1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
83 #include <asm/div64.h>
88 #include "s2io-regs.h"
90 #define DRV_VERSION "2.0.26.25"
92 /* S2io Driver name & version. */
93 static char s2io_driver_name[] = "Neterion";
94 static char s2io_driver_version[] = DRV_VERSION;
96 static int rxd_size[2] = {32,48};
97 static int rxd_count[2] = {127,85};
99 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
104 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
110 * Cards with following subsystem_id have a link state indication
111 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112 * macro below identifies these cards given the subsystem_id.
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115 (dev_type == XFRAME_I_DEVICE) ? \
116 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 static inline int is_s2io_card_up(const struct s2io_nic * sp)
124 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 /* Ethtool related variables and Macros. */
128 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
129 "Register test\t(offline)",
130 "Eeprom test\t(offline)",
131 "Link test\t(online)",
132 "RLDRAM test\t(offline)",
133 "BIST Test\t(offline)"
136 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 {"tmac_data_octets"},
142 {"tmac_pause_ctrl_frms"},
146 {"tmac_any_err_frms"},
147 {"tmac_ttl_less_fb_octets"},
148 {"tmac_vld_ip_octets"},
156 {"rmac_data_octets"},
157 {"rmac_fcs_err_frms"},
159 {"rmac_vld_mcst_frms"},
160 {"rmac_vld_bcst_frms"},
161 {"rmac_in_rng_len_err_frms"},
162 {"rmac_out_rng_len_err_frms"},
164 {"rmac_pause_ctrl_frms"},
165 {"rmac_unsup_ctrl_frms"},
167 {"rmac_accepted_ucst_frms"},
168 {"rmac_accepted_nucst_frms"},
169 {"rmac_discarded_frms"},
170 {"rmac_drop_events"},
171 {"rmac_ttl_less_fb_octets"},
173 {"rmac_usized_frms"},
174 {"rmac_osized_frms"},
176 {"rmac_jabber_frms"},
177 {"rmac_ttl_64_frms"},
178 {"rmac_ttl_65_127_frms"},
179 {"rmac_ttl_128_255_frms"},
180 {"rmac_ttl_256_511_frms"},
181 {"rmac_ttl_512_1023_frms"},
182 {"rmac_ttl_1024_1518_frms"},
190 {"rmac_err_drp_udp"},
191 {"rmac_xgmii_err_sym"},
209 {"rmac_xgmii_data_err_cnt"},
210 {"rmac_xgmii_ctrl_err_cnt"},
211 {"rmac_accepted_ip"},
215 {"new_rd_req_rtry_cnt"},
217 {"wr_rtry_rd_ack_cnt"},
220 {"new_wr_req_rtry_cnt"},
223 {"rd_rtry_wr_ack_cnt"},
233 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
234 {"rmac_ttl_1519_4095_frms"},
235 {"rmac_ttl_4096_8191_frms"},
236 {"rmac_ttl_8192_max_frms"},
237 {"rmac_ttl_gt_max_frms"},
238 {"rmac_osized_alt_frms"},
239 {"rmac_jabber_alt_frms"},
240 {"rmac_gt_max_alt_frms"},
242 {"rmac_len_discard"},
243 {"rmac_fcs_discard"},
246 {"rmac_red_discard"},
247 {"rmac_rts_discard"},
248 {"rmac_ingm_full_discard"},
252 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
253 {"\n DRIVER STATISTICS"},
254 {"single_bit_ecc_errs"},
255 {"double_bit_ecc_errs"},
268 {"alarm_transceiver_temp_high"},
269 {"alarm_transceiver_temp_low"},
270 {"alarm_laser_bias_current_high"},
271 {"alarm_laser_bias_current_low"},
272 {"alarm_laser_output_power_high"},
273 {"alarm_laser_output_power_low"},
274 {"warn_transceiver_temp_high"},
275 {"warn_transceiver_temp_low"},
276 {"warn_laser_bias_current_high"},
277 {"warn_laser_bias_current_low"},
278 {"warn_laser_output_power_high"},
279 {"warn_laser_output_power_low"},
280 {"lro_aggregated_pkts"},
281 {"lro_flush_both_count"},
282 {"lro_out_of_sequence_pkts"},
283 {"lro_flush_due_to_max_pkts"},
284 {"lro_avg_aggr_pkts"},
285 {"mem_alloc_fail_cnt"},
286 {"pci_map_fail_cnt"},
287 {"watchdog_timer_cnt"},
294 {"tx_tcode_buf_abort_cnt"},
295 {"tx_tcode_desc_abort_cnt"},
296 {"tx_tcode_parity_err_cnt"},
297 {"tx_tcode_link_loss_cnt"},
298 {"tx_tcode_list_proc_err_cnt"},
299 {"rx_tcode_parity_err_cnt"},
300 {"rx_tcode_abort_cnt"},
301 {"rx_tcode_parity_abort_cnt"},
302 {"rx_tcode_rda_fail_cnt"},
303 {"rx_tcode_unkn_prot_cnt"},
304 {"rx_tcode_fcs_err_cnt"},
305 {"rx_tcode_buf_size_err_cnt"},
306 {"rx_tcode_rxd_corrupt_cnt"},
307 {"rx_tcode_unkn_err_cnt"},
315 {"mac_tmac_err_cnt"},
316 {"mac_rmac_err_cnt"},
317 {"xgxs_txgxs_err_cnt"},
318 {"xgxs_rxgxs_err_cnt"},
320 {"prc_pcix_err_cnt"},
327 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
334 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
335 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
337 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
340 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
341 init_timer(&timer); \
342 timer.function = handle; \
343 timer.data = (unsigned long) arg; \
344 mod_timer(&timer, (jiffies + exp)) \
346 /* copy mac addr to def_mac_addr array */
347 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
350 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
351 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
352 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
353 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
354 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 static void s2io_vlan_rx_register(struct net_device *dev,
359 struct vlan_group *grp)
362 struct s2io_nic *nic = netdev_priv(dev);
363 unsigned long flags[MAX_TX_FIFOS];
364 struct mac_info *mac_control = &nic->mac_control;
365 struct config_param *config = &nic->config;
367 for (i = 0; i < config->tx_fifo_num; i++)
368 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
371 for (i = config->tx_fifo_num - 1; i >= 0; i--)
372 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
376 /* Unregister the vlan */
377 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
380 struct s2io_nic *nic = netdev_priv(dev);
381 unsigned long flags[MAX_TX_FIFOS];
382 struct mac_info *mac_control = &nic->mac_control;
383 struct config_param *config = &nic->config;
385 for (i = 0; i < config->tx_fifo_num; i++)
386 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
389 vlan_group_set_device(nic->vlgrp, vid, NULL);
391 for (i = config->tx_fifo_num - 1; i >= 0; i--)
392 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
397 * Constants to be programmed into the Xena's registers, to configure
402 static const u64 herc_act_dtx_cfg[] = {
404 0x8000051536750000ULL, 0x80000515367500E0ULL,
406 0x8000051536750004ULL, 0x80000515367500E4ULL,
408 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423 static const u64 xena_dtx_cfg[] = {
425 0x8000051500000000ULL, 0x80000515000000E0ULL,
427 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 0x8002051500000000ULL, 0x80020515000000E0ULL,
435 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
440 * Constants for Fixing the MacAddress problem seen mostly on
443 static const u64 fix_mac[] = {
444 0x0060000000000000ULL, 0x0060600000000000ULL,
445 0x0040600000000000ULL, 0x0000600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0000600000000000ULL,
457 0x0040600000000000ULL, 0x0060600000000000ULL,
461 MODULE_LICENSE("GPL");
462 MODULE_VERSION(DRV_VERSION);
465 /* Module Loadable parameters. */
466 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
467 S2IO_PARM_INT(rx_ring_num, 1);
468 S2IO_PARM_INT(multiq, 0);
469 S2IO_PARM_INT(rx_ring_mode, 1);
470 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
471 S2IO_PARM_INT(rmac_pause_time, 0x100);
472 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
473 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
474 S2IO_PARM_INT(shared_splits, 0);
475 S2IO_PARM_INT(tmac_util_period, 5);
476 S2IO_PARM_INT(rmac_util_period, 5);
477 S2IO_PARM_INT(l3l4hdr_size, 128);
478 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
479 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
480 /* Frequency of Rx desc syncs expressed as power of 2 */
481 S2IO_PARM_INT(rxsync_frequency, 3);
482 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
483 S2IO_PARM_INT(intr_type, 2);
484 /* Large receive offload feature */
485 static unsigned int lro_enable;
486 module_param_named(lro, lro_enable, uint, 0);
488 /* Max pkts to be aggregated by LRO at one time. If not specified,
489 * aggregation happens until we hit max IP pkt size(64K)
491 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
492 S2IO_PARM_INT(indicate_max_pkts, 0);
494 S2IO_PARM_INT(napi, 1);
495 S2IO_PARM_INT(ufo, 0);
496 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
498 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
499 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
500 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
501 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
502 static unsigned int rts_frm_len[MAX_RX_RINGS] =
503 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505 module_param_array(tx_fifo_len, uint, NULL, 0);
506 module_param_array(rx_ring_sz, uint, NULL, 0);
507 module_param_array(rts_frm_len, uint, NULL, 0);
511 * This table lists all the devices that this driver supports.
513 static struct pci_device_id s2io_tbl[] __devinitdata = {
514 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
515 PCI_ANY_ID, PCI_ANY_ID},
516 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
517 PCI_ANY_ID, PCI_ANY_ID},
518 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
519 PCI_ANY_ID, PCI_ANY_ID},
520 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
521 PCI_ANY_ID, PCI_ANY_ID},
525 MODULE_DEVICE_TABLE(pci, s2io_tbl);
527 static struct pci_error_handlers s2io_err_handler = {
528 .error_detected = s2io_io_error_detected,
529 .slot_reset = s2io_io_slot_reset,
530 .resume = s2io_io_resume,
533 static struct pci_driver s2io_driver = {
535 .id_table = s2io_tbl,
536 .probe = s2io_init_nic,
537 .remove = __devexit_p(s2io_rem_nic),
538 .err_handler = &s2io_err_handler,
541 /* A simplifier macro used both by init and free shared_mem Fns(). */
542 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544 /* netqueue manipulation helper functions */
545 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547 if (!sp->config.multiq) {
550 for (i = 0; i < sp->config.tx_fifo_num; i++)
551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
553 netif_tx_stop_all_queues(sp->dev);
556 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
558 if (!sp->config.multiq)
559 sp->mac_control.fifos[fifo_no].queue_state =
562 netif_tx_stop_all_queues(sp->dev);
565 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
567 if (!sp->config.multiq) {
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
573 netif_tx_start_all_queues(sp->dev);
576 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
578 if (!sp->config.multiq)
579 sp->mac_control.fifos[fifo_no].queue_state =
582 netif_tx_start_all_queues(sp->dev);
585 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
587 if (!sp->config.multiq) {
590 for (i = 0; i < sp->config.tx_fifo_num; i++)
591 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
593 netif_tx_wake_all_queues(sp->dev);
596 static inline void s2io_wake_tx_queue(
597 struct fifo_info *fifo, int cnt, u8 multiq)
601 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
602 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
603 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
604 if (netif_queue_stopped(fifo->dev)) {
605 fifo->queue_state = FIFO_QUEUE_START;
606 netif_wake_queue(fifo->dev);
612 * init_shared_mem - Allocation and Initialization of Memory
613 * @nic: Device private variable.
614 * Description: The function allocates all the memory areas shared
615 * between the NIC and the driver. This includes Tx descriptors,
616 * Rx descriptors and the statistics block.
619 static int init_shared_mem(struct s2io_nic *nic)
622 void *tmp_v_addr, *tmp_v_addr_next;
623 dma_addr_t tmp_p_addr, tmp_p_addr_next;
624 struct RxD_block *pre_rxd_blk = NULL;
626 int lst_size, lst_per_page;
627 struct net_device *dev = nic->dev;
631 struct mac_info *mac_control;
632 struct config_param *config;
633 unsigned long long mem_allocated = 0;
635 mac_control = &nic->mac_control;
636 config = &nic->config;
639 /* Allocation and initialization of TXDLs in FIOFs */
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 size += config->tx_cfg[i].fifo_len;
644 if (size > MAX_AVAILABLE_TXDS) {
645 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
646 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
651 for (i = 0; i < config->tx_fifo_num; i++) {
652 size = config->tx_cfg[i].fifo_len;
654 * Legal values are from 2 to 8192
657 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
658 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
659 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
665 lst_size = (sizeof(struct TxD) * config->max_txds);
666 lst_per_page = PAGE_SIZE / lst_size;
668 for (i = 0; i < config->tx_fifo_num; i++) {
669 int fifo_len = config->tx_cfg[i].fifo_len;
670 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
671 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
673 if (!mac_control->fifos[i].list_info) {
675 "Malloc failed for list_info\n");
678 mem_allocated += list_holder_size;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
683 mac_control->fifos[i].tx_curr_put_info.offset = 0;
684 mac_control->fifos[i].tx_curr_put_info.fifo_len =
685 config->tx_cfg[i].fifo_len - 1;
686 mac_control->fifos[i].tx_curr_get_info.offset = 0;
687 mac_control->fifos[i].tx_curr_get_info.fifo_len =
688 config->tx_cfg[i].fifo_len - 1;
689 mac_control->fifos[i].fifo_no = i;
690 mac_control->fifos[i].nic = nic;
691 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
692 mac_control->fifos[i].dev = dev;
694 for (j = 0; j < page_num; j++) {
698 tmp_v = pci_alloc_consistent(nic->pdev,
702 "pci_alloc_consistent ");
703 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
706 /* If we got a zero DMA address(can happen on
707 * certain platforms like PPC), reallocate.
708 * Store virtual address of page we don't want,
712 mac_control->zerodma_virt_addr = tmp_v;
714 "%s: Zero DMA address for TxDL. ", dev->name);
716 "Virtual address %p\n", tmp_v);
717 tmp_v = pci_alloc_consistent(nic->pdev,
721 "pci_alloc_consistent ");
722 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
725 mem_allocated += PAGE_SIZE;
727 while (k < lst_per_page) {
728 int l = (j * lst_per_page) + k;
729 if (l == config->tx_cfg[i].fifo_len)
731 mac_control->fifos[i].list_info[l].list_virt_addr =
732 tmp_v + (k * lst_size);
733 mac_control->fifos[i].list_info[l].list_phy_addr =
734 tmp_p + (k * lst_size);
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 size = config->tx_cfg[i].fifo_len;
742 mac_control->fifos[i].ufo_in_band_v
743 = kcalloc(size, sizeof(u64), GFP_KERNEL);
744 if (!mac_control->fifos[i].ufo_in_band_v)
746 mem_allocated += (size * sizeof(u64));
749 /* Allocation and initialization of RXDs in Rings */
751 for (i = 0; i < config->rx_ring_num; i++) {
752 if (config->rx_cfg[i].num_rxd %
753 (rxd_count[nic->rxd_mode] + 1)) {
754 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
755 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
757 DBG_PRINT(ERR_DBG, "RxDs per Block");
760 size += config->rx_cfg[i].num_rxd;
761 mac_control->rings[i].block_count =
762 config->rx_cfg[i].num_rxd /
763 (rxd_count[nic->rxd_mode] + 1 );
764 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
765 mac_control->rings[i].block_count;
767 if (nic->rxd_mode == RXD_MODE_1)
768 size = (size * (sizeof(struct RxD1)));
770 size = (size * (sizeof(struct RxD3)));
772 for (i = 0; i < config->rx_ring_num; i++) {
773 mac_control->rings[i].rx_curr_get_info.block_index = 0;
774 mac_control->rings[i].rx_curr_get_info.offset = 0;
775 mac_control->rings[i].rx_curr_get_info.ring_len =
776 config->rx_cfg[i].num_rxd - 1;
777 mac_control->rings[i].rx_curr_put_info.block_index = 0;
778 mac_control->rings[i].rx_curr_put_info.offset = 0;
779 mac_control->rings[i].rx_curr_put_info.ring_len =
780 config->rx_cfg[i].num_rxd - 1;
781 mac_control->rings[i].nic = nic;
782 mac_control->rings[i].ring_no = i;
783 mac_control->rings[i].lro = lro_enable;
785 blk_cnt = config->rx_cfg[i].num_rxd /
786 (rxd_count[nic->rxd_mode] + 1);
787 /* Allocating all the Rx blocks */
788 for (j = 0; j < blk_cnt; j++) {
789 struct rx_block_info *rx_blocks;
792 rx_blocks = &mac_control->rings[i].rx_blocks[j];
793 size = SIZE_OF_BLOCK; //size is always page size
794 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
796 if (tmp_v_addr == NULL) {
798 * In case of failure, free_shared_mem()
799 * is called, which should free any
800 * memory that was alloced till the
803 rx_blocks->block_virt_addr = tmp_v_addr;
806 mem_allocated += size;
807 memset(tmp_v_addr, 0, size);
808 rx_blocks->block_virt_addr = tmp_v_addr;
809 rx_blocks->block_dma_addr = tmp_p_addr;
810 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
811 rxd_count[nic->rxd_mode],
813 if (!rx_blocks->rxds)
816 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
817 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
818 rx_blocks->rxds[l].virt_addr =
819 rx_blocks->block_virt_addr +
820 (rxd_size[nic->rxd_mode] * l);
821 rx_blocks->rxds[l].dma_addr =
822 rx_blocks->block_dma_addr +
823 (rxd_size[nic->rxd_mode] * l);
826 /* Interlinking all Rx Blocks */
827 for (j = 0; j < blk_cnt; j++) {
829 mac_control->rings[i].rx_blocks[j].block_virt_addr;
831 mac_control->rings[i].rx_blocks[(j + 1) %
832 blk_cnt].block_virt_addr;
834 mac_control->rings[i].rx_blocks[j].block_dma_addr;
836 mac_control->rings[i].rx_blocks[(j + 1) %
837 blk_cnt].block_dma_addr;
839 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
840 pre_rxd_blk->reserved_2_pNext_RxD_block =
841 (unsigned long) tmp_v_addr_next;
842 pre_rxd_blk->pNext_RxD_Blk_physical =
843 (u64) tmp_p_addr_next;
846 if (nic->rxd_mode == RXD_MODE_3B) {
848 * Allocation of Storages for buffer addresses in 2BUFF mode
849 * and the buffers as well.
851 for (i = 0; i < config->rx_ring_num; i++) {
852 blk_cnt = config->rx_cfg[i].num_rxd /
853 (rxd_count[nic->rxd_mode]+ 1);
854 mac_control->rings[i].ba =
855 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
857 if (!mac_control->rings[i].ba)
859 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
860 for (j = 0; j < blk_cnt; j++) {
862 mac_control->rings[i].ba[j] =
863 kmalloc((sizeof(struct buffAdd) *
864 (rxd_count[nic->rxd_mode] + 1)),
866 if (!mac_control->rings[i].ba[j])
868 mem_allocated += (sizeof(struct buffAdd) * \
869 (rxd_count[nic->rxd_mode] + 1));
870 while (k != rxd_count[nic->rxd_mode]) {
871 ba = &mac_control->rings[i].ba[j][k];
873 ba->ba_0_org = (void *) kmalloc
874 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
878 (BUF0_LEN + ALIGN_SIZE);
879 tmp = (unsigned long)ba->ba_0_org;
881 tmp &= ~((unsigned long) ALIGN_SIZE);
882 ba->ba_0 = (void *) tmp;
884 ba->ba_1_org = (void *) kmalloc
885 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
889 += (BUF1_LEN + ALIGN_SIZE);
890 tmp = (unsigned long) ba->ba_1_org;
892 tmp &= ~((unsigned long) ALIGN_SIZE);
893 ba->ba_1 = (void *) tmp;
900 /* Allocation and initialization of Statistics block */
901 size = sizeof(struct stat_block);
902 mac_control->stats_mem = pci_alloc_consistent
903 (nic->pdev, size, &mac_control->stats_mem_phy);
905 if (!mac_control->stats_mem) {
907 * In case of failure, free_shared_mem() is called, which
908 * should free any memory that was alloced till the
913 mem_allocated += size;
914 mac_control->stats_mem_sz = size;
916 tmp_v_addr = mac_control->stats_mem;
917 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
918 memset(tmp_v_addr, 0, size);
919 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
920 (unsigned long long) tmp_p_addr);
921 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
926 * free_shared_mem - Free the allocated Memory
927 * @nic: Device private variable.
928 * Description: This function is to free all memory locations allocated by
929 * the init_shared_mem() function and return it to the kernel.
932 static void free_shared_mem(struct s2io_nic *nic)
934 int i, j, blk_cnt, size;
936 dma_addr_t tmp_p_addr;
937 struct mac_info *mac_control;
938 struct config_param *config;
939 int lst_size, lst_per_page;
940 struct net_device *dev;
948 mac_control = &nic->mac_control;
949 config = &nic->config;
951 lst_size = (sizeof(struct TxD) * config->max_txds);
952 lst_per_page = PAGE_SIZE / lst_size;
954 for (i = 0; i < config->tx_fifo_num; i++) {
955 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
957 for (j = 0; j < page_num; j++) {
958 int mem_blks = (j * lst_per_page);
959 if (!mac_control->fifos[i].list_info)
961 if (!mac_control->fifos[i].list_info[mem_blks].
964 pci_free_consistent(nic->pdev, PAGE_SIZE,
965 mac_control->fifos[i].
968 mac_control->fifos[i].
971 nic->mac_control.stats_info->sw_stat.mem_freed
974 /* If we got a zero DMA address during allocation,
977 if (mac_control->zerodma_virt_addr) {
978 pci_free_consistent(nic->pdev, PAGE_SIZE,
979 mac_control->zerodma_virt_addr,
982 "%s: Freeing TxDL with zero DMA addr. ",
984 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
985 mac_control->zerodma_virt_addr);
986 nic->mac_control.stats_info->sw_stat.mem_freed
989 kfree(mac_control->fifos[i].list_info);
990 nic->mac_control.stats_info->sw_stat.mem_freed +=
991 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
994 size = SIZE_OF_BLOCK;
995 for (i = 0; i < config->rx_ring_num; i++) {
996 blk_cnt = mac_control->rings[i].block_count;
997 for (j = 0; j < blk_cnt; j++) {
998 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1000 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1002 if (tmp_v_addr == NULL)
1004 pci_free_consistent(nic->pdev, size,
1005 tmp_v_addr, tmp_p_addr);
1006 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1007 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1008 nic->mac_control.stats_info->sw_stat.mem_freed +=
1009 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1013 if (nic->rxd_mode == RXD_MODE_3B) {
1014 /* Freeing buffer storage addresses in 2BUFF mode. */
1015 for (i = 0; i < config->rx_ring_num; i++) {
1016 blk_cnt = config->rx_cfg[i].num_rxd /
1017 (rxd_count[nic->rxd_mode] + 1);
1018 for (j = 0; j < blk_cnt; j++) {
1020 if (!mac_control->rings[i].ba[j])
1022 while (k != rxd_count[nic->rxd_mode]) {
1023 struct buffAdd *ba =
1024 &mac_control->rings[i].ba[j][k];
1025 kfree(ba->ba_0_org);
1026 nic->mac_control.stats_info->sw_stat.\
1027 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1028 kfree(ba->ba_1_org);
1029 nic->mac_control.stats_info->sw_stat.\
1030 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1033 kfree(mac_control->rings[i].ba[j]);
1034 nic->mac_control.stats_info->sw_stat.mem_freed +=
1035 (sizeof(struct buffAdd) *
1036 (rxd_count[nic->rxd_mode] + 1));
1038 kfree(mac_control->rings[i].ba);
1039 nic->mac_control.stats_info->sw_stat.mem_freed +=
1040 (sizeof(struct buffAdd *) * blk_cnt);
1044 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1045 if (mac_control->fifos[i].ufo_in_band_v) {
1046 nic->mac_control.stats_info->sw_stat.mem_freed
1047 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1048 kfree(mac_control->fifos[i].ufo_in_band_v);
1052 if (mac_control->stats_mem) {
1053 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054 mac_control->stats_mem_sz;
1055 pci_free_consistent(nic->pdev,
1056 mac_control->stats_mem_sz,
1057 mac_control->stats_mem,
1058 mac_control->stats_mem_phy);
1063 * s2io_verify_pci_mode -
1066 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1068 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1069 register u64 val64 = 0;
1072 val64 = readq(&bar0->pci_mode);
1073 mode = (u8)GET_PCI_MODE(val64);
1075 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1076 return -1; /* Unknown PCI mode */
1080 #define NEC_VENID 0x1033
1081 #define NEC_DEVID 0x0125
1082 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1084 struct pci_dev *tdev = NULL;
1085 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1086 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1087 if (tdev->bus == s2io_pdev->bus->parent) {
1096 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1098 * s2io_print_pci_mode -
1100 static int s2io_print_pci_mode(struct s2io_nic *nic)
1102 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1103 register u64 val64 = 0;
1105 struct config_param *config = &nic->config;
1107 val64 = readq(&bar0->pci_mode);
1108 mode = (u8)GET_PCI_MODE(val64);
1110 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1111 return -1; /* Unknown PCI mode */
1113 config->bus_speed = bus_speed[mode];
1115 if (s2io_on_nec_bridge(nic->pdev)) {
1116 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1121 if (val64 & PCI_MODE_32_BITS) {
1122 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1124 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1128 case PCI_MODE_PCI_33:
1129 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1131 case PCI_MODE_PCI_66:
1132 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1134 case PCI_MODE_PCIX_M1_66:
1135 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1137 case PCI_MODE_PCIX_M1_100:
1138 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1140 case PCI_MODE_PCIX_M1_133:
1141 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1143 case PCI_MODE_PCIX_M2_66:
1144 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1146 case PCI_MODE_PCIX_M2_100:
1147 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1149 case PCI_MODE_PCIX_M2_133:
1150 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1153 return -1; /* Unsupported bus speed */
1160 * init_tti - Initialization transmit traffic interrupt scheme
1161 * @nic: device private variable
1162 * @link: link status (UP/DOWN) used to enable/disable continuous
1163 * transmit interrupts
1164 * Description: The function configures transmit traffic interrupts
1165 * Return Value: SUCCESS on success and
1169 static int init_tti(struct s2io_nic *nic, int link)
1171 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1172 register u64 val64 = 0;
1174 struct config_param *config;
1176 config = &nic->config;
1178 for (i = 0; i < config->tx_fifo_num; i++) {
1180 * TTI Initialization. Default Tx timer gets us about
1181 * 250 interrupts per sec. Continuous interrupts are enabled
1184 if (nic->device_type == XFRAME_II_DEVICE) {
1185 int count = (nic->config.bus_speed * 125)/2;
1186 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1188 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1190 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1191 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1192 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1193 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1195 if (use_continuous_tx_intrs && (link == LINK_UP))
1196 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1197 writeq(val64, &bar0->tti_data1_mem);
1199 if (nic->config.intr_type == MSI_X) {
1200 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1201 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1202 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1203 TTI_DATA2_MEM_TX_UFC_D(0x300);
1205 if ((nic->config.tx_steering_type ==
1206 TX_DEFAULT_STEERING) &&
1207 (config->tx_fifo_num > 1) &&
1208 (i >= nic->udp_fifo_idx) &&
1209 (i < (nic->udp_fifo_idx +
1210 nic->total_udp_fifos)))
1211 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1212 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1213 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1214 TTI_DATA2_MEM_TX_UFC_D(0x120);
1216 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x80);
1222 writeq(val64, &bar0->tti_data2_mem);
1224 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1225 TTI_CMD_MEM_OFFSET(i);
1226 writeq(val64, &bar0->tti_command_mem);
1228 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1229 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1237 * init_nic - Initialization of hardware
1238 * @nic: device private variable
1239 * Description: The function sequentially configures every block
1240 * of the H/W from their reset values.
1241 * Return Value: SUCCESS on success and
1242 * '-1' on failure (endian settings incorrect).
1245 static int init_nic(struct s2io_nic *nic)
1247 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1248 struct net_device *dev = nic->dev;
1249 register u64 val64 = 0;
1253 struct mac_info *mac_control;
1254 struct config_param *config;
1256 unsigned long long mem_share;
1259 mac_control = &nic->mac_control;
1260 config = &nic->config;
1262 /* to set the swapper controle on the card */
1263 if(s2io_set_swapper(nic)) {
1264 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1269 * Herc requires EOI to be removed from reset before XGXS, so..
1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 val64 = 0xA500000000ULL;
1273 writeq(val64, &bar0->sw_reset);
1275 val64 = readq(&bar0->sw_reset);
1278 /* Remove XGXS from reset state */
1280 writeq(val64, &bar0->sw_reset);
1282 val64 = readq(&bar0->sw_reset);
1284 /* Ensure that it's safe to access registers by checking
1285 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1287 if (nic->device_type == XFRAME_II_DEVICE) {
1288 for (i = 0; i < 50; i++) {
1289 val64 = readq(&bar0->adapter_status);
1290 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1298 /* Enable Receiving broadcasts */
1299 add = &bar0->mac_cfg;
1300 val64 = readq(&bar0->mac_cfg);
1301 val64 |= MAC_RMAC_BCAST_ENABLE;
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303 writel((u32) val64, add);
1304 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1305 writel((u32) (val64 >> 32), (add + 4));
1307 /* Read registers in all blocks */
1308 val64 = readq(&bar0->mac_int_mask);
1309 val64 = readq(&bar0->mc_int_mask);
1310 val64 = readq(&bar0->xgxs_int_mask);
1314 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1316 if (nic->device_type & XFRAME_II_DEVICE) {
1317 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1318 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1319 &bar0->dtx_control, UF);
1321 msleep(1); /* Necessary!! */
1325 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 val64 = readq(&bar0->dtx_control);
1333 /* Tx DMA Initialization */
1335 writeq(val64, &bar0->tx_fifo_partition_0);
1336 writeq(val64, &bar0->tx_fifo_partition_1);
1337 writeq(val64, &bar0->tx_fifo_partition_2);
1338 writeq(val64, &bar0->tx_fifo_partition_3);
1341 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1343 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1344 13) | vBIT(config->tx_cfg[i].fifo_priority,
1347 if (i == (config->tx_fifo_num - 1)) {
1354 writeq(val64, &bar0->tx_fifo_partition_0);
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1364 writeq(val64, &bar0->tx_fifo_partition_2);
1369 writeq(val64, &bar0->tx_fifo_partition_3);
1380 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1381 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1383 if ((nic->device_type == XFRAME_I_DEVICE) &&
1384 (nic->pdev->revision < 4))
1385 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1387 val64 = readq(&bar0->tx_fifo_partition_0);
1388 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1389 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1392 * Initialization of Tx_PA_CONFIG register to ignore packet
1393 * integrity checking.
1395 val64 = readq(&bar0->tx_pa_cfg);
1396 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1397 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1398 writeq(val64, &bar0->tx_pa_cfg);
1400 /* Rx DMA intialization. */
1402 for (i = 0; i < config->rx_ring_num; i++) {
1404 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1407 writeq(val64, &bar0->rx_queue_priority);
1410 * Allocating equal share of memory to all the
1414 if (nic->device_type & XFRAME_II_DEVICE)
1419 for (i = 0; i < config->rx_ring_num; i++) {
1422 mem_share = (mem_size / config->rx_ring_num +
1423 mem_size % config->rx_ring_num);
1424 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1427 mem_share = (mem_size / config->rx_ring_num);
1428 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1431 mem_share = (mem_size / config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1456 writeq(val64, &bar0->rx_queue_cfg);
1459 * Filling Tx round robin registers
1460 * as per the number of FIFOs for equal scheduling priority
1462 switch (config->tx_fifo_num) {
1465 writeq(val64, &bar0->tx_w_round_robin_0);
1466 writeq(val64, &bar0->tx_w_round_robin_1);
1467 writeq(val64, &bar0->tx_w_round_robin_2);
1468 writeq(val64, &bar0->tx_w_round_robin_3);
1469 writeq(val64, &bar0->tx_w_round_robin_4);
1472 val64 = 0x0001000100010001ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 val64 = 0x0001000100000000ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1481 val64 = 0x0001020001020001ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 val64 = 0x0200010200010200ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 val64 = 0x0102000102000102ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_2);
1487 val64 = 0x0001020001020001ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0200010200000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1493 val64 = 0x0001020300010203ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0001020300000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1502 val64 = 0x0001020304000102ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 val64 = 0x0304000102030400ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 val64 = 0x0102030400010203ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_2);
1508 val64 = 0x0400010203040001ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_3);
1510 val64 = 0x0203040000000000ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_4);
1514 val64 = 0x0001020304050001ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_0);
1516 val64 = 0x0203040500010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_1);
1518 val64 = 0x0405000102030405ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 val64 = 0x0001020304050001ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_3);
1522 val64 = 0x0203040500000000ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_4);
1526 val64 = 0x0001020304050600ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_0);
1528 val64 = 0x0102030405060001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_1);
1530 val64 = 0x0203040506000102ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_2);
1532 val64 = 0x0304050600010203ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_3);
1534 val64 = 0x0405060000000000ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_4);
1538 val64 = 0x0001020304050607ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_0);
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 writeq(val64, &bar0->tx_w_round_robin_2);
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0001020300000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1548 /* Enable all configured Tx FIFO partitions */
1549 val64 = readq(&bar0->tx_fifo_partition_0);
1550 val64 |= (TX_FIFO_PARTITION_EN);
1551 writeq(val64, &bar0->tx_fifo_partition_0);
1553 /* Filling the Rx round robin registers as per the
1554 * number of Rings and steering based on QoS with
1557 switch (config->rx_ring_num) {
1560 writeq(val64, &bar0->rx_w_round_robin_0);
1561 writeq(val64, &bar0->rx_w_round_robin_1);
1562 writeq(val64, &bar0->rx_w_round_robin_2);
1563 writeq(val64, &bar0->rx_w_round_robin_3);
1564 writeq(val64, &bar0->rx_w_round_robin_4);
1566 val64 = 0x8080808080808080ULL;
1567 writeq(val64, &bar0->rts_qos_steering);
1570 val64 = 0x0001000100010001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 writeq(val64, &bar0->rx_w_round_robin_1);
1573 writeq(val64, &bar0->rx_w_round_robin_2);
1574 writeq(val64, &bar0->rx_w_round_robin_3);
1575 val64 = 0x0001000100000000ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_4);
1578 val64 = 0x8080808040404040ULL;
1579 writeq(val64, &bar0->rts_qos_steering);
1582 val64 = 0x0001020001020001ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_0);
1584 val64 = 0x0200010200010200ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_1);
1586 val64 = 0x0102000102000102ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_2);
1588 val64 = 0x0001020001020001ULL;
1589 writeq(val64, &bar0->rx_w_round_robin_3);
1590 val64 = 0x0200010200000000ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_4);
1593 val64 = 0x8080804040402020ULL;
1594 writeq(val64, &bar0->rts_qos_steering);
1597 val64 = 0x0001020300010203ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_0);
1599 writeq(val64, &bar0->rx_w_round_robin_1);
1600 writeq(val64, &bar0->rx_w_round_robin_2);
1601 writeq(val64, &bar0->rx_w_round_robin_3);
1602 val64 = 0x0001020300000000ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_4);
1605 val64 = 0x8080404020201010ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1609 val64 = 0x0001020304000102ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_0);
1611 val64 = 0x0304000102030400ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_1);
1613 val64 = 0x0102030400010203ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_2);
1615 val64 = 0x0400010203040001ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_3);
1617 val64 = 0x0203040000000000ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_4);
1620 val64 = 0x8080404020201008ULL;
1621 writeq(val64, &bar0->rts_qos_steering);
1624 val64 = 0x0001020304050001ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_0);
1626 val64 = 0x0203040500010203ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_1);
1628 val64 = 0x0405000102030405ULL;
1629 writeq(val64, &bar0->rx_w_round_robin_2);
1630 val64 = 0x0001020304050001ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_3);
1632 val64 = 0x0203040500000000ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_4);
1635 val64 = 0x8080404020100804ULL;
1636 writeq(val64, &bar0->rts_qos_steering);
1639 val64 = 0x0001020304050600ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_0);
1641 val64 = 0x0102030405060001ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_1);
1643 val64 = 0x0203040506000102ULL;
1644 writeq(val64, &bar0->rx_w_round_robin_2);
1645 val64 = 0x0304050600010203ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_3);
1647 val64 = 0x0405060000000000ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_4);
1650 val64 = 0x8080402010080402ULL;
1651 writeq(val64, &bar0->rts_qos_steering);
1654 val64 = 0x0001020304050607ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_0);
1656 writeq(val64, &bar0->rx_w_round_robin_1);
1657 writeq(val64, &bar0->rx_w_round_robin_2);
1658 writeq(val64, &bar0->rx_w_round_robin_3);
1659 val64 = 0x0001020300000000ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_4);
1662 val64 = 0x8040201008040201ULL;
1663 writeq(val64, &bar0->rts_qos_steering);
1669 for (i = 0; i < 8; i++)
1670 writeq(val64, &bar0->rts_frm_len_n[i]);
1672 /* Set the default rts frame length for the rings configured */
1673 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1674 for (i = 0 ; i < config->rx_ring_num ; i++)
1675 writeq(val64, &bar0->rts_frm_len_n[i]);
1677 /* Set the frame length for the configured rings
1678 * desired by the user
1680 for (i = 0; i < config->rx_ring_num; i++) {
1681 /* If rts_frm_len[i] == 0 then it is assumed that user not
1682 * specified frame length steering.
1683 * If the user provides the frame length then program
1684 * the rts_frm_len register for those values or else
1685 * leave it as it is.
1687 if (rts_frm_len[i] != 0) {
1688 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1689 &bar0->rts_frm_len_n[i]);
1693 /* Disable differentiated services steering logic */
1694 for (i = 0; i < 64; i++) {
1695 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1696 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1698 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1703 /* Program statistics memory */
1704 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1706 if (nic->device_type == XFRAME_II_DEVICE) {
1707 val64 = STAT_BC(0x320);
1708 writeq(val64, &bar0->stat_byte_cnt);
1712 * Initializing the sampling rate for the device to calculate the
1713 * bandwidth utilization.
1715 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1716 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1717 writeq(val64, &bar0->mac_link_util);
1720 * Initializing the Transmit and Receive Traffic Interrupt
1724 /* Initialize TTI */
1725 if (SUCCESS != init_tti(nic, nic->last_link_state))
1728 /* RTI Initialization */
1729 if (nic->device_type == XFRAME_II_DEVICE) {
1731 * Programmed to generate Apprx 500 Intrs per
1734 int count = (nic->config.bus_speed * 125)/4;
1735 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1737 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1738 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1739 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1740 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1742 writeq(val64, &bar0->rti_data1_mem);
1744 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1745 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1746 if (nic->config.intr_type == MSI_X)
1747 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1748 RTI_DATA2_MEM_RX_UFC_D(0x40));
1750 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1751 RTI_DATA2_MEM_RX_UFC_D(0x80));
1752 writeq(val64, &bar0->rti_data2_mem);
1754 for (i = 0; i < config->rx_ring_num; i++) {
1755 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1756 | RTI_CMD_MEM_OFFSET(i);
1757 writeq(val64, &bar0->rti_command_mem);
1760 * Once the operation completes, the Strobe bit of the
1761 * command register will be reset. We poll for this
1762 * particular condition. We wait for a maximum of 500ms
1763 * for the operation to complete, if it's not complete
1764 * by then we return error.
1768 val64 = readq(&bar0->rti_command_mem);
1769 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1773 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1783 * Initializing proper values as Pause threshold into all
1784 * the 8 Queues on Rx side.
1786 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1789 /* Disable RMAC PAD STRIPPING */
1790 add = &bar0->mac_cfg;
1791 val64 = readq(&bar0->mac_cfg);
1792 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794 writel((u32) (val64), add);
1795 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1796 writel((u32) (val64 >> 32), (add + 4));
1797 val64 = readq(&bar0->mac_cfg);
1799 /* Enable FCS stripping by adapter */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1803 if (nic->device_type == XFRAME_II_DEVICE)
1804 writeq(val64, &bar0->mac_cfg);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64), add);
1808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809 writel((u32) (val64 >> 32), (add + 4));
1813 * Set the time value to be inserted in the pause frame
1814 * generated by xena.
1816 val64 = readq(&bar0->rmac_pause_cfg);
1817 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1818 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1819 writeq(val64, &bar0->rmac_pause_cfg);
1822 * Set the Threshold Limit for Generating the pause frame
1823 * If the amount of data in any Queue exceeds ratio of
1824 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1825 * pause frame is generated
1828 for (i = 0; i < 4; i++) {
1830 (((u64) 0xFF00 | nic->mac_control.
1831 mc_pause_threshold_q0q3)
1834 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1837 for (i = 0; i < 4; i++) {
1839 (((u64) 0xFF00 | nic->mac_control.
1840 mc_pause_threshold_q4q7)
1843 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1846 * TxDMA will stop Read request if the number of read split has
1847 * exceeded the limit pointed by shared_splits
1849 val64 = readq(&bar0->pic_control);
1850 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1851 writeq(val64, &bar0->pic_control);
1853 if (nic->config.bus_speed == 266) {
1854 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1855 writeq(0x0, &bar0->read_retry_delay);
1856 writeq(0x0, &bar0->write_retry_delay);
1860 * Programming the Herc to split every write transaction
1861 * that does not start on an ADB to reduce disconnects.
1863 if (nic->device_type == XFRAME_II_DEVICE) {
1864 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1865 MISC_LINK_STABILITY_PRD(3);
1866 writeq(val64, &bar0->misc_control);
1867 val64 = readq(&bar0->pic_control2);
1868 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1869 writeq(val64, &bar0->pic_control2);
1871 if (strstr(nic->product_name, "CX4")) {
1872 val64 = TMAC_AVG_IPG(0x17);
1873 writeq(val64, &bar0->tmac_avg_ipg);
1878 #define LINK_UP_DOWN_INTERRUPT 1
1879 #define MAC_RMAC_ERR_TIMER 2
1881 static int s2io_link_fault_indication(struct s2io_nic *nic)
1883 if (nic->device_type == XFRAME_II_DEVICE)
1884 return LINK_UP_DOWN_INTERRUPT;
1886 return MAC_RMAC_ERR_TIMER;
1890 * do_s2io_write_bits - update alarm bits in alarm register
1891 * @value: alarm bits
1892 * @flag: interrupt status
1893 * @addr: address value
1894 * Description: update alarm bits in alarm register
1898 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1902 temp64 = readq(addr);
1904 if(flag == ENABLE_INTRS)
1905 temp64 &= ~((u64) value);
1907 temp64 |= ((u64) value);
1908 writeq(temp64, addr);
1911 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 gen_int_mask = 0;
1917 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1918 if (mask & TX_DMA_INTR) {
1920 gen_int_mask |= TXDMA_INT_M;
1922 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1923 TXDMA_PCC_INT | TXDMA_TTI_INT |
1924 TXDMA_LSO_INT | TXDMA_TPA_INT |
1925 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1927 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1928 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1929 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1930 &bar0->pfc_err_mask);
1932 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1933 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1934 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1936 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1937 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1938 PCC_N_SERR | PCC_6_COF_OV_ERR |
1939 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1940 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1941 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1943 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1944 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1946 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1947 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1948 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1949 flag, &bar0->lso_err_mask);
1951 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1952 flag, &bar0->tpa_err_mask);
1954 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1958 if (mask & TX_MAC_INTR) {
1959 gen_int_mask |= TXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1961 &bar0->mac_int_mask);
1962 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1963 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1964 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1965 flag, &bar0->mac_tmac_err_mask);
1968 if (mask & TX_XGXS_INTR) {
1969 gen_int_mask |= TXXGXS_INT_M;
1970 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1971 &bar0->xgxs_int_mask);
1972 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1973 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1974 flag, &bar0->xgxs_txgxs_err_mask);
1977 if (mask & RX_DMA_INTR) {
1978 gen_int_mask |= RXDMA_INT_M;
1979 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1980 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1981 flag, &bar0->rxdma_int_mask);
1982 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1983 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1984 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1985 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1986 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1987 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1988 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1989 &bar0->prc_pcix_err_mask);
1990 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1991 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1992 &bar0->rpa_err_mask);
1993 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1994 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1995 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1996 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1997 flag, &bar0->rda_err_mask);
1998 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1999 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2000 flag, &bar0->rti_err_mask);
2003 if (mask & RX_MAC_INTR) {
2004 gen_int_mask |= RXMAC_INT_M;
2005 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2006 &bar0->mac_int_mask);
2007 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2008 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2009 RMAC_DOUBLE_ECC_ERR;
2010 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2011 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2012 do_s2io_write_bits(interruptible,
2013 flag, &bar0->mac_rmac_err_mask);
2016 if (mask & RX_XGXS_INTR)
2018 gen_int_mask |= RXXGXS_INT_M;
2019 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2020 &bar0->xgxs_int_mask);
2021 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2022 &bar0->xgxs_rxgxs_err_mask);
2025 if (mask & MC_INTR) {
2026 gen_int_mask |= MC_INT_M;
2027 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2028 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2029 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2030 &bar0->mc_err_mask);
2032 nic->general_int_mask = gen_int_mask;
2034 /* Remove this line when alarm interrupts are enabled */
2035 nic->general_int_mask = 0;
2038 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2039 * @nic: device private variable,
2040 * @mask: A mask indicating which Intr block must be modified and,
2041 * @flag: A flag indicating whether to enable or disable the Intrs.
2042 * Description: This function will either disable or enable the interrupts
2043 * depending on the flag argument. The mask argument can be used to
2044 * enable/disable any Intr block.
2045 * Return Value: NONE.
2048 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2050 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2051 register u64 temp64 = 0, intr_mask = 0;
2053 intr_mask = nic->general_int_mask;
2055 /* Top level interrupt classification */
2056 /* PIC Interrupts */
2057 if (mask & TX_PIC_INTR) {
2058 /* Enable PIC Intrs in the general intr mask register */
2059 intr_mask |= TXPIC_INT_M;
2060 if (flag == ENABLE_INTRS) {
2062 * If Hercules adapter enable GPIO otherwise
2063 * disable all PCIX, Flash, MDIO, IIC and GPIO
2064 * interrupts for now.
2067 if (s2io_link_fault_indication(nic) ==
2068 LINK_UP_DOWN_INTERRUPT ) {
2069 do_s2io_write_bits(PIC_INT_GPIO, flag,
2070 &bar0->pic_int_mask);
2071 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2072 &bar0->gpio_int_mask);
2074 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2075 } else if (flag == DISABLE_INTRS) {
2077 * Disable PIC Intrs in the general
2078 * intr mask register
2080 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084 /* Tx traffic interrupts */
2085 if (mask & TX_TRAFFIC_INTR) {
2086 intr_mask |= TXTRAFFIC_INT_M;
2087 if (flag == ENABLE_INTRS) {
2089 * Enable all the Tx side interrupts
2090 * writing 0 Enables all 64 TX interrupt levels
2092 writeq(0x0, &bar0->tx_traffic_mask);
2093 } else if (flag == DISABLE_INTRS) {
2095 * Disable Tx Traffic Intrs in the general intr mask
2098 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2102 /* Rx traffic interrupts */
2103 if (mask & RX_TRAFFIC_INTR) {
2104 intr_mask |= RXTRAFFIC_INT_M;
2105 if (flag == ENABLE_INTRS) {
2106 /* writing 0 Enables all 8 RX interrupt levels */
2107 writeq(0x0, &bar0->rx_traffic_mask);
2108 } else if (flag == DISABLE_INTRS) {
2110 * Disable Rx Traffic Intrs in the general intr mask
2113 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2117 temp64 = readq(&bar0->general_int_mask);
2118 if (flag == ENABLE_INTRS)
2119 temp64 &= ~((u64) intr_mask);
2121 temp64 = DISABLE_ALL_INTRS;
2122 writeq(temp64, &bar0->general_int_mask);
2124 nic->general_int_mask = readq(&bar0->general_int_mask);
2128 * verify_pcc_quiescent- Checks for PCC quiescent state
2129 * Return: 1 If PCC is quiescence
2130 * 0 If PCC is not quiescence
2132 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2136 u64 val64 = readq(&bar0->adapter_status);
2138 herc = (sp->device_type == XFRAME_II_DEVICE);
2140 if (flag == FALSE) {
2141 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2142 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2145 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2151 ADAPTER_STATUS_RMAC_PCC_IDLE))
2154 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2155 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2163 * verify_xena_quiescence - Checks whether the H/W is ready
2164 * Description: Returns whether the H/W is ready to go or not. Depending
2165 * on whether adapter enable bit was written or not the comparison
2166 * differs and the calling function passes the input argument flag to
2168 * Return: 1 If xena is quiescence
2169 * 0 If Xena is not quiescence
2172 static int verify_xena_quiescence(struct s2io_nic *sp)
2175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2176 u64 val64 = readq(&bar0->adapter_status);
2177 mode = s2io_verify_pci_mode(sp);
2179 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2180 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2183 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2184 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2187 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2191 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2195 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2199 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2203 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2204 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2207 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2208 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2213 * In PCI 33 mode, the P_PLL is not used, and therefore,
2214 * the the P_PLL_LOCK bit in the adapter_status register will
2217 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2218 sp->device_type == XFRAME_II_DEVICE && mode !=
2220 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2223 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2224 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2225 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2232 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2233 * @sp: Pointer to device specifc structure
2235 * New procedure to clear mac address reading problems on Alpha platforms
2239 static void fix_mac_address(struct s2io_nic * sp)
2241 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2245 while (fix_mac[i] != END_SIGN) {
2246 writeq(fix_mac[i++], &bar0->gpio_control);
2248 val64 = readq(&bar0->gpio_control);
2253 * start_nic - Turns the device on
2254 * @nic : device private variable.
2256 * This function actually turns the device on. Before this function is
2257 * called,all Registers are configured from their reset states
2258 * and shared memory is allocated but the NIC is still quiescent. On
2259 * calling this function, the device interrupts are cleared and the NIC is
2260 * literally switched on by writing into the adapter control register.
2262 * SUCCESS on success and -1 on failure.
2265 static int start_nic(struct s2io_nic *nic)
2267 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2268 struct net_device *dev = nic->dev;
2269 register u64 val64 = 0;
2271 struct mac_info *mac_control;
2272 struct config_param *config;
2274 mac_control = &nic->mac_control;
2275 config = &nic->config;
2277 /* PRC Initialization and configuration */
2278 for (i = 0; i < config->rx_ring_num; i++) {
2279 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2280 &bar0->prc_rxd0_n[i]);
2282 val64 = readq(&bar0->prc_ctrl_n[i]);
2283 if (nic->rxd_mode == RXD_MODE_1)
2284 val64 |= PRC_CTRL_RC_ENABLED;
2286 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2287 if (nic->device_type == XFRAME_II_DEVICE)
2288 val64 |= PRC_CTRL_GROUP_READS;
2289 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2290 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2291 writeq(val64, &bar0->prc_ctrl_n[i]);
2294 if (nic->rxd_mode == RXD_MODE_3B) {
2295 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2296 val64 = readq(&bar0->rx_pa_cfg);
2297 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2298 writeq(val64, &bar0->rx_pa_cfg);
2301 if (vlan_tag_strip == 0) {
2302 val64 = readq(&bar0->rx_pa_cfg);
2303 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2304 writeq(val64, &bar0->rx_pa_cfg);
2305 nic->vlan_strip_flag = 0;
2309 * Enabling MC-RLDRAM. After enabling the device, we timeout
2310 * for around 100ms, which is approximately the time required
2311 * for the device to be ready for operation.
2313 val64 = readq(&bar0->mc_rldram_mrs);
2314 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2315 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2316 val64 = readq(&bar0->mc_rldram_mrs);
2318 msleep(100); /* Delay by around 100 ms. */
2320 /* Enabling ECC Protection. */
2321 val64 = readq(&bar0->adapter_control);
2322 val64 &= ~ADAPTER_ECC_EN;
2323 writeq(val64, &bar0->adapter_control);
2326 * Verify if the device is ready to be enabled, if so enable
2329 val64 = readq(&bar0->adapter_status);
2330 if (!verify_xena_quiescence(nic)) {
2331 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2332 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2333 (unsigned long long) val64);
2338 * With some switches, link might be already up at this point.
2339 * Because of this weird behavior, when we enable laser,
2340 * we may not get link. We need to handle this. We cannot
2341 * figure out which switch is misbehaving. So we are forced to
2342 * make a global change.
2345 /* Enabling Laser. */
2346 val64 = readq(&bar0->adapter_control);
2347 val64 |= ADAPTER_EOI_TX_ON;
2348 writeq(val64, &bar0->adapter_control);
2350 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2352 * Dont see link state interrupts initally on some switches,
2353 * so directly scheduling the link state task here.
2355 schedule_work(&nic->set_link_task);
2357 /* SXE-002: Initialize link and activity LED */
2358 subid = nic->pdev->subsystem_device;
2359 if (((subid & 0xFF) >= 0x07) &&
2360 (nic->device_type == XFRAME_I_DEVICE)) {
2361 val64 = readq(&bar0->gpio_control);
2362 val64 |= 0x0000800000000000ULL;
2363 writeq(val64, &bar0->gpio_control);
2364 val64 = 0x0411040400000000ULL;
2365 writeq(val64, (void __iomem *)bar0 + 0x2700);
2371 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2373 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2374 TxD *txdlp, int get_off)
2376 struct s2io_nic *nic = fifo_data->nic;
2377 struct sk_buff *skb;
2382 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2383 pci_unmap_single(nic->pdev, (dma_addr_t)
2384 txds->Buffer_Pointer, sizeof(u64),
2389 skb = (struct sk_buff *) ((unsigned long)
2390 txds->Host_Control);
2392 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395 pci_unmap_single(nic->pdev, (dma_addr_t)
2396 txds->Buffer_Pointer,
2397 skb->len - skb->data_len,
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2406 pci_unmap_page(nic->pdev, (dma_addr_t)
2407 txds->Buffer_Pointer,
2408 frag->size, PCI_DMA_TODEVICE);
2411 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic *nic)
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
2429 struct mac_info *mac_control;
2430 struct config_param *config;
2433 mac_control = &nic->mac_control;
2434 config = &nic->config;
2436 for (i = 0; i < config->tx_fifo_num; i++) {
2437 unsigned long flags;
2438 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2439 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2440 txdp = (struct TxD *) \
2441 mac_control->fifos[i].list_info[j].list_virt_addr;
2442 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 nic->mac_control.stats_info->sw_stat.mem_freed
2451 "%s:forcibly freeing %d skbs on FIFO%d\n",
2453 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2454 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2469 static void stop_nic(struct s2io_nic *nic)
2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 register u64 val64 = 0;
2474 struct mac_info *mac_control;
2475 struct config_param *config;
2477 mac_control = &nic->mac_control;
2478 config = &nic->config;
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483 interruptible |= TX_PIC_INTR;
2484 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64 = readq(&bar0->adapter_control);
2488 val64 &= ~(ADAPTER_CNTL_EN);
2489 writeq(val64, &bar0->adapter_control);
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2512 * SUCCESS on success or an appropriate -ve value on failure.
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2517 struct sk_buff *skb;
2519 int off, size, block_no, block_no1;
2524 struct RxD_t *first_rxdp = NULL;
2525 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2529 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2531 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2533 block_no1 = ring->rx_curr_get_info.block_index;
2534 while (alloc_tab < alloc_cnt) {
2535 block_no = ring->rx_curr_put_info.block_index;
2537 off = ring->rx_curr_put_info.offset;
2539 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2541 rxd_index = off + 1;
2543 rxd_index += (block_no * ring->rxd_count);
2545 if ((block_no == block_no1) &&
2546 (off == ring->rx_curr_get_info.offset) &&
2547 (rxdp->Host_Control)) {
2548 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2550 DBG_PRINT(INTR_DBG, " info equated\n");
2553 if (off && (off == ring->rxd_count)) {
2554 ring->rx_curr_put_info.block_index++;
2555 if (ring->rx_curr_put_info.block_index ==
2557 ring->rx_curr_put_info.block_index = 0;
2558 block_no = ring->rx_curr_put_info.block_index;
2560 ring->rx_curr_put_info.offset = off;
2561 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2562 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2563 ring->dev->name, rxdp);
2567 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2568 ((ring->rxd_mode == RXD_MODE_3B) &&
2569 (rxdp->Control_2 & s2BIT(0)))) {
2570 ring->rx_curr_put_info.offset = off;
2573 /* calculate size of skb based on ring mode */
2574 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2575 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576 if (ring->rxd_mode == RXD_MODE_1)
2577 size += NET_IP_ALIGN;
2579 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2582 skb = dev_alloc_skb(size);
2584 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2585 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2588 first_rxdp->Control_1 |= RXD_OWN_XENA;
2590 stats->mem_alloc_fail_cnt++;
2594 stats->mem_allocated += skb->truesize;
2596 if (ring->rxd_mode == RXD_MODE_1) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1 = (struct RxD1*)rxdp;
2599 memset(rxdp, 0, sizeof(struct RxD1));
2600 skb_reserve(skb, NET_IP_ALIGN);
2601 rxdp1->Buffer0_ptr = pci_map_single
2602 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long) (skb);
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2618 rxdp3 = (struct RxD3*)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long) skb->data;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN, PCI_DMA_FROMDEVICE);
2639 if (pci_dma_mapping_error(nic->pdev,
2640 rxdp3->Buffer0_ptr))
2641 goto pci_map_failed;
2643 pci_dma_sync_single_for_device(ring->pdev,
2644 (dma_addr_t) rxdp3->Buffer0_ptr,
2645 BUF0_LEN, PCI_DMA_FROMDEVICE);
2647 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2648 if (ring->rxd_mode == RXD_MODE_3B) {
2649 /* Two buffer mode */
2652 * Buffer2 will have L3/L4 header plus
2655 rxdp3->Buffer2_ptr = pci_map_single
2656 (ring->pdev, skb->data, ring->mtu + 4,
2657 PCI_DMA_FROMDEVICE);
2659 if (pci_dma_mapping_error(nic->pdev,
2660 rxdp3->Buffer2_ptr))
2661 goto pci_map_failed;
2664 rxdp3->Buffer1_ptr =
2665 pci_map_single(ring->pdev,
2667 PCI_DMA_FROMDEVICE);
2669 if (pci_dma_mapping_error(nic->pdev,
2670 rxdp3->Buffer1_ptr)) {
2673 (dma_addr_t)(unsigned long)
2676 PCI_DMA_FROMDEVICE);
2677 goto pci_map_failed;
2680 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2681 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2684 rxdp->Control_2 |= s2BIT(0);
2685 rxdp->Host_Control = (unsigned long) (skb);
2687 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2688 rxdp->Control_1 |= RXD_OWN_XENA;
2690 if (off == (ring->rxd_count + 1))
2692 ring->rx_curr_put_info.offset = off;
2694 rxdp->Control_2 |= SET_RXD_MARKER;
2695 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2698 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 ring->rx_bufs_left += 1;
2707 /* Transfer ownership of first descriptor to adapter just before
2708 * exiting. Before that, use memory barrier so that ownership
2709 * and other fields are seen by adapter correctly.
2713 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718 stats->pci_map_fail_cnt++;
2719 stats->mem_freed += skb->truesize;
2720 dev_kfree_skb_irq(skb);
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2726 struct net_device *dev = sp->dev;
2728 struct sk_buff *skb;
2730 struct mac_info *mac_control;
2735 mac_control = &sp->mac_control;
2736 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737 rxdp = mac_control->rings[ring_no].
2738 rx_blocks[blk].rxds[j].virt_addr;
2739 skb = (struct sk_buff *)
2740 ((unsigned long) rxdp->Host_Control);
2744 if (sp->rxd_mode == RXD_MODE_1) {
2745 rxdp1 = (struct RxD1*)rxdp;
2746 pci_unmap_single(sp->pdev, (dma_addr_t)
2749 HEADER_ETHERNET_II_802_3_SIZE
2750 + HEADER_802_2_SIZE +
2752 PCI_DMA_FROMDEVICE);
2753 memset(rxdp, 0, sizeof(struct RxD1));
2754 } else if(sp->rxd_mode == RXD_MODE_3B) {
2755 rxdp3 = (struct RxD3*)rxdp;
2756 ba = &mac_control->rings[ring_no].
2758 pci_unmap_single(sp->pdev, (dma_addr_t)
2761 PCI_DMA_FROMDEVICE);
2762 pci_unmap_single(sp->pdev, (dma_addr_t)
2765 PCI_DMA_FROMDEVICE);
2766 pci_unmap_single(sp->pdev, (dma_addr_t)
2769 PCI_DMA_FROMDEVICE);
2770 memset(rxdp, 0, sizeof(struct RxD3));
2772 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2774 mac_control->rings[ring_no].rx_bufs_left -= 1;
2779 * free_rx_buffers - Frees all Rx buffers
2780 * @sp: device private variable.
2782 * This function will free all Rx buffers allocated by host.
2787 static void free_rx_buffers(struct s2io_nic *sp)
2789 struct net_device *dev = sp->dev;
2790 int i, blk = 0, buf_cnt = 0;
2791 struct mac_info *mac_control;
2792 struct config_param *config;
2794 mac_control = &sp->mac_control;
2795 config = &sp->config;
2797 for (i = 0; i < config->rx_ring_num; i++) {
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp,i,blk);
2801 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2803 mac_control->rings[i].rx_curr_put_info.offset = 0;
2804 mac_control->rings[i].rx_curr_get_info.offset = 0;
2805 mac_control->rings[i].rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2815 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 struct config_param *config;
2838 struct mac_info *mac_control;
2839 int pkts_processed = 0;
2840 u8 __iomem *addr = NULL;
2842 struct s2io_nic *nic = netdev_priv(dev);
2843 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844 int budget_org = budget;
2846 config = &nic->config;
2847 mac_control = &nic->mac_control;
2849 if (unlikely(!is_s2io_card_up(nic)))
2852 pkts_processed = rx_intr_handler(ring, budget);
2853 s2io_chk_rx_buffers(nic, ring);
2855 if (pkts_processed < budget_org) {
2856 napi_complete(napi);
2857 /*Re Enable MSI-Rx Vector*/
2858 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2859 addr += 7 - ring->ring_no;
2860 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2864 return pkts_processed;
2866 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2868 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2869 struct ring_info *ring;
2870 struct config_param *config;
2871 struct mac_info *mac_control;
2872 int pkts_processed = 0;
2873 int ring_pkts_processed, i;
2874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875 int budget_org = budget;
2877 config = &nic->config;
2878 mac_control = &nic->mac_control;
2880 if (unlikely(!is_s2io_card_up(nic)))
2883 for (i = 0; i < config->rx_ring_num; i++) {
2884 ring = &mac_control->rings[i];
2885 ring_pkts_processed = rx_intr_handler(ring, budget);
2886 s2io_chk_rx_buffers(nic, ring);
2887 pkts_processed += ring_pkts_processed;
2888 budget -= ring_pkts_processed;
2892 if (pkts_processed < budget_org) {
2893 napi_complete(napi);
2894 /* Re enable the Rx interrupts for the ring */
2895 writeq(0, &bar0->rx_traffic_mask);
2896 readl(&bar0->rx_traffic_mask);
2898 return pkts_processed;
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2903 * s2io_netpoll - netpoll event handler entry point
2904 * @dev : pointer to the device structure.
2906 * This function will be called by upper layer to check for events on the
2907 * interface in situations where interrupts are disabled. It is used for
2908 * specific in-kernel networking tasks, such as remote consoles and kernel
2909 * debugging over the network (example netdump in RedHat).
2911 static void s2io_netpoll(struct net_device *dev)
2913 struct s2io_nic *nic = netdev_priv(dev);
2914 struct mac_info *mac_control;
2915 struct config_param *config;
2916 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2920 if (pci_channel_offline(nic->pdev))
2923 disable_irq(dev->irq);
2925 mac_control = &nic->mac_control;
2926 config = &nic->config;
2928 writeq(val64, &bar0->rx_traffic_int);
2929 writeq(val64, &bar0->tx_traffic_int);
2931 /* we need to free up the transmitted skbufs or else netpoll will
2932 * run out of skbs and will fail and eventually netpoll application such
2933 * as netdump will fail.
2935 for (i = 0; i < config->tx_fifo_num; i++)
2936 tx_intr_handler(&mac_control->fifos[i]);
2938 /* check for received packet and indicate up to network */
2939 for (i = 0; i < config->rx_ring_num; i++)
2940 rx_intr_handler(&mac_control->rings[i], 0);
2942 for (i = 0; i < config->rx_ring_num; i++) {
2943 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2945 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2950 enable_irq(dev->irq);
2956 * rx_intr_handler - Rx interrupt handler
2957 * @ring_info: per ring structure.
2958 * @budget: budget for napi processing.
2960 * If the interrupt is because of a received frame or if the
2961 * receive ring contains fresh as yet un-processed frames,this function is
2962 * called. It picks out the RxD at which place the last Rx processing had
2963 * stopped and sends the skb to the OSM's Rx handler and then increments
2966 * No. of napi packets processed.
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2970 int get_block, put_block;
2971 struct rx_curr_get_info get_info, put_info;
2973 struct sk_buff *skb;
2974 int pkt_cnt = 0, napi_pkts = 0;
2979 get_info = ring_data->rx_curr_get_info;
2980 get_block = get_info.block_index;
2981 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982 put_block = put_info.block_index;
2983 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2985 while (RXD_IS_UP2DT(rxdp)) {
2987 * If your are next to put index then it's
2988 * FIFO full condition
2990 if ((get_block == put_block) &&
2991 (get_info.offset + 1) == put_info.offset) {
2992 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993 ring_data->dev->name);
2996 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2998 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999 ring_data->dev->name);
3000 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3003 if (ring_data->rxd_mode == RXD_MODE_1) {
3004 rxdp1 = (struct RxD1*)rxdp;
3005 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3008 HEADER_ETHERNET_II_802_3_SIZE +
3011 PCI_DMA_FROMDEVICE);
3012 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013 rxdp3 = (struct RxD3*)rxdp;
3014 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3016 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3020 PCI_DMA_FROMDEVICE);
3022 prefetch(skb->data);
3023 rx_osm_handler(ring_data, rxdp);
3025 ring_data->rx_curr_get_info.offset = get_info.offset;
3026 rxdp = ring_data->rx_blocks[get_block].
3027 rxds[get_info.offset].virt_addr;
3028 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029 get_info.offset = 0;
3030 ring_data->rx_curr_get_info.offset = get_info.offset;
3032 if (get_block == ring_data->block_count)
3034 ring_data->rx_curr_get_info.block_index = get_block;
3035 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3038 if (ring_data->nic->config.napi) {
3045 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3048 if (ring_data->lro) {
3049 /* Clear all LRO sessions before exiting */
3050 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051 struct lro *lro = &ring_data->lro0_n[i];
3053 update_L3L4_header(ring_data->nic, lro);
3054 queue_rx_frame(lro->parent, lro->vlan_tag);
3055 clear_lro_session(lro);
3063 * tx_intr_handler - Transmit interrupt handler
3064 * @nic : device private variable
3066 * If an interrupt was raised to indicate DMA complete of the
3067 * Tx packet, this function is called. It identifies the last TxD
3068 * whose buffer was freed and frees all skbs whose data have already
3069 * DMA'ed into the NICs internal memory.
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3076 struct s2io_nic *nic = fifo_data->nic;
3077 struct tx_curr_get_info get_info, put_info;
3078 struct sk_buff *skb = NULL;
3081 unsigned long flags = 0;
3084 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3087 get_info = fifo_data->tx_curr_get_info;
3088 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3091 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092 (get_info.offset != put_info.offset) &&
3093 (txdlp->Host_Control)) {
3094 /* Check for TxD errors */
3095 if (txdlp->Control_1 & TXD_T_CODE) {
3096 unsigned long long err;
3097 err = txdlp->Control_1 & TXD_T_CODE;
3099 nic->mac_control.stats_info->sw_stat.
3103 /* update t_code statistics */
3104 err_mask = err >> 48;
3107 nic->mac_control.stats_info->sw_stat.
3112 nic->mac_control.stats_info->sw_stat.
3113 tx_desc_abort_cnt++;
3117 nic->mac_control.stats_info->sw_stat.
3118 tx_parity_err_cnt++;
3122 nic->mac_control.stats_info->sw_stat.
3127 nic->mac_control.stats_info->sw_stat.
3128 tx_list_proc_err_cnt++;
3133 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3135 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3138 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3143 /* Updating the statistics block */
3144 nic->dev->stats.tx_bytes += skb->len;
3145 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146 dev_kfree_skb_irq(skb);
3149 if (get_info.offset == get_info.fifo_len + 1)
3150 get_info.offset = 0;
3151 txdlp = (struct TxD *) fifo_data->list_info
3152 [get_info.offset].list_virt_addr;
3153 fifo_data->tx_curr_get_info.offset =
3157 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3159 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3163 * s2io_mdio_write - Function to write in to MDIO registers
3164 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165 * @addr : address value
3166 * @value : data value
3167 * @dev : pointer to net_device structure
3169 * This function is used to write values to the MDIO registers
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3175 struct s2io_nic *sp = netdev_priv(dev);
3176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3178 //address transaction
3179 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180 | MDIO_MMD_DEV_ADDR(mmd_type)
3181 | MDIO_MMS_PRT_ADDR(0x0);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3189 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190 | MDIO_MMD_DEV_ADDR(mmd_type)
3191 | MDIO_MMS_PRT_ADDR(0x0)
3192 | MDIO_MDIO_DATA(value)
3193 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194 writeq(val64, &bar0->mdio_control);
3195 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196 writeq(val64, &bar0->mdio_control);
3200 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201 | MDIO_MMD_DEV_ADDR(mmd_type)
3202 | MDIO_MMS_PRT_ADDR(0x0)
3203 | MDIO_OP(MDIO_OP_READ_TRANS);
3204 writeq(val64, &bar0->mdio_control);
3205 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206 writeq(val64, &bar0->mdio_control);
3212 * s2io_mdio_read - Function to write in to MDIO registers
3213 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214 * @addr : address value
3215 * @dev : pointer to net_device structure
3217 * This function is used to read values to the MDIO registers
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3224 struct s2io_nic *sp = netdev_priv(dev);
3225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3227 /* address transaction */
3228 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229 | MDIO_MMD_DEV_ADDR(mmd_type)
3230 | MDIO_MMS_PRT_ADDR(0x0);
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3236 /* Data transaction */
3238 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239 | MDIO_MMD_DEV_ADDR(mmd_type)
3240 | MDIO_MMS_PRT_ADDR(0x0)
3241 | MDIO_OP(MDIO_OP_READ_TRANS);
3242 writeq(val64, &bar0->mdio_control);
3243 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244 writeq(val64, &bar0->mdio_control);
3247 /* Read the value from regs */
3248 rval64 = readq(&bar0->mdio_control);
3249 rval64 = rval64 & 0xFFFF0000;
3250 rval64 = rval64 >> 16;
3254 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255 * @counter : couter value to be updated
3256 * @flag : flag to indicate the status
3257 * @type : counter type
3259 * This function is to check the status of the xpak counters value
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3268 for(i = 0; i <index; i++)
3273 *counter = *counter + 1;
3274 val64 = *regs_stat & mask;
3275 val64 = val64 >> (index * 0x2);
3282 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283 "service. Excessive temperatures may "
3284 "result in premature transceiver "
3288 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289 "service Excessive bias currents may "
3290 "indicate imminent laser diode "
3294 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295 "service Excessive laser output "
3296 "power may saturate far-end "
3300 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3305 val64 = val64 << (index * 0x2);
3306 *regs_stat = (*regs_stat & (~mask)) | (val64);
3309 *regs_stat = *regs_stat & (~mask);
3314 * s2io_updt_xpak_counter - Function to update the xpak counters
3315 * @dev : pointer to net_device struct
3317 * This function is to upate the status of the xpak counters value
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3328 struct s2io_nic *sp = netdev_priv(dev);
3329 struct stat_block *stat_info = sp->mac_control.stats_info;
3331 /* Check the communication with the MDIO slave */
3334 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335 if((val64 == 0xFFFF) || (val64 == 0x0000))
3337 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338 "Returned %llx\n", (unsigned long long)val64);
3342 /* Check for the expected value of control reg 1 */
3343 if(val64 != MDIO_CTRL1_SPEED10G)
3345 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3347 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3351 /* Loading the DOM register to MDIO register */
3353 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3354 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3356 /* Reading the Alarm flags */
3359 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3361 flag = CHECKBIT(val64, 0x7);
3363 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364 &stat_info->xpak_stat.xpak_regs_stat,
3367 if(CHECKBIT(val64, 0x6))
3368 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3370 flag = CHECKBIT(val64, 0x3);
3372 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373 &stat_info->xpak_stat.xpak_regs_stat,
3376 if(CHECKBIT(val64, 0x2))
3377 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3379 flag = CHECKBIT(val64, 0x1);
3381 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382 &stat_info->xpak_stat.xpak_regs_stat,
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.alarm_laser_output_power_low++;
3388 /* Reading the Warning flags */
3391 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3393 if(CHECKBIT(val64, 0x7))
3394 stat_info->xpak_stat.warn_transceiver_temp_high++;
3396 if(CHECKBIT(val64, 0x6))
3397 stat_info->xpak_stat.warn_transceiver_temp_low++;
3399 if(CHECKBIT(val64, 0x3))
3400 stat_info->xpak_stat.warn_laser_bias_current_high++;
3402 if(CHECKBIT(val64, 0x2))
3403 stat_info->xpak_stat.warn_laser_bias_current_low++;
3405 if(CHECKBIT(val64, 0x1))
3406 stat_info->xpak_stat.warn_laser_output_power_high++;
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.warn_laser_output_power_low++;
3413 * wait_for_cmd_complete - waits for a command to complete.
3414 * @sp : private member of the device structure, which is a pointer to the
3415 * s2io_nic structure.
3416 * Description: Function that waits for a command to Write into RMAC
3417 * ADDR DATA registers to be completed and returns either success or
3418 * error depending on whether the command was complete or not.
3420 * SUCCESS on success and FAILURE on failure.
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3426 int ret = FAILURE, cnt = 0, delay = 1;
3429 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3433 val64 = readq(addr);
3434 if (bit_state == S2IO_BIT_RESET) {
3435 if (!(val64 & busy_bit)) {
3440 if (!(val64 & busy_bit)) {
3457 * check_pci_device_id - Checks if the device id is supported
3459 * Description: Function to check if the pci device id is supported by driver.
3460 * Return value: Actual device id if supported else PCI_ANY_ID
3462 static u16 check_pci_device_id(u16 id)
3465 case PCI_DEVICE_ID_HERC_WIN:
3466 case PCI_DEVICE_ID_HERC_UNI:
3467 return XFRAME_II_DEVICE;
3468 case PCI_DEVICE_ID_S2IO_UNI:
3469 case PCI_DEVICE_ID_S2IO_WIN:
3470 return XFRAME_I_DEVICE;
3477 * s2io_reset - Resets the card.
3478 * @sp : private member of the device structure.
3479 * Description: Function to Reset the card. This function then also
3480 * restores the previously saved PCI configuration space registers as
3481 * the card reset also resets the configuration space.
3486 static void s2io_reset(struct s2io_nic * sp)
3488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3493 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3496 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497 __func__, sp->dev->name);
3499 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3502 val64 = SW_RESET_ALL;
3503 writeq(val64, &bar0->sw_reset);
3504 if (strstr(sp->product_name, "CX4")) {
3508 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3510 /* Restore the PCI state saved during initialization. */
3511 pci_restore_state(sp->pdev);
3512 pci_read_config_word(sp->pdev, 0x2, &val16);
3513 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3518 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3522 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3526 /* Set swapper to enable I/O register access */
3527 s2io_set_swapper(sp);
3529 /* restore mac_addr entries */
3530 do_s2io_restore_unicast_mc(sp);
3532 /* Restore the MSIX table entries from local variables */
3533 restore_xmsi_data(sp);
3535 /* Clear certain PCI/PCI-X fields after reset */
3536 if (sp->device_type == XFRAME_II_DEVICE) {
3537 /* Clear "detected parity error" bit */
3538 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3540 /* Clearing PCIX Ecc status register */
3541 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3543 /* Clearing PCI_STATUS error reflected here */
3544 writeq(s2BIT(62), &bar0->txpic_int_reg);
3547 /* Reset device statistics maintained by OS */
3548 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3550 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3570 /* SXE-002: Configure link and activity LED to turn it off */
3571 subid = sp->pdev->subsystem_device;
3572 if (((subid & 0xFF) >= 0x07) &&
3573 (sp->device_type == XFRAME_I_DEVICE)) {
3574 val64 = readq(&bar0->gpio_control);
3575 val64 |= 0x0000800000000000ULL;
3576 writeq(val64, &bar0->gpio_control);
3577 val64 = 0x0411040400000000ULL;
3578 writeq(val64, (void __iomem *)bar0 + 0x2700);
3582 * Clear spurious ECC interrupts that would have occured on
3583 * XFRAME II cards after reset.
3585 if (sp->device_type == XFRAME_II_DEVICE) {
3586 val64 = readq(&bar0->pcc_err_reg);
3587 writeq(val64, &bar0->pcc_err_reg);
3590 sp->device_enabled_once = FALSE;
3594 * s2io_set_swapper - to set the swapper controle on the card
3595 * @sp : private member of the device structure,
3596 * pointer to the s2io_nic structure.
3597 * Description: Function to set the swapper control on the card
3598 * correctly depending on the 'endianness' of the system.
3600 * SUCCESS on success and FAILURE on failure.
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3605 struct net_device *dev = sp->dev;
3606 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607 u64 val64, valt, valr;
3610 * Set proper endian settings and verify the same by reading
3611 * the PIF Feed-back register.
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 != 0x0123456789ABCDEFULL) {
3617 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3618 0x8100008181000081ULL, /* FE=1, SE=0 */
3619 0x4200004242000042ULL, /* FE=0, SE=1 */
3620 0}; /* FE=0, SE=0 */
3623 writeq(value[i], &bar0->swapper_ctrl);
3624 val64 = readq(&bar0->pif_rd_swapper_fb);
3625 if (val64 == 0x0123456789ABCDEFULL)
3630 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3632 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633 (unsigned long long) val64);
3638 valr = readq(&bar0->swapper_ctrl);
3641 valt = 0x0123456789ABCDEFULL;
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3647 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3648 0x0081810000818100ULL, /* FE=1, SE=0 */
3649 0x0042420000424200ULL, /* FE=0, SE=1 */
3650 0}; /* FE=0, SE=0 */
3653 writeq((value[i] | valr), &bar0->swapper_ctrl);
3654 writeq(valt, &bar0->xmsi_address);
3655 val64 = readq(&bar0->xmsi_address);
3661 unsigned long long x = val64;
3662 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3667 val64 = readq(&bar0->swapper_ctrl);
3668 val64 &= 0xFFFF000000000000ULL;
3672 * The device by default set to a big endian format, so a
3673 * big endian driver need not set anything.
3675 val64 |= (SWAPPER_CTRL_TXP_FE |
3676 SWAPPER_CTRL_TXP_SE |
3677 SWAPPER_CTRL_TXD_R_FE |
3678 SWAPPER_CTRL_TXD_W_FE |
3679 SWAPPER_CTRL_TXF_R_FE |
3680 SWAPPER_CTRL_RXD_R_FE |
3681 SWAPPER_CTRL_RXD_W_FE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685 if (sp->config.intr_type == INTA)
3686 val64 |= SWAPPER_CTRL_XMSI_SE;
3687 writeq(val64, &bar0->swapper_ctrl);
3690 * Initially we enable all bits to make it accessible by the
3691 * driver, then we selectively enable only those bits that
3694 val64 |= (SWAPPER_CTRL_TXP_FE |
3695 SWAPPER_CTRL_TXP_SE |
3696 SWAPPER_CTRL_TXD_R_FE |
3697 SWAPPER_CTRL_TXD_R_SE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXD_W_SE |
3700 SWAPPER_CTRL_TXF_R_FE |
3701 SWAPPER_CTRL_RXD_R_FE |
3702 SWAPPER_CTRL_RXD_R_SE |
3703 SWAPPER_CTRL_RXD_W_FE |
3704 SWAPPER_CTRL_RXD_W_SE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708 if (sp->config.intr_type == INTA)
3709 val64 |= SWAPPER_CTRL_XMSI_SE;
3710 writeq(val64, &bar0->swapper_ctrl);
3712 val64 = readq(&bar0->swapper_ctrl);
3715 * Verifying if endian settings are accurate by reading a
3716 * feedback register.
3718 val64 = readq(&bar0->pif_rd_swapper_fb);
3719 if (val64 != 0x0123456789ABCDEFULL) {
3720 /* Endian settings are incorrect, calls for another dekko. */
3721 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3723 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724 (unsigned long long) val64);
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3733 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735 int ret = 0, cnt = 0;
3738 val64 = readq(&bar0->xmsi_access);
3739 if (!(val64 & s2BIT(15)))
3745 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3759 if (nic->device_type == XFRAME_I_DEVICE)
3762 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767 writeq(val64, &bar0->xmsi_access);
3768 if (wait_for_msix_trans(nic, msix_index)) {
3769 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3775 static void store_xmsi_data(struct s2io_nic *nic)
3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778 u64 val64, addr, data;
3781 if (nic->device_type == XFRAME_I_DEVICE)
3784 /* Store and display */
3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788 writeq(val64, &bar0->xmsi_access);
3789 if (wait_for_msix_trans(nic, msix_index)) {
3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3793 addr = readq(&bar0->xmsi_address);
3794 data = readq(&bar0->xmsi_data);
3796 nic->msix_info[i].addr = addr;
3797 nic->msix_info[i].data = data;
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3804 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3806 u16 msi_control; /* Temp variable */
3807 int ret, i, j, msix_indx = 1;
3809 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3811 if (!nic->entries) {
3812 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3814 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3817 nic->mac_control.stats_info->sw_stat.mem_allocated
3818 += (nic->num_entries * sizeof(struct msix_entry));
3820 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3823 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3825 if (!nic->s2io_entries) {
3826 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3828 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829 kfree(nic->entries);
3830 nic->mac_control.stats_info->sw_stat.mem_freed
3831 += (nic->num_entries * sizeof(struct msix_entry));
3834 nic->mac_control.stats_info->sw_stat.mem_allocated
3835 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836 memset(nic->s2io_entries, 0,
3837 nic->num_entries * sizeof(struct s2io_msix_entry));
3839 nic->entries[0].entry = 0;
3840 nic->s2io_entries[0].entry = 0;
3841 nic->s2io_entries[0].in_use = MSIX_FLG;
3842 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3845 for (i = 1; i < nic->num_entries; i++) {
3846 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848 nic->s2io_entries[i].arg = NULL;
3849 nic->s2io_entries[i].in_use = 0;
3852 rx_mat = readq(&bar0->rx_mat);
3853 for (j = 0; j < nic->config.rx_ring_num; j++) {
3854 rx_mat |= RX_MAT_SET(j, msix_indx);
3855 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3860 writeq(rx_mat, &bar0->rx_mat);
3861 readq(&bar0->rx_mat);
3863 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864 /* We fail init if error or we get less vectors than min required */
3866 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3867 kfree(nic->entries);
3868 nic->mac_control.stats_info->sw_stat.mem_freed
3869 += (nic->num_entries * sizeof(struct msix_entry));
3870 kfree(nic->s2io_entries);
3871 nic->mac_control.stats_info->sw_stat.mem_freed
3872 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873 nic->entries = NULL;
3874 nic->s2io_entries = NULL;
3879 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880 * in the herc NIC. (Temp change, needs to be removed later)
3882 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883 msi_control |= 0x1; /* Enable MSI */
3884 pci_write_config_word(nic->pdev, 0x42, msi_control);
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3892 struct s2io_nic *sp = dev_id;
3894 sp->msi_detected = 1;
3895 wake_up(&sp->msi_wait);
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3903 struct pci_dev *pdev = sp->pdev;
3904 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3908 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3911 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912 sp->dev->name, pci_name(pdev), pdev->irq);
3916 init_waitqueue_head (&sp->msi_wait);
3917 sp->msi_detected = 0;
3919 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921 val64 |= SCHED_INT_CTRL_TIMER_EN;
3922 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923 writeq(val64, &bar0->scheduled_int_ctrl);
3925 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3927 if (!sp->msi_detected) {
3928 /* MSI(X) test failed, go back to INTx mode */
3929 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930 "using MSI(X) during test\n", sp->dev->name,
3936 free_irq(sp->entries[1].vector, sp);
3938 writeq(saved64, &bar0->scheduled_int_ctrl);
3943 static void remove_msix_isr(struct s2io_nic *sp)
3948 for (i = 0; i < sp->num_entries; i++) {
3949 if (sp->s2io_entries[i].in_use ==
3950 MSIX_REGISTERED_SUCCESS) {
3951 int vector = sp->entries[i].vector;
3952 void *arg = sp->s2io_entries[i].arg;
3953 free_irq(vector, arg);
3958 kfree(sp->s2io_entries);
3960 sp->s2io_entries = NULL;
3962 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963 msi_control &= 0xFFFE; /* Disable MSI */
3964 pci_write_config_word(sp->pdev, 0x42, msi_control);
3966 pci_disable_msix(sp->pdev);
3969 static void remove_inta_isr(struct s2io_nic *sp)
3971 struct net_device *dev = sp->dev;
3973 free_irq(sp->pdev->irq, dev);
3976 /* ********************************************************* *
3977 * Functions defined below concern the OS part of the driver *
3978 * ********************************************************* */
3981 * s2io_open - open entry point of the driver
3982 * @dev : pointer to the device structure.
3984 * This function is the open entry point of the driver. It mainly calls a
3985 * function to allocate Rx buffers and inserts them into the buffer
3986 * descriptors and then enables the Rx part of the NIC.
3988 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3992 static int s2io_open(struct net_device *dev)
3994 struct s2io_nic *sp = netdev_priv(dev);
3998 * Make sure you have link off by default every time
3999 * Nic is initialized
4001 netif_carrier_off(dev);
4002 sp->last_link_state = 0;
4004 /* Initialize H/W and enable interrupts */
4005 err = s2io_card_up(sp);
4007 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4009 goto hw_init_failed;
4012 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4016 goto hw_init_failed;
4018 s2io_start_all_tx_queue(sp);
4022 if (sp->config.intr_type == MSI_X) {
4025 sp->mac_control.stats_info->sw_stat.mem_freed
4026 += (sp->num_entries * sizeof(struct msix_entry));
4028 if (sp->s2io_entries) {
4029 kfree(sp->s2io_entries);
4030 sp->mac_control.stats_info->sw_stat.mem_freed
4031 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4038 * s2io_close -close entry point of the driver
4039 * @dev : device pointer.
4041 * This is the stop entry point of the driver. It needs to undo exactly
4042 * whatever was done by the open entry point,thus it's usually referred to
4043 * as the close function.Among other things this function mainly stops the
4044 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4046 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4050 static int s2io_close(struct net_device *dev)
4052 struct s2io_nic *sp = netdev_priv(dev);
4053 struct config_param *config = &sp->config;
4057 /* Return if the device is already closed *
4058 * Can happen when s2io_card_up failed in change_mtu *
4060 if (!is_s2io_card_up(sp))
4063 s2io_stop_all_tx_queue(sp);
4064 /* delete all populated mac entries */
4065 for (offset = 1; offset < config->max_mc_addr; offset++) {
4066 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068 do_s2io_delete_unicast_mc(sp, tmp64);
4077 * s2io_xmit - Tx entry point of te driver
4078 * @skb : the socket buffer containing the Tx data.
4079 * @dev : device pointer.
4081 * This function is the Tx entry point of the driver. S2IO NIC supports
4082 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4083 * NOTE: when device cant queue the pkt,just the trans_start variable will
4086 * 0 on success & 1 on failure.
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4091 struct s2io_nic *sp = netdev_priv(dev);
4092 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4095 struct TxFIFO_element __iomem *tx_fifo;
4096 unsigned long flags = 0;
4098 struct fifo_info *fifo = NULL;
4099 struct mac_info *mac_control;
4100 struct config_param *config;
4101 int do_spin_lock = 1;
4103 int enable_per_list_interrupt = 0;
4104 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4106 mac_control = &sp->mac_control;
4107 config = &sp->config;
4109 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4111 if (unlikely(skb->len <= 0)) {
4112 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113 dev_kfree_skb_any(skb);
4117 if (!is_s2io_card_up(sp)) {
4118 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4125 if (sp->vlgrp && vlan_tx_tag_present(skb))
4126 vlan_tag = vlan_tx_tag_get(skb);
4127 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128 if (skb->protocol == htons(ETH_P_IP)) {
4133 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134 th = (struct tcphdr *)(((unsigned char *)ip) +
4137 if (ip->protocol == IPPROTO_TCP) {
4138 queue_len = sp->total_tcp_fifos;
4139 queue = (ntohs(th->source) +
4141 sp->fifo_selector[queue_len - 1];
4142 if (queue >= queue_len)
4143 queue = queue_len - 1;
4144 } else if (ip->protocol == IPPROTO_UDP) {
4145 queue_len = sp->total_udp_fifos;
4146 queue = (ntohs(th->source) +
4148 sp->fifo_selector[queue_len - 1];
4149 if (queue >= queue_len)
4150 queue = queue_len - 1;
4151 queue += sp->udp_fifo_idx;
4152 if (skb->len > 1024)
4153 enable_per_list_interrupt = 1;
4158 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159 /* get fifo number based on skb->priority value */
4160 queue = config->fifo_mapping
4161 [skb->priority & (MAX_TX_FIFOS - 1)];
4162 fifo = &mac_control->fifos[queue];
4165 spin_lock_irqsave(&fifo->tx_lock, flags);
4167 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168 return NETDEV_TX_LOCKED;
4171 if (sp->config.multiq) {
4172 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174 return NETDEV_TX_BUSY;
4176 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4198 offload_type = s2io_offload_type(skb);
4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4219 frg_len = skb->len - skb->data_len;
4220 if (offload_type == SKB_GSO_UDP) {
4223 ufo_size = s2io_udp_mss(skb);
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo->ufo_in_band_v[put_off] =
4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4233 fifo->ufo_in_band_v[put_off] =
4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238 fifo->ufo_in_band_v,
4239 sizeof(u64), PCI_DMA_TODEVICE);
4240 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241 goto pci_map_failed;
4245 txdp->Buffer_Pointer = pci_map_single
4246 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248 goto pci_map_failed;
4250 txdp->Host_Control = (unsigned long) skb;
4251 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252 if (offload_type == SKB_GSO_UDP)
4253 txdp->Control_1 |= TXD_UFO_EN;
4255 frg_cnt = skb_shinfo(skb)->nr_frags;
4256 /* For fragmented SKB. */
4257 for (i = 0; i < frg_cnt; i++) {
4258 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259 /* A '0' length fragment will be ignored */
4263 txdp->Buffer_Pointer = (u64) pci_map_page
4264 (sp->pdev, frag->page, frag->page_offset,
4265 frag->size, PCI_DMA_TODEVICE);
4266 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267 if (offload_type == SKB_GSO_UDP)
4268 txdp->Control_1 |= TXD_UFO_EN;
4270 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4272 if (offload_type == SKB_GSO_UDP)
4273 frg_cnt++; /* as Txd0 was used for inband header */
4275 tx_fifo = mac_control->tx_FIFO_start[queue];
4276 val64 = fifo->list_info[put_off].list_phy_addr;
4277 writeq(val64, &tx_fifo->TxDL_Pointer);
4279 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4282 val64 |= TX_FIFO_SPECIAL_FUNC;
4284 writeq(val64, &tx_fifo->List_Control);
4289 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4291 fifo->tx_curr_put_info.offset = put_off;
4293 /* Avoid "put" pointer going beyond "get" pointer */
4294 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4297 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
4301 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302 dev->trans_start = jiffies;
4303 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4305 if (sp->config.intr_type == MSI_X)
4306 tx_intr_handler(fifo);
4310 stats->pci_map_fail_cnt++;
4311 s2io_stop_tx_queue(sp, fifo->fifo_no);
4312 stats->mem_freed += skb->truesize;
4314 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4319 s2io_alarm_handle(unsigned long data)
4321 struct s2io_nic *sp = (struct s2io_nic *)data;
4322 struct net_device *dev = sp->dev;
4324 s2io_handle_errors(dev);
4325 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4328 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4330 struct ring_info *ring = (struct ring_info *)dev_id;
4331 struct s2io_nic *sp = ring->nic;
4332 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4334 if (unlikely(!is_s2io_card_up(sp)))
4337 if (sp->config.napi) {
4338 u8 __iomem *addr = NULL;
4341 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4342 addr += (7 - ring->ring_no);
4343 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4346 napi_schedule(&ring->napi);
4348 rx_intr_handler(ring, 0);
4349 s2io_chk_rx_buffers(sp, ring);
4355 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4358 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4359 struct s2io_nic *sp = fifos->nic;
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct config_param *config = &sp->config;
4364 if (unlikely(!is_s2io_card_up(sp)))
4367 reason = readq(&bar0->general_int_status);
4368 if (unlikely(reason == S2IO_MINUS_ONE))
4369 /* Nothing much can be done. Get out */
4372 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4373 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4375 if (reason & GEN_INTR_TXPIC)
4376 s2io_txpic_intr_handle(sp);
4378 if (reason & GEN_INTR_TXTRAFFIC)
4379 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4381 for (i = 0; i < config->tx_fifo_num; i++)
4382 tx_intr_handler(&fifos[i]);
4384 writeq(sp->general_int_mask, &bar0->general_int_mask);
4385 readl(&bar0->general_int_status);
4388 /* The interrupt was not raised by us */
4392 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4394 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4397 val64 = readq(&bar0->pic_int_status);
4398 if (val64 & PIC_INT_GPIO) {
4399 val64 = readq(&bar0->gpio_int_reg);
4400 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4401 (val64 & GPIO_INT_REG_LINK_UP)) {
4403 * This is unstable state so clear both up/down
4404 * interrupt and adapter to re-evaluate the link state.
4406 val64 |= GPIO_INT_REG_LINK_DOWN;
4407 val64 |= GPIO_INT_REG_LINK_UP;
4408 writeq(val64, &bar0->gpio_int_reg);
4409 val64 = readq(&bar0->gpio_int_mask);
4410 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4411 GPIO_INT_MASK_LINK_DOWN);
4412 writeq(val64, &bar0->gpio_int_mask);
4414 else if (val64 & GPIO_INT_REG_LINK_UP) {
4415 val64 = readq(&bar0->adapter_status);
4416 /* Enable Adapter */
4417 val64 = readq(&bar0->adapter_control);
4418 val64 |= ADAPTER_CNTL_EN;
4419 writeq(val64, &bar0->adapter_control);
4420 val64 |= ADAPTER_LED_ON;
4421 writeq(val64, &bar0->adapter_control);
4422 if (!sp->device_enabled_once)
4423 sp->device_enabled_once = 1;
4425 s2io_link(sp, LINK_UP);
4427 * unmask link down interrupt and mask link-up
4430 val64 = readq(&bar0->gpio_int_mask);
4431 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4432 val64 |= GPIO_INT_MASK_LINK_UP;
4433 writeq(val64, &bar0->gpio_int_mask);
4435 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4436 val64 = readq(&bar0->adapter_status);
4437 s2io_link(sp, LINK_DOWN);
4438 /* Link is down so unmaks link up interrupt */
4439 val64 = readq(&bar0->gpio_int_mask);
4440 val64 &= ~GPIO_INT_MASK_LINK_UP;
4441 val64 |= GPIO_INT_MASK_LINK_DOWN;
4442 writeq(val64, &bar0->gpio_int_mask);
4445 val64 = readq(&bar0->adapter_control);
4446 val64 = val64 &(~ADAPTER_LED_ON);
4447 writeq(val64, &bar0->adapter_control);
4450 val64 = readq(&bar0->gpio_int_mask);
4454 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455 * @value: alarm bits
4456 * @addr: address value
4457 * @cnt: counter variable
4458 * Description: Check for alarm and increment the counter
4460 * 1 - if alarm bit set
4461 * 0 - if alarm bit is not set
4463 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4464 unsigned long long *cnt)
4467 val64 = readq(addr);
4468 if ( val64 & value ) {
4469 writeq(val64, addr);
4478 * s2io_handle_errors - Xframe error indication handler
4479 * @nic: device private variable
4480 * Description: Handle alarms such as loss of link, single or
4481 * double ECC errors, critical and serious errors.
4485 static void s2io_handle_errors(void * dev_id)
4487 struct net_device *dev = (struct net_device *) dev_id;
4488 struct s2io_nic *sp = netdev_priv(dev);
4489 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4490 u64 temp64 = 0,val64=0;
4493 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4494 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4496 if (!is_s2io_card_up(sp))
4499 if (pci_channel_offline(sp->pdev))
4502 memset(&sw_stat->ring_full_cnt, 0,
4503 sizeof(sw_stat->ring_full_cnt));
4505 /* Handling the XPAK counters update */
4506 if(stats->xpak_timer_count < 72000) {
4507 /* waiting for an hour */
4508 stats->xpak_timer_count++;
4510 s2io_updt_xpak_counter(dev);
4511 /* reset the count to zero */
4512 stats->xpak_timer_count = 0;
4515 /* Handling link status change error Intr */
4516 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4517 val64 = readq(&bar0->mac_rmac_err_reg);
4518 writeq(val64, &bar0->mac_rmac_err_reg);
4519 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4520 schedule_work(&sp->set_link_task);
4523 /* In case of a serious error, the device will be Reset. */
4524 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4525 &sw_stat->serious_err_cnt))
4528 /* Check for data parity error */
4529 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4530 &sw_stat->parity_err_cnt))
4533 /* Check for ring full counter */
4534 if (sp->device_type == XFRAME_II_DEVICE) {
4535 val64 = readq(&bar0->ring_bump_counter1);
4536 for (i=0; i<4; i++) {
4537 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4538 temp64 >>= 64 - ((i+1)*16);
4539 sw_stat->ring_full_cnt[i] += temp64;
4542 val64 = readq(&bar0->ring_bump_counter2);
4543 for (i=0; i<4; i++) {
4544 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4545 temp64 >>= 64 - ((i+1)*16);
4546 sw_stat->ring_full_cnt[i+4] += temp64;
4550 val64 = readq(&bar0->txdma_int_status);
4551 /*check for pfc_err*/
4552 if (val64 & TXDMA_PFC_INT) {
4553 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4554 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4555 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4556 &sw_stat->pfc_err_cnt))
4558 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt);
4562 /*check for tda_err*/
4563 if (val64 & TXDMA_TDA_INT) {
4564 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4565 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4566 &sw_stat->tda_err_cnt))
4568 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4569 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4571 /*check for pcc_err*/
4572 if (val64 & TXDMA_PCC_INT) {
4573 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4574 | PCC_N_SERR | PCC_6_COF_OV_ERR
4575 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4576 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4577 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4578 &sw_stat->pcc_err_cnt))
4580 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4581 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4584 /*check for tti_err*/
4585 if (val64 & TXDMA_TTI_INT) {
4586 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4587 &sw_stat->tti_err_cnt))
4589 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4590 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4593 /*check for lso_err*/
4594 if (val64 & TXDMA_LSO_INT) {
4595 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4596 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4597 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4599 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4603 /*check for tpa_err*/
4604 if (val64 & TXDMA_TPA_INT) {
4605 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt))
4608 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4626 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4645 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4646 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4649 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt);
4651 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4652 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4653 &sw_stat->prc_pcix_err_cnt))
4655 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4656 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4657 &sw_stat->prc_pcix_err_cnt);
4660 if (val64 & RXDMA_INT_RPA_INT_M) {
4661 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4662 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4664 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4668 if (val64 & RXDMA_INT_RDA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4671 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4672 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4674 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4675 | RDA_MISC_ERR | RDA_PCIX_ERR,
4676 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4679 if (val64 & RXDMA_INT_RTI_INT_M) {
4680 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4681 &sw_stat->rti_err_cnt))
4683 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4684 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4687 val64 = readq(&bar0->mac_int_status);
4688 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4689 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4690 &bar0->mac_rmac_err_reg,
4691 &sw_stat->mac_rmac_err_cnt))
4693 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4694 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4695 &sw_stat->mac_rmac_err_cnt);
4698 val64 = readq(&bar0->xgxs_int_status);
4699 if (val64 & XGXS_INT_STATUS_RXGXS) {
4700 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4701 &bar0->xgxs_rxgxs_err_reg,
4702 &sw_stat->xgxs_rxgxs_err_cnt))
4706 val64 = readq(&bar0->mc_int_status);
4707 if(val64 & MC_INT_STATUS_MC_INT) {
4708 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4709 &sw_stat->mc_err_cnt))
4712 /* Handling Ecc errors */
4713 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4714 writeq(val64, &bar0->mc_err_reg);
4715 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4716 sw_stat->double_ecc_errs++;
4717 if (sp->device_type != XFRAME_II_DEVICE) {
4719 * Reset XframeI only if critical error
4722 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4723 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4727 sw_stat->single_ecc_errs++;
4733 s2io_stop_all_tx_queue(sp);
4734 schedule_work(&sp->rst_timer_task);
4735 sw_stat->soft_reset_cnt++;
4740 * s2io_isr - ISR handler of the device .
4741 * @irq: the irq of the device.
4742 * @dev_id: a void pointer to the dev structure of the NIC.
4743 * Description: This function is the ISR handler of the device. It
4744 * identifies the reason for the interrupt and calls the relevant
4745 * service routines. As a contongency measure, this ISR allocates the
4746 * recv buffers, if their numbers are below the panic value which is
4747 * presently set to 25% of the original number of rcv buffers allocated.
4749 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4750 * IRQ_NONE: will be returned if interrupt is not from our device
4752 static irqreturn_t s2io_isr(int irq, void *dev_id)
4754 struct net_device *dev = (struct net_device *) dev_id;
4755 struct s2io_nic *sp = netdev_priv(dev);
4756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4759 struct mac_info *mac_control;
4760 struct config_param *config;
4762 /* Pretend we handled any irq's from a disconnected card */
4763 if (pci_channel_offline(sp->pdev))
4766 if (!is_s2io_card_up(sp))
4769 mac_control = &sp->mac_control;
4770 config = &sp->config;
4773 * Identify the cause for interrupt and call the appropriate
4774 * interrupt handler. Causes for the interrupt could be;
4779 reason = readq(&bar0->general_int_status);
4781 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4782 /* Nothing much can be done. Get out */
4786 if (reason & (GEN_INTR_RXTRAFFIC |
4787 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4789 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4792 if (reason & GEN_INTR_RXTRAFFIC) {
4793 napi_schedule(&sp->napi);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4795 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4796 readl(&bar0->rx_traffic_int);
4800 * rx_traffic_int reg is an R1 register, writing all 1's
4801 * will ensure that the actual interrupt causing bit
4802 * get's cleared and hence a read can be avoided.
4804 if (reason & GEN_INTR_RXTRAFFIC)
4805 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4807 for (i = 0; i < config->rx_ring_num; i++)
4808 rx_intr_handler(&mac_control->rings[i], 0);
4812 * tx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit get's
4814 * cleared and hence a read can be avoided.
4816 if (reason & GEN_INTR_TXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4819 for (i = 0; i < config->tx_fifo_num; i++)
4820 tx_intr_handler(&mac_control->fifos[i]);
4822 if (reason & GEN_INTR_TXPIC)
4823 s2io_txpic_intr_handle(sp);
4826 * Reallocate the buffers from the interrupt handler itself.
4828 if (!config->napi) {
4829 for (i = 0; i < config->rx_ring_num; i++)
4830 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4832 writeq(sp->general_int_mask, &bar0->general_int_mask);
4833 readl(&bar0->general_int_status);
4839 /* The interrupt was not raised by us */
4849 static void s2io_updt_stats(struct s2io_nic *sp)
4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4855 if (is_s2io_card_up(sp)) {
4856 /* Apprx 30us on a 133 MHz bus */
4857 val64 = SET_UPDT_CLICKS(10) |
4858 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4859 writeq(val64, &bar0->stat_cfg);
4862 val64 = readq(&bar0->stat_cfg);
4863 if (!(val64 & s2BIT(0)))
4867 break; /* Updt failed */
4873 * s2io_get_stats - Updates the device statistics structure.
4874 * @dev : pointer to the device structure.
4876 * This function updates the device statistics structure in the s2io_nic
4877 * structure and returns a pointer to the same.
4879 * pointer to the updated net_device_stats structure.
4882 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4884 struct s2io_nic *sp = netdev_priv(dev);
4885 struct mac_info *mac_control;
4886 struct config_param *config;
4890 mac_control = &sp->mac_control;
4891 config = &sp->config;
4893 /* Configure Stats for immediate updt */
4894 s2io_updt_stats(sp);
4896 /* Using sp->stats as a staging area, because reset (due to mtu
4897 change, for example) will clear some hardware counters */
4898 dev->stats.tx_packets +=
4899 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4900 sp->stats.tx_packets;
4901 sp->stats.tx_packets =
4902 le32_to_cpu(mac_control->stats_info->tmac_frms);
4903 dev->stats.tx_errors +=
4904 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4905 sp->stats.tx_errors;
4906 sp->stats.tx_errors =
4907 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4908 dev->stats.rx_errors +=
4909 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4910 sp->stats.rx_errors;
4911 sp->stats.rx_errors =
4912 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4913 dev->stats.multicast =
4914 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4915 sp->stats.multicast;
4916 sp->stats.multicast =
4917 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4918 dev->stats.rx_length_errors =
4919 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4920 sp->stats.rx_length_errors;
4921 sp->stats.rx_length_errors =
4922 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4924 /* collect per-ring rx_packets and rx_bytes */
4925 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4926 for (i = 0; i < config->rx_ring_num; i++) {
4927 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4928 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4931 return (&dev->stats);
4935 * s2io_set_multicast - entry point for multicast address enable/disable.
4936 * @dev : pointer to the device structure
4938 * This function is a driver entry point which gets called by the kernel
4939 * whenever multicast addresses must be enabled/disabled. This also gets
4940 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4941 * determine, if multicast address must be enabled or if promiscuous mode
4942 * is to be disabled etc.
4947 static void s2io_set_multicast(struct net_device *dev)
4950 struct dev_mc_list *mclist;
4951 struct s2io_nic *sp = netdev_priv(dev);
4952 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4953 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4955 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4957 struct config_param *config = &sp->config;
4959 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4960 /* Enable all Multicast addresses */
4961 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4962 &bar0->rmac_addr_data0_mem);
4963 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4964 &bar0->rmac_addr_data1_mem);
4965 val64 = RMAC_ADDR_CMD_MEM_WE |
4966 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4967 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4968 writeq(val64, &bar0->rmac_addr_cmd_mem);
4969 /* Wait till command completes */
4970 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4971 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4975 sp->all_multi_pos = config->max_mc_addr - 1;
4976 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4977 /* Disable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4979 &bar0->rmac_addr_data0_mem);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981 &bar0->rmac_addr_data1_mem);
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4992 sp->all_multi_pos = 0;
4995 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4996 /* Put the NIC into promiscuous mode */
4997 add = &bar0->mac_cfg;
4998 val64 = readq(&bar0->mac_cfg);
4999 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5001 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5002 writel((u32) val64, add);
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004 writel((u32) (val64 >> 32), (add + 4));
5006 if (vlan_tag_strip != 1) {
5007 val64 = readq(&bar0->rx_pa_cfg);
5008 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5009 writeq(val64, &bar0->rx_pa_cfg);
5010 sp->vlan_strip_flag = 0;
5013 val64 = readq(&bar0->mac_cfg);
5014 sp->promisc_flg = 1;
5015 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5017 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5018 /* Remove the NIC from promiscuous mode */
5019 add = &bar0->mac_cfg;
5020 val64 = readq(&bar0->mac_cfg);
5021 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5023 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5024 writel((u32) val64, add);
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5026 writel((u32) (val64 >> 32), (add + 4));
5028 if (vlan_tag_strip != 0) {
5029 val64 = readq(&bar0->rx_pa_cfg);
5030 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5031 writeq(val64, &bar0->rx_pa_cfg);
5032 sp->vlan_strip_flag = 1;
5035 val64 = readq(&bar0->mac_cfg);
5036 sp->promisc_flg = 0;
5037 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5041 /* Update individual M_CAST address list */
5042 if ((!sp->m_cast_flg) && dev->mc_count) {
5044 (config->max_mc_addr - config->max_mac_addr)) {
5045 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5047 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5048 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5052 prev_cnt = sp->mc_addr_count;
5053 sp->mc_addr_count = dev->mc_count;
5055 /* Clear out the previous list of Mc in the H/W. */
5056 for (i = 0; i < prev_cnt; i++) {
5057 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5058 &bar0->rmac_addr_data0_mem);
5059 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5060 &bar0->rmac_addr_data1_mem);
5061 val64 = RMAC_ADDR_CMD_MEM_WE |
5062 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5063 RMAC_ADDR_CMD_MEM_OFFSET
5064 (config->mc_start_offset + i);
5065 writeq(val64, &bar0->rmac_addr_cmd_mem);
5067 /* Wait for command completes */
5068 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5069 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5071 DBG_PRINT(ERR_DBG, "%s: Adding ",
5073 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5078 /* Create the new Rx filter list and update the same in H/W. */
5079 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5080 i++, mclist = mclist->next) {
5081 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5084 for (j = 0; j < ETH_ALEN; j++) {
5085 mac_addr |= mclist->dmi_addr[j];
5089 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5090 &bar0->rmac_addr_data0_mem);
5091 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5092 &bar0->rmac_addr_data1_mem);
5093 val64 = RMAC_ADDR_CMD_MEM_WE |
5094 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5095 RMAC_ADDR_CMD_MEM_OFFSET
5096 (i + config->mc_start_offset);
5097 writeq(val64, &bar0->rmac_addr_cmd_mem);
5099 /* Wait for command completes */
5100 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5101 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5103 DBG_PRINT(ERR_DBG, "%s: Adding ",
5105 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5112 /* read from CAM unicast & multicast addresses and store it in
5113 * def_mac_addr structure
5115 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5119 struct config_param *config = &sp->config;
5121 /* store unicast & multicast mac addresses */
5122 for (offset = 0; offset < config->max_mc_addr; offset++) {
5123 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5124 /* if read fails disable the entry */
5125 if (mac_addr == FAILURE)
5126 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5127 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5131 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5135 struct config_param *config = &sp->config;
5136 /* restore unicast mac address */
5137 for (offset = 0; offset < config->max_mac_addr; offset++)
5138 do_s2io_prog_unicast(sp->dev,
5139 sp->def_mac_addr[offset].mac_addr);
5141 /* restore multicast mac address */
5142 for (offset = config->mc_start_offset;
5143 offset < config->max_mc_addr; offset++)
5144 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5147 /* add a multicast MAC address to CAM */
5148 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5152 struct config_param *config = &sp->config;
5154 for (i = 0; i < ETH_ALEN; i++) {
5156 mac_addr |= addr[i];
5158 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5161 /* check if the multicast mac already preset in CAM */
5162 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5164 tmp64 = do_s2io_read_unicast_mc(sp, i);
5165 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5168 if (tmp64 == mac_addr)
5171 if (i == config->max_mc_addr) {
5173 "CAM full no space left for multicast MAC\n");
5176 /* Update the internal structure with this new mac address */
5177 do_s2io_copy_mac_addr(sp, i, mac_addr);
5179 return (do_s2io_add_mac(sp, mac_addr, i));
5182 /* add MAC address to CAM */
5183 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5188 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5189 &bar0->rmac_addr_data0_mem);
5192 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5193 RMAC_ADDR_CMD_MEM_OFFSET(off);
5194 writeq(val64, &bar0->rmac_addr_cmd_mem);
5196 /* Wait till command completes */
5197 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5198 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5200 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5205 /* deletes a specified unicast/multicast mac entry from CAM */
5206 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5209 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5210 struct config_param *config = &sp->config;
5213 offset < config->max_mc_addr; offset++) {
5214 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5215 if (tmp64 == addr) {
5216 /* disable the entry by writing 0xffffffffffffULL */
5217 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5219 /* store the new mac list from CAM */
5220 do_s2io_store_unicast_mc(sp);
5224 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5225 (unsigned long long)addr);
5229 /* read mac entries from CAM */
5230 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5232 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5237 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5238 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5239 writeq(val64, &bar0->rmac_addr_cmd_mem);
5241 /* Wait till command completes */
5242 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5243 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5245 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5248 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5249 return (tmp64 >> 16);
5253 * s2io_set_mac_addr driver entry point
5256 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5258 struct sockaddr *addr = p;
5260 if (!is_valid_ether_addr(addr->sa_data))
5263 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5265 /* store the MAC address in CAM */
5266 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5269 * do_s2io_prog_unicast - Programs the Xframe mac address
5270 * @dev : pointer to the device structure.
5271 * @addr: a uchar pointer to the new mac address which is to be set.
5272 * Description : This procedure will program the Xframe to receive
5273 * frames with new Mac Address
5274 * Return value: SUCCESS on success and an appropriate (-)ve integer
5275 * as defined in errno.h file on failure.
5278 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5280 struct s2io_nic *sp = netdev_priv(dev);
5281 register u64 mac_addr = 0, perm_addr = 0;
5284 struct config_param *config = &sp->config;
5287 * Set the new MAC address as the new unicast filter and reflect this
5288 * change on the device address registered with the OS. It will be
5291 for (i = 0; i < ETH_ALEN; i++) {
5293 mac_addr |= addr[i];
5295 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5298 /* check if the dev_addr is different than perm_addr */
5299 if (mac_addr == perm_addr)
5302 /* check if the mac already preset in CAM */
5303 for (i = 1; i < config->max_mac_addr; i++) {
5304 tmp64 = do_s2io_read_unicast_mc(sp, i);
5305 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5308 if (tmp64 == mac_addr) {
5310 "MAC addr:0x%llx already present in CAM\n",
5311 (unsigned long long)mac_addr);
5315 if (i == config->max_mac_addr) {
5316 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5319 /* Update the internal structure with this new mac address */
5320 do_s2io_copy_mac_addr(sp, i, mac_addr);
5321 return (do_s2io_add_mac(sp, mac_addr, i));
5325 * s2io_ethtool_sset - Sets different link parameters.
5326 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5327 * @info: pointer to the structure with parameters given by ethtool to set
5330 * The function sets different link parameters provided by the user onto
5336 static int s2io_ethtool_sset(struct net_device *dev,
5337 struct ethtool_cmd *info)
5339 struct s2io_nic *sp = netdev_priv(dev);
5340 if ((info->autoneg == AUTONEG_ENABLE) ||
5341 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5344 s2io_close(sp->dev);
5352 * s2io_ethtol_gset - Return link specific information.
5353 * @sp : private member of the device structure, pointer to the
5354 * s2io_nic structure.
5355 * @info : pointer to the structure with parameters given by ethtool
5356 * to return link information.
5358 * Returns link specific information like speed, duplex etc.. to ethtool.
5360 * return 0 on success.
5363 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5365 struct s2io_nic *sp = netdev_priv(dev);
5366 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368 info->port = PORT_FIBRE;
5370 /* info->transceiver */
5371 info->transceiver = XCVR_EXTERNAL;
5373 if (netif_carrier_ok(sp->dev)) {
5374 info->speed = 10000;
5375 info->duplex = DUPLEX_FULL;
5381 info->autoneg = AUTONEG_DISABLE;
5386 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387 * @sp : private member of the device structure, which is a pointer to the
5388 * s2io_nic structure.
5389 * @info : pointer to the structure with parameters given by ethtool to
5390 * return driver information.
5392 * Returns driver specefic information like name, version etc.. to ethtool.
5397 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5398 struct ethtool_drvinfo *info)
5400 struct s2io_nic *sp = netdev_priv(dev);
5402 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5403 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5404 strncpy(info->fw_version, "", sizeof(info->fw_version));
5405 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5406 info->regdump_len = XENA_REG_SPACE;
5407 info->eedump_len = XENA_EEPROM_SPACE;
5411 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5412 * @sp: private member of the device structure, which is a pointer to the
5413 * s2io_nic structure.
5414 * @regs : pointer to the structure with parameters given by ethtool for
5415 * dumping the registers.
5416 * @reg_space: The input argumnet into which all the registers are dumped.
5418 * Dumps the entire register space of xFrame NIC into the user given
5424 static void s2io_ethtool_gregs(struct net_device *dev,
5425 struct ethtool_regs *regs, void *space)
5429 u8 *reg_space = (u8 *) space;
5430 struct s2io_nic *sp = netdev_priv(dev);
5432 regs->len = XENA_REG_SPACE;
5433 regs->version = sp->pdev->subsystem_device;
5435 for (i = 0; i < regs->len; i += 8) {
5436 reg = readq(sp->bar0 + i);
5437 memcpy((reg_space + i), ®, 8);
5442 * s2io_phy_id - timer function that alternates adapter LED.
5443 * @data : address of the private member of the device structure, which
5444 * is a pointer to the s2io_nic structure, provided as an u32.
5445 * Description: This is actually the timer function that alternates the
5446 * adapter LED bit of the adapter control bit to set/reset every time on
5447 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5448 * once every second.
5450 static void s2io_phy_id(unsigned long data)
5452 struct s2io_nic *sp = (struct s2io_nic *) data;
5453 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5457 subid = sp->pdev->subsystem_device;
5458 if ((sp->device_type == XFRAME_II_DEVICE) ||
5459 ((subid & 0xFF) >= 0x07)) {
5460 val64 = readq(&bar0->gpio_control);
5461 val64 ^= GPIO_CTRL_GPIO_0;
5462 writeq(val64, &bar0->gpio_control);
5464 val64 = readq(&bar0->adapter_control);
5465 val64 ^= ADAPTER_LED_ON;
5466 writeq(val64, &bar0->adapter_control);
5469 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5473 * s2io_ethtool_idnic - To physically identify the nic on the system.
5474 * @sp : private member of the device structure, which is a pointer to the
5475 * s2io_nic structure.
5476 * @id : pointer to the structure with identification parameters given by
5478 * Description: Used to physically identify the NIC on the system.
5479 * The Link LED will blink for a time specified by the user for
5481 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5482 * identification is possible only if it's link is up.
5484 * int , returns 0 on success
5487 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5489 u64 val64 = 0, last_gpio_ctrl_val;
5490 struct s2io_nic *sp = netdev_priv(dev);
5491 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5494 subid = sp->pdev->subsystem_device;
5495 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5496 if ((sp->device_type == XFRAME_I_DEVICE) &&
5497 ((subid & 0xFF) < 0x07)) {
5498 val64 = readq(&bar0->adapter_control);
5499 if (!(val64 & ADAPTER_CNTL_EN)) {
5501 "Adapter Link down, cannot blink LED\n");
5505 if (sp->id_timer.function == NULL) {
5506 init_timer(&sp->id_timer);
5507 sp->id_timer.function = s2io_phy_id;
5508 sp->id_timer.data = (unsigned long) sp;
5510 mod_timer(&sp->id_timer, jiffies);
5512 msleep_interruptible(data * HZ);
5514 msleep_interruptible(MAX_FLICKER_TIME);
5515 del_timer_sync(&sp->id_timer);
5517 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5518 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5519 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5525 static void s2io_ethtool_gringparam(struct net_device *dev,
5526 struct ethtool_ringparam *ering)
5528 struct s2io_nic *sp = netdev_priv(dev);
5529 int i,tx_desc_count=0,rx_desc_count=0;
5531 if (sp->rxd_mode == RXD_MODE_1)
5532 ering->rx_max_pending = MAX_RX_DESC_1;
5533 else if (sp->rxd_mode == RXD_MODE_3B)
5534 ering->rx_max_pending = MAX_RX_DESC_2;
5536 ering->tx_max_pending = MAX_TX_DESC;
5537 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5538 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5540 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5541 ering->tx_pending = tx_desc_count;
5543 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5544 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5546 ering->rx_pending = rx_desc_count;
5548 ering->rx_mini_max_pending = 0;
5549 ering->rx_mini_pending = 0;
5550 if(sp->rxd_mode == RXD_MODE_1)
5551 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5552 else if (sp->rxd_mode == RXD_MODE_3B)
5553 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5554 ering->rx_jumbo_pending = rx_desc_count;
5558 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5563 * Returns the Pause frame generation and reception capability of the NIC.
5567 static void s2io_ethtool_getpause_data(struct net_device *dev,
5568 struct ethtool_pauseparam *ep)
5571 struct s2io_nic *sp = netdev_priv(dev);
5572 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5574 val64 = readq(&bar0->rmac_pause_cfg);
5575 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5576 ep->tx_pause = TRUE;
5577 if (val64 & RMAC_PAUSE_RX_ENABLE)
5578 ep->rx_pause = TRUE;
5579 ep->autoneg = FALSE;
5583 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5584 * @sp : private member of the device structure, which is a pointer to the
5585 * s2io_nic structure.
5586 * @ep : pointer to the structure with pause parameters given by ethtool.
5588 * It can be used to set or reset Pause frame generation or reception
5589 * support of the NIC.
5591 * int, returns 0 on Success
5594 static int s2io_ethtool_setpause_data(struct net_device *dev,
5595 struct ethtool_pauseparam *ep)
5598 struct s2io_nic *sp = netdev_priv(dev);
5599 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5601 val64 = readq(&bar0->rmac_pause_cfg);
5603 val64 |= RMAC_PAUSE_GEN_ENABLE;
5605 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5607 val64 |= RMAC_PAUSE_RX_ENABLE;
5609 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5610 writeq(val64, &bar0->rmac_pause_cfg);
5615 * read_eeprom - reads 4 bytes of data from user given offset.
5616 * @sp : private member of the device structure, which is a pointer to the
5617 * s2io_nic structure.
5618 * @off : offset at which the data must be written
5619 * @data : Its an output parameter where the data read at the given
5622 * Will read 4 bytes of data from the user given offset and return the
5624 * NOTE: Will allow to read only part of the EEPROM visible through the
5627 * -1 on failure and 0 on success.
5630 #define S2IO_DEV_ID 5
5631 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5636 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5638 if (sp->device_type == XFRAME_I_DEVICE) {
5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5640 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5641 I2C_CONTROL_CNTL_START;
5642 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5644 while (exit_cnt < 5) {
5645 val64 = readq(&bar0->i2c_control);
5646 if (I2C_CONTROL_CNTL_END(val64)) {
5647 *data = I2C_CONTROL_GET_DATA(val64);
5656 if (sp->device_type == XFRAME_II_DEVICE) {
5657 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5658 SPI_CONTROL_BYTECNT(0x3) |
5659 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5660 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661 val64 |= SPI_CONTROL_REQ;
5662 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663 while (exit_cnt < 5) {
5664 val64 = readq(&bar0->spi_control);
5665 if (val64 & SPI_CONTROL_NACK) {
5668 } else if (val64 & SPI_CONTROL_DONE) {
5669 *data = readq(&bar0->spi_data);
5682 * write_eeprom - actually writes the relevant part of the data value.
5683 * @sp : private member of the device structure, which is a pointer to the
5684 * s2io_nic structure.
5685 * @off : offset at which the data must be written
5686 * @data : The data that is to be written
5687 * @cnt : Number of bytes of the data that are actually to be written into
5688 * the Eeprom. (max of 3)
5690 * Actually writes the relevant part of the data value into the Eeprom
5691 * through the I2C bus.
5693 * 0 on success, -1 on failure.
5696 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5698 int exit_cnt = 0, ret = -1;
5700 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5702 if (sp->device_type == XFRAME_I_DEVICE) {
5703 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5704 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5705 I2C_CONTROL_CNTL_START;
5706 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5708 while (exit_cnt < 5) {
5709 val64 = readq(&bar0->i2c_control);
5710 if (I2C_CONTROL_CNTL_END(val64)) {
5711 if (!(val64 & I2C_CONTROL_NACK))
5720 if (sp->device_type == XFRAME_II_DEVICE) {
5721 int write_cnt = (cnt == 8) ? 0 : cnt;
5722 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5724 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5725 SPI_CONTROL_BYTECNT(write_cnt) |
5726 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5727 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5728 val64 |= SPI_CONTROL_REQ;
5729 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5730 while (exit_cnt < 5) {
5731 val64 = readq(&bar0->spi_control);
5732 if (val64 & SPI_CONTROL_NACK) {
5735 } else if (val64 & SPI_CONTROL_DONE) {
5745 static void s2io_vpd_read(struct s2io_nic *nic)
5749 int i=0, cnt, fail = 0;
5750 int vpd_addr = 0x80;
5752 if (nic->device_type == XFRAME_II_DEVICE) {
5753 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5757 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5760 strcpy(nic->serial_num, "NOT AVAILABLE");
5762 vpd_data = kmalloc(256, GFP_KERNEL);
5764 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5767 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5769 for (i = 0; i < 256; i +=4 ) {
5770 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5771 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5772 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5773 for (cnt = 0; cnt <5; cnt++) {
5775 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5780 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5784 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5785 (u32 *)&vpd_data[i]);
5789 /* read serial number of adapter */
5790 for (cnt = 0; cnt < 256; cnt++) {
5791 if ((vpd_data[cnt] == 'S') &&
5792 (vpd_data[cnt+1] == 'N') &&
5793 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5794 memset(nic->serial_num, 0, VPD_STRING_LEN);
5795 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5802 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5803 memset(nic->product_name, 0, vpd_data[1]);
5804 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5807 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5811 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5812 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5813 * @eeprom : pointer to the user level structure provided by ethtool,
5814 * containing all relevant information.
5815 * @data_buf : user defined value to be written into Eeprom.
5816 * Description: Reads the values stored in the Eeprom at given offset
5817 * for a given length. Stores these values int the input argument data
5818 * buffer 'data_buf' and returns these to the caller (ethtool.)
5823 static int s2io_ethtool_geeprom(struct net_device *dev,
5824 struct ethtool_eeprom *eeprom, u8 * data_buf)
5828 struct s2io_nic *sp = netdev_priv(dev);
5830 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5832 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5833 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5835 for (i = 0; i < eeprom->len; i += 4) {
5836 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5837 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5841 memcpy((data_buf + i), &valid, 4);
5847 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848 * @sp : private member of the device structure, which is a pointer to the
5849 * s2io_nic structure.
5850 * @eeprom : pointer to the user level structure provided by ethtool,
5851 * containing all relevant information.
5852 * @data_buf ; user defined value to be written into Eeprom.
5854 * Tries to write the user provided value in the Eeprom, at the offset
5855 * given by the user.
5857 * 0 on success, -EFAULT on failure.
5860 static int s2io_ethtool_seeprom(struct net_device *dev,
5861 struct ethtool_eeprom *eeprom,
5864 int len = eeprom->len, cnt = 0;
5865 u64 valid = 0, data;
5866 struct s2io_nic *sp = netdev_priv(dev);
5868 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5870 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5877 data = (u32) data_buf[cnt] & 0x000000FF;
5879 valid = (u32) (data << 24);
5883 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5885 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5887 "write into the specified offset\n");
5898 * s2io_register_test - reads and writes into all clock domains.
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
5901 * @data : variable that returns the result of each of the test conducted b
5904 * Read and write into all clock domains. The NIC has 3 clock domains,
5905 * see that registers in all the three regions are accessible.
5910 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5912 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5913 u64 val64 = 0, exp_val;
5916 val64 = readq(&bar0->pif_rd_swapper_fb);
5917 if (val64 != 0x123456789abcdefULL) {
5919 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5922 val64 = readq(&bar0->rmac_pause_cfg);
5923 if (val64 != 0xc000ffff00000000ULL) {
5925 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5928 val64 = readq(&bar0->rx_queue_cfg);
5929 if (sp->device_type == XFRAME_II_DEVICE)
5930 exp_val = 0x0404040404040404ULL;
5932 exp_val = 0x0808080808080808ULL;
5933 if (val64 != exp_val) {
5935 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5938 val64 = readq(&bar0->xgxs_efifo_cfg);
5939 if (val64 != 0x000000001923141EULL) {
5941 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5944 val64 = 0x5A5A5A5A5A5A5A5AULL;
5945 writeq(val64, &bar0->xmsi_data);
5946 val64 = readq(&bar0->xmsi_data);
5947 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5949 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5952 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5957 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5965 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5966 * @sp : private member of the device structure, which is a pointer to the
5967 * s2io_nic structure.
5968 * @data:variable that returns the result of each of the test conducted by
5971 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5977 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5980 u64 ret_data, org_4F0, org_7F0;
5981 u8 saved_4F0 = 0, saved_7F0 = 0;
5982 struct net_device *dev = sp->dev;
5984 /* Test Write Error at offset 0 */
5985 /* Note that SPI interface allows write access to all areas
5986 * of EEPROM. Hence doing all negative testing only for Xframe I.
5988 if (sp->device_type == XFRAME_I_DEVICE)
5989 if (!write_eeprom(sp, 0, 0, 3))
5992 /* Save current values at offsets 0x4F0 and 0x7F0 */
5993 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5995 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5998 /* Test Write at offset 4f0 */
5999 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6001 if (read_eeprom(sp, 0x4F0, &ret_data))
6004 if (ret_data != 0x012345) {
6005 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6006 "Data written %llx Data read %llx\n",
6007 dev->name, (unsigned long long)0x12345,
6008 (unsigned long long)ret_data);
6012 /* Reset the EEPROM data go FFFF */
6013 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6015 /* Test Write Request Error at offset 0x7c */
6016 if (sp->device_type == XFRAME_I_DEVICE)
6017 if (!write_eeprom(sp, 0x07C, 0, 3))
6020 /* Test Write Request at offset 0x7f0 */
6021 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6023 if (read_eeprom(sp, 0x7F0, &ret_data))
6026 if (ret_data != 0x012345) {
6027 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6028 "Data written %llx Data read %llx\n",
6029 dev->name, (unsigned long long)0x12345,
6030 (unsigned long long)ret_data);
6034 /* Reset the EEPROM data go FFFF */
6035 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6037 if (sp->device_type == XFRAME_I_DEVICE) {
6038 /* Test Write Error at offset 0x80 */
6039 if (!write_eeprom(sp, 0x080, 0, 3))
6042 /* Test Write Error at offset 0xfc */
6043 if (!write_eeprom(sp, 0x0FC, 0, 3))
6046 /* Test Write Error at offset 0x100 */
6047 if (!write_eeprom(sp, 0x100, 0, 3))
6050 /* Test Write Error at offset 4ec */
6051 if (!write_eeprom(sp, 0x4EC, 0, 3))
6055 /* Restore values at offsets 0x4F0 and 0x7F0 */
6057 write_eeprom(sp, 0x4F0, org_4F0, 3);
6059 write_eeprom(sp, 0x7F0, org_7F0, 3);
6066 * s2io_bist_test - invokes the MemBist test of the card .
6067 * @sp : private member of the device structure, which is a pointer to the
6068 * s2io_nic structure.
6069 * @data:variable that returns the result of each of the test conducted by
6072 * This invokes the MemBist test of the card. We give around
6073 * 2 secs time for the Test to complete. If it's still not complete
6074 * within this peiod, we consider that the test failed.
6076 * 0 on success and -1 on failure.
6079 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6082 int cnt = 0, ret = -1;
6084 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085 bist |= PCI_BIST_START;
6086 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 if (!(bist & PCI_BIST_START)) {
6091 *data = (bist & PCI_BIST_CODE_MASK);
6103 * s2io-link_test - verifies the link state of the nic
6104 * @sp ; private member of the device structure, which is a pointer to the
6105 * s2io_nic structure.
6106 * @data: variable that returns the result of each of the test conducted by
6109 * The function verifies the link state of the NIC and updates the input
6110 * argument 'data' appropriately.
6115 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6117 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6120 val64 = readq(&bar0->adapter_status);
6121 if(!(LINK_IS_UP(val64)))
6130 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131 * @sp - private member of the device structure, which is a pointer to the
6132 * s2io_nic structure.
6133 * @data - variable that returns the result of each of the test
6134 * conducted by the driver.
6136 * This is one of the offline test that tests the read and write
6137 * access to the RldRam chip on the NIC.
6142 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6146 int cnt, iteration = 0, test_fail = 0;
6148 val64 = readq(&bar0->adapter_control);
6149 val64 &= ~ADAPTER_ECC_EN;
6150 writeq(val64, &bar0->adapter_control);
6152 val64 = readq(&bar0->mc_rldram_test_ctrl);
6153 val64 |= MC_RLDRAM_TEST_MODE;
6154 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6156 val64 = readq(&bar0->mc_rldram_mrs);
6157 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6158 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6160 val64 |= MC_RLDRAM_MRS_ENABLE;
6161 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6163 while (iteration < 2) {
6164 val64 = 0x55555555aaaa0000ULL;
6165 if (iteration == 1) {
6166 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168 writeq(val64, &bar0->mc_rldram_test_d0);
6170 val64 = 0xaaaa5a5555550000ULL;
6171 if (iteration == 1) {
6172 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6174 writeq(val64, &bar0->mc_rldram_test_d1);
6176 val64 = 0x55aaaaaaaa5a0000ULL;
6177 if (iteration == 1) {
6178 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6180 writeq(val64, &bar0->mc_rldram_test_d2);
6182 val64 = (u64) (0x0000003ffffe0100ULL);
6183 writeq(val64, &bar0->mc_rldram_test_add);
6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6189 for (cnt = 0; cnt < 5; cnt++) {
6190 val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 if (val64 & MC_RLDRAM_TEST_DONE)
6199 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6200 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202 for (cnt = 0; cnt < 5; cnt++) {
6203 val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 if (val64 & MC_RLDRAM_TEST_DONE)
6212 val64 = readq(&bar0->mc_rldram_test_ctrl);
6213 if (!(val64 & MC_RLDRAM_TEST_PASS))
6221 /* Bring the adapter out of test mode */
6222 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6228 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229 * @sp : private member of the device structure, which is a pointer to the
6230 * s2io_nic structure.
6231 * @ethtest : pointer to a ethtool command specific structure that will be
6232 * returned to the user.
6233 * @data : variable that returns the result of each of the test
6234 * conducted by the driver.
6236 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6237 * the health of the card.
6242 static void s2io_ethtool_test(struct net_device *dev,
6243 struct ethtool_test *ethtest,
6246 struct s2io_nic *sp = netdev_priv(dev);
6247 int orig_state = netif_running(sp->dev);
6249 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6250 /* Offline Tests. */
6252 s2io_close(sp->dev);
6254 if (s2io_register_test(sp, &data[0]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6259 if (s2io_rldram_test(sp, &data[3]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6264 if (s2io_eeprom_test(sp, &data[1]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6267 if (s2io_bist_test(sp, &data[4]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6278 "%s: is not up, cannot run test\n",
6287 if (s2io_link_test(sp, &data[2]))
6288 ethtest->flags |= ETH_TEST_FL_FAILED;
6297 static void s2io_get_ethtool_stats(struct net_device *dev,
6298 struct ethtool_stats *estats,
6302 struct s2io_nic *sp = netdev_priv(dev);
6303 struct stat_block *stat_info = sp->mac_control.stats_info;
6305 s2io_updt_stats(sp);
6307 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_frms);
6310 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_data_octets);
6312 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6314 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6315 le32_to_cpu(stat_info->tmac_mcst_frms);
6317 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_bcst_frms);
6319 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6321 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6322 le32_to_cpu(stat_info->tmac_ttl_octets);
6324 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_ucst_frms);
6327 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_nucst_frms);
6330 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_any_err_frms);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6333 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6335 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_vld_ip);
6338 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_drop_ip);
6341 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6342 le32_to_cpu(stat_info->tmac_icmp);
6344 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_rst_tcp);
6346 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6347 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_udp);
6350 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6351 le32_to_cpu(stat_info->rmac_vld_frms);
6353 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_data_octets);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6358 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6361 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6369 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_ttl_octets);
6372 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6373 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6375 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6376 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6378 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_discarded_frms);
6381 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6382 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6386 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_usized_frms);
6389 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6390 le32_to_cpu(stat_info->rmac_osized_frms);
6392 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6393 le32_to_cpu(stat_info->rmac_frag_frms);
6395 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_jabber_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6404 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_ip);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6409 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6410 le32_to_cpu(stat_info->rmac_drop_ip);
6412 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6413 le32_to_cpu(stat_info->rmac_icmp);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6416 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6417 le32_to_cpu(stat_info->rmac_udp);
6419 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_err_drp_udp);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6439 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_pause_cnt);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6442 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6444 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_accepted_ip);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6466 /* Enhanced statistics exist only for Hercules */
6467 if(sp->device_type == XFRAME_II_DEVICE) {
6469 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6471 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6473 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6490 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6492 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6496 for (k = 0; k < MAX_RX_RINGS; k++)
6497 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6510 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6512 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6513 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6514 if (stat_info->sw_stat.num_aggregations) {
6515 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6518 * Since 64-bit divide does not work on all platforms,
6519 * do repeated subtraction.
6521 while (tmp >= stat_info->sw_stat.num_aggregations) {
6522 tmp -= stat_info->sw_stat.num_aggregations;
6525 tmp_stats[i++] = count;
6529 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6533 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6534 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6537 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6539 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6573 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6575 return (XENA_REG_SPACE);
6579 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6581 struct s2io_nic *sp = netdev_priv(dev);
6583 return (sp->rx_csum);
6586 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6588 struct s2io_nic *sp = netdev_priv(dev);
6598 static int s2io_get_eeprom_len(struct net_device *dev)
6600 return (XENA_EEPROM_SPACE);
6603 static int s2io_get_sset_count(struct net_device *dev, int sset)
6605 struct s2io_nic *sp = netdev_priv(dev);
6609 return S2IO_TEST_LEN;
6611 switch(sp->device_type) {
6612 case XFRAME_I_DEVICE:
6613 return XFRAME_I_STAT_LEN;
6614 case XFRAME_II_DEVICE:
6615 return XFRAME_II_STAT_LEN;
6624 static void s2io_ethtool_get_strings(struct net_device *dev,
6625 u32 stringset, u8 * data)
6628 struct s2io_nic *sp = netdev_priv(dev);
6630 switch (stringset) {
6632 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6635 stat_size = sizeof(ethtool_xena_stats_keys);
6636 memcpy(data, ðtool_xena_stats_keys,stat_size);
6637 if(sp->device_type == XFRAME_II_DEVICE) {
6638 memcpy(data + stat_size,
6639 ðtool_enhanced_stats_keys,
6640 sizeof(ethtool_enhanced_stats_keys));
6641 stat_size += sizeof(ethtool_enhanced_stats_keys);
6644 memcpy(data + stat_size, ðtool_driver_stats_keys,
6645 sizeof(ethtool_driver_stats_keys));
6649 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6652 dev->features |= NETIF_F_IP_CSUM;
6654 dev->features &= ~NETIF_F_IP_CSUM;
6659 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6661 return (dev->features & NETIF_F_TSO) != 0;
6663 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6666 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6668 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6673 static const struct ethtool_ops netdev_ethtool_ops = {
6674 .get_settings = s2io_ethtool_gset,
6675 .set_settings = s2io_ethtool_sset,
6676 .get_drvinfo = s2io_ethtool_gdrvinfo,
6677 .get_regs_len = s2io_ethtool_get_regs_len,
6678 .get_regs = s2io_ethtool_gregs,
6679 .get_link = ethtool_op_get_link,
6680 .get_eeprom_len = s2io_get_eeprom_len,
6681 .get_eeprom = s2io_ethtool_geeprom,
6682 .set_eeprom = s2io_ethtool_seeprom,
6683 .get_ringparam = s2io_ethtool_gringparam,
6684 .get_pauseparam = s2io_ethtool_getpause_data,
6685 .set_pauseparam = s2io_ethtool_setpause_data,
6686 .get_rx_csum = s2io_ethtool_get_rx_csum,
6687 .set_rx_csum = s2io_ethtool_set_rx_csum,
6688 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6689 .set_sg = ethtool_op_set_sg,
6690 .get_tso = s2io_ethtool_op_get_tso,
6691 .set_tso = s2io_ethtool_op_set_tso,
6692 .set_ufo = ethtool_op_set_ufo,
6693 .self_test = s2io_ethtool_test,
6694 .get_strings = s2io_ethtool_get_strings,
6695 .phys_id = s2io_ethtool_idnic,
6696 .get_ethtool_stats = s2io_get_ethtool_stats,
6697 .get_sset_count = s2io_get_sset_count,
6701 * s2io_ioctl - Entry point for the Ioctl
6702 * @dev : Device pointer.
6703 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6704 * a proprietary structure used to pass information to the driver.
6705 * @cmd : This is used to distinguish between the different commands that
6706 * can be passed to the IOCTL functions.
6708 * Currently there are no special functionality supported in IOCTL, hence
6709 * function always return EOPNOTSUPPORTED
6712 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6718 * s2io_change_mtu - entry point to change MTU size for the device.
6719 * @dev : device pointer.
6720 * @new_mtu : the new MTU size for the device.
6721 * Description: A driver entry point to change MTU size for the device.
6722 * Before changing the MTU the device must be stopped.
6724 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6728 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6730 struct s2io_nic *sp = netdev_priv(dev);
6733 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6734 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6740 if (netif_running(dev)) {
6741 s2io_stop_all_tx_queue(sp);
6743 ret = s2io_card_up(sp);
6745 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6749 s2io_wake_all_tx_queue(sp);
6750 } else { /* Device is down */
6751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6752 u64 val64 = new_mtu;
6754 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6761 * s2io_set_link - Set the LInk status
6762 * @data: long pointer to device private structue
6763 * Description: Sets the link status for the adapter
6766 static void s2io_set_link(struct work_struct *work)
6768 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6769 struct net_device *dev = nic->dev;
6770 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6776 if (!netif_running(dev))
6779 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6780 /* The card is being reset, no point doing anything */
6784 subid = nic->pdev->subsystem_device;
6785 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6787 * Allow a small delay for the NICs self initiated
6788 * cleanup to complete.
6793 val64 = readq(&bar0->adapter_status);
6794 if (LINK_IS_UP(val64)) {
6795 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6796 if (verify_xena_quiescence(nic)) {
6797 val64 = readq(&bar0->adapter_control);
6798 val64 |= ADAPTER_CNTL_EN;
6799 writeq(val64, &bar0->adapter_control);
6800 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801 nic->device_type, subid)) {
6802 val64 = readq(&bar0->gpio_control);
6803 val64 |= GPIO_CTRL_GPIO_0;
6804 writeq(val64, &bar0->gpio_control);
6805 val64 = readq(&bar0->gpio_control);
6807 val64 |= ADAPTER_LED_ON;
6808 writeq(val64, &bar0->adapter_control);
6810 nic->device_enabled_once = TRUE;
6812 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6813 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6814 s2io_stop_all_tx_queue(nic);
6817 val64 = readq(&bar0->adapter_control);
6818 val64 |= ADAPTER_LED_ON;
6819 writeq(val64, &bar0->adapter_control);
6820 s2io_link(nic, LINK_UP);
6822 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6824 val64 = readq(&bar0->gpio_control);
6825 val64 &= ~GPIO_CTRL_GPIO_0;
6826 writeq(val64, &bar0->gpio_control);
6827 val64 = readq(&bar0->gpio_control);
6830 val64 = readq(&bar0->adapter_control);
6831 val64 = val64 &(~ADAPTER_LED_ON);
6832 writeq(val64, &bar0->adapter_control);
6833 s2io_link(nic, LINK_DOWN);
6835 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6841 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6843 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6844 u64 *temp2, int size)
6846 struct net_device *dev = sp->dev;
6847 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6849 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6850 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6853 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6855 * As Rx frame are not going to be processed,
6856 * using same mapped address for the Rxd
6859 rxdp1->Buffer0_ptr = *temp0;
6861 *skb = dev_alloc_skb(size);
6863 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6864 DBG_PRINT(INFO_DBG, "memory to allocate ");
6865 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6866 sp->mac_control.stats_info->sw_stat. \
6867 mem_alloc_fail_cnt++;
6870 sp->mac_control.stats_info->sw_stat.mem_allocated
6871 += (*skb)->truesize;
6872 /* storing the mapped addr in a temp variable
6873 * such it will be used for next rxd whose
6874 * Host Control is NULL
6876 rxdp1->Buffer0_ptr = *temp0 =
6877 pci_map_single( sp->pdev, (*skb)->data,
6878 size - NET_IP_ALIGN,
6879 PCI_DMA_FROMDEVICE);
6880 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6881 goto memalloc_failed;
6882 rxdp->Host_Control = (unsigned long) (*skb);
6884 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6885 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6886 /* Two buffer Mode */
6888 rxdp3->Buffer2_ptr = *temp2;
6889 rxdp3->Buffer0_ptr = *temp0;
6890 rxdp3->Buffer1_ptr = *temp1;
6892 *skb = dev_alloc_skb(size);
6894 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6895 DBG_PRINT(INFO_DBG, "memory to allocate ");
6896 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6897 sp->mac_control.stats_info->sw_stat. \
6898 mem_alloc_fail_cnt++;
6901 sp->mac_control.stats_info->sw_stat.mem_allocated
6902 += (*skb)->truesize;
6903 rxdp3->Buffer2_ptr = *temp2 =
6904 pci_map_single(sp->pdev, (*skb)->data,
6906 PCI_DMA_FROMDEVICE);
6907 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6908 goto memalloc_failed;
6909 rxdp3->Buffer0_ptr = *temp0 =
6910 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6911 PCI_DMA_FROMDEVICE);
6912 if (pci_dma_mapping_error(sp->pdev,
6913 rxdp3->Buffer0_ptr)) {
6914 pci_unmap_single (sp->pdev,
6915 (dma_addr_t)rxdp3->Buffer2_ptr,
6916 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6917 goto memalloc_failed;
6919 rxdp->Host_Control = (unsigned long) (*skb);
6921 /* Buffer-1 will be dummy buffer not used */
6922 rxdp3->Buffer1_ptr = *temp1 =
6923 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6924 PCI_DMA_FROMDEVICE);
6925 if (pci_dma_mapping_error(sp->pdev,
6926 rxdp3->Buffer1_ptr)) {
6927 pci_unmap_single (sp->pdev,
6928 (dma_addr_t)rxdp3->Buffer0_ptr,
6929 BUF0_LEN, PCI_DMA_FROMDEVICE);
6930 pci_unmap_single (sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
6932 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6933 goto memalloc_failed;
6939 stats->pci_map_fail_cnt++;
6940 stats->mem_freed += (*skb)->truesize;
6941 dev_kfree_skb(*skb);
6945 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6948 struct net_device *dev = sp->dev;
6949 if (sp->rxd_mode == RXD_MODE_1) {
6950 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6951 } else if (sp->rxd_mode == RXD_MODE_3B) {
6952 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6953 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6954 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6958 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6960 int i, j, k, blk_cnt = 0, size;
6961 struct mac_info * mac_control = &sp->mac_control;
6962 struct config_param *config = &sp->config;
6963 struct net_device *dev = sp->dev;
6964 struct RxD_t *rxdp = NULL;
6965 struct sk_buff *skb = NULL;
6966 struct buffAdd *ba = NULL;
6967 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6969 /* Calculate the size based on ring mode */
6970 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6971 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6972 if (sp->rxd_mode == RXD_MODE_1)
6973 size += NET_IP_ALIGN;
6974 else if (sp->rxd_mode == RXD_MODE_3B)
6975 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6977 for (i = 0; i < config->rx_ring_num; i++) {
6978 blk_cnt = config->rx_cfg[i].num_rxd /
6979 (rxd_count[sp->rxd_mode] +1);
6981 for (j = 0; j < blk_cnt; j++) {
6982 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6983 rxdp = mac_control->rings[i].
6984 rx_blocks[j].rxds[k].virt_addr;
6985 if(sp->rxd_mode == RXD_MODE_3B)
6986 ba = &mac_control->rings[i].ba[j][k];
6987 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6988 &skb,(u64 *)&temp0_64,
6995 set_rxd_buffer_size(sp, rxdp, size);
6997 /* flip the Ownership bit to Hardware */
6998 rxdp->Control_1 |= RXD_OWN_XENA;
7006 static int s2io_add_isr(struct s2io_nic * sp)
7009 struct net_device *dev = sp->dev;
7012 if (sp->config.intr_type == MSI_X)
7013 ret = s2io_enable_msi_x(sp);
7015 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7016 sp->config.intr_type = INTA;
7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
7020 store_xmsi_data(sp);
7022 /* After proper initialization of H/W, register ISR */
7023 if (sp->config.intr_type == MSI_X) {
7024 int i, msix_rx_cnt = 0;
7026 for (i = 0; i < sp->num_entries; i++) {
7027 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7028 if (sp->s2io_entries[i].type ==
7030 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7032 err = request_irq(sp->entries[i].vector,
7033 s2io_msix_ring_handle, 0,
7035 sp->s2io_entries[i].arg);
7036 } else if (sp->s2io_entries[i].type ==
7038 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7040 err = request_irq(sp->entries[i].vector,
7041 s2io_msix_fifo_handle, 0,
7043 sp->s2io_entries[i].arg);
7046 /* if either data or addr is zero print it. */
7047 if (!(sp->msix_info[i].addr &&
7048 sp->msix_info[i].data)) {
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7052 (unsigned long long)
7053 sp->msix_info[i].addr,
7054 (unsigned long long)
7055 ntohl(sp->msix_info[i].data));
7059 remove_msix_isr(sp);
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev->name, i);
7066 "%s: Defaulting to INTA\n",
7068 sp->config.intr_type = INTA;
7071 sp->s2io_entries[i].in_use =
7072 MSIX_REGISTERED_SUCCESS;
7076 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7078 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
7082 if (sp->config.intr_type == INTA) {
7083 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7086 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7093 static void s2io_rem_isr(struct s2io_nic * sp)
7095 if (sp->config.intr_type == MSI_X)
7096 remove_msix_isr(sp);
7098 remove_inta_isr(sp);
7101 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7105 register u64 val64 = 0;
7106 struct config_param *config;
7107 config = &sp->config;
7109 if (!is_s2io_card_up(sp))
7112 del_timer_sync(&sp->alarm_timer);
7113 /* If s2io_set_link task is executing, wait till it completes. */
7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7117 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7120 if (sp->config.napi) {
7122 if (config->intr_type == MSI_X) {
7123 for (; off < sp->config.rx_ring_num; off++)
7124 napi_disable(&sp->mac_control.rings[off].napi);
7127 napi_disable(&sp->napi);
7130 /* disable Tx and Rx traffic on the NIC */
7136 /* stop the tx queue, indicate link down */
7137 s2io_link(sp, LINK_DOWN);
7139 /* Check if the device is Quiescent and then Reset the NIC */
7141 /* As per the HW requirement we need to replenish the
7142 * receive buffer to avoid the ring bump. Since there is
7143 * no intention of processing the Rx frame at this pointwe are
7144 * just settting the ownership bit of rxd in Each Rx
7145 * ring to HW and set the appropriate buffer size
7146 * based on the ring mode
7148 rxd_owner_bit_reset(sp);
7150 val64 = readq(&bar0->adapter_status);
7151 if (verify_xena_quiescence(sp)) {
7152 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7160 "s2io_close:Device not Quiescent ");
7161 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7162 (unsigned long long) val64);
7169 /* Free all Tx buffers */
7170 free_tx_buffers(sp);
7172 /* Free all Rx buffers */
7173 free_rx_buffers(sp);
7175 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7178 static void s2io_card_down(struct s2io_nic * sp)
7180 do_s2io_card_down(sp, 1);
7183 static int s2io_card_up(struct s2io_nic * sp)
7186 struct mac_info *mac_control;
7187 struct config_param *config;
7188 struct net_device *dev = (struct net_device *) sp->dev;
7191 /* Initialize the H/W I/O registers */
7194 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7202 * Initializing the Rx buffers. For now we are considering only 1
7203 * Rx ring and initializing buffers into 30 Rx blocks
7205 mac_control = &sp->mac_control;
7206 config = &sp->config;
7208 for (i = 0; i < config->rx_ring_num; i++) {
7209 mac_control->rings[i].mtu = dev->mtu;
7210 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7212 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7215 free_rx_buffers(sp);
7218 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7219 mac_control->rings[i].rx_bufs_left);
7222 /* Initialise napi */
7224 if (config->intr_type == MSI_X) {
7225 for (i = 0; i < sp->config.rx_ring_num; i++)
7226 napi_enable(&sp->mac_control.rings[i].napi);
7228 napi_enable(&sp->napi);
7232 /* Maintain the state prior to the open */
7233 if (sp->promisc_flg)
7234 sp->promisc_flg = 0;
7235 if (sp->m_cast_flg) {
7237 sp->all_multi_pos= 0;
7240 /* Setting its receive mode */
7241 s2io_set_multicast(dev);
7244 /* Initialize max aggregatable pkts per session based on MTU */
7245 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7246 /* Check if we can use(if specified) user provided value */
7247 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7248 sp->lro_max_aggr_per_sess = lro_max_pkts;
7251 /* Enable Rx Traffic and interrupts on the NIC */
7252 if (start_nic(sp)) {
7253 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7255 free_rx_buffers(sp);
7259 /* Add interrupt service routine */
7260 if (s2io_add_isr(sp) != 0) {
7261 if (sp->config.intr_type == MSI_X)
7264 free_rx_buffers(sp);
7268 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7270 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7272 /* Enable select interrupts */
7273 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7274 if (sp->config.intr_type != INTA) {
7275 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7276 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7278 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7279 interruptible |= TX_PIC_INTR;
7280 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7287 * s2io_restart_nic - Resets the NIC.
7288 * @data : long pointer to the device private structure
7290 * This function is scheduled to be run by the s2io_tx_watchdog
7291 * function after 0.5 secs to reset the NIC. The idea is to reduce
7292 * the run time of the watch dog routine which is run holding a
7296 static void s2io_restart_nic(struct work_struct *work)
7298 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7299 struct net_device *dev = sp->dev;
7303 if (!netif_running(dev))
7307 if (s2io_card_up(sp)) {
7308 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7311 s2io_wake_all_tx_queue(sp);
7312 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7319 * s2io_tx_watchdog - Watchdog for transmit side.
7320 * @dev : Pointer to net device structure
7322 * This function is triggered if the Tx Queue is stopped
7323 * for a pre-defined amount of time when the Interface is still up.
7324 * If the Interface is jammed in such a situation, the hardware is
7325 * reset (by s2io_close) and restarted again (by s2io_open) to
7326 * overcome any problem that might have been caused in the hardware.
7331 static void s2io_tx_watchdog(struct net_device *dev)
7333 struct s2io_nic *sp = netdev_priv(dev);
7335 if (netif_carrier_ok(dev)) {
7336 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7337 schedule_work(&sp->rst_timer_task);
7338 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7343 * rx_osm_handler - To perform some OS related operations on SKB.
7344 * @sp: private member of the device structure,pointer to s2io_nic structure.
7345 * @skb : the socket buffer pointer.
7346 * @len : length of the packet
7347 * @cksum : FCS checksum of the frame.
7348 * @ring_no : the ring from which this RxD was extracted.
7350 * This function is called by the Rx interrupt serivce routine to perform
7351 * some OS related operations on the SKB before passing it to the upper
7352 * layers. It mainly checks if the checksum is OK, if so adds it to the
7353 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7354 * to the upper layer. If the checksum is wrong, it increments the Rx
7355 * packet error count, frees the SKB and returns error.
7357 * SUCCESS on success and -1 on failure.
7359 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7361 struct s2io_nic *sp = ring_data->nic;
7362 struct net_device *dev = (struct net_device *) ring_data->dev;
7363 struct sk_buff *skb = (struct sk_buff *)
7364 ((unsigned long) rxdp->Host_Control);
7365 int ring_no = ring_data->ring_no;
7366 u16 l3_csum, l4_csum;
7367 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7368 struct lro *uninitialized_var(lro);
7374 /* Check for parity error */
7376 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7378 err_mask = err >> 48;
7381 sp->mac_control.stats_info->sw_stat.
7382 rx_parity_err_cnt++;
7386 sp->mac_control.stats_info->sw_stat.
7391 sp->mac_control.stats_info->sw_stat.
7392 rx_parity_abort_cnt++;
7396 sp->mac_control.stats_info->sw_stat.
7401 sp->mac_control.stats_info->sw_stat.
7406 sp->mac_control.stats_info->sw_stat.
7411 sp->mac_control.stats_info->sw_stat.
7412 rx_buf_size_err_cnt++;
7416 sp->mac_control.stats_info->sw_stat.
7417 rx_rxd_corrupt_cnt++;
7421 sp->mac_control.stats_info->sw_stat.
7426 * Drop the packet if bad transfer code. Exception being
7427 * 0x5, which could be due to unsupported IPv6 extension header.
7428 * In this case, we let stack handle the packet.
7429 * Note that in this case, since checksum will be incorrect,
7430 * stack will validate the same.
7432 if (err_mask != 0x5) {
7433 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7434 dev->name, err_mask);
7435 dev->stats.rx_crc_errors++;
7436 sp->mac_control.stats_info->sw_stat.mem_freed
7439 ring_data->rx_bufs_left -= 1;
7440 rxdp->Host_Control = 0;
7445 /* Updating statistics */
7446 ring_data->rx_packets++;
7447 rxdp->Host_Control = 0;
7448 if (sp->rxd_mode == RXD_MODE_1) {
7449 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7451 ring_data->rx_bytes += len;
7454 } else if (sp->rxd_mode == RXD_MODE_3B) {
7455 int get_block = ring_data->rx_curr_get_info.block_index;
7456 int get_off = ring_data->rx_curr_get_info.offset;
7457 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7458 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7459 unsigned char *buff = skb_push(skb, buf0_len);
7461 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7462 ring_data->rx_bytes += buf0_len + buf2_len;
7463 memcpy(buff, ba->ba_0, buf0_len);
7464 skb_put(skb, buf2_len);
7467 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7468 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7470 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7471 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7472 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7474 * NIC verifies if the Checksum of the received
7475 * frame is Ok or not and accordingly returns
7476 * a flag in the RxD.
7478 skb->ip_summed = CHECKSUM_UNNECESSARY;
7479 if (ring_data->lro) {
7484 ret = s2io_club_tcp_session(ring_data,
7485 skb->data, &tcp, &tcp_len, &lro,
7488 case 3: /* Begin anew */
7491 case 1: /* Aggregate */
7493 lro_append_pkt(sp, lro,
7497 case 4: /* Flush session */
7499 lro_append_pkt(sp, lro,
7501 queue_rx_frame(lro->parent,
7503 clear_lro_session(lro);
7504 sp->mac_control.stats_info->
7505 sw_stat.flush_max_pkts++;
7508 case 2: /* Flush both */
7509 lro->parent->data_len =
7511 sp->mac_control.stats_info->
7512 sw_stat.sending_both++;
7513 queue_rx_frame(lro->parent,
7515 clear_lro_session(lro);
7517 case 0: /* sessions exceeded */
7518 case -1: /* non-TCP or not
7522 * First pkt in session not
7523 * L3/L4 aggregatable
7528 "%s: Samadhana!!\n",
7535 * Packet with erroneous checksum, let the
7536 * upper layers deal with it.
7538 skb->ip_summed = CHECKSUM_NONE;
7541 skb->ip_summed = CHECKSUM_NONE;
7543 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7545 skb_record_rx_queue(skb, ring_no);
7546 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7548 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7553 * s2io_link - stops/starts the Tx queue.
7554 * @sp : private member of the device structure, which is a pointer to the
7555 * s2io_nic structure.
7556 * @link : inidicates whether link is UP/DOWN.
7558 * This function stops/starts the Tx queue depending on whether the link
7559 * status of the NIC is is down or up. This is called by the Alarm
7560 * interrupt handler whenever a link change interrupt comes up.
7565 static void s2io_link(struct s2io_nic * sp, int link)
7567 struct net_device *dev = (struct net_device *) sp->dev;
7569 if (link != sp->last_link_state) {
7571 if (link == LINK_DOWN) {
7572 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7573 s2io_stop_all_tx_queue(sp);
7574 netif_carrier_off(dev);
7575 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7576 sp->mac_control.stats_info->sw_stat.link_up_time =
7577 jiffies - sp->start_time;
7578 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7580 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7581 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7582 sp->mac_control.stats_info->sw_stat.link_down_time =
7583 jiffies - sp->start_time;
7584 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7585 netif_carrier_on(dev);
7586 s2io_wake_all_tx_queue(sp);
7589 sp->last_link_state = link;
7590 sp->start_time = jiffies;
7594 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7595 * @sp : private member of the device structure, which is a pointer to the
7596 * s2io_nic structure.
7598 * This function initializes a few of the PCI and PCI-X configuration registers
7599 * with recommended values.
7604 static void s2io_init_pci(struct s2io_nic * sp)
7606 u16 pci_cmd = 0, pcix_cmd = 0;
7608 /* Enable Data Parity Error Recovery in PCI-X command register. */
7609 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7616 /* Set the PErr Response bit in PCI command register. */
7617 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7618 pci_write_config_word(sp->pdev, PCI_COMMAND,
7619 (pci_cmd | PCI_COMMAND_PARITY));
7620 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7623 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7626 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7627 (tx_fifo_num < 1)) {
7628 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7629 "(%d) not supported\n", tx_fifo_num);
7631 if (tx_fifo_num < 1)
7634 tx_fifo_num = MAX_TX_FIFOS;
7636 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7637 DBG_PRINT(ERR_DBG, "tx fifos\n");
7641 *dev_multiq = multiq;
7643 if (tx_steering_type && (1 == tx_fifo_num)) {
7644 if (tx_steering_type != TX_DEFAULT_STEERING)
7646 "s2io: Tx steering is not supported with "
7647 "one fifo. Disabling Tx steering.\n");
7648 tx_steering_type = NO_STEERING;
7651 if ((tx_steering_type < NO_STEERING) ||
7652 (tx_steering_type > TX_DEFAULT_STEERING)) {
7653 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7655 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7656 tx_steering_type = NO_STEERING;
7659 if (rx_ring_num > MAX_RX_RINGS) {
7660 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7662 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7664 rx_ring_num = MAX_RX_RINGS;
7667 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7668 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7669 "Defaulting to INTA\n");
7670 *dev_intr_type = INTA;
7673 if ((*dev_intr_type == MSI_X) &&
7674 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7675 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7676 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7677 "Defaulting to INTA\n");
7678 *dev_intr_type = INTA;
7681 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7682 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7683 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7690 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7691 * or Traffic class respectively.
7692 * @nic: device private variable
7693 * Description: The function configures the receive steering to
7694 * desired receive ring.
7695 * Return Value: SUCCESS on success and
7696 * '-1' on failure (endian settings incorrect).
7698 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7700 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7701 register u64 val64 = 0;
7703 if (ds_codepoint > 63)
7706 val64 = RTS_DS_MEM_DATA(ring);
7707 writeq(val64, &bar0->rts_ds_mem_data);
7709 val64 = RTS_DS_MEM_CTRL_WE |
7710 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7711 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7713 writeq(val64, &bar0->rts_ds_mem_ctrl);
7715 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7716 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7720 static const struct net_device_ops s2io_netdev_ops = {
7721 .ndo_open = s2io_open,
7722 .ndo_stop = s2io_close,
7723 .ndo_get_stats = s2io_get_stats,
7724 .ndo_start_xmit = s2io_xmit,
7725 .ndo_validate_addr = eth_validate_addr,
7726 .ndo_set_multicast_list = s2io_set_multicast,
7727 .ndo_do_ioctl = s2io_ioctl,
7728 .ndo_set_mac_address = s2io_set_mac_addr,
7729 .ndo_change_mtu = s2io_change_mtu,
7730 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7731 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7732 .ndo_tx_timeout = s2io_tx_watchdog,
7733 #ifdef CONFIG_NET_POLL_CONTROLLER
7734 .ndo_poll_controller = s2io_netpoll,
7739 * s2io_init_nic - Initialization of the adapter .
7740 * @pdev : structure containing the PCI related information of the device.
7741 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7743 * The function initializes an adapter identified by the pci_dec structure.
7744 * All OS related initialization including memory and device structure and
7745 * initlaization of the device private variable is done. Also the swapper
7746 * control register is initialized to enable read and write into the I/O
7747 * registers of the device.
7749 * returns 0 on success and negative on failure.
7752 static int __devinit
7753 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7755 struct s2io_nic *sp;
7756 struct net_device *dev;
7758 int dma_flag = FALSE;
7759 u32 mac_up, mac_down;
7760 u64 val64 = 0, tmp64 = 0;
7761 struct XENA_dev_config __iomem *bar0 = NULL;
7763 struct mac_info *mac_control;
7764 struct config_param *config;
7766 u8 dev_intr_type = intr_type;
7769 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7773 if ((ret = pci_enable_device(pdev))) {
7775 "s2io_init_nic: pci_enable_device failed\n");
7779 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7780 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7782 if (pci_set_consistent_dma_mask
7783 (pdev, DMA_BIT_MASK(64))) {
7785 "Unable to obtain 64bit DMA for \
7786 consistent allocations\n");
7787 pci_disable_device(pdev);
7790 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7791 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7793 pci_disable_device(pdev);
7796 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7797 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7798 pci_disable_device(pdev);
7802 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7804 dev = alloc_etherdev(sizeof(struct s2io_nic));
7806 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7807 pci_disable_device(pdev);
7808 pci_release_regions(pdev);
7812 pci_set_master(pdev);
7813 pci_set_drvdata(pdev, dev);
7814 SET_NETDEV_DEV(dev, &pdev->dev);
7816 /* Private member variable initialized to s2io NIC structure */
7817 sp = netdev_priv(dev);
7818 memset(sp, 0, sizeof(struct s2io_nic));
7821 sp->high_dma_flag = dma_flag;
7822 sp->device_enabled_once = FALSE;
7823 if (rx_ring_mode == 1)
7824 sp->rxd_mode = RXD_MODE_1;
7825 if (rx_ring_mode == 2)
7826 sp->rxd_mode = RXD_MODE_3B;
7828 sp->config.intr_type = dev_intr_type;
7830 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7831 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7832 sp->device_type = XFRAME_II_DEVICE;
7834 sp->device_type = XFRAME_I_DEVICE;
7836 sp->lro = lro_enable;
7838 /* Initialize some PCI/PCI-X fields of the NIC. */
7842 * Setting the device configuration parameters.
7843 * Most of these parameters can be specified by the user during
7844 * module insertion as they are module loadable parameters. If
7845 * these parameters are not not specified during load time, they
7846 * are initialized with default values.
7848 mac_control = &sp->mac_control;
7849 config = &sp->config;
7851 config->napi = napi;
7852 config->tx_steering_type = tx_steering_type;
7854 /* Tx side parameters. */
7855 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7856 config->tx_fifo_num = MAX_TX_FIFOS;
7858 config->tx_fifo_num = tx_fifo_num;
7860 /* Initialize the fifos used for tx steering */
7861 if (config->tx_fifo_num < 5) {
7862 if (config->tx_fifo_num == 1)
7863 sp->total_tcp_fifos = 1;
7865 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7866 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7867 sp->total_udp_fifos = 1;
7868 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7870 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7871 FIFO_OTHER_MAX_NUM);
7872 sp->udp_fifo_idx = sp->total_tcp_fifos;
7873 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7874 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7877 config->multiq = dev_multiq;
7878 for (i = 0; i < config->tx_fifo_num; i++) {
7879 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7880 config->tx_cfg[i].fifo_priority = i;
7883 /* mapping the QoS priority to the configured fifos */
7884 for (i = 0; i < MAX_TX_FIFOS; i++)
7885 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7887 /* map the hashing selector table to the configured fifos */
7888 for (i = 0; i < config->tx_fifo_num; i++)
7889 sp->fifo_selector[i] = fifo_selector[i];
7892 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7893 for (i = 0; i < config->tx_fifo_num; i++) {
7894 config->tx_cfg[i].f_no_snoop =
7895 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7896 if (config->tx_cfg[i].fifo_len < 65) {
7897 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7901 /* + 2 because one Txd for skb->data and one Txd for UFO */
7902 config->max_txds = MAX_SKB_FRAGS + 2;
7904 /* Rx side parameters. */
7905 config->rx_ring_num = rx_ring_num;
7906 for (i = 0; i < config->rx_ring_num; i++) {
7907 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7908 (rxd_count[sp->rxd_mode] + 1);
7909 config->rx_cfg[i].ring_priority = i;
7910 mac_control->rings[i].rx_bufs_left = 0;
7911 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7912 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7913 mac_control->rings[i].pdev = sp->pdev;
7914 mac_control->rings[i].dev = sp->dev;
7917 for (i = 0; i < rx_ring_num; i++) {
7918 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7919 config->rx_cfg[i].f_no_snoop =
7920 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7923 /* Setting Mac Control parameters */
7924 mac_control->rmac_pause_time = rmac_pause_time;
7925 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7926 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7929 /* initialize the shared memory used by the NIC and the host */
7930 if (init_shared_mem(sp)) {
7931 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7934 goto mem_alloc_failed;
7937 sp->bar0 = pci_ioremap_bar(pdev, 0);
7939 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7942 goto bar0_remap_failed;
7945 sp->bar1 = pci_ioremap_bar(pdev, 2);
7947 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7950 goto bar1_remap_failed;
7953 dev->irq = pdev->irq;
7954 dev->base_addr = (unsigned long) sp->bar0;
7956 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7957 for (j = 0; j < MAX_TX_FIFOS; j++) {
7958 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7959 (sp->bar1 + (j * 0x00020000));
7962 /* Driver entry points */
7963 dev->netdev_ops = &s2io_netdev_ops;
7964 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7965 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7967 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7968 if (sp->high_dma_flag == TRUE)
7969 dev->features |= NETIF_F_HIGHDMA;
7970 dev->features |= NETIF_F_TSO;
7971 dev->features |= NETIF_F_TSO6;
7972 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7973 dev->features |= NETIF_F_UFO;
7974 dev->features |= NETIF_F_HW_CSUM;
7976 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7977 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7978 INIT_WORK(&sp->set_link_task, s2io_set_link);
7980 pci_save_state(sp->pdev);
7982 /* Setting swapper control on the NIC, for proper reset operation */
7983 if (s2io_set_swapper(sp)) {
7984 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7987 goto set_swap_failed;
7990 /* Verify if the Herc works on the slot its placed into */
7991 if (sp->device_type & XFRAME_II_DEVICE) {
7992 mode = s2io_verify_pci_mode(sp);
7994 DBG_PRINT(ERR_DBG, "%s: ", __func__);
7995 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7997 goto set_swap_failed;
8001 if (sp->config.intr_type == MSI_X) {
8002 sp->num_entries = config->rx_ring_num + 1;
8003 ret = s2io_enable_msi_x(sp);
8006 ret = s2io_test_msi(sp);
8007 /* rollback MSI-X, will re-enable during add_isr() */
8008 remove_msix_isr(sp);
8013 "s2io: MSI-X requested but failed to enable\n");
8014 sp->config.intr_type = INTA;
8018 if (config->intr_type == MSI_X) {
8019 for (i = 0; i < config->rx_ring_num ; i++)
8020 netif_napi_add(dev, &mac_control->rings[i].napi,
8021 s2io_poll_msix, 64);
8023 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8026 /* Not needed for Herc */
8027 if (sp->device_type & XFRAME_I_DEVICE) {
8029 * Fix for all "FFs" MAC address problems observed on
8032 fix_mac_address(sp);
8037 * MAC address initialization.
8038 * For now only one mac address will be read and used.
8041 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8042 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8043 writeq(val64, &bar0->rmac_addr_cmd_mem);
8044 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8045 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8046 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8047 mac_down = (u32) tmp64;
8048 mac_up = (u32) (tmp64 >> 32);
8050 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8051 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8052 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8053 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8054 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8055 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8057 /* Set the factory defined MAC address initially */
8058 dev->addr_len = ETH_ALEN;
8059 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8060 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8062 /* initialize number of multicast & unicast MAC entries variables */
8063 if (sp->device_type == XFRAME_I_DEVICE) {
8064 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8065 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8066 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8067 } else if (sp->device_type == XFRAME_II_DEVICE) {
8068 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8069 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8070 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8073 /* store mac addresses from CAM to s2io_nic structure */
8074 do_s2io_store_unicast_mc(sp);
8076 /* Configure MSIX vector for number of rings configured plus one */
8077 if ((sp->device_type == XFRAME_II_DEVICE) &&
8078 (config->intr_type == MSI_X))
8079 sp->num_entries = config->rx_ring_num + 1;
8081 /* Store the values of the MSIX table in the s2io_nic structure */
8082 store_xmsi_data(sp);
8083 /* reset Nic and bring it to known state */
8087 * Initialize link state flags
8088 * and the card state parameter
8092 /* Initialize spinlocks */
8093 for (i = 0; i < sp->config.tx_fifo_num; i++)
8094 spin_lock_init(&mac_control->fifos[i].tx_lock);
8097 * SXE-002: Configure link and activity LED to init state
8100 subid = sp->pdev->subsystem_device;
8101 if ((subid & 0xFF) >= 0x07) {
8102 val64 = readq(&bar0->gpio_control);
8103 val64 |= 0x0000800000000000ULL;
8104 writeq(val64, &bar0->gpio_control);
8105 val64 = 0x0411040400000000ULL;
8106 writeq(val64, (void __iomem *) bar0 + 0x2700);
8107 val64 = readq(&bar0->gpio_control);
8110 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8112 if (register_netdev(dev)) {
8113 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8115 goto register_failed;
8118 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8119 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8120 sp->product_name, pdev->revision);
8121 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8122 s2io_driver_version);
8123 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8124 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8125 if (sp->device_type & XFRAME_II_DEVICE) {
8126 mode = s2io_print_pci_mode(sp);
8128 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8130 unregister_netdev(dev);
8131 goto set_swap_failed;
8134 switch(sp->rxd_mode) {
8136 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8140 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8145 switch (sp->config.napi) {
8147 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8150 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8154 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8155 sp->config.tx_fifo_num);
8157 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8158 sp->config.rx_ring_num);
8160 switch(sp->config.intr_type) {
8162 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8165 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8168 if (sp->config.multiq) {
8169 for (i = 0; i < sp->config.tx_fifo_num; i++)
8170 mac_control->fifos[i].multiq = config->multiq;
8171 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8174 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8177 switch (sp->config.tx_steering_type) {
8179 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8180 " transmit\n", dev->name);
8182 case TX_PRIORITY_STEERING:
8183 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8184 " transmit\n", dev->name);
8186 case TX_DEFAULT_STEERING:
8187 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8188 " transmit\n", dev->name);
8192 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8195 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8196 " enabled\n", dev->name);
8197 /* Initialize device name */
8198 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8201 sp->vlan_strip_flag = 1;
8203 sp->vlan_strip_flag = 0;
8206 * Make Link state as off at this point, when the Link change
8207 * interrupt comes the state will be automatically changed to
8210 netif_carrier_off(dev);
8221 free_shared_mem(sp);
8222 pci_disable_device(pdev);
8223 pci_release_regions(pdev);
8224 pci_set_drvdata(pdev, NULL);
8231 * s2io_rem_nic - Free the PCI device
8232 * @pdev: structure containing the PCI related information of the device.
8233 * Description: This function is called by the Pci subsystem to release a
8234 * PCI device and free up all resource held up by the device. This could
8235 * be in response to a Hot plug event or when the driver is to be removed
8239 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8241 struct net_device *dev =
8242 (struct net_device *) pci_get_drvdata(pdev);
8243 struct s2io_nic *sp;
8246 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8250 flush_scheduled_work();
8252 sp = netdev_priv(dev);
8253 unregister_netdev(dev);
8255 free_shared_mem(sp);
8258 pci_release_regions(pdev);
8259 pci_set_drvdata(pdev, NULL);
8261 pci_disable_device(pdev);
8265 * s2io_starter - Entry point for the driver
8266 * Description: This function is the entry point for the driver. It verifies
8267 * the module loadable parameters and initializes PCI configuration space.
8270 static int __init s2io_starter(void)
8272 return pci_register_driver(&s2io_driver);
8276 * s2io_closer - Cleanup routine for the driver
8277 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8280 static __exit void s2io_closer(void)
8282 pci_unregister_driver(&s2io_driver);
8283 DBG_PRINT(INIT_DBG, "cleanup done\n");
8286 module_init(s2io_starter);
8287 module_exit(s2io_closer);
8289 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8290 struct tcphdr **tcp, struct RxD_t *rxdp,
8291 struct s2io_nic *sp)
8294 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8296 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8297 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8302 /* Checking for DIX type or DIX type with VLAN */
8304 || (l2_type == 4)) {
8305 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8307 * If vlan stripping is disabled and the frame is VLAN tagged,
8308 * shift the offset by the VLAN header size bytes.
8310 if ((!sp->vlan_strip_flag) &&
8311 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8312 ip_off += HEADER_VLAN_SIZE;
8314 /* LLC, SNAP etc are considered non-mergeable */
8318 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8319 ip_len = (u8)((*ip)->ihl);
8321 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8326 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8329 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8330 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8331 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8336 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8338 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8341 static void initiate_new_session(struct lro *lro, u8 *l2h,
8342 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8344 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8348 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8349 lro->tcp_ack = tcp->ack_seq;
8351 lro->total_len = ntohs(ip->tot_len);
8353 lro->vlan_tag = vlan_tag;
8355 * check if we saw TCP timestamp. Other consistency checks have
8356 * already been done.
8358 if (tcp->doff == 8) {
8360 ptr = (__be32 *)(tcp+1);
8362 lro->cur_tsval = ntohl(*(ptr+1));
8363 lro->cur_tsecr = *(ptr+2);
8368 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8370 struct iphdr *ip = lro->iph;
8371 struct tcphdr *tcp = lro->tcph;
8373 struct stat_block *statinfo = sp->mac_control.stats_info;
8374 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8376 /* Update L3 header */
8377 ip->tot_len = htons(lro->total_len);
8379 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8382 /* Update L4 header */
8383 tcp->ack_seq = lro->tcp_ack;
8384 tcp->window = lro->window;
8386 /* Update tsecr field if this session has timestamps enabled */
8388 __be32 *ptr = (__be32 *)(tcp + 1);
8389 *(ptr+2) = lro->cur_tsecr;
8392 /* Update counters required for calculation of
8393 * average no. of packets aggregated.
8395 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8396 statinfo->sw_stat.num_aggregations++;
8399 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8400 struct tcphdr *tcp, u32 l4_pyld)
8402 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8403 lro->total_len += l4_pyld;
8404 lro->frags_len += l4_pyld;
8405 lro->tcp_next_seq += l4_pyld;
8408 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8409 lro->tcp_ack = tcp->ack_seq;
8410 lro->window = tcp->window;
8414 /* Update tsecr and tsval from this packet */
8415 ptr = (__be32 *)(tcp+1);
8416 lro->cur_tsval = ntohl(*(ptr+1));
8417 lro->cur_tsecr = *(ptr + 2);
8421 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8422 struct tcphdr *tcp, u32 tcp_pyld_len)
8426 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8428 if (!tcp_pyld_len) {
8429 /* Runt frame or a pure ack */
8433 if (ip->ihl != 5) /* IP has options */
8436 /* If we see CE codepoint in IP header, packet is not mergeable */
8437 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8440 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8441 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8442 tcp->ece || tcp->cwr || !tcp->ack) {
8444 * Currently recognize only the ack control word and
8445 * any other control field being set would result in
8446 * flushing the LRO session
8452 * Allow only one TCP timestamp option. Don't aggregate if
8453 * any other options are detected.
8455 if (tcp->doff != 5 && tcp->doff != 8)
8458 if (tcp->doff == 8) {
8459 ptr = (u8 *)(tcp + 1);
8460 while (*ptr == TCPOPT_NOP)
8462 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8465 /* Ensure timestamp value increases monotonically */
8467 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8470 /* timestamp echo reply should be non-zero */
8471 if (*((__be32 *)(ptr+6)) == 0)
8479 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8480 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8481 struct s2io_nic *sp)
8484 struct tcphdr *tcph;
8488 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8490 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8491 ip->saddr, ip->daddr);
8495 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8496 tcph = (struct tcphdr *)*tcp;
8497 *tcp_len = get_l4_pyld_length(ip, tcph);
8498 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8499 struct lro *l_lro = &ring_data->lro0_n[i];
8500 if (l_lro->in_use) {
8501 if (check_for_socket_match(l_lro, ip, tcph))
8503 /* Sock pair matched */
8506 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8507 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8508 "0x%x, actual 0x%x\n", __func__,
8509 (*lro)->tcp_next_seq,
8512 sp->mac_control.stats_info->
8513 sw_stat.outof_sequence_pkts++;
8518 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8519 ret = 1; /* Aggregate */
8521 ret = 2; /* Flush both */
8527 /* Before searching for available LRO objects,
8528 * check if the pkt is L3/L4 aggregatable. If not
8529 * don't create new LRO session. Just send this
8532 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8536 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8537 struct lro *l_lro = &ring_data->lro0_n[i];
8538 if (!(l_lro->in_use)) {
8540 ret = 3; /* Begin anew */
8546 if (ret == 0) { /* sessions exceeded */
8547 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8555 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8559 update_L3L4_header(sp, *lro);
8562 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8563 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8564 update_L3L4_header(sp, *lro);
8565 ret = 4; /* Flush the LRO */
8569 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8577 static void clear_lro_session(struct lro *lro)
8579 static u16 lro_struct_size = sizeof(struct lro);
8581 memset(lro, 0, lro_struct_size);
8584 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8586 struct net_device *dev = skb->dev;
8587 struct s2io_nic *sp = netdev_priv(dev);
8589 skb->protocol = eth_type_trans(skb, dev);
8590 if (sp->vlgrp && vlan_tag
8591 && (sp->vlan_strip_flag)) {
8592 /* Queueing the vlan frame to the upper layer */
8593 if (sp->config.napi)
8594 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8596 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8598 if (sp->config.napi)
8599 netif_receive_skb(skb);
8605 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8606 struct sk_buff *skb,
8609 struct sk_buff *first = lro->parent;
8611 first->len += tcp_len;
8612 first->data_len = lro->frags_len;
8613 skb_pull(skb, (skb->len - tcp_len));
8614 if (skb_shinfo(first)->frag_list)
8615 lro->last_frag->next = skb;
8617 skb_shinfo(first)->frag_list = skb;
8618 first->truesize += skb->truesize;
8619 lro->last_frag = skb;
8620 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8625 * s2io_io_error_detected - called when PCI error is detected
8626 * @pdev: Pointer to PCI device
8627 * @state: The current pci connection state
8629 * This function is called after a PCI bus error affecting
8630 * this device has been detected.
8632 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8633 pci_channel_state_t state)
8635 struct net_device *netdev = pci_get_drvdata(pdev);
8636 struct s2io_nic *sp = netdev_priv(netdev);
8638 netif_device_detach(netdev);
8640 if (netif_running(netdev)) {
8641 /* Bring down the card, while avoiding PCI I/O */
8642 do_s2io_card_down(sp, 0);
8644 pci_disable_device(pdev);
8646 return PCI_ERS_RESULT_NEED_RESET;
8650 * s2io_io_slot_reset - called after the pci bus has been reset.
8651 * @pdev: Pointer to PCI device
8653 * Restart the card from scratch, as if from a cold-boot.
8654 * At this point, the card has exprienced a hard reset,
8655 * followed by fixups by BIOS, and has its config space
8656 * set up identically to what it was at cold boot.
8658 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8660 struct net_device *netdev = pci_get_drvdata(pdev);
8661 struct s2io_nic *sp = netdev_priv(netdev);
8663 if (pci_enable_device(pdev)) {
8664 printk(KERN_ERR "s2io: "
8665 "Cannot re-enable PCI device after reset.\n");
8666 return PCI_ERS_RESULT_DISCONNECT;
8669 pci_set_master(pdev);
8672 return PCI_ERS_RESULT_RECOVERED;
8676 * s2io_io_resume - called when traffic can start flowing again.
8677 * @pdev: Pointer to PCI device
8679 * This callback is called when the error recovery driver tells
8680 * us that its OK to resume normal operation.
8682 static void s2io_io_resume(struct pci_dev *pdev)
8684 struct net_device *netdev = pci_get_drvdata(pdev);
8685 struct s2io_nic *sp = netdev_priv(netdev);
8687 if (netif_running(netdev)) {
8688 if (s2io_card_up(sp)) {
8689 printk(KERN_ERR "s2io: "
8690 "Can't bring device back up after reset.\n");
8694 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8696 printk(KERN_ERR "s2io: "
8697 "Can't resetore mac addr after reset.\n");
8702 netif_device_attach(netdev);
8703 netif_tx_wake_all_queues(netdev);