total number of fragments in the SKB */
1279         nr_frags = skb_shinfo(skb)->nr_frags;
1280
1281         spin_lock_irqsave(&priv->txlock, flags);
1282
1283         /* check if there is space to queue this packet */
1284         if (nr_frags > priv->num_txbdfree) {
1285                 /* no space, stop the queue */
1286                 netif_stop_queue(dev);
1287                 dev->stats.tx_fifo_errors++;
1288                 spin_unlock_irqrestore(&priv->txlock, flags);
1289                 return NETDEV_TX_BUSY;
1290         }
1291
1292         /* Update transmit stats */
1293         dev->stats.tx_bytes += skb->len;
1294
1295         txbdp = txbdp_start = priv->cur_tx;
1296
1297         if (nr_frags == 0) {
1298                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1299         } else {
1300                 /* Place the fragment addresses and lengths into the TxBDs */
1301                 for (i = 0; i < nr_frags; i++) {
1302                         /* Point at the next BD, wrapping as needed */
1303                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1304
1305                         length = skb_shinfo(skb)->frags[i].size;
1306
1307                         lstatus = txbdp->lstatus | length |
1308                                 BD_LFLAG(TXBD_READY);
1309
1310                         /* Handle the last BD specially */
1311                         if (i == nr_frags - 1)
1312                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1313
1314                         bufaddr = dma_map_page(&dev->dev,
1315                                         skb_shinfo(skb)->frags[i].page,
1316                                         skb_shinfo(skb)->frags[i].page_offset,
1317                                         length,
1318                                         DMA_TO_DEVICE);
1319
1320                         /* set the TxBD length and buffer pointer */
1321                         txbdp->bufPtr = bufaddr;
1322                         txbdp->lstatus = lstatus;
1323                 }
1324
1325                 lstatus = txbdp_start->lstatus;
1326         }
1327
1328         /* Set up checksumming */
1329         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1330                 fcb = gfar_add_fcb(skb);
1331                 lstatus |= BD_LFLAG(TXBD_TOE);
1332                 gfar_tx_checksum(skb, fcb);
1333         }
1334
1335         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1336                 if (unlikely(NULL == fcb)) {
1337                         fcb = gfar_add_fcb(skb);
1338                         lstatus |= BD_LFLAG(TXBD_TOE);
1339                 }
1340
1341                 gfar_tx_vlan(skb, fcb);
1342         }
1343
1344         /* setup the TxBD length and buffer pointer for the first BD */
1345         priv->tx_skbuff[priv->skb_curtx] = skb;
1346         txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1347                         skb_headlen(skb), DMA_TO_DEVICE);
1348
1349         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1350
1351         /*
1352          * The powerpc-specific eieio() is used, as wmb() has too strong
1353          * semantics (it requires synchronization between cacheable and
1354          * uncacheable mappings, which eieio doesn't provide and which we
1355          * don't need), thus requiring a more expensive sync instruction.  At
1356          * some point, the set of architecture-independent barrier functions
1357          * should be expanded to include weaker barriers.
1358          */
1359         eieio();
1360
1361         txbdp_start->lstatus = lstatus;
1362
1363         /* Update the current skb pointer to the next entry we will use
1364          * (wrapping if necessary) */
1365         priv->skb_curtx = (priv->skb_curtx + 1) &
1366                 TX_RING_MOD_MASK(priv->tx_ring_size);
1367
1368         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1369
1370         /* reduce TxBD free count */
1371         priv->num_txbdfree -= (nr_frags + 1);
1372
1373         dev->trans_start = jiffies;
1374
1375         /* If the next BD still needs to be cleaned up, then the bds
1376            are full.  We need to tell the kernel to stop sending us stuff. */
1377         if (!priv->num_txbdfree) {
1378                 netif_stop_queue(dev);
1379
1380                 dev->stats.tx_fifo_errors++;
1381         }
1382
1383         /* Tell the DMA to go go go */
1384         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1385
1386         /* Unlock priv */
1387         spin_unlock_irqrestore(&priv->txlock, flags);
1388
1389         return 0;
1390 }
1391
1392 /* Stops the kernel queue, and halts the controller */
1393 static int gfar_close(struct net_device *dev)
1394 {
1395         struct gfar_private *priv = netdev_priv(dev);
1396
1397         napi_disable(&priv->napi);
1398
1399         cancel_work_sync(&priv->reset_task);
1400         stop_gfar(dev);
1401
1402         /* Disconnect from the PHY */
1403         phy_disconnect(priv->phydev);
1404         priv->phydev = NULL;
1405
1406         netif_stop_queue(dev);
1407
1408         return 0;
1409 }
1410
1411 /* Changes the mac address if the controller is not running. */
1412 static int gfar_set_mac_address(struct net_device *dev)
1413 {
1414         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1415
1416         return 0;
1417 }
1418
1419
1420 /* Enables and disables VLAN insertion/extraction */
1421 static void gfar_vlan_rx_register(struct net_device *dev,
1422                 struct vlan_group *grp)
1423 {
1424         struct gfar_private *priv = netdev_priv(dev);
1425         unsigned long flags;
1426         struct vlan_group *old_grp;
1427         u32 tempval;
1428
1429         spin_lock_irqsave(&priv->rxlock, flags);
1430
1431         old_grp = priv->vlgrp;
1432
1433         if (old_grp == grp)
1434                 return;
1435
1436         if (grp) {
1437                 /* Enable VLAN tag insertion */
1438                 tempval = gfar_read(&priv->regs->tctrl);
1439                 tempval |= TCTRL_VLINS;
1440
1441                 gfar_write(&priv->regs->tctrl, tempval);
1442
1443                 /* Enable VLAN tag extraction */
1444                 tempval = gfar_read(&priv->regs->rctrl);
1445                 tempval |= RCTRL_VLEX;
1446                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1447                 gfar_write(&priv->regs->rctrl, tempval);
1448         } else {
1449                 /* Disable VLAN tag insertion */
1450                 tempval = gfar_read(&priv->regs->tctrl);
1451                 tempval &= ~TCTRL_VLINS;
1452                 gfar_write(&priv->regs->tctrl, tempval);
1453
1454                 /* Disable VLAN tag extraction */
1455                 tempval = gfar_read(&priv->regs->rctrl);
1456                 tempval &= ~RCTRL_VLEX;
1457                 /* If parse is no longer required, then disable parser */
1458                 if (tempval & RCTRL_REQ_PARSER)
1459                         tempval |= RCTRL_PRSDEP_INIT;
1460                 else
1461                         tempval &= ~RCTRL_PRSDEP_INIT;
1462                 gfar_write(&priv->regs->rctrl, tempval);
1463         }
1464
1465         gfar_change_mtu(dev, dev->mtu);
1466
1467         spin_unlock_irqrestore(&priv->rxlock, flags);
1468 }
1469
1470 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1471 {
1472         int tempsize, tempval;
1473         struct gfar_private *priv = netdev_priv(dev);
1474         int oldsize = priv->rx_buffer_size;
1475         int frame_size = new_mtu + ETH_HLEN;
1476
1477         if (priv->vlgrp)
1478                 frame_size += VLAN_HLEN;
1479
1480         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1481                 if (netif_msg_drv(priv))
1482                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1483                                         dev->name);
1484                 return -EINVAL;
1485         }
1486
1487         if (gfar_uses_fcb(priv))
1488                 frame_size += GMAC_FCB_LEN;
1489
1490         frame_size += priv->padding;
1491
1492         tempsize =
1493             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1494             INCREMENTAL_BUFFER_SIZE;
1495
1496         /* Only stop and start the controller if it isn't already
1497          * stopped, and we changed something */
1498         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1499                 stop_gfar(dev);
1500
1501         priv->rx_buffer_size = tempsize;
1502
1503         dev->mtu = new_mtu;
1504
1505         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1506         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1507
1508         /* If the mtu is larger than the max size for standard
1509          * ethernet frames (ie, a jumbo frame), then set maccfg2
1510          * to allow huge frames, and to check the length */
1511         tempval = gfar_read(&priv->regs->maccfg2);
1512
1513         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1514                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1515         else
1516                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1517
1518         gfar_write(&priv->regs->maccfg2, tempval);
1519
1520         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1521                 startup_gfar(dev);
1522
1523         return 0;
1524 }
1525
1526 /* gfar_reset_task gets scheduled when a packet has not been
1527  * transmitted after a set amount of time.
1528  * For now, assume that clearing out all the structures, and
1529  * starting over will fix the problem.
1530  */
1531 static void gfar_reset_task(struct work_struct *work)
1532 {
1533         struct gfar_private *priv = container_of(work, struct gfar_private,
1534                         reset_task);
1535         struct net_device *dev = priv->dev;
1536
1537         if (dev->flags & IFF_UP) {
1538                 stop_gfar(dev);
1539                 startup_gfar(dev);
1540         }
1541
1542         netif_tx_schedule_all(dev);
1543 }
1544
1545 static void gfar_timeout(struct net_device *dev)
1546 {
1547         struct gfar_private *priv = netdev_priv(dev);
1548
1549         dev->stats.tx_errors++;
1550         schedule_work(&priv->reset_task);
1551 }
1552
1553 /* Interrupt Handler for Transmit complete */
1554 static int gfar_clean_tx_ring(struct net_device *dev)
1555 {
1556         struct gfar_private *priv = netdev_priv(dev);
1557         struct txbd8 *bdp;
1558         struct txbd8 *lbdp = NULL;
1559         struct txbd8 *base = priv->tx_bd_base;
1560         struct sk_buff *skb;
1561         int skb_dirtytx;
1562         int tx_ring_size = priv->tx_ring_size;
1563         int frags = 0;
1564         int i;
1565         int howmany = 0;
1566         u32 lstatus;
1567
1568         bdp = priv->dirty_tx;
1569         skb_dirtytx = priv->skb_dirtytx;
1570
1571         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1572                 frags = skb_shinfo(skb)->nr_frags;
1573                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1574
1575                 lstatus = lbdp->lstatus;
1576
1577                 /* Only clean completed frames */
1578                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1579                                 (lstatus & BD_LENGTH_MASK))
1580                         break;
1581
1582                 dma_unmap_single(&dev->dev,
1583                                 bdp->bufPtr,
1584                                 bdp->length,
1585                                 DMA_TO_DEVICE);
1586
1587                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1588                 bdp = next_txbd(bdp, base, tx_ring_size);
1589
1590                 for (i = 0; i < frags; i++) {
1591                         dma_unmap_page(&dev->dev,
1592                                         bdp->bufPtr,
1593                                         bdp->length,
1594                                         DMA_TO_DEVICE);
1595                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1596                         bdp = next_txbd(bdp, base, tx_ring_size);
1597                 }
1598
1599                 dev_kfree_skb_any(skb);
1600                 priv->tx_skbuff[skb_dirtytx] = NULL;
1601
1602                 skb_dirtytx = (skb_dirtytx + 1) &
1603                         TX_RING_MOD_MASK(tx_ring_size);
1604
1605                 howmany++;
1606                 priv->num_txbdfree += frags + 1;
1607         }
1608
1609         /* If we freed a buffer, we can restart transmission, if necessary */
1610         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1611                 netif_wake_queue(dev);
1612
1613         /* Update dirty indicators */
1614         priv->skb_dirtytx = skb_dirtytx;
1615         priv->dirty_tx = bdp;
1616
1617         dev->stats.tx_packets += howmany;
1618
1619         return howmany;
1620 }
1621
1622 static void gfar_schedule_cleanup(struct net_device *dev)
1623 {
1624         struct gfar_private *priv = netdev_priv(dev);
1625         unsigned long flags;
1626
1627         spin_lock_irqsave(&priv->txlock, flags);
1628         spin_lock(&priv->rxlock);
1629
1630         if (netif_rx_schedule_prep(&priv->napi)) {
1631                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1632                 __netif_rx_schedule(&priv->napi);
1633         }
1634
1635         spin_unlock(&priv->rxlock);
1636         spin_unlock_irqrestore(&priv->txlock, flags);
1637 }
1638
1639 /* Interrupt Handler for Transmit complete */
1640 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1641 {
1642         gfar_schedule_cleanup((struct net_device *)dev_id);
1643         return IRQ_HANDLED;
1644 }
1645
1646 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1647                 struct sk_buff *skb)
1648 {
1649         struct gfar_private *priv = netdev_priv(dev);
1650         u32 lstatus;
1651
1652         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1653                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1654
1655         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1656
1657         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1658                 lstatus |= BD_LFLAG(RXBD_WRAP);
1659
1660         eieio();
1661
1662         bdp->lstatus = lstatus;
1663 }
1664
1665
1666 struct sk_buff * gfar_new_skb(struct net_device *dev)
1667 {
1668         unsigned int alignamount;
1669         struct gfar_private *priv = netdev_priv(dev);
1670         struct sk_buff *skb = NULL;
1671
1672         /* We have to allocate the skb, so keep trying till we succeed */
1673         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1674
1675         if (!skb)
1676                 return NULL;
1677
1678         alignamount = RXBUF_ALIGNMENT -
1679                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1680
1681         /* We need the data buffer to be aligned properly.  We will reserve
1682          * as many bytes as needed to align the data properly
1683          */
1684         skb_reserve(skb, alignamount);
1685
1686         return skb;
1687 }
1688
1689 static inline void count_errors(unsigned short status, struct net_device *dev)
1690 {
1691         struct gfar_private *priv = netdev_priv(dev);
1692         struct net_device_stats *stats = &dev->stats;
1693         struct gfar_extra_stats *estats = &priv->extra_stats;
1694
1695         /* If the packet was truncated, none of the other errors
1696          * matter */
1697         if (status & RXBD_TRUNCATED) {
1698                 stats->rx_length_errors++;
1699
1700                 estats->rx_trunc++;
1701
1702                 return;
1703         }
1704         /* Count the errors, if there were any */
1705         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1706                 stats->rx_length_errors++;
1707
1708                 if (status & RXBD_LARGE)
1709                         estats->rx_large++;
1710                 else
1711                         estats->rx_short++;
1712         }
1713         if (status & RXBD_NONOCTET) {
1714                 stats->rx_frame_errors++;
1715                 estats->rx_nonoctet++;
1716         }
1717         if (status & RXBD_CRCERR) {
1718                 estats->rx_crcerr++;
1719                 stats->rx_crc_errors++;
1720         }
1721         if (status & RXBD_OVERRUN) {
1722                 estats->rx_overrun++;
1723                 stats->rx_crc_errors++;
1724         }
1725 }
1726
1727 irqreturn_t gfar_receive(int irq, void *dev_id)
1728 {
1729         gfar_schedule_cleanup((struct net_device *)dev_id);
1730         return IRQ_HANDLED;
1731 }
1732
1733 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1734 {
1735         /* If valid headers were found, and valid sums
1736          * were verified, then we tell the kernel that no
1737          * checksumming is necessary.  Otherwise, it is */
1738         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1739                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1740         else
1741                 skb->ip_summed = CHECKSUM_NONE;
1742 }
1743
1744
1745 /* gfar_process_frame() -- handle one incoming packet if skb
1746  * isn't NULL.  */
1747 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1748                               int amount_pull)
1749 {
1750         struct gfar_private *priv = netdev_priv(dev);
1751         struct rxfcb *fcb = NULL;
1752
1753         int ret;
1754
1755         /* fcb is at the beginning if exists */
1756         fcb = (struct rxfcb *)skb->data;
1757
1758         /* Remove the FCB from the skb */
1759         /* Remove the padded bytes, if there are any */
1760         if (amount_pull)
1761                 skb_pull(skb, amount_pull);
1762
1763         if (priv->rx_csum_enable)
1764                 gfar_rx_checksum(skb, fcb);
1765
1766         /* Tell the skb what kind of packet this is */
1767         skb->protocol = eth_type_trans(skb, dev);
1768
1769         /* Send the packet up the stack */
1770         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1771                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1772         else
1773                 ret = netif_receive_skb(skb);
1774
1775         if (NET_RX_DROP == ret)
1776                 priv->extra_stats.kernel_dropped++;
1777
1778         return 0;
1779 }
1780
1781 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1782  *   until the budget/quota has been reached. Returns the number
1783  *   of frames handled
1784  */
1785 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1786 {
1787         struct rxbd8 *bdp, *base;
1788         struct sk_buff *skb;
1789         int pkt_len;
1790         int amount_pull;
1791         int howmany = 0;
1792         struct gfar_private *priv = netdev_priv(dev);
1793
1794         /* Get the first full descriptor */
1795         bdp = priv->cur_rx;
1796         base = priv->rx_bd_base;
1797
1798         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1799                 priv->padding;
1800
1801         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1802                 struct sk_buff *newskb;
1803                 rmb();
1804
1805                 /* Add another skb for the future */
1806                 newskb = gfar_new_skb(dev);
1807
1808                 skb = priv->rx_skbuff[priv->skb_currx];
1809
1810                 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1811                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1812
1813                 /* We drop the frame if we failed to allocate a new buffer */
1814                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1815                                  bdp->status & RXBD_ERR)) {
1816                         count_errors(bdp->status, dev);
1817
1818                         if (unlikely(!newskb))
1819                                 newskb = skb;
1820                         else if (skb)
1821                                 dev_kfree_skb_any(skb);
1822                 } else {
1823                         /* Increment the number of packets */
1824                         dev->stats.rx_packets++;
1825                         howmany++;
1826
1827                         if (likely(skb)) {
1828                                 pkt_len = bdp->length - ETH_FCS_LEN;
1829                                 /* Remove the FCS from the packet length */
1830                                 skb_put(skb, pkt_len);
1831                                 dev->stats.rx_bytes += pkt_len;
1832
1833                                 gfar_process_frame(dev, skb, amount_pull);
1834
1835                         } else {
1836                                 if (netif_msg_rx_err(priv))
1837                                         printk(KERN_WARNING
1838                                                "%s: Missing skb!\n", dev->name);
1839                                 dev->stats.rx_dropped++;
1840                                 priv->extra_stats.rx_skbmissing++;
1841                         }
1842
1843                 }
1844
1845                 priv->rx_skbuff[priv->skb_currx] = newskb;
1846
1847                 /* Setup the new bdp */
1848                 gfar_new_rxbdp(dev, bdp, newskb);
1849
1850                 /* Update to the next pointer */
1851                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1852
1853                 /* update to point at the next skb */
1854                 priv->skb_currx =
1855                     (priv->skb_currx + 1) &
1856                     RX_RING_MOD_MASK(priv->rx_ring_size);
1857         }
1858
1859         /* Update the current rxbd pointer to be the next one */
1860         priv->cur_rx = bdp;
1861
1862         return howmany;
1863 }
1864
1865 static int gfar_poll(struct napi_struct *napi, int budget)
1866 {
1867         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1868         struct net_device *dev = priv->dev;
1869         int tx_cleaned = 0;
1870         int rx_cleaned = 0;
1871         unsigned long flags;
1872
1873         /* Clear IEVENT, so interrupts aren't called again
1874          * because of the packets that have already arrived */
1875         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1876
1877         /* If we fail to get the lock, don't bother with the TX BDs */
1878         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1879                 tx_cleaned = gfar_clean_tx_ring(dev);
1880                 spin_unlock_irqrestore(&priv->txlock, flags);
1881         }
1882
1883         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1884
1885         if (tx_cleaned)
1886                 return budget;
1887
1888         if (rx_cleaned < budget) {
1889                 netif_rx_complete(napi);
1890
1891                 /* Clear the halt bit in RSTAT */
1892                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1893
1894                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1895
1896                 /* If we are coalescing interrupts, update the timer */
1897                 /* Otherwise, clear it */
1898                 if (likely(priv->rxcoalescing)) {
1899                         gfar_write(&priv->regs->rxic, 0);
1900                         gfar_write(&priv->regs->rxic, priv->rxic);
1901                 }
1902                 if (likely(priv->txcoalescing)) {
1903                         gfar_write(&priv->regs->txic, 0);
1904                         gfar_write(&priv->regs->txic, priv->txic);
1905                 }
1906         }
1907
1908         return rx_cleaned;
1909 }
1910
1911 #ifdef CONFIG_NET_POLL_CONTROLLER
1912 /*
1913  * Polling 'interrupt' - used by things like netconsole to send skbs
1914  * without having to re-enable interrupts. It's not called while
1915  * the interrupt routine is executing.
1916  */
1917 static void gfar_netpoll(struct net_device *dev)
1918 {
1919         struct gfar_private *priv = netdev_priv(dev);
1920
1921         /* If the device has multiple interrupts, run tx/rx */
1922         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1923                 disable_irq(priv->interruptTransmit);
1924                 disable_irq(priv->interruptReceive);
1925                 disable_irq(priv->interruptError);
1926                 gfar_interrupt(priv->interruptTransmit, dev);
1927                 enable_irq(priv->interruptError);
1928                 enable_irq(priv->interruptReceive);
1929                 enable_irq(priv->interruptTransmit);
1930         } else {
1931                 disable_irq(priv->interruptTransmit);
1932                 gfar_interrupt(priv->interruptTransmit, dev);
1933                 enable_irq(priv->interruptTransmit);
1934         }
1935 }
1936 #endif
1937
1938 /* The interrupt handler for devices with one interrupt */
1939 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1940 {
1941         struct net_device *dev = dev_id;
1942         struct gfar_private *priv = netdev_priv(dev);
1943
1944         /* Save ievent for future reference */
1945         u32 events = gfar_read(&priv->regs->ievent);
1946
1947         /* Check for reception */
1948         if (events & IEVENT_RX_MASK)
1949                 gfar_receive(irq, dev_id);
1950
1951         /* Check for transmit completion */
1952         if (events & IEVENT_TX_MASK)
1953                 gfar_transmit(irq, dev_id);
1954
1955         /* Check for errors */
1956         if (events & IEVENT_ERR_MASK)
1957                 gfar_error(irq, dev_id);
1958
1959         return IRQ_HANDLED;
1960 }
1961
1962 /* Called every time the controller might need to be made
1963  * aware of new link state.  The PHY code conveys this
1964  * information through variables in the phydev structure, and this
1965  * function converts those variables into the appropriate
1966  * register values, and can bring down the device if needed.
1967  */
1968 static void adjust_link(struct net_device *dev)
1969 {
1970         struct gfar_private *priv = netdev_priv(dev);
1971         struct gfar __iomem *regs = priv->regs;
1972         unsigned long flags;
1973         struct phy_device *phydev = priv->phydev;
1974         int new_state = 0;
1975
1976         spin_lock_irqsave(&priv->txlock, flags);
1977         if (phydev->link) {
1978                 u32 tempval = gfar_read(&regs->maccfg2);
1979                 u32 ecntrl = gfar_read(&regs->ecntrl);
1980
1981                 /* Now we make sure that we can be in full duplex mode.
1982                  * If not, we operate in half-duplex mode. */
1983                 if (phydev->duplex != priv->oldduplex) {
1984                         new_state = 1;
1985                         if (!(phydev->duplex))
1986                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1987                         else
1988                                 tempval |= MACCFG2_FULL_DUPLEX;
1989
1990                         priv->oldduplex = phydev->duplex;
1991                 }
1992
1993                 if (phydev->speed != priv->oldspeed) {
1994                         new_state = 1;
1995                         switch (phydev->speed) {
1996                         case 1000:
1997                                 tempval =
1998                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1999
2000                                 ecntrl &= ~(ECNTRL_R100);
2001                                 break;
2002                         case 100:
2003                         case 10:
2004                                 tempval =
2005                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2006
2007                                 /* Reduced mode distinguishes
2008                                  * between 10 and 100 */
2009                                 if (phydev->speed == SPEED_100)
2010                                         ecntrl |= ECNTRL_R100;
2011                                 else
2012                                         ecntrl &= ~(ECNTRL_R100);
2013                                 break;
2014                         default:
2015                                 if (netif_msg_link(priv))
2016                                         printk(KERN_WARNING
2017                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2018                                                 dev->name, phydev->speed);
2019                                 break;
2020                         }
2021
2022                         priv->oldspeed = phydev->speed;
2023                 }
2024
2025                 gfar_write(&regs->maccfg2, tempval);
2026                 gfar_write(&regs->ecntrl, ecntrl);
2027
2028                 if (!priv->oldlink) {
2029                         new_state = 1;
2030                         priv->oldlink = 1;
2031                 }
2032         } else if (priv->oldlink) {
2033                 new_state = 1;
2034                 priv->oldlink = 0;
2035                 priv->oldspeed = 0;
2036                 priv->oldduplex = -1;
2037         }
2038
2039         if (new_state && netif_msg_link(priv))
2040                 phy_print_status(phydev);
2041
2042         spin_unlock_irqrestore(&priv->txlock, flags);
2043 }
2044
2045 /* Update the hash table based on the current list of multicast
2046  * addresses we subscribe to.  Also, change the promiscuity of
2047  * the device based on the flags (this function is called
2048  * whenever dev->flags is changed */
2049 static void gfar_set_multi(struct net_device *dev)
2050 {
2051         struct dev_mc_list *mc_ptr;
2052         struct gfar_private *priv = netdev_priv(dev);
2053         struct gfar __iomem *regs = priv->regs;
2054         u32 tempval;
2055
2056         if(dev->flags & IFF_PROMISC) {
2057                 /* Set RCTRL to PROM */
2058                 tempval = gfar_read(&regs->rctrl);
2059                 tempval |= RCTRL_PROM;
2060                 gfar_write(&regs->rctrl, tempval);
2061         } else {
2062                 /* Set RCTRL to not PROM */
2063                 tempval = gfar_read(&regs->rctrl);
2064                 tempval &= ~(RCTRL_PROM);
2065                 gfar_write(&regs->rctrl, tempval);
2066         }
2067
2068         if(dev->flags & IFF_ALLMULTI) {
2069                 /* Set the hash to rx all multicast frames */
2070                 gfar_write(&regs->igaddr0, 0xffffffff);
2071                 gfar_write(&regs->igaddr1, 0xffffffff);
2072                 gfar_write(&regs->igaddr2, 0xffffffff);
2073                 gfar_write(&regs->igaddr3, 0xffffffff);
2074                 gfar_write(&regs->igaddr4, 0xffffffff);
2075                 gfar_write(&regs->igaddr5, 0xffffffff);
2076                 gfar_write(&regs->igaddr6, 0xffffffff);
2077                 gfar_write(&regs->igaddr7, 0xffffffff);
2078                 gfar_write(&regs->gaddr0, 0xffffffff);
2079                 gfar_write(&regs->gaddr1, 0xffffffff);
2080                 gfar_write(&regs->gaddr2, 0xffffffff);
2081                 gfar_write(&regs->gaddr3, 0xffffffff);
2082                 gfar_write(&regs->gaddr4, 0xffffffff);
2083                 gfar_write(&regs->gaddr5, 0xffffffff);
2084                 gfar_write(&regs->gaddr6, 0xffffffff);
2085                 gfar_write(&regs->gaddr7, 0xffffffff);
2086         } else {
2087                 int em_num;
2088                 int idx;
2089
2090                 /* zero out the hash */
2091                 gfar_write(&regs->igaddr0, 0x0);
2092                 gfar_write(&regs->igaddr1, 0x0);
2093                 gfar_write(&regs->igaddr2, 0x0);
2094                 gfar_write(&regs->igaddr3, 0x0);
2095                 gfar_write(&regs->igaddr4, 0x0);
2096                 gfar_write(&regs->igaddr5, 0x0);
2097                 gfar_write(&regs->igaddr6, 0x0);
2098                 gfar_write(&regs->igaddr7, 0x0);
2099                 gfar_write(&regs->gaddr0, 0x0);
2100                 gfar_write(&regs->gaddr1, 0x0);
2101                 gfar_write(&regs->gaddr2, 0x0);
2102                 gfar_write(&regs->gaddr3, 0x0);
2103                 gfar_write(&regs->gaddr4, 0x0);
2104                 gfar_write(&regs->gaddr5, 0x0);
2105                 gfar_write(&regs->gaddr6, 0x0);
2106                 gfar_write(&regs->gaddr7, 0x0);
2107
2108                 /* If we have extended hash tables, we need to
2109                  * clear the exact match registers to prepare for
2110                  * setting them */
2111                 if (priv->extended_hash) {
2112                         em_num = GFAR_EM_NUM + 1;
2113                         gfar_clear_exact_match(dev);
2114                         idx = 1;
2115                 } else {
2116                         idx = 0;
2117                         em_num = 0;
2118                 }
2119
2120                 if(dev->mc_count == 0)
2121                         return;
2122
2123                 /* Parse the list, and set the appropriate bits */
2124                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2125                         if (idx < em_num) {
2126                                 gfar_set_mac_for_addr(dev, idx,
2127                                                 mc_ptr->dmi_addr);
2128                                 idx++;
2129                         } else
2130                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2131                 }
2132         }
2133
2134         return;
2135 }
2136
2137
2138 /* Clears each of the exact match registers to zero, so they
2139  * don't interfere with normal reception */
2140 static void gfar_clear_exact_match(struct net_device *dev)
2141 {
2142         int idx;
2143         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2144
2145         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2146                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2147 }
2148
2149 /* Set the appropriate hash bit for the given addr */
2150 /* The algorithm works like so:
2151  * 1) Take the Destination Address (ie the multicast address), and
2152  * do a CRC on it (little endian), and reverse the bits of the
2153  * result.
2154  * 2) Use the 8 most significant bits as a hash into a 256-entry
2155  * table.  The table is controlled through 8 32-bit registers:
2156  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2157  * gaddr7.  This means that the 3 most significant bits in the
2158  * hash index which gaddr register to use, and the 5 other bits
2159  * indicate which bit (assuming an IBM numbering scheme, which
2160  * for PowerPC (tm) is usually the case) in the register holds
2161  * the entry. */
2162 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2163 {
2164         u32 tempval;
2165         struct gfar_private *priv = netdev_priv(dev);
2166         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2167         int width = priv->hash_width;
2168         u8 whichbit = (result >> (32 - width)) & 0x1f;
2169         u8 whichreg = result >> (32 - width + 5);
2170         u32 value = (1 << (31-whichbit));
2171
2172         tempval = gfar_read(priv->hash_regs[whichreg]);
2173         tempval |= value;
2174         gfar_write(priv->hash_regs[whichreg], tempval);
2175
2176         return;
2177 }
2178
2179
2180 /* There are multiple MAC Address register pairs on some controllers
2181  * This function sets the numth pair to a given address
2182  */
2183 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2184 {
2185         struct gfar_private *priv = netdev_priv(dev);
2186         int idx;
2187         char tmpbuf[MAC_ADDR_LEN];
2188         u32 tempval;
2189         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2190
2191         macptr += num*2;
2192
2193         /* Now copy it into the mac registers backwards, cuz */
2194         /* little endian is silly */
2195         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2196                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2197
2198         gfar_write(macptr, *((u32 *) (tmpbuf)));
2199
2200         tempval = *((u32 *) (tmpbuf + 4));
2201
2202         gfar_write(macptr+1, tempval);
2203 }
2204
2205 /* GFAR error interrupt handler */
2206 static irqreturn_t gfar_error(int irq, void *dev_id)
2207 {
2208         struct net_device *dev = dev_id;
2209         struct gfar_private *priv = netdev_priv(dev);
2210
2211         /* Save ievent for future reference */
2212         u32 events = gfar_read(&priv->regs->ievent);
2213
2214         /* Clear IEVENT */
2215         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2216
2217         /* Magic Packet is not an error. */
2218         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2219             (events & IEVENT_MAG))
2220                 events &= ~IEVENT_MAG;
2221
2222         /* Hmm... */
2223         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2224                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2225                        dev->name, events, gfar_read(&priv->regs->imask));
2226
2227         /* Update the error counters */
2228         if (events & IEVENT_TXE) {
2229                 dev->stats.tx_errors++;
2230
2231                 if (events & IEVENT_LC)
2232                         dev->stats.tx_window_errors++;
2233                 if (events & IEVENT_CRL)
2234                         dev->stats.tx_aborted_errors++;
2235                 if (events & IEVENT_XFUN) {
2236                         if (netif_msg_tx_err(priv))
2237                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2238                                        "packet dropped.\n", dev->name);
2239                         dev->stats.tx_dropped++;
2240                         priv->extra_stats.tx_underrun++;
2241
2242                         /* Reactivate the Tx Queues */
2243                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2244                 }
2245                 if (netif_msg_tx_err(priv))
2246                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2247         }
2248         if (events & IEVENT_BSY) {
2249                 dev->stats.rx_errors++;
2250                 priv->extra_stats.rx_bsy++;
2251
2252                 gfar_receive(irq, dev_id);
2253
2254                 if (netif_msg_rx_err(priv))
2255                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2256                                dev->name, gfar_read(&priv->regs->rstat));
2257         }
2258         if (events & IEVENT_BABR) {
2259                 dev->stats.rx_errors++;
2260                 priv->extra_stats.rx_babr++;
2261
2262                 if (netif_msg_rx_err(priv))
2263                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2264         }
2265         if (events & IEVENT_EBERR) {
2266                 priv->extra_stats.eberr++;
2267                 if (netif_msg_rx_err(priv))
2268                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2269         }
2270         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2271                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2272
2273         if (events & IEVENT_BABT) {
2274                 priv->extra_stats.tx_babt++;
2275                 if (netif_msg_tx_err(priv))
2276                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2277         }
2278         return IRQ_HANDLED;
2279 }
2280
2281 /* work with hotplug and coldplug */
2282 MODULE_ALIAS("platform:fsl-gianfar");
2283
2284 static struct of_device_id gfar_match[] =
2285 {
2286         {
2287                 .type = "network",
2288                 .compatible = "gianfar",
2289         },
2290         {},
2291 };
2292
2293 /* Structure for a device driver */
2294 static struct of_platform_driver gfar_driver = {
2295         .name = "fsl-gianfar",
2296         .match_table = gfar_match,
2297
2298         .probe = gfar_probe,
2299         .remove = gfar_remove,
2300         .suspend = gfar_suspend,
2301         .resume = gfar_resume,
2302 };
2303
2304 static int __init gfar_init(void)
2305 {
2306         int err = gfar_mdio_init();
2307
2308         if (err)
2309                 return err;
2310
2311         err = of_register_platform_driver(&gfar_driver);
2312
2313         if (err)
2314                 gfar_mdio_exit();
2315
2316         return err;
2317 }
2318
2319 static void __exit gfar_exit(void)
2320 {
2321         of_unregister_platform_driver(&gfar_driver);
2322         gfar_mdio_exit();
2323 }
2324
2325 module_init(gfar_init);
2326 module_exit(gfar_exit);
2327