1 /* Driver for USB Mass Storage compliant devices
3 * $Id: transport.c,v 1.47 2002/04/22 03:39:43 mdharm Exp $
5 * Current development and maintenance by:
6 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
8 * Developed with the assistance of:
9 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
10 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
11 * (c) 2002 Alan Stern <stern@rowland.org>
14 * (c) 1999 Michael Gee (michael@linuxspecific.com)
16 * This driver is based on the 'USB Mass Storage Class' document. This
17 * describes in detail the protocol used to communicate with such
18 * devices. Clearly, the designers had SCSI and ATAPI commands in
19 * mind when they created this document. The commands are all very
20 * similar to commands in the SCSI-II and ATAPI specifications.
22 * It is important to note that in a number of cases this class
23 * exhibits class-specific exemptions from the USB specification.
24 * Notably the usage of NAK, STALL and ACK differs from the norm, in
25 * that they are used to communicate wait, failed and OK on commands.
27 * Also, for certain devices, the interrupt endpoint is used to convey
28 * status of a command.
30 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
31 * information about this driver.
33 * This program is free software; you can redistribute it and/or modify it
34 * under the terms of the GNU General Public License as published by the
35 * Free Software Foundation; either version 2, or (at your option) any
38 * This program is distributed in the hope that it will be useful, but
39 * WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41 * General Public License for more details.
43 * You should have received a copy of the GNU General Public License along
44 * with this program; if not, write to the Free Software Foundation, Inc.,
45 * 675 Mass Ave, Cambridge, MA 02139, USA.
48 #include <linux/sched.h>
49 #include <linux/errno.h>
50 #include <linux/slab.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_eh.h>
54 #include <scsi/scsi_device.h>
57 #include "transport.h"
63 /***********************************************************************
64 * Data transfer routines
65 ***********************************************************************/
68 * This is subtle, so pay attention:
69 * ---------------------------------
70 * We're very concerned about races with a command abort. Hanging this code
71 * is a sure fire way to hang the kernel. (Note that this discussion applies
72 * only to transactions resulting from a scsi queued-command, since only
73 * these transactions are subject to a scsi abort. Other transactions, such
74 * as those occurring during device-specific initialization, must be handled
75 * by a separate code path.)
77 * The abort function (usb_storage_command_abort() in scsiglue.c) first
78 * sets the machine state and the ABORTING bit in us->flags to prevent
79 * new URBs from being submitted. It then calls usb_stor_stop_transport()
80 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->flags
81 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
82 * bit is tested to see if the current_sg scatter-gather request needs to be
83 * stopped. The timeout callback routine does much the same thing.
85 * When a disconnect occurs, the DISCONNECTING bit in us->flags is set to
86 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
87 * called to stop any ongoing requests.
89 * The submit function first verifies that the submitting is allowed
90 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
91 * completes without errors, and only then sets the URB_ACTIVE bit. This
92 * prevents the stop_transport() function from trying to cancel the URB
93 * while the submit call is underway. Next, the submit function must test
94 * the flags to see if an abort or disconnect occurred during the submission
95 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
96 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
97 * is still set). Either way, the function must then wait for the URB to
98 * finish. Note that the URB can still be in progress even after a call to
99 * usb_unlink_urb() returns.
101 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
102 * either the stop_transport() function or the submitting function
103 * is guaranteed to call usb_unlink_urb() for an active URB,
104 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
105 * called more than once or from being called during usb_submit_urb().
108 /* This is the completion handler which will wake us up when an URB
111 static void usb_stor_blocking_completion(struct urb *urb)
113 struct completion *urb_done_ptr = urb->context;
115 complete(urb_done_ptr);
118 /* This is the common part of the URB message submission code
120 * All URBs from the usb-storage driver involved in handling a queued scsi
121 * command _must_ pass through this function (or something like it) for the
122 * abort mechanisms to work properly.
124 static int usb_stor_msg_common(struct us_data *us, int timeout)
126 struct completion urb_done;
130 /* don't submit URBs during abort/disconnect processing */
131 if (us->flags & ABORTING_OR_DISCONNECTING)
134 /* set up data structures for the wakeup system */
135 init_completion(&urb_done);
137 /* fill the common fields in the URB */
138 us->current_urb->context = &urb_done;
139 us->current_urb->actual_length = 0;
140 us->current_urb->error_count = 0;
141 us->current_urb->status = 0;
143 /* we assume that if transfer_buffer isn't us->iobuf then it
144 * hasn't been mapped for DMA. Yes, this is clunky, but it's
145 * easier than always having the caller tell us whether the
146 * transfer buffer has already been mapped. */
147 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP;
148 if (us->current_urb->transfer_buffer == us->iobuf)
149 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
150 us->current_urb->transfer_dma = us->iobuf_dma;
151 us->current_urb->setup_dma = us->cr_dma;
154 status = usb_submit_urb(us->current_urb, GFP_NOIO);
156 /* something went wrong */
160 /* since the URB has been submitted successfully, it's now okay
162 set_bit(US_FLIDX_URB_ACTIVE, &us->flags);
164 /* did an abort/disconnect occur during the submission? */
165 if (us->flags & ABORTING_OR_DISCONNECTING) {
167 /* cancel the URB, if it hasn't been cancelled already */
168 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->flags)) {
169 US_DEBUGP("-- cancelling URB\n");
170 usb_unlink_urb(us->current_urb);
174 /* wait for the completion of the URB */
175 timeleft = wait_for_completion_interruptible_timeout(
176 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
178 clear_bit(US_FLIDX_URB_ACTIVE, &us->flags);
181 US_DEBUGP("%s -- cancelling URB\n",
182 timeleft == 0 ? "Timeout" : "Signal");
183 usb_kill_urb(us->current_urb);
186 /* return the URB status */
187 return us->current_urb->status;
191 * Transfer one control message, with timeouts, and allowing early
192 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
194 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
195 u8 request, u8 requesttype, u16 value, u16 index,
196 void *data, u16 size, int timeout)
200 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
201 __func__, request, requesttype,
204 /* fill in the devrequest structure */
205 us->cr->bRequestType = requesttype;
206 us->cr->bRequest = request;
207 us->cr->wValue = cpu_to_le16(value);
208 us->cr->wIndex = cpu_to_le16(index);
209 us->cr->wLength = cpu_to_le16(size);
211 /* fill and submit the URB */
212 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
213 (unsigned char*) us->cr, data, size,
214 usb_stor_blocking_completion, NULL);
215 status = usb_stor_msg_common(us, timeout);
217 /* return the actual length of the data transferred if no error */
219 status = us->current_urb->actual_length;
223 /* This is a version of usb_clear_halt() that allows early termination and
224 * doesn't read the status from the device -- this is because some devices
225 * crash their internal firmware when the status is requested after a halt.
227 * A definitive list of these 'bad' devices is too difficult to maintain or
228 * make complete enough to be useful. This problem was first observed on the
229 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
230 * MacOS nor Windows checks the status after clearing a halt.
232 * Since many vendors in this space limit their testing to interoperability
233 * with these two OSes, specification violations like this one are common.
235 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
238 int endp = usb_pipeendpoint(pipe);
240 if (usb_pipein (pipe))
243 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
244 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
245 USB_ENDPOINT_HALT, endp,
248 /* reset the endpoint toggle */
250 usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe),
251 usb_pipeout(pipe), 0);
253 US_DEBUGP("%s: result = %d\n", __func__, result);
259 * Interpret the results of a URB transfer
261 * This function prints appropriate debugging messages, clears halts on
262 * non-control endpoints, and translates the status to the corresponding
263 * USB_STOR_XFER_xxx return code.
265 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
266 unsigned int length, int result, unsigned int partial)
268 US_DEBUGP("Status code %d; transferred %u/%u\n",
269 result, partial, length);
272 /* no error code; did we send all the data? */
274 if (partial != length) {
275 US_DEBUGP("-- short transfer\n");
276 return USB_STOR_XFER_SHORT;
279 US_DEBUGP("-- transfer complete\n");
280 return USB_STOR_XFER_GOOD;
284 /* for control endpoints, (used by CB[I]) a stall indicates
285 * a failed command */
286 if (usb_pipecontrol(pipe)) {
287 US_DEBUGP("-- stall on control pipe\n");
288 return USB_STOR_XFER_STALLED;
291 /* for other sorts of endpoint, clear the stall */
292 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
293 if (usb_stor_clear_halt(us, pipe) < 0)
294 return USB_STOR_XFER_ERROR;
295 return USB_STOR_XFER_STALLED;
297 /* babble - the device tried to send more than we wanted to read */
299 US_DEBUGP("-- babble\n");
300 return USB_STOR_XFER_LONG;
302 /* the transfer was cancelled by abort, disconnect, or timeout */
304 US_DEBUGP("-- transfer cancelled\n");
305 return USB_STOR_XFER_ERROR;
307 /* short scatter-gather read transfer */
309 US_DEBUGP("-- short read transfer\n");
310 return USB_STOR_XFER_SHORT;
312 /* abort or disconnect in progress */
314 US_DEBUGP("-- abort or disconnect in progress\n");
315 return USB_STOR_XFER_ERROR;
317 /* the catch-all error case */
319 US_DEBUGP("-- unknown error\n");
320 return USB_STOR_XFER_ERROR;
325 * Transfer one control message, without timeouts, but allowing early
326 * termination. Return codes are USB_STOR_XFER_xxx.
328 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
329 u8 request, u8 requesttype, u16 value, u16 index,
330 void *data, u16 size)
334 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
335 __func__, request, requesttype,
338 /* fill in the devrequest structure */
339 us->cr->bRequestType = requesttype;
340 us->cr->bRequest = request;
341 us->cr->wValue = cpu_to_le16(value);
342 us->cr->wIndex = cpu_to_le16(index);
343 us->cr->wLength = cpu_to_le16(size);
345 /* fill and submit the URB */
346 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
347 (unsigned char*) us->cr, data, size,
348 usb_stor_blocking_completion, NULL);
349 result = usb_stor_msg_common(us, 0);
351 return interpret_urb_result(us, pipe, size, result,
352 us->current_urb->actual_length);
356 * Receive one interrupt buffer, without timeouts, but allowing early
357 * termination. Return codes are USB_STOR_XFER_xxx.
359 * This routine always uses us->recv_intr_pipe as the pipe and
360 * us->ep_bInterval as the interrupt interval.
362 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
366 unsigned int pipe = us->recv_intr_pipe;
369 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
371 /* calculate the max packet size */
372 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
376 /* fill and submit the URB */
377 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
378 maxp, usb_stor_blocking_completion, NULL,
380 result = usb_stor_msg_common(us, 0);
382 return interpret_urb_result(us, pipe, length, result,
383 us->current_urb->actual_length);
387 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
388 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
389 * stalls during the transfer, the halt is automatically cleared.
391 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
392 void *buf, unsigned int length, unsigned int *act_len)
396 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
398 /* fill and submit the URB */
399 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
400 usb_stor_blocking_completion, NULL);
401 result = usb_stor_msg_common(us, 0);
403 /* store the actual length of the data transferred */
405 *act_len = us->current_urb->actual_length;
406 return interpret_urb_result(us, pipe, length, result,
407 us->current_urb->actual_length);
411 * Transfer a scatter-gather list via bulk transfer
413 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
414 * above, but it uses the usbcore scatter-gather library.
416 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
417 struct scatterlist *sg, int num_sg, unsigned int length,
418 unsigned int *act_len)
422 /* don't submit s-g requests during abort/disconnect processing */
423 if (us->flags & ABORTING_OR_DISCONNECTING)
424 return USB_STOR_XFER_ERROR;
426 /* initialize the scatter-gather request block */
427 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
429 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
430 sg, num_sg, length, GFP_NOIO);
432 US_DEBUGP("usb_sg_init returned %d\n", result);
433 return USB_STOR_XFER_ERROR;
436 /* since the block has been initialized successfully, it's now
437 * okay to cancel it */
438 set_bit(US_FLIDX_SG_ACTIVE, &us->flags);
440 /* did an abort/disconnect occur during the submission? */
441 if (us->flags & ABORTING_OR_DISCONNECTING) {
443 /* cancel the request, if it hasn't been cancelled already */
444 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->flags)) {
445 US_DEBUGP("-- cancelling sg request\n");
446 usb_sg_cancel(&us->current_sg);
450 /* wait for the completion of the transfer */
451 usb_sg_wait(&us->current_sg);
452 clear_bit(US_FLIDX_SG_ACTIVE, &us->flags);
454 result = us->current_sg.status;
456 *act_len = us->current_sg.bytes;
457 return interpret_urb_result(us, pipe, length, result,
458 us->current_sg.bytes);
462 * Common used function. Transfer a complete command
463 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
465 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
466 struct scsi_cmnd* srb)
468 unsigned int partial;
469 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
470 scsi_sg_count(srb), scsi_bufflen(srb),
473 scsi_set_resid(srb, scsi_bufflen(srb) - partial);
478 * Transfer an entire SCSI command's worth of data payload over the bulk
481 * Note that this uses usb_stor_bulk_transfer_buf() and
482 * usb_stor_bulk_transfer_sglist() to achieve its goals --
483 * this function simply determines whether we're going to use
484 * scatter-gather or not, and acts appropriately.
486 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
487 void *buf, unsigned int length_left, int use_sg, int *residual)
490 unsigned int partial;
492 /* are we scatter-gathering? */
494 /* use the usb core scatter-gather primitives */
495 result = usb_stor_bulk_transfer_sglist(us, pipe,
496 (struct scatterlist *) buf, use_sg,
497 length_left, &partial);
498 length_left -= partial;
500 /* no scatter-gather, just make the request */
501 result = usb_stor_bulk_transfer_buf(us, pipe, buf,
502 length_left, &partial);
503 length_left -= partial;
506 /* store the residual and return the error code */
508 *residual = length_left;
512 /***********************************************************************
514 ***********************************************************************/
516 /* Invoke the transport and basic error-handling/recovery methods
518 * This is used by the protocol layers to actually send the message to
519 * the device and receive the response.
521 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
526 /* send the command to the transport layer */
527 scsi_set_resid(srb, 0);
528 result = us->transport(srb, us);
530 /* if the command gets aborted by the higher layers, we need to
531 * short-circuit all other processing
533 if (test_bit(US_FLIDX_TIMED_OUT, &us->flags)) {
534 US_DEBUGP("-- command was aborted\n");
535 srb->result = DID_ABORT << 16;
539 /* if there is a transport error, reset and don't auto-sense */
540 if (result == USB_STOR_TRANSPORT_ERROR) {
541 US_DEBUGP("-- transport indicates error, resetting\n");
542 srb->result = DID_ERROR << 16;
546 /* if the transport provided its own sense data, don't auto-sense */
547 if (result == USB_STOR_TRANSPORT_NO_SENSE) {
548 srb->result = SAM_STAT_CHECK_CONDITION;
552 srb->result = SAM_STAT_GOOD;
554 /* Determine if we need to auto-sense
556 * I normally don't use a flag like this, but it's almost impossible
557 * to understand what's going on here if I don't.
562 * If we're running the CB transport, which is incapable
563 * of determining status on its own, we will auto-sense
564 * unless the operation involved a data-in transfer. Devices
565 * can signal most data-in errors by stalling the bulk-in pipe.
567 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) &&
568 srb->sc_data_direction != DMA_FROM_DEVICE) {
569 US_DEBUGP("-- CB transport device requiring auto-sense\n");
574 * If we have a failure, we're going to do a REQUEST_SENSE
575 * automatically. Note that we differentiate between a command
576 * "failure" and an "error" in the transport mechanism.
578 if (result == USB_STOR_TRANSPORT_FAILED) {
579 US_DEBUGP("-- transport indicates command failure\n");
584 * A short transfer on a command where we don't expect it
585 * is unusual, but it doesn't mean we need to auto-sense.
587 if ((scsi_get_resid(srb) > 0) &&
588 !((srb->cmnd[0] == REQUEST_SENSE) ||
589 (srb->cmnd[0] == INQUIRY) ||
590 (srb->cmnd[0] == MODE_SENSE) ||
591 (srb->cmnd[0] == LOG_SENSE) ||
592 (srb->cmnd[0] == MODE_SENSE_10))) {
593 US_DEBUGP("-- unexpectedly short transfer\n");
596 /* Now, if we need to do the auto-sense, let's do it */
597 if (need_auto_sense) {
599 struct scsi_eh_save ses;
601 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
603 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, US_SENSE_SIZE);
605 /* FIXME: we must do the protocol translation here */
606 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI ||
607 us->subclass == US_SC_CYP_ATACB)
612 /* issue the auto-sense command */
613 scsi_set_resid(srb, 0);
614 temp_result = us->transport(us->srb, us);
616 /* let's clean up right away */
617 scsi_eh_restore_cmnd(srb, &ses);
619 if (test_bit(US_FLIDX_TIMED_OUT, &us->flags)) {
620 US_DEBUGP("-- auto-sense aborted\n");
621 srb->result = DID_ABORT << 16;
624 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
625 US_DEBUGP("-- auto-sense failure\n");
627 /* we skip the reset if this happens to be a
628 * multi-target device, since failure of an
629 * auto-sense is perfectly valid
631 srb->result = DID_ERROR << 16;
632 if (!(us->flags & US_FL_SCM_MULT_TARG))
637 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
638 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
639 srb->sense_buffer[0],
640 srb->sense_buffer[2] & 0xf,
641 srb->sense_buffer[12],
642 srb->sense_buffer[13]);
643 #ifdef CONFIG_USB_STORAGE_DEBUG
645 srb->sense_buffer[2] & 0xf,
646 srb->sense_buffer[12],
647 srb->sense_buffer[13]);
650 /* set the result so the higher layers expect this data */
651 srb->result = SAM_STAT_CHECK_CONDITION;
653 /* If things are really okay, then let's show that. Zero
654 * out the sense buffer so the higher layers won't realize
655 * we did an unsolicited auto-sense. */
656 if (result == USB_STOR_TRANSPORT_GOOD &&
657 /* Filemark 0, ignore EOM, ILI 0, no sense */
658 (srb->sense_buffer[2] & 0xaf) == 0 &&
660 srb->sense_buffer[12] == 0 &&
661 srb->sense_buffer[13] == 0) {
662 srb->result = SAM_STAT_GOOD;
663 srb->sense_buffer[0] = 0x0;
667 /* Did we transfer less than the minimum amount required? */
668 if (srb->result == SAM_STAT_GOOD &&
669 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
670 srb->result = (DID_ERROR << 16) | (SUGGEST_RETRY << 24);
674 /* Error and abort processing: try to resynchronize with the device
675 * by issuing a port reset. If that fails, try a class-specific
679 /* Set the RESETTING bit, and clear the ABORTING bit so that
680 * the reset may proceed. */
681 scsi_lock(us_to_host(us));
682 set_bit(US_FLIDX_RESETTING, &us->flags);
683 clear_bit(US_FLIDX_ABORTING, &us->flags);
684 scsi_unlock(us_to_host(us));
686 /* We must release the device lock because the pre_reset routine
687 * will want to acquire it. */
688 mutex_unlock(&us->dev_mutex);
689 result = usb_stor_port_reset(us);
690 mutex_lock(&us->dev_mutex);
693 scsi_lock(us_to_host(us));
694 usb_stor_report_device_reset(us);
695 scsi_unlock(us_to_host(us));
696 us->transport_reset(us);
698 clear_bit(US_FLIDX_RESETTING, &us->flags);
701 /* Stop the current URB transfer */
702 void usb_stor_stop_transport(struct us_data *us)
704 US_DEBUGP("%s called\n", __func__);
706 /* If the state machine is blocked waiting for an URB,
707 * let's wake it up. The test_and_clear_bit() call
708 * guarantees that if a URB has just been submitted,
709 * it won't be cancelled more than once. */
710 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->flags)) {
711 US_DEBUGP("-- cancelling URB\n");
712 usb_unlink_urb(us->current_urb);
715 /* If we are waiting for a scatter-gather operation, cancel it. */
716 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->flags)) {
717 US_DEBUGP("-- cancelling sg request\n");
718 usb_sg_cancel(&us->current_sg);
723 * Control/Bulk/Interrupt transport
726 int usb_stor_CBI_transport(struct scsi_cmnd *srb, struct us_data *us)
728 unsigned int transfer_length = scsi_bufflen(srb);
729 unsigned int pipe = 0;
733 /* let's send the command via the control pipe */
734 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
736 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
737 us->ifnum, srb->cmnd, srb->cmd_len);
739 /* check the return code for the command */
740 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
742 /* if we stalled the command, it means command failed */
743 if (result == USB_STOR_XFER_STALLED) {
744 return USB_STOR_TRANSPORT_FAILED;
747 /* Uh oh... serious problem here */
748 if (result != USB_STOR_XFER_GOOD) {
749 return USB_STOR_TRANSPORT_ERROR;
753 /* transfer the data payload for this command, if one exists*/
754 if (transfer_length) {
755 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
756 us->recv_bulk_pipe : us->send_bulk_pipe;
757 result = usb_stor_bulk_srb(us, pipe, srb);
758 US_DEBUGP("CBI data stage result is 0x%x\n", result);
760 /* if we stalled the data transfer it means command failed */
761 if (result == USB_STOR_XFER_STALLED)
762 return USB_STOR_TRANSPORT_FAILED;
763 if (result > USB_STOR_XFER_STALLED)
764 return USB_STOR_TRANSPORT_ERROR;
768 result = usb_stor_intr_transfer(us, us->iobuf, 2);
769 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
770 us->iobuf[0], us->iobuf[1]);
771 if (result != USB_STOR_XFER_GOOD)
772 return USB_STOR_TRANSPORT_ERROR;
774 /* UFI gives us ASC and ASCQ, like a request sense
776 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
777 * devices, so we ignore the information for those commands. Note
778 * that this means we could be ignoring a real error on these
779 * commands, but that can't be helped.
781 if (us->subclass == US_SC_UFI) {
782 if (srb->cmnd[0] == REQUEST_SENSE ||
783 srb->cmnd[0] == INQUIRY)
784 return USB_STOR_TRANSPORT_GOOD;
787 return USB_STOR_TRANSPORT_GOOD;
790 /* If not UFI, we interpret the data as a result code
791 * The first byte should always be a 0x0.
793 * Some bogus devices don't follow that rule. They stuff the ASC
794 * into the first byte -- so if it's non-zero, call it a failure.
797 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
803 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
804 switch (us->iobuf[1] & 0x0F) {
806 return USB_STOR_TRANSPORT_GOOD;
810 return USB_STOR_TRANSPORT_ERROR;
812 /* the CBI spec requires that the bulk pipe must be cleared
813 * following any data-in/out command failure (section 2.4.3.1.3)
817 usb_stor_clear_halt(us, pipe);
818 return USB_STOR_TRANSPORT_FAILED;
822 * Control/Bulk transport
824 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
826 unsigned int transfer_length = scsi_bufflen(srb);
830 /* let's send the command via the control pipe */
831 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
833 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
834 us->ifnum, srb->cmnd, srb->cmd_len);
836 /* check the return code for the command */
837 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
839 /* if we stalled the command, it means command failed */
840 if (result == USB_STOR_XFER_STALLED) {
841 return USB_STOR_TRANSPORT_FAILED;
844 /* Uh oh... serious problem here */
845 if (result != USB_STOR_XFER_GOOD) {
846 return USB_STOR_TRANSPORT_ERROR;
850 /* transfer the data payload for this command, if one exists*/
851 if (transfer_length) {
852 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
853 us->recv_bulk_pipe : us->send_bulk_pipe;
854 result = usb_stor_bulk_srb(us, pipe, srb);
855 US_DEBUGP("CB data stage result is 0x%x\n", result);
857 /* if we stalled the data transfer it means command failed */
858 if (result == USB_STOR_XFER_STALLED)
859 return USB_STOR_TRANSPORT_FAILED;
860 if (result > USB_STOR_XFER_STALLED)
861 return USB_STOR_TRANSPORT_ERROR;
865 /* NOTE: CB does not have a status stage. Silly, I know. So
866 * we have to catch this at a higher level.
868 return USB_STOR_TRANSPORT_GOOD;
872 * Bulk only transport
875 /* Determine what the maximum LUN supported is */
876 int usb_stor_Bulk_max_lun(struct us_data *us)
880 /* issue the command */
882 result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
884 USB_DIR_IN | USB_TYPE_CLASS |
886 0, us->ifnum, us->iobuf, 1, HZ);
888 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
889 result, us->iobuf[0]);
891 /* if we have a successful request, return the result */
896 * Some devices don't like GetMaxLUN. They may STALL the control
897 * pipe, they may return a zero-length result, they may do nothing at
898 * all and timeout, or they may fail in even more bizarrely creative
899 * ways. In these cases the best approach is to use the default
900 * value: only one LUN.
905 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
907 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
908 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
909 unsigned int transfer_length = scsi_bufflen(srb);
910 unsigned int residue;
914 unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
916 /* Take care of BULK32 devices; set extra byte to 0 */
917 if ( unlikely(us->flags & US_FL_BULK32)) {
922 /* set up the command wrapper */
923 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
924 bcb->DataTransferLength = cpu_to_le32(transfer_length);
925 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0;
926 bcb->Tag = ++us->tag;
927 bcb->Lun = srb->device->lun;
928 if (us->flags & US_FL_SCM_MULT_TARG)
929 bcb->Lun |= srb->device->id << 4;
930 bcb->Length = srb->cmd_len;
932 /* copy the command payload */
933 memset(bcb->CDB, 0, sizeof(bcb->CDB));
934 memcpy(bcb->CDB, srb->cmnd, bcb->Length);
936 /* send it to out endpoint */
937 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
938 le32_to_cpu(bcb->Signature), bcb->Tag,
939 le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
940 (bcb->Lun >> 4), (bcb->Lun & 0x0F),
942 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
944 US_DEBUGP("Bulk command transfer result=%d\n", result);
945 if (result != USB_STOR_XFER_GOOD)
946 return USB_STOR_TRANSPORT_ERROR;
949 /* send/receive data payload, if there is any */
951 /* Some USB-IDE converter chips need a 100us delay between the
952 * command phase and the data phase. Some devices need a little
953 * more than that, probably because of clock rate inaccuracies. */
954 if (unlikely(us->flags & US_FL_GO_SLOW))
957 if (transfer_length) {
958 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
959 us->recv_bulk_pipe : us->send_bulk_pipe;
960 result = usb_stor_bulk_srb(us, pipe, srb);
961 US_DEBUGP("Bulk data transfer result 0x%x\n", result);
962 if (result == USB_STOR_XFER_ERROR)
963 return USB_STOR_TRANSPORT_ERROR;
965 /* If the device tried to send back more data than the
966 * amount requested, the spec requires us to transfer
967 * the CSW anyway. Since there's no point retrying the
968 * the command, we'll return fake sense data indicating
969 * Illegal Request, Invalid Field in CDB.
971 if (result == USB_STOR_XFER_LONG)
975 /* See flow chart on pg 15 of the Bulk Only Transport spec for
976 * an explanation of how this code works.
979 /* get CSW for device status */
980 US_DEBUGP("Attempting to get CSW...\n");
981 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
982 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
984 /* Some broken devices add unnecessary zero-length packets to the
985 * end of their data transfers. Such packets show up as 0-length
986 * CSWs. If we encounter such a thing, try to read the CSW again.
988 if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
989 US_DEBUGP("Received 0-length CSW; retrying...\n");
990 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
991 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
994 /* did the attempt to read the CSW fail? */
995 if (result == USB_STOR_XFER_STALLED) {
997 /* get the status again */
998 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
999 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1000 bcs, US_BULK_CS_WRAP_LEN, NULL);
1003 /* if we still have a failure at this point, we're in trouble */
1004 US_DEBUGP("Bulk status result = %d\n", result);
1005 if (result != USB_STOR_XFER_GOOD)
1006 return USB_STOR_TRANSPORT_ERROR;
1008 /* check bulk status */
1009 residue = le32_to_cpu(bcs->Residue);
1010 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1011 le32_to_cpu(bcs->Signature), bcs->Tag,
1012 residue, bcs->Status);
1013 if (!(bcs->Tag == us->tag || (us->flags & US_FL_BULK_IGNORE_TAG)) ||
1014 bcs->Status > US_BULK_STAT_PHASE) {
1015 US_DEBUGP("Bulk logical error\n");
1016 return USB_STOR_TRANSPORT_ERROR;
1019 /* Some broken devices report odd signatures, so we do not check them
1020 * for validity against the spec. We store the first one we see,
1021 * and check subsequent transfers for validity against this signature.
1023 if (!us->bcs_signature) {
1024 us->bcs_signature = bcs->Signature;
1025 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1026 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1027 le32_to_cpu(us->bcs_signature));
1028 } else if (bcs->Signature != us->bcs_signature) {
1029 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1030 le32_to_cpu(bcs->Signature),
1031 le32_to_cpu(us->bcs_signature));
1032 return USB_STOR_TRANSPORT_ERROR;
1035 /* try to compute the actual residue, based on how much data
1036 * was really transferred and what the device tells us */
1038 if (!(us->flags & US_FL_IGNORE_RESIDUE)) {
1039 residue = min(residue, transfer_length);
1040 scsi_set_resid(srb, max(scsi_get_resid(srb),
1045 /* based on the status code, we report good or bad */
1046 switch (bcs->Status) {
1047 case US_BULK_STAT_OK:
1048 /* device babbled -- return fake sense data */
1050 memcpy(srb->sense_buffer,
1051 usb_stor_sense_invalidCDB,
1052 sizeof(usb_stor_sense_invalidCDB));
1053 return USB_STOR_TRANSPORT_NO_SENSE;
1056 /* command good -- note that data could be short */
1057 return USB_STOR_TRANSPORT_GOOD;
1059 case US_BULK_STAT_FAIL:
1060 /* command failed */
1061 return USB_STOR_TRANSPORT_FAILED;
1063 case US_BULK_STAT_PHASE:
1064 /* phase error -- note that a transport reset will be
1065 * invoked by the invoke_transport() function
1067 return USB_STOR_TRANSPORT_ERROR;
1070 /* we should never get here, but if we do, we're in trouble */
1071 return USB_STOR_TRANSPORT_ERROR;
1074 /***********************************************************************
1076 ***********************************************************************/
1078 /* This is the common part of the device reset code.
1080 * It's handy that every transport mechanism uses the control endpoint for
1083 * Basically, we send a reset with a 5-second timeout, so we don't get
1084 * jammed attempting to do the reset.
1086 static int usb_stor_reset_common(struct us_data *us,
1087 u8 request, u8 requesttype,
1088 u16 value, u16 index, void *data, u16 size)
1093 if (test_bit(US_FLIDX_DISCONNECTING, &us->flags)) {
1094 US_DEBUGP("No reset during disconnect\n");
1098 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1099 request, requesttype, value, index, data, size,
1102 US_DEBUGP("Soft reset failed: %d\n", result);
1106 /* Give the device some time to recover from the reset,
1107 * but don't delay disconnect processing. */
1108 wait_event_interruptible_timeout(us->delay_wait,
1109 test_bit(US_FLIDX_DISCONNECTING, &us->flags),
1111 if (test_bit(US_FLIDX_DISCONNECTING, &us->flags)) {
1112 US_DEBUGP("Reset interrupted by disconnect\n");
1116 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1117 result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1119 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1120 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1122 /* return a result code based on the result of the clear-halts */
1126 US_DEBUGP("Soft reset failed\n");
1128 US_DEBUGP("Soft reset done\n");
1132 /* This issues a CB[I] Reset to the device in question
1134 #define CB_RESET_CMD_SIZE 12
1136 int usb_stor_CB_reset(struct us_data *us)
1138 US_DEBUGP("%s called\n", __func__);
1140 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1141 us->iobuf[0] = SEND_DIAGNOSTIC;
1143 return usb_stor_reset_common(us, US_CBI_ADSC,
1144 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1145 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1148 /* This issues a Bulk-only Reset to the device in question, including
1149 * clearing the subsequent endpoint halts that may occur.
1151 int usb_stor_Bulk_reset(struct us_data *us)
1153 US_DEBUGP("%s called\n", __func__);
1155 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1156 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1157 0, us->ifnum, NULL, 0);
1160 /* Issue a USB port reset to the device. The caller must not hold
1163 int usb_stor_port_reset(struct us_data *us)
1165 int result, rc_lock;
1168 usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1170 US_DEBUGP("unable to lock device for reset: %d\n", result);
1172 /* Were we disconnected while waiting for the lock? */
1173 if (test_bit(US_FLIDX_DISCONNECTING, &us->flags)) {
1175 US_DEBUGP("No reset during disconnect\n");
1177 result = usb_reset_composite_device(
1178 us->pusb_dev, us->pusb_intf);
1179 US_DEBUGP("usb_reset_composite_device returns %d\n",
1183 usb_unlock_device(us->pusb_dev);