Merge x86-64 update from Andi
[linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         snd_pcm_runtime_t *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled == runtime->buffer_size)
60                         return;
61                 snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         runtime->silence_filled = avail > 0 ? avail : 0;
72                         runtime->silence_start = (runtime->status->hw_ptr +
73                                                   runtime->silence_filled) %
74                                                  runtime->boundary;
75                 } else {
76                         ofs = runtime->status->hw_ptr;
77                         frames = new_hw_ptr - ofs;
78                         if ((snd_pcm_sframes_t)frames < 0)
79                                 frames += runtime->boundary;
80                         runtime->silence_filled -= frames;
81                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82                                 runtime->silence_filled = 0;
83                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84                         } else {
85                                 runtime->silence_start = ofs - runtime->silence_filled;
86                         }
87                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88                                 runtime->silence_start += runtime->boundary;
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         snd_assert(frames <= runtime->buffer_size, return);
93         if (frames == 0)
94                 return;
95         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_assert(err >= 0, );
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_assert(err >= 0, );
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135         if (substream->pstr->xrun_debug) {
136                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137                            substream->pcm->card->number,
138                            substream->pcm->device,
139                            substream->stream ? 'c' : 'p');
140                 if (substream->pstr->xrun_debug > 1)
141                         dump_stack();
142         }
143 #endif
144 }
145
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147                                                           snd_pcm_runtime_t *runtime)
148 {
149         snd_pcm_uframes_t pos;
150
151         pos = substream->ops->pointer(substream);
152         if (pos == SNDRV_PCM_POS_XRUN)
153                 return pos; /* XRUN */
154         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155                 getnstimeofday((struct timespec *)&runtime->status->tstamp);
156 #ifdef CONFIG_SND_DEBUG
157         if (pos >= runtime->buffer_size) {
158                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159         }
160 #endif
161         pos -= pos % runtime->min_align;
162         return pos;
163 }
164
165 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
166                                              snd_pcm_runtime_t *runtime)
167 {
168         snd_pcm_uframes_t avail;
169
170         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
171                 avail = snd_pcm_playback_avail(runtime);
172         else
173                 avail = snd_pcm_capture_avail(runtime);
174         if (avail > runtime->avail_max)
175                 runtime->avail_max = avail;
176         if (avail >= runtime->stop_threshold) {
177                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
178                         snd_pcm_drain_done(substream);
179                 else
180                         xrun(substream);
181                 return -EPIPE;
182         }
183         if (avail >= runtime->control->avail_min)
184                 wake_up(&runtime->sleep);
185         return 0;
186 }
187
188 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
189 {
190         snd_pcm_runtime_t *runtime = substream->runtime;
191         snd_pcm_uframes_t pos;
192         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
193         snd_pcm_sframes_t delta;
194
195         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
196         if (pos == SNDRV_PCM_POS_XRUN) {
197                 xrun(substream);
198                 return -EPIPE;
199         }
200         if (runtime->period_size == runtime->buffer_size)
201                 goto __next_buf;
202         new_hw_ptr = runtime->hw_ptr_base + pos;
203         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
204
205         delta = hw_ptr_interrupt - new_hw_ptr;
206         if (delta > 0) {
207                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
208 #ifdef CONFIG_SND_DEBUG
209                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
210                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
211                                 if (substream->pstr->xrun_debug > 1)
212                                         dump_stack();
213                         }
214 #endif
215                         return 0;
216                 }
217               __next_buf:
218                 runtime->hw_ptr_base += runtime->buffer_size;
219                 if (runtime->hw_ptr_base == runtime->boundary)
220                         runtime->hw_ptr_base = 0;
221                 new_hw_ptr = runtime->hw_ptr_base + pos;
222         }
223
224         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
225             runtime->silence_size > 0)
226                 snd_pcm_playback_silence(substream, new_hw_ptr);
227
228         runtime->status->hw_ptr = new_hw_ptr;
229         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
230
231         return snd_pcm_update_hw_ptr_post(substream, runtime);
232 }
233
234 /* CAUTION: call it with irq disabled */
235 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
236 {
237         snd_pcm_runtime_t *runtime = substream->runtime;
238         snd_pcm_uframes_t pos;
239         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
240         snd_pcm_sframes_t delta;
241
242         old_hw_ptr = runtime->status->hw_ptr;
243         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
244         if (pos == SNDRV_PCM_POS_XRUN) {
245                 xrun(substream);
246                 return -EPIPE;
247         }
248         new_hw_ptr = runtime->hw_ptr_base + pos;
249
250         delta = old_hw_ptr - new_hw_ptr;
251         if (delta > 0) {
252                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
253 #ifdef CONFIG_SND_DEBUG
254                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
255                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
256                                 if (substream->pstr->xrun_debug > 1)
257                                         dump_stack();
258                         }
259 #endif
260                         return 0;
261                 }
262                 runtime->hw_ptr_base += runtime->buffer_size;
263                 if (runtime->hw_ptr_base == runtime->boundary)
264                         runtime->hw_ptr_base = 0;
265                 new_hw_ptr = runtime->hw_ptr_base + pos;
266         }
267         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
268             runtime->silence_size > 0)
269                 snd_pcm_playback_silence(substream, new_hw_ptr);
270
271         runtime->status->hw_ptr = new_hw_ptr;
272
273         return snd_pcm_update_hw_ptr_post(substream, runtime);
274 }
275
276 /**
277  * snd_pcm_set_ops - set the PCM operators
278  * @pcm: the pcm instance
279  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
280  * @ops: the operator table
281  *
282  * Sets the given PCM operators to the pcm instance.
283  */
284 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
285 {
286         snd_pcm_str_t *stream = &pcm->streams[direction];
287         snd_pcm_substream_t *substream;
288         
289         for (substream = stream->substream; substream != NULL; substream = substream->next)
290                 substream->ops = ops;
291 }
292
293
294 /**
295  * snd_pcm_sync - set the PCM sync id
296  * @substream: the pcm substream
297  *
298  * Sets the PCM sync identifier for the card.
299  */
300 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
301 {
302         snd_pcm_runtime_t *runtime = substream->runtime;
303         
304         runtime->sync.id32[0] = substream->pcm->card->number;
305         runtime->sync.id32[1] = -1;
306         runtime->sync.id32[2] = -1;
307         runtime->sync.id32[3] = -1;
308 }
309
310 /*
311  *  Standard ioctl routine
312  */
313
314 /* Code taken from alsa-lib */
315 #define assert(a) snd_assert((a), return -EINVAL)
316
317 static inline unsigned int div32(unsigned int a, unsigned int b, 
318                                  unsigned int *r)
319 {
320         if (b == 0) {
321                 *r = 0;
322                 return UINT_MAX;
323         }
324         *r = a % b;
325         return a / b;
326 }
327
328 static inline unsigned int div_down(unsigned int a, unsigned int b)
329 {
330         if (b == 0)
331                 return UINT_MAX;
332         return a / b;
333 }
334
335 static inline unsigned int div_up(unsigned int a, unsigned int b)
336 {
337         unsigned int r;
338         unsigned int q;
339         if (b == 0)
340                 return UINT_MAX;
341         q = div32(a, b, &r);
342         if (r)
343                 ++q;
344         return q;
345 }
346
347 static inline unsigned int mul(unsigned int a, unsigned int b)
348 {
349         if (a == 0)
350                 return 0;
351         if (div_down(UINT_MAX, a) < b)
352                 return UINT_MAX;
353         return a * b;
354 }
355
356 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
357                                     unsigned int c, unsigned int *r)
358 {
359         u_int64_t n = (u_int64_t) a * b;
360         if (c == 0) {
361                 snd_assert(n > 0, );
362                 *r = 0;
363                 return UINT_MAX;
364         }
365         div64_32(&n, c, r);
366         if (n >= UINT_MAX) {
367                 *r = 0;
368                 return UINT_MAX;
369         }
370         return n;
371 }
372
373 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
374 {
375         int changed = 0;
376         assert(!snd_interval_empty(i));
377         if (i->min < min) {
378                 i->min = min;
379                 i->openmin = openmin;
380                 changed = 1;
381         } else if (i->min == min && !i->openmin && openmin) {
382                 i->openmin = 1;
383                 changed = 1;
384         }
385         if (i->integer) {
386                 if (i->openmin) {
387                         i->min++;
388                         i->openmin = 0;
389                 }
390         }
391         if (snd_interval_checkempty(i)) {
392                 snd_interval_none(i);
393                 return -EINVAL;
394         }
395         return changed;
396 }
397
398 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
399 {
400         int changed = 0;
401         assert(!snd_interval_empty(i));
402         if (i->max > max) {
403                 i->max = max;
404                 i->openmax = openmax;
405                 changed = 1;
406         } else if (i->max == max && !i->openmax && openmax) {
407                 i->openmax = 1;
408                 changed = 1;
409         }
410         if (i->integer) {
411                 if (i->openmax) {
412                         i->max--;
413                         i->openmax = 0;
414                 }
415         }
416         if (snd_interval_checkempty(i)) {
417                 snd_interval_none(i);
418                 return -EINVAL;
419         }
420         return changed;
421 }
422
423 /**
424  * snd_interval_refine - refine the interval value of configurator
425  * @i: the interval value to refine
426  * @v: the interval value to refer to
427  *
428  * Refines the interval value with the reference value.
429  * The interval is changed to the range satisfying both intervals.
430  * The interval status (min, max, integer, etc.) are evaluated.
431  *
432  * Returns non-zero if the value is changed, zero if not changed.
433  */
434 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
435 {
436         int changed = 0;
437         assert(!snd_interval_empty(i));
438         if (i->min < v->min) {
439                 i->min = v->min;
440                 i->openmin = v->openmin;
441                 changed = 1;
442         } else if (i->min == v->min && !i->openmin && v->openmin) {
443                 i->openmin = 1;
444                 changed = 1;
445         }
446         if (i->max > v->max) {
447                 i->max = v->max;
448                 i->openmax = v->openmax;
449                 changed = 1;
450         } else if (i->max == v->max && !i->openmax && v->openmax) {
451                 i->openmax = 1;
452                 changed = 1;
453         }
454         if (!i->integer && v->integer) {
455                 i->integer = 1;
456                 changed = 1;
457         }
458         if (i->integer) {
459                 if (i->openmin) {
460                         i->min++;
461                         i->openmin = 0;
462                 }
463                 if (i->openmax) {
464                         i->max--;
465                         i->openmax = 0;
466                 }
467         } else if (!i->openmin && !i->openmax && i->min == i->max)
468                 i->integer = 1;
469         if (snd_interval_checkempty(i)) {
470                 snd_interval_none(i);
471                 return -EINVAL;
472         }
473         return changed;
474 }
475
476 static int snd_interval_refine_first(snd_interval_t *i)
477 {
478         assert(!snd_interval_empty(i));
479         if (snd_interval_single(i))
480                 return 0;
481         i->max = i->min;
482         i->openmax = i->openmin;
483         if (i->openmax)
484                 i->max++;
485         return 1;
486 }
487
488 static int snd_interval_refine_last(snd_interval_t *i)
489 {
490         assert(!snd_interval_empty(i));
491         if (snd_interval_single(i))
492                 return 0;
493         i->min = i->max;
494         i->openmin = i->openmax;
495         if (i->openmin)
496                 i->min--;
497         return 1;
498 }
499
500 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
501 {
502         snd_interval_t t;
503         t.empty = 0;
504         t.min = t.max = val;
505         t.openmin = t.openmax = 0;
506         t.integer = 1;
507         return snd_interval_refine(i, &t);
508 }
509
510 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
511 {
512         if (a->empty || b->empty) {
513                 snd_interval_none(c);
514                 return;
515         }
516         c->empty = 0;
517         c->min = mul(a->min, b->min);
518         c->openmin = (a->openmin || b->openmin);
519         c->max = mul(a->max,  b->max);
520         c->openmax = (a->openmax || b->openmax);
521         c->integer = (a->integer && b->integer);
522 }
523
524 /**
525  * snd_interval_div - refine the interval value with division
526  * @a: dividend
527  * @b: divisor
528  * @c: quotient
529  *
530  * c = a / b
531  *
532  * Returns non-zero if the value is changed, zero if not changed.
533  */
534 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
535 {
536         unsigned int r;
537         if (a->empty || b->empty) {
538                 snd_interval_none(c);
539                 return;
540         }
541         c->empty = 0;
542         c->min = div32(a->min, b->max, &r);
543         c->openmin = (r || a->openmin || b->openmax);
544         if (b->min > 0) {
545                 c->max = div32(a->max, b->min, &r);
546                 if (r) {
547                         c->max++;
548                         c->openmax = 1;
549                 } else
550                         c->openmax = (a->openmax || b->openmin);
551         } else {
552                 c->max = UINT_MAX;
553                 c->openmax = 0;
554         }
555         c->integer = 0;
556 }
557
558 /**
559  * snd_interval_muldivk - refine the interval value
560  * @a: dividend 1
561  * @b: dividend 2
562  * @k: divisor (as integer)
563  * @c: result
564   *
565  * c = a * b / k
566  *
567  * Returns non-zero if the value is changed, zero if not changed.
568  */
569 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
570                       unsigned int k, snd_interval_t *c)
571 {
572         unsigned int r;
573         if (a->empty || b->empty) {
574                 snd_interval_none(c);
575                 return;
576         }
577         c->empty = 0;
578         c->min = muldiv32(a->min, b->min, k, &r);
579         c->openmin = (r || a->openmin || b->openmin);
580         c->max = muldiv32(a->max, b->max, k, &r);
581         if (r) {
582                 c->max++;
583                 c->openmax = 1;
584         } else
585                 c->openmax = (a->openmax || b->openmax);
586         c->integer = 0;
587 }
588
589 /**
590  * snd_interval_mulkdiv - refine the interval value
591  * @a: dividend 1
592  * @k: dividend 2 (as integer)
593  * @b: divisor
594  * @c: result
595  *
596  * c = a * k / b
597  *
598  * Returns non-zero if the value is changed, zero if not changed.
599  */
600 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
601                       const snd_interval_t *b, snd_interval_t *c)
602 {
603         unsigned int r;
604         if (a->empty || b->empty) {
605                 snd_interval_none(c);
606                 return;
607         }
608         c->empty = 0;
609         c->min = muldiv32(a->min, k, b->max, &r);
610         c->openmin = (r || a->openmin || b->openmax);
611         if (b->min > 0) {
612                 c->max = muldiv32(a->max, k, b->min, &r);
613                 if (r) {
614                         c->max++;
615                         c->openmax = 1;
616                 } else
617                         c->openmax = (a->openmax || b->openmin);
618         } else {
619                 c->max = UINT_MAX;
620                 c->openmax = 0;
621         }
622         c->integer = 0;
623 }
624
625 #undef assert
626 /* ---- */
627
628
629 /**
630  * snd_interval_ratnum - refine the interval value
631  * @i: interval to refine
632  * @rats_count: number of ratnum_t 
633  * @rats: ratnum_t array
634  * @nump: pointer to store the resultant numerator
635  * @denp: pointer to store the resultant denominator
636  *
637  * Returns non-zero if the value is changed, zero if not changed.
638  */
639 int snd_interval_ratnum(snd_interval_t *i,
640                     unsigned int rats_count, ratnum_t *rats,
641                     unsigned int *nump, unsigned int *denp)
642 {
643         unsigned int best_num, best_diff, best_den;
644         unsigned int k;
645         snd_interval_t t;
646         int err;
647
648         best_num = best_den = best_diff = 0;
649         for (k = 0; k < rats_count; ++k) {
650                 unsigned int num = rats[k].num;
651                 unsigned int den;
652                 unsigned int q = i->min;
653                 int diff;
654                 if (q == 0)
655                         q = 1;
656                 den = div_down(num, q);
657                 if (den < rats[k].den_min)
658                         continue;
659                 if (den > rats[k].den_max)
660                         den = rats[k].den_max;
661                 else {
662                         unsigned int r;
663                         r = (den - rats[k].den_min) % rats[k].den_step;
664                         if (r != 0)
665                                 den -= r;
666                 }
667                 diff = num - q * den;
668                 if (best_num == 0 ||
669                     diff * best_den < best_diff * den) {
670                         best_diff = diff;
671                         best_den = den;
672                         best_num = num;
673                 }
674         }
675         if (best_den == 0) {
676                 i->empty = 1;
677                 return -EINVAL;
678         }
679         t.min = div_down(best_num, best_den);
680         t.openmin = !!(best_num % best_den);
681         
682         best_num = best_den = best_diff = 0;
683         for (k = 0; k < rats_count; ++k) {
684                 unsigned int num = rats[k].num;
685                 unsigned int den;
686                 unsigned int q = i->max;
687                 int diff;
688                 if (q == 0) {
689                         i->empty = 1;
690                         return -EINVAL;
691                 }
692                 den = div_up(num, q);
693                 if (den > rats[k].den_max)
694                         continue;
695                 if (den < rats[k].den_min)
696                         den = rats[k].den_min;
697                 else {
698                         unsigned int r;
699                         r = (den - rats[k].den_min) % rats[k].den_step;
700                         if (r != 0)
701                                 den += rats[k].den_step - r;
702                 }
703                 diff = q * den - num;
704                 if (best_num == 0 ||
705                     diff * best_den < best_diff * den) {
706                         best_diff = diff;
707                         best_den = den;
708                         best_num = num;
709                 }
710         }
711         if (best_den == 0) {
712                 i->empty = 1;
713                 return -EINVAL;
714         }
715         t.max = div_up(best_num, best_den);
716         t.openmax = !!(best_num % best_den);
717         t.integer = 0;
718         err = snd_interval_refine(i, &t);
719         if (err < 0)
720                 return err;
721
722         if (snd_interval_single(i)) {
723                 if (nump)
724                         *nump = best_num;
725                 if (denp)
726                         *denp = best_den;
727         }
728         return err;
729 }
730
731 /**
732  * snd_interval_ratden - refine the interval value
733  * @i: interval to refine
734  * @rats_count: number of ratden_t
735  * @rats: ratden_t array
736  * @nump: pointer to store the resultant numerator
737  * @denp: pointer to store the resultant denominator
738  *
739  * Returns non-zero if the value is changed, zero if not changed.
740  */
741 static int snd_interval_ratden(snd_interval_t *i,
742                                unsigned int rats_count, ratden_t *rats,
743                                unsigned int *nump, unsigned int *denp)
744 {
745         unsigned int best_num, best_diff, best_den;
746         unsigned int k;
747         snd_interval_t t;
748         int err;
749
750         best_num = best_den = best_diff = 0;
751         for (k = 0; k < rats_count; ++k) {
752                 unsigned int num;
753                 unsigned int den = rats[k].den;
754                 unsigned int q = i->min;
755                 int diff;
756                 num = mul(q, den);
757                 if (num > rats[k].num_max)
758                         continue;
759                 if (num < rats[k].num_min)
760                         num = rats[k].num_max;
761                 else {
762                         unsigned int r;
763                         r = (num - rats[k].num_min) % rats[k].num_step;
764                         if (r != 0)
765                                 num += rats[k].num_step - r;
766                 }
767                 diff = num - q * den;
768                 if (best_num == 0 ||
769                     diff * best_den < best_diff * den) {
770                         best_diff = diff;
771                         best_den = den;
772                         best_num = num;
773                 }
774         }
775         if (best_den == 0) {
776                 i->empty = 1;
777                 return -EINVAL;
778         }
779         t.min = div_down(best_num, best_den);
780         t.openmin = !!(best_num % best_den);
781         
782         best_num = best_den = best_diff = 0;
783         for (k = 0; k < rats_count; ++k) {
784                 unsigned int num;
785                 unsigned int den = rats[k].den;
786                 unsigned int q = i->max;
787                 int diff;
788                 num = mul(q, den);
789                 if (num < rats[k].num_min)
790                         continue;
791                 if (num > rats[k].num_max)
792                         num = rats[k].num_max;
793                 else {
794                         unsigned int r;
795                         r = (num - rats[k].num_min) % rats[k].num_step;
796                         if (r != 0)
797                                 num -= r;
798                 }
799                 diff = q * den - num;
800                 if (best_num == 0 ||
801                     diff * best_den < best_diff * den) {
802                         best_diff = diff;
803                         best_den = den;
804                         best_num = num;
805                 }
806         }
807         if (best_den == 0) {
808                 i->empty = 1;
809                 return -EINVAL;
810         }
811         t.max = div_up(best_num, best_den);
812         t.openmax = !!(best_num % best_den);
813         t.integer = 0;
814         err = snd_interval_refine(i, &t);
815         if (err < 0)
816                 return err;
817
818         if (snd_interval_single(i)) {
819                 if (nump)
820                         *nump = best_num;
821                 if (denp)
822                         *denp = best_den;
823         }
824         return err;
825 }
826
827 /**
828  * snd_interval_list - refine the interval value from the list
829  * @i: the interval value to refine
830  * @count: the number of elements in the list
831  * @list: the value list
832  * @mask: the bit-mask to evaluate
833  *
834  * Refines the interval value from the list.
835  * When mask is non-zero, only the elements corresponding to bit 1 are
836  * evaluated.
837  *
838  * Returns non-zero if the value is changed, zero if not changed.
839  */
840 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
841 {
842         unsigned int k;
843         int changed = 0;
844         for (k = 0; k < count; k++) {
845                 if (mask && !(mask & (1 << k)))
846                         continue;
847                 if (i->min == list[k] && !i->openmin)
848                         goto _l1;
849                 if (i->min < list[k]) {
850                         i->min = list[k];
851                         i->openmin = 0;
852                         changed = 1;
853                         goto _l1;
854                 }
855         }
856         i->empty = 1;
857         return -EINVAL;
858  _l1:
859         for (k = count; k-- > 0;) {
860                 if (mask && !(mask & (1 << k)))
861                         continue;
862                 if (i->max == list[k] && !i->openmax)
863                         goto _l2;
864                 if (i->max > list[k]) {
865                         i->max = list[k];
866                         i->openmax = 0;
867                         changed = 1;
868                         goto _l2;
869                 }
870         }
871         i->empty = 1;
872         return -EINVAL;
873  _l2:
874         if (snd_interval_checkempty(i)) {
875                 i->empty = 1;
876                 return -EINVAL;
877         }
878         return changed;
879 }
880
881 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
882 {
883         unsigned int n;
884         int changed = 0;
885         n = (i->min - min) % step;
886         if (n != 0 || i->openmin) {
887                 i->min += step - n;
888                 changed = 1;
889         }
890         n = (i->max - min) % step;
891         if (n != 0 || i->openmax) {
892                 i->max -= n;
893                 changed = 1;
894         }
895         if (snd_interval_checkempty(i)) {
896                 i->empty = 1;
897                 return -EINVAL;
898         }
899         return changed;
900 }
901
902 /* Info constraints helpers */
903
904 /**
905  * snd_pcm_hw_rule_add - add the hw-constraint rule
906  * @runtime: the pcm runtime instance
907  * @cond: condition bits
908  * @var: the variable to evaluate
909  * @func: the evaluation function
910  * @private: the private data pointer passed to function
911  * @dep: the dependent variables
912  *
913  * Returns zero if successful, or a negative error code on failure.
914  */
915 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
916                         int var,
917                         snd_pcm_hw_rule_func_t func, void *private,
918                         int dep, ...)
919 {
920         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
921         snd_pcm_hw_rule_t *c;
922         unsigned int k;
923         va_list args;
924         va_start(args, dep);
925         if (constrs->rules_num >= constrs->rules_all) {
926                 snd_pcm_hw_rule_t *new;
927                 unsigned int new_rules = constrs->rules_all + 16;
928                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
929                 if (!new)
930                         return -ENOMEM;
931                 if (constrs->rules) {
932                         memcpy(new, constrs->rules,
933                                constrs->rules_num * sizeof(*c));
934                         kfree(constrs->rules);
935                 }
936                 constrs->rules = new;
937                 constrs->rules_all = new_rules;
938         }
939         c = &constrs->rules[constrs->rules_num];
940         c->cond = cond;
941         c->func = func;
942         c->var = var;
943         c->private = private;
944         k = 0;
945         while (1) {
946                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
947                 c->deps[k++] = dep;
948                 if (dep < 0)
949                         break;
950                 dep = va_arg(args, int);
951         }
952         constrs->rules_num++;
953         va_end(args);
954         return 0;
955 }                                   
956
957 /**
958  * snd_pcm_hw_constraint_mask
959  * @runtime: PCM runtime instance
960  * @var: hw_params variable to apply the mask
961  * @mask: the bitmap mask
962  *
963  * Apply the constraint of the given bitmap mask to a mask parameter.
964  */
965 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
966                                u_int32_t mask)
967 {
968         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
969         snd_mask_t *maskp = constrs_mask(constrs, var);
970         *maskp->bits &= mask;
971         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
972         if (*maskp->bits == 0)
973                 return -EINVAL;
974         return 0;
975 }
976
977 /**
978  * snd_pcm_hw_constraint_mask64
979  * @runtime: PCM runtime instance
980  * @var: hw_params variable to apply the mask
981  * @mask: the 64bit bitmap mask
982  *
983  * Apply the constraint of the given bitmap mask to a mask parameter.
984  */
985 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
986                                  u_int64_t mask)
987 {
988         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
989         snd_mask_t *maskp = constrs_mask(constrs, var);
990         maskp->bits[0] &= (u_int32_t)mask;
991         maskp->bits[1] &= (u_int32_t)(mask >> 32);
992         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
993         if (! maskp->bits[0] && ! maskp->bits[1])
994                 return -EINVAL;
995         return 0;
996 }
997
998 /**
999  * snd_pcm_hw_constraint_integer
1000  * @runtime: PCM runtime instance
1001  * @var: hw_params variable to apply the integer constraint
1002  *
1003  * Apply the constraint of integer to an interval parameter.
1004  */
1005 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
1006 {
1007         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1008         return snd_interval_setinteger(constrs_interval(constrs, var));
1009 }
1010
1011 /**
1012  * snd_pcm_hw_constraint_minmax
1013  * @runtime: PCM runtime instance
1014  * @var: hw_params variable to apply the range
1015  * @min: the minimal value
1016  * @max: the maximal value
1017  * 
1018  * Apply the min/max range constraint to an interval parameter.
1019  */
1020 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
1021                                  unsigned int min, unsigned int max)
1022 {
1023         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1024         snd_interval_t t;
1025         t.min = min;
1026         t.max = max;
1027         t.openmin = t.openmax = 0;
1028         t.integer = 0;
1029         return snd_interval_refine(constrs_interval(constrs, var), &t);
1030 }
1031
1032 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
1033                                 snd_pcm_hw_rule_t *rule)
1034 {
1035         snd_pcm_hw_constraint_list_t *list = rule->private;
1036         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1037 }               
1038
1039
1040 /**
1041  * snd_pcm_hw_constraint_list
1042  * @runtime: PCM runtime instance
1043  * @cond: condition bits
1044  * @var: hw_params variable to apply the list constraint
1045  * @l: list
1046  * 
1047  * Apply the list of constraints to an interval parameter.
1048  */
1049 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1050                                unsigned int cond,
1051                                snd_pcm_hw_param_t var,
1052                                snd_pcm_hw_constraint_list_t *l)
1053 {
1054         return snd_pcm_hw_rule_add(runtime, cond, var,
1055                                    snd_pcm_hw_rule_list, l,
1056                                    var, -1);
1057 }
1058
1059 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1060                                    snd_pcm_hw_rule_t *rule)
1061 {
1062         snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1063         unsigned int num = 0, den = 0;
1064         int err;
1065         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1066                                   r->nrats, r->rats, &num, &den);
1067         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1068                 params->rate_num = num;
1069                 params->rate_den = den;
1070         }
1071         return err;
1072 }
1073
1074 /**
1075  * snd_pcm_hw_constraint_ratnums
1076  * @runtime: PCM runtime instance
1077  * @cond: condition bits
1078  * @var: hw_params variable to apply the ratnums constraint
1079  * @r: ratnums_t constriants
1080  */
1081 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime, 
1082                                   unsigned int cond,
1083                                   snd_pcm_hw_param_t var,
1084                                   snd_pcm_hw_constraint_ratnums_t *r)
1085 {
1086         return snd_pcm_hw_rule_add(runtime, cond, var,
1087                                    snd_pcm_hw_rule_ratnums, r,
1088                                    var, -1);
1089 }
1090
1091 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1092                                    snd_pcm_hw_rule_t *rule)
1093 {
1094         snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1095         unsigned int num = 0, den = 0;
1096         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1097                                   r->nrats, r->rats, &num, &den);
1098         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1099                 params->rate_num = num;
1100                 params->rate_den = den;
1101         }
1102         return err;
1103 }
1104
1105 /**
1106  * snd_pcm_hw_constraint_ratdens
1107  * @runtime: PCM runtime instance
1108  * @cond: condition bits
1109  * @var: hw_params variable to apply the ratdens constraint
1110  * @r: ratdens_t constriants
1111  */
1112 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime, 
1113                                   unsigned int cond,
1114                                   snd_pcm_hw_param_t var,
1115                                   snd_pcm_hw_constraint_ratdens_t *r)
1116 {
1117         return snd_pcm_hw_rule_add(runtime, cond, var,
1118                                    snd_pcm_hw_rule_ratdens, r,
1119                                    var, -1);
1120 }
1121
1122 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1123                                   snd_pcm_hw_rule_t *rule)
1124 {
1125         unsigned int l = (unsigned long) rule->private;
1126         int width = l & 0xffff;
1127         unsigned int msbits = l >> 16;
1128         snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1129         if (snd_interval_single(i) && snd_interval_value(i) == width)
1130                 params->msbits = msbits;
1131         return 0;
1132 }
1133
1134 /**
1135  * snd_pcm_hw_constraint_msbits
1136  * @runtime: PCM runtime instance
1137  * @cond: condition bits
1138  * @width: sample bits width
1139  * @msbits: msbits width
1140  */
1141 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime, 
1142                                  unsigned int cond,
1143                                  unsigned int width,
1144                                  unsigned int msbits)
1145 {
1146         unsigned long l = (msbits << 16) | width;
1147         return snd_pcm_hw_rule_add(runtime, cond, -1,
1148                                     snd_pcm_hw_rule_msbits,
1149                                     (void*) l,
1150                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1151 }
1152
1153 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1154                                 snd_pcm_hw_rule_t *rule)
1155 {
1156         unsigned long step = (unsigned long) rule->private;
1157         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1158 }
1159
1160 /**
1161  * snd_pcm_hw_constraint_step
1162  * @runtime: PCM runtime instance
1163  * @cond: condition bits
1164  * @var: hw_params variable to apply the step constraint
1165  * @step: step size
1166  */
1167 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1168                                unsigned int cond,
1169                                snd_pcm_hw_param_t var,
1170                                unsigned long step)
1171 {
1172         return snd_pcm_hw_rule_add(runtime, cond, var, 
1173                                    snd_pcm_hw_rule_step, (void *) step,
1174                                    var, -1);
1175 }
1176
1177 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1178 {
1179         static int pow2_sizes[] = {
1180                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1181                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1182                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1183                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1184         };
1185         return snd_interval_list(hw_param_interval(params, rule->var),
1186                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1187 }               
1188
1189 /**
1190  * snd_pcm_hw_constraint_pow2
1191  * @runtime: PCM runtime instance
1192  * @cond: condition bits
1193  * @var: hw_params variable to apply the power-of-2 constraint
1194  */
1195 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1196                                unsigned int cond,
1197                                snd_pcm_hw_param_t var)
1198 {
1199         return snd_pcm_hw_rule_add(runtime, cond, var, 
1200                                    snd_pcm_hw_rule_pow2, NULL,
1201                                    var, -1);
1202 }
1203
1204 /* To use the same code we have in alsa-lib */
1205 #define snd_pcm_t snd_pcm_substream_t
1206 #define assert(i) snd_assert((i), return -EINVAL)
1207 #ifndef INT_MIN
1208 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1209 #endif
1210
1211 static void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params,
1212                                   snd_pcm_hw_param_t var)
1213 {
1214         if (hw_is_mask(var)) {
1215                 snd_mask_any(hw_param_mask(params, var));
1216                 params->cmask |= 1 << var;
1217                 params->rmask |= 1 << var;
1218                 return;
1219         }
1220         if (hw_is_interval(var)) {
1221                 snd_interval_any(hw_param_interval(params, var));
1222                 params->cmask |= 1 << var;
1223                 params->rmask |= 1 << var;
1224                 return;
1225         }
1226         snd_BUG();
1227 }
1228
1229 #if 0
1230 /*
1231  * snd_pcm_hw_param_any
1232  */
1233 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1234                          snd_pcm_hw_param_t var)
1235 {
1236         _snd_pcm_hw_param_any(params, var);
1237         return snd_pcm_hw_refine(pcm, params);
1238 }
1239 #endif  /*  0  */
1240
1241 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1242 {
1243         unsigned int k;
1244         memset(params, 0, sizeof(*params));
1245         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1246                 _snd_pcm_hw_param_any(params, k);
1247         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1248                 _snd_pcm_hw_param_any(params, k);
1249         params->info = ~0U;
1250 }
1251
1252 #if 0
1253 /*
1254  * snd_pcm_hw_params_any
1255  *
1256  * Fill PARAMS with full configuration space boundaries
1257  */
1258 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1259 {
1260         _snd_pcm_hw_params_any(params);
1261         return snd_pcm_hw_refine(pcm, params);
1262 }
1263 #endif  /*  0  */
1264
1265 /**
1266  * snd_pcm_hw_param_value
1267  * @params: the hw_params instance
1268  * @var: parameter to retrieve
1269  * @dir: pointer to the direction (-1,0,1) or NULL
1270  *
1271  * Return the value for field PAR if it's fixed in configuration space 
1272  *  defined by PARAMS. Return -EINVAL otherwise
1273  */
1274 static int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1275                                   snd_pcm_hw_param_t var, int *dir)
1276 {
1277         if (hw_is_mask(var)) {
1278                 const snd_mask_t *mask = hw_param_mask_c(params, var);
1279                 if (!snd_mask_single(mask))
1280                         return -EINVAL;
1281                 if (dir)
1282                         *dir = 0;
1283                 return snd_mask_value(mask);
1284         }
1285         if (hw_is_interval(var)) {
1286                 const snd_interval_t *i = hw_param_interval_c(params, var);
1287                 if (!snd_interval_single(i))
1288                         return -EINVAL;
1289                 if (dir)
1290                         *dir = i->openmin;
1291                 return snd_interval_value(i);
1292         }
1293         assert(0);
1294         return -EINVAL;
1295 }
1296
1297 /**
1298  * snd_pcm_hw_param_value_min
1299  * @params: the hw_params instance
1300  * @var: parameter to retrieve
1301  * @dir: pointer to the direction (-1,0,1) or NULL
1302  *
1303  * Return the minimum value for field PAR.
1304  */
1305 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1306                                         snd_pcm_hw_param_t var, int *dir)
1307 {
1308         if (hw_is_mask(var)) {
1309                 if (dir)
1310                         *dir = 0;
1311                 return snd_mask_min(hw_param_mask_c(params, var));
1312         }
1313         if (hw_is_interval(var)) {
1314                 const snd_interval_t *i = hw_param_interval_c(params, var);
1315                 if (dir)
1316                         *dir = i->openmin;
1317                 return snd_interval_min(i);
1318         }
1319         assert(0);
1320         return -EINVAL;
1321 }
1322
1323 /**
1324  * snd_pcm_hw_param_value_max
1325  * @params: the hw_params instance
1326  * @var: parameter to retrieve
1327  * @dir: pointer to the direction (-1,0,1) or NULL
1328  *
1329  * Return the maximum value for field PAR.
1330  */
1331 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1332                                         snd_pcm_hw_param_t var, int *dir)
1333 {
1334         if (hw_is_mask(var)) {
1335                 if (dir)
1336                         *dir = 0;
1337                 return snd_mask_max(hw_param_mask_c(params, var));
1338         }
1339         if (hw_is_interval(var)) {
1340                 const snd_interval_t *i = hw_param_interval_c(params, var);
1341                 if (dir)
1342                         *dir = - (int) i->openmax;
1343                 return snd_interval_max(i);
1344         }
1345         assert(0);
1346         return -EINVAL;
1347 }
1348
1349 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1350                                 snd_pcm_hw_param_t var)
1351 {
1352         if (hw_is_mask(var)) {
1353                 snd_mask_none(hw_param_mask(params, var));
1354                 params->cmask |= 1 << var;
1355                 params->rmask |= 1 << var;
1356         } else if (hw_is_interval(var)) {
1357                 snd_interval_none(hw_param_interval(params, var));
1358                 params->cmask |= 1 << var;
1359                 params->rmask |= 1 << var;
1360         } else {
1361                 snd_BUG();
1362         }
1363 }
1364
1365 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1366                                  snd_pcm_hw_param_t var)
1367 {
1368         int changed;
1369         assert(hw_is_interval(var));
1370         changed = snd_interval_setinteger(hw_param_interval(params, var));
1371         if (changed) {
1372                 params->cmask |= 1 << var;
1373                 params->rmask |= 1 << var;
1374         }
1375         return changed;
1376 }
1377         
1378 #if 0
1379 /*
1380  * snd_pcm_hw_param_setinteger
1381  *
1382  * Inside configuration space defined by PARAMS remove from PAR all 
1383  * non integer values. Reduce configuration space accordingly.
1384  * Return -EINVAL if the configuration space is empty
1385  */
1386 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm, 
1387                                 snd_pcm_hw_params_t *params,
1388                                 snd_pcm_hw_param_t var)
1389 {
1390         int changed = _snd_pcm_hw_param_setinteger(params, var);
1391         if (changed < 0)
1392                 return changed;
1393         if (params->rmask) {
1394                 int err = snd_pcm_hw_refine(pcm, params);
1395                 if (err < 0)
1396                         return err;
1397         }
1398         return 0;
1399 }
1400 #endif  /*  0  */
1401
1402 static int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1403                                    snd_pcm_hw_param_t var)
1404 {
1405         int changed;
1406         if (hw_is_mask(var))
1407                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1408         else if (hw_is_interval(var))
1409                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1410         else {
1411                 assert(0);
1412                 return -EINVAL;
1413         }
1414         if (changed) {
1415                 params->cmask |= 1 << var;
1416                 params->rmask |= 1 << var;
1417         }
1418         return changed;
1419 }
1420
1421
1422 /**
1423  * snd_pcm_hw_param_first
1424  * @pcm: PCM instance
1425  * @params: the hw_params instance
1426  * @var: parameter to retrieve
1427  * @dir: pointer to the direction (-1,0,1) or NULL
1428  *
1429  * Inside configuration space defined by PARAMS remove from PAR all 
1430  * values > minimum. Reduce configuration space accordingly.
1431  * Return the minimum.
1432  */
1433 static int snd_pcm_hw_param_first(snd_pcm_t *pcm, 
1434                                   snd_pcm_hw_params_t *params, 
1435                                   snd_pcm_hw_param_t var, int *dir)
1436 {
1437         int changed = _snd_pcm_hw_param_first(params, var);
1438         if (changed < 0)
1439                 return changed;
1440         if (params->rmask) {
1441                 int err = snd_pcm_hw_refine(pcm, params);
1442                 assert(err >= 0);
1443         }
1444         return snd_pcm_hw_param_value(params, var, dir);
1445 }
1446
1447 static int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1448                                   snd_pcm_hw_param_t var)
1449 {
1450         int changed;
1451         if (hw_is_mask(var))
1452                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1453         else if (hw_is_interval(var))
1454                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1455         else {
1456                 assert(0);
1457                 return -EINVAL;
1458         }
1459         if (changed) {
1460                 params->cmask |= 1 << var;
1461                 params->rmask |= 1 << var;
1462         }
1463         return changed;
1464 }
1465
1466
1467 /**
1468  * snd_pcm_hw_param_last
1469  * @pcm: PCM instance
1470  * @params: the hw_params instance
1471  * @var: parameter to retrieve
1472  * @dir: pointer to the direction (-1,0,1) or NULL
1473  *
1474  * Inside configuration space defined by PARAMS remove from PAR all 
1475  * values < maximum. Reduce configuration space accordingly.
1476  * Return the maximum.
1477  */
1478 static int snd_pcm_hw_param_last(snd_pcm_t *pcm, 
1479                                  snd_pcm_hw_params_t *params,
1480                                  snd_pcm_hw_param_t var, int *dir)
1481 {
1482         int changed = _snd_pcm_hw_param_last(params, var);
1483         if (changed < 0)
1484                 return changed;
1485         if (params->rmask) {
1486                 int err = snd_pcm_hw_refine(pcm, params);
1487                 assert(err >= 0);
1488         }
1489         return snd_pcm_hw_param_value(params, var, dir);
1490 }
1491
1492 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1493                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1494 {
1495         int changed;
1496         int open = 0;
1497         if (dir) {
1498                 if (dir > 0) {
1499                         open = 1;
1500                 } else if (dir < 0) {
1501                         if (val > 0) {
1502                                 open = 1;
1503                                 val--;
1504                         }
1505                 }
1506         }
1507         if (hw_is_mask(var))
1508                 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1509         else if (hw_is_interval(var))
1510                 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1511         else {
1512                 assert(0);
1513                 return -EINVAL;
1514         }
1515         if (changed) {
1516                 params->cmask |= 1 << var;
1517                 params->rmask |= 1 << var;
1518         }
1519         return changed;
1520 }
1521
1522 /**
1523  * snd_pcm_hw_param_min
1524  * @pcm: PCM instance
1525  * @params: the hw_params instance
1526  * @var: parameter to retrieve
1527  * @val: minimal value
1528  * @dir: pointer to the direction (-1,0,1) or NULL
1529  *
1530  * Inside configuration space defined by PARAMS remove from PAR all 
1531  * values < VAL. Reduce configuration space accordingly.
1532  * Return new minimum or -EINVAL if the configuration space is empty
1533  */
1534 static int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1535                                 snd_pcm_hw_param_t var, unsigned int val,
1536                                 int *dir)
1537 {
1538         int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1539         if (changed < 0)
1540                 return changed;
1541         if (params->rmask) {
1542                 int err = snd_pcm_hw_refine(pcm, params);
1543                 if (err < 0)
1544                         return err;
1545         }
1546         return snd_pcm_hw_param_value_min(params, var, dir);
1547 }
1548
1549 static int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1550                                  snd_pcm_hw_param_t var, unsigned int val,
1551                                  int dir)
1552 {
1553         int changed;
1554         int open = 0;
1555         if (dir) {
1556                 if (dir < 0) {
1557                         open = 1;
1558                 } else if (dir > 0) {
1559                         open = 1;
1560                         val++;
1561                 }
1562         }
1563         if (hw_is_mask(var)) {
1564                 if (val == 0 && open) {
1565                         snd_mask_none(hw_param_mask(params, var));
1566                         changed = -EINVAL;
1567                 } else
1568                         changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1569         } else if (hw_is_interval(var))
1570                 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1571         else {
1572                 assert(0);
1573                 return -EINVAL;
1574         }
1575         if (changed) {
1576                 params->cmask |= 1 << var;
1577                 params->rmask |= 1 << var;
1578         }
1579         return changed;
1580 }
1581
1582 /**
1583  * snd_pcm_hw_param_max
1584  * @pcm: PCM instance
1585  * @params: the hw_params instance
1586  * @var: parameter to retrieve
1587  * @val: maximal value
1588  * @dir: pointer to the direction (-1,0,1) or NULL
1589  *
1590  * Inside configuration space defined by PARAMS remove from PAR all 
1591  *  values >= VAL + 1. Reduce configuration space accordingly.
1592  *  Return new maximum or -EINVAL if the configuration space is empty
1593  */
1594 static int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1595                                 snd_pcm_hw_param_t var, unsigned int val,
1596                                 int *dir)
1597 {
1598         int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1599         if (changed < 0)
1600                 return changed;
1601         if (params->rmask) {
1602                 int err = snd_pcm_hw_refine(pcm, params);
1603                 if (err < 0)
1604                         return err;
1605         }
1606         return snd_pcm_hw_param_value_max(params, var, dir);
1607 }
1608
1609 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1610                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1611 {
1612         int changed;
1613         if (hw_is_mask(var)) {
1614                 snd_mask_t *m = hw_param_mask(params, var);
1615                 if (val == 0 && dir < 0) {
1616                         changed = -EINVAL;
1617                         snd_mask_none(m);
1618                 } else {
1619                         if (dir > 0)
1620                                 val++;
1621                         else if (dir < 0)
1622                                 val--;
1623                         changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1624                 }
1625         } else if (hw_is_interval(var)) {
1626                 snd_interval_t *i = hw_param_interval(params, var);
1627                 if (val == 0 && dir < 0) {
1628                         changed = -EINVAL;
1629                         snd_interval_none(i);
1630                 } else if (dir == 0)
1631                         changed = snd_interval_refine_set(i, val);
1632                 else {
1633                         snd_interval_t t;
1634                         t.openmin = 1;
1635                         t.openmax = 1;
1636                         t.empty = 0;
1637                         t.integer = 0;
1638                         if (dir < 0) {
1639                                 t.min = val - 1;
1640                                 t.max = val;
1641                         } else {
1642                                 t.min = val;
1643                                 t.max = val+1;
1644                         }
1645                         changed = snd_interval_refine(i, &t);
1646                 }
1647         } else {
1648                 assert(0);
1649                 return -EINVAL;
1650         }
1651         if (changed) {
1652                 params->cmask |= 1 << var;
1653                 params->rmask |= 1 << var;
1654         }
1655         return changed;
1656 }
1657
1658 /**
1659  * snd_pcm_hw_param_set
1660  * @pcm: PCM instance
1661  * @params: the hw_params instance
1662  * @var: parameter to retrieve
1663  * @val: value to set
1664  * @dir: pointer to the direction (-1,0,1) or NULL
1665  *
1666  * Inside configuration space defined by PARAMS remove from PAR all 
1667  * values != VAL. Reduce configuration space accordingly.
1668  *  Return VAL or -EINVAL if the configuration space is empty
1669  */
1670 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1671                          snd_pcm_hw_param_t var, unsigned int val, int dir)
1672 {
1673         int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1674         if (changed < 0)
1675                 return changed;
1676         if (params->rmask) {
1677                 int err = snd_pcm_hw_refine(pcm, params);
1678                 if (err < 0)
1679                         return err;
1680         }
1681         return snd_pcm_hw_param_value(params, var, NULL);
1682 }
1683
1684 static int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1685                                   snd_pcm_hw_param_t var, const snd_mask_t *val)
1686 {
1687         int changed;
1688         assert(hw_is_mask(var));
1689         changed = snd_mask_refine(hw_param_mask(params, var), val);
1690         if (changed) {
1691                 params->cmask |= 1 << var;
1692                 params->rmask |= 1 << var;
1693         }
1694         return changed;
1695 }
1696
1697 /**
1698  * snd_pcm_hw_param_mask
1699  * @pcm: PCM instance
1700  * @params: the hw_params instance
1701  * @var: parameter to retrieve
1702  * @val: mask to apply
1703  *
1704  * Inside configuration space defined by PARAMS remove from PAR all values
1705  * not contained in MASK. Reduce configuration space accordingly.
1706  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1707  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1708  * Return 0 on success or -EINVAL
1709  * if the configuration space is empty
1710  */
1711 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1712                           snd_pcm_hw_param_t var, const snd_mask_t *val)
1713 {
1714         int changed = _snd_pcm_hw_param_mask(params, var, val);
1715         if (changed < 0)
1716                 return changed;
1717         if (params->rmask) {
1718                 int err = snd_pcm_hw_refine(pcm, params);
1719                 if (err < 0)
1720                         return err;
1721         }
1722         return 0;
1723 }
1724
1725 static int boundary_sub(int a, int adir,
1726                         int b, int bdir,
1727                         int *c, int *cdir)
1728 {
1729         adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1730         bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1731         *c = a - b;
1732         *cdir = adir - bdir;
1733         if (*cdir == -2) {
1734                 assert(*c > INT_MIN);
1735                 (*c)--;
1736         } else if (*cdir == 2) {
1737                 assert(*c < INT_MAX);
1738                 (*c)++;
1739         }
1740         return 0;
1741 }
1742
1743 static int boundary_lt(unsigned int a, int adir,
1744                        unsigned int b, int bdir)
1745 {
1746         assert(a > 0 || adir >= 0);
1747         assert(b > 0 || bdir >= 0);
1748         if (adir < 0) {
1749                 a--;
1750                 adir = 1;
1751         } else if (adir > 0)
1752                 adir = 1;
1753         if (bdir < 0) {
1754                 b--;
1755                 bdir = 1;
1756         } else if (bdir > 0)
1757                 bdir = 1;
1758         return a < b || (a == b && adir < bdir);
1759 }
1760
1761 /* Return 1 if min is nearer to best than max */
1762 static int boundary_nearer(int min, int mindir,
1763                            int best, int bestdir,
1764                            int max, int maxdir)
1765 {
1766         int dmin, dmindir;
1767         int dmax, dmaxdir;
1768         boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1769         boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1770         return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1771 }
1772
1773 /**
1774  * snd_pcm_hw_param_near
1775  * @pcm: PCM instance
1776  * @params: the hw_params instance
1777  * @var: parameter to retrieve
1778  * @best: value to set
1779  * @dir: pointer to the direction (-1,0,1) or NULL
1780  *
1781  * Inside configuration space defined by PARAMS set PAR to the available value
1782  * nearest to VAL. Reduce configuration space accordingly.
1783  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1784  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1785  * Return the value found.
1786   */
1787 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1788                           snd_pcm_hw_param_t var, unsigned int best, int *dir)
1789 {
1790         snd_pcm_hw_params_t *save = NULL;
1791         int v;
1792         unsigned int saved_min;
1793         int last = 0;
1794         int min, max;
1795         int mindir, maxdir;
1796         int valdir = dir ? *dir : 0;
1797         /* FIXME */
1798         if (best > INT_MAX)
1799                 best = INT_MAX;
1800         min = max = best;
1801         mindir = maxdir = valdir;
1802         if (maxdir > 0)
1803                 maxdir = 0;
1804         else if (maxdir == 0)
1805                 maxdir = -1;
1806         else {
1807                 maxdir = 1;
1808                 max--;
1809         }
1810         save = kmalloc(sizeof(*save), GFP_KERNEL);
1811         if (save == NULL)
1812                 return -ENOMEM;
1813         *save = *params;
1814         saved_min = min;
1815         min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1816         if (min >= 0) {
1817                 snd_pcm_hw_params_t *params1;
1818                 if (max < 0)
1819                         goto _end;
1820                 if ((unsigned int)min == saved_min && mindir == valdir)
1821                         goto _end;
1822                 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1823                 if (params1 == NULL) {
1824                         kfree(save);
1825                         return -ENOMEM;
1826                 }
1827                 *params1 = *save;
1828                 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1829                 if (max < 0) {
1830                         kfree(params1);
1831                         goto _end;
1832                 }
1833                 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1834                         *params = *params1;
1835                         last = 1;
1836                 }
1837                 kfree(params1);
1838         } else {
1839                 *params = *save;
1840                 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1841                 assert(max >= 0);
1842                 last = 1;
1843         }
1844  _end:
1845         kfree(save);
1846         if (last)
1847                 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1848         else
1849                 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1850         assert(v >= 0);
1851         return v;
1852 }
1853
1854 /**
1855  * snd_pcm_hw_param_choose
1856  * @pcm: PCM instance
1857  * @params: the hw_params instance
1858  *
1859  * Choose one configuration from configuration space defined by PARAMS
1860  * The configuration chosen is that obtained fixing in this order:
1861  * first access, first format, first subformat, min channels,
1862  * min rate, min period time, max buffer size, min tick time
1863  */
1864 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1865 {
1866         int err;
1867
1868         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1869         assert(err >= 0);
1870
1871         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1872         assert(err >= 0);
1873
1874         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1875         assert(err >= 0);
1876
1877         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1878         assert(err >= 0);
1879
1880         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1881         assert(err >= 0);
1882
1883         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1884         assert(err >= 0);
1885
1886         err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1887         assert(err >= 0);
1888
1889         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1890         assert(err >= 0);
1891
1892         return 0;
1893 }
1894
1895 #undef snd_pcm_t
1896 #undef assert
1897
1898 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1899                                    void *arg)
1900 {
1901         snd_pcm_runtime_t *runtime = substream->runtime;
1902         unsigned long flags;
1903         snd_pcm_stream_lock_irqsave(substream, flags);
1904         if (snd_pcm_running(substream) &&
1905             snd_pcm_update_hw_ptr(substream) >= 0)
1906                 runtime->status->hw_ptr %= runtime->buffer_size;
1907         else
1908                 runtime->status->hw_ptr = 0;
1909         snd_pcm_stream_unlock_irqrestore(substream, flags);
1910         return 0;
1911 }
1912
1913 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1914                                           void *arg)
1915 {
1916         snd_pcm_channel_info_t *info = arg;
1917         snd_pcm_runtime_t *runtime = substream->runtime;
1918         int width;
1919         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1920                 info->offset = -1;
1921                 return 0;
1922         }
1923         width = snd_pcm_format_physical_width(runtime->format);
1924         if (width < 0)
1925                 return width;
1926         info->offset = 0;
1927         switch (runtime->access) {
1928         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1929         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1930                 info->first = info->channel * width;
1931                 info->step = runtime->channels * width;
1932                 break;
1933         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1934         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1935         {
1936                 size_t size = runtime->dma_bytes / runtime->channels;
1937                 info->first = info->channel * size * 8;
1938                 info->step = width;
1939                 break;
1940         }
1941         default:
1942                 snd_BUG();
1943                 break;
1944         }
1945         return 0;
1946 }
1947
1948 /**
1949  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1950  * @substream: the pcm substream instance
1951  * @cmd: ioctl command
1952  * @arg: ioctl argument
1953  *
1954  * Processes the generic ioctl commands for PCM.
1955  * Can be passed as the ioctl callback for PCM ops.
1956  *
1957  * Returns zero if successful, or a negative error code on failure.
1958  */
1959 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1960                       unsigned int cmd, void *arg)
1961 {
1962         switch (cmd) {
1963         case SNDRV_PCM_IOCTL1_INFO:
1964                 return 0;
1965         case SNDRV_PCM_IOCTL1_RESET:
1966                 return snd_pcm_lib_ioctl_reset(substream, arg);
1967         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1968                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1969         }
1970         return -ENXIO;
1971 }
1972
1973 /*
1974  *  Conditions
1975  */
1976
1977 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream, 
1978                                     unsigned long ticks)
1979 {
1980         snd_pcm_runtime_t *runtime = substream->runtime;
1981         if (ticks == 0)
1982                 del_timer(&runtime->tick_timer);
1983         else {
1984                 ticks += (1000000 / HZ) - 1;
1985                 ticks /= (1000000 / HZ);
1986                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1987         }
1988 }
1989
1990 /* Temporary alias */
1991 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1992 {
1993         snd_pcm_system_tick_set(substream, ticks);
1994 }
1995
1996 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1997 {
1998         snd_pcm_runtime_t *runtime = substream->runtime;
1999         snd_pcm_uframes_t frames = ULONG_MAX;
2000         snd_pcm_uframes_t avail, dist;
2001         unsigned int ticks;
2002         u_int64_t n;
2003         u_int32_t r;
2004         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
2005                 if (runtime->silence_size >= runtime->boundary) {
2006                         frames = 1;
2007                 } else if (runtime->silence_size > 0 &&
2008                            runtime->silence_filled < runtime->buffer_size) {
2009                         snd_pcm_sframes_t noise_dist;
2010                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
2011                         snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
2012                         frames = noise_dist - runtime->silence_threshold;
2013                 }
2014                 avail = snd_pcm_playback_avail(runtime);
2015         } else {
2016                 avail = snd_pcm_capture_avail(runtime);
2017         }
2018         if (avail < runtime->control->avail_min) {
2019                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
2020                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2021                         frames = n;
2022         }
2023         if (avail < runtime->buffer_size) {
2024                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
2025                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2026                         frames = n;
2027         }
2028         if (frames == ULONG_MAX) {
2029                 snd_pcm_tick_set(substream, 0);
2030                 return;
2031         }
2032         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
2033         /* Distance to next interrupt */
2034         dist = runtime->period_size - dist % runtime->period_size;
2035         if (dist <= frames) {
2036                 snd_pcm_tick_set(substream, 0);
2037                 return;
2038         }
2039         /* the base time is us */
2040         n = frames;
2041         n *= 1000000;
2042         div64_32(&n, runtime->tick_time * runtime->rate, &r);
2043         ticks = n + (r > 0 ? 1 : 0);
2044         if (ticks < runtime->sleep_min)
2045                 ticks = runtime->sleep_min;
2046         snd_pcm_tick_set(substream, (unsigned long) ticks);
2047 }
2048
2049 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
2050 {
2051         snd_pcm_runtime_t *runtime;
2052         unsigned long flags;
2053         
2054         snd_assert(substream != NULL, return);
2055         runtime = substream->runtime;
2056         snd_assert(runtime != NULL, return);
2057
2058         snd_pcm_stream_lock_irqsave(substream, flags);
2059         if (!snd_pcm_running(substream) ||
2060             snd_pcm_update_hw_ptr(substream) < 0)
2061                 goto _end;
2062         if (runtime->sleep_min)
2063                 snd_pcm_tick_prepare(substream);
2064  _end:
2065         snd_pcm_stream_unlock_irqrestore(substream, flags);
2066 }
2067
2068 /**
2069  * snd_pcm_period_elapsed - update the pcm status for the next period
2070  * @substream: the pcm substream instance
2071  *
2072  * This function is called from the interrupt handler when the
2073  * PCM has processed the period size.  It will update the current
2074  * pointer, set up the tick, wake up sleepers, etc.
2075  *
2076  * Even if more than one periods have elapsed since the last call, you
2077  * have to call this only once.
2078  */
2079 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
2080 {
2081         snd_pcm_runtime_t *runtime;
2082         unsigned long flags;
2083
2084         snd_assert(substream != NULL, return);
2085         runtime = substream->runtime;
2086         snd_assert(runtime != NULL, return);
2087
2088         if (runtime->transfer_ack_begin)
2089                 runtime->transfer_ack_begin(substream);
2090
2091         snd_pcm_stream_lock_irqsave(substream, flags);
2092         if (!snd_pcm_running(substream) ||
2093             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
2094                 goto _end;
2095
2096         if (substream->timer_running)
2097                 snd_timer_interrupt(substream->timer, 1);
2098         if (runtime->sleep_min)
2099                 snd_pcm_tick_prepare(substream);
2100  _end:
2101         snd_pcm_stream_unlock_irqrestore(substream, flags);
2102         if (runtime->transfer_ack_end)
2103                 runtime->transfer_ack_end(substream);
2104         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
2105 }
2106
2107 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
2108                                       unsigned int hwoff,
2109                                       unsigned long data, unsigned int off,
2110                                       snd_pcm_uframes_t frames)
2111 {
2112         snd_pcm_runtime_t *runtime = substream->runtime;
2113         int err;
2114         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2115         if (substream->ops->copy) {
2116                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2117                         return err;
2118         } else {
2119                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2120                 snd_assert(runtime->dma_area, return -EFAULT);
2121                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2122                         return -EFAULT;
2123         }
2124         return 0;
2125 }
2126  
2127 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2128                           unsigned long data, unsigned int off,
2129                           snd_pcm_uframes_t size);
2130
2131 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream, 
2132                                             unsigned long data,
2133                                             snd_pcm_uframes_t size,
2134                                             int nonblock,
2135                                             transfer_f transfer)
2136 {
2137         snd_pcm_runtime_t *runtime = substream->runtime;
2138         snd_pcm_uframes_t xfer = 0;
2139         snd_pcm_uframes_t offset = 0;
2140         int err = 0;
2141
2142         if (size == 0)
2143                 return 0;
2144         if (size > runtime->xfer_align)
2145                 size -= size % runtime->xfer_align;
2146
2147         snd_pcm_stream_lock_irq(substream);
2148         switch (runtime->status->state) {
2149         case SNDRV_PCM_STATE_PREPARED:
2150         case SNDRV_PCM_STATE_RUNNING:
2151         case SNDRV_PCM_STATE_PAUSED:
2152                 break;
2153         case SNDRV_PCM_STATE_XRUN:
2154                 err = -EPIPE;
2155                 goto _end_unlock;
2156         case SNDRV_PCM_STATE_SUSPENDED:
2157                 err = -ESTRPIPE;
2158                 goto _end_unlock;
2159         default:
2160                 err = -EBADFD;
2161                 goto _end_unlock;
2162         }
2163
2164         while (size > 0) {
2165                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2166                 snd_pcm_uframes_t avail;
2167                 snd_pcm_uframes_t cont;
2168                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2169                         snd_pcm_update_hw_ptr(substream);
2170                 avail = snd_pcm_playback_avail(runtime);
2171                 if (((avail < runtime->control->avail_min && size > avail) ||
2172                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2173                         wait_queue_t wait;
2174                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2175                         long tout;
2176
2177                         if (nonblock) {
2178                                 err = -EAGAIN;
2179                                 goto _end_unlock;
2180                         }
2181
2182                         init_waitqueue_entry(&wait, current);
2183                         add_wait_queue(&runtime->sleep, &wait);
2184                         while (1) {
2185                                 if (signal_pending(current)) {
2186                                         state = SIGNALED;
2187                                         break;
2188                                 }
2189                                 set_current_state(TASK_INTERRUPTIBLE);
2190                                 snd_pcm_stream_unlock_irq(substream);
2191                                 tout = schedule_timeout(10 * HZ);
2192                                 snd_pcm_stream_lock_irq(substream);
2193                                 if (tout == 0) {
2194                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2195                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2196                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2197                                                 break;
2198                                         }
2199                                 }
2200                                 switch (runtime->status->state) {
2201                                 case SNDRV_PCM_STATE_XRUN:
2202                                 case SNDRV_PCM_STATE_DRAINING:
2203                                         state = ERROR;
2204                                         goto _end_loop;
2205                                 case SNDRV_PCM_STATE_SUSPENDED:
2206                                         state = SUSPENDED;
2207                                         goto _end_loop;
2208                                 case SNDRV_PCM_STATE_SETUP:
2209                                         state = DROPPED;
2210                                         goto _end_loop;
2211                                 default:
2212                                         break;
2213                                 }
2214                                 avail = snd_pcm_playback_avail(runtime);
2215                                 if (avail >= runtime->control->avail_min) {
2216                                         state = READY;
2217                                         break;
2218                                 }
2219                         }
2220                        _end_loop:
2221                         remove_wait_queue(&runtime->sleep, &wait);
2222
2223                         switch (state) {
2224                         case ERROR:
2225                                 err = -EPIPE;
2226                                 goto _end_unlock;
2227                         case SUSPENDED:
2228                                 err = -ESTRPIPE;
2229                                 goto _end_unlock;
2230                         case SIGNALED:
2231                                 err = -ERESTARTSYS;
2232                                 goto _end_unlock;
2233                         case EXPIRED:
2234                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2235                                 err = -EIO;
2236                                 goto _end_unlock;
2237                         case DROPPED:
2238                                 err = -EBADFD;
2239                                 goto _end_unlock;
2240                         default:
2241                                 break;
2242                         }
2243                 }
2244                 if (avail > runtime->xfer_align)
2245                         avail -= avail % runtime->xfer_align;
2246                 frames = size > avail ? avail : size;
2247                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2248                 if (frames > cont)
2249                         frames = cont;
2250                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2251                 appl_ptr = runtime->control->appl_ptr;
2252                 appl_ofs = appl_ptr % runtime->buffer_size;
2253                 snd_pcm_stream_unlock_irq(substream);
2254                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2255                         goto _end;
2256                 snd_pcm_stream_lock_irq(substream);
2257                 switch (runtime->status->state) {
2258                 case SNDRV_PCM_STATE_XRUN:
2259                         err = -EPIPE;
2260                         goto _end_unlock;
2261                 case SNDRV_PCM_STATE_SUSPENDED:
2262                         err = -ESTRPIPE;
2263                         goto _end_unlock;
2264                 default:
2265                         break;
2266                 }
2267                 appl_ptr += frames;
2268                 if (appl_ptr >= runtime->boundary)
2269                         appl_ptr -= runtime->boundary;
2270                 runtime->control->appl_ptr = appl_ptr;
2271                 if (substream->ops->ack)
2272                         substream->ops->ack(substream);
2273
2274                 offset += frames;
2275                 size -= frames;
2276                 xfer += frames;
2277                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2278                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2279                         err = snd_pcm_start(substream);
2280                         if (err < 0)
2281                                 goto _end_unlock;
2282                 }
2283                 if (runtime->sleep_min &&
2284                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2285                         snd_pcm_tick_prepare(substream);
2286         }
2287  _end_unlock:
2288         snd_pcm_stream_unlock_irq(substream);
2289  _end:
2290         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2291 }
2292
2293 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2294 {
2295         snd_pcm_runtime_t *runtime;
2296         int nonblock;
2297
2298         snd_assert(substream != NULL, return -ENXIO);
2299         runtime = substream->runtime;
2300         snd_assert(runtime != NULL, return -ENXIO);
2301         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2302         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2303                 return -EBADFD;
2304
2305         snd_assert(substream->ffile != NULL, return -ENXIO);
2306         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2307 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2308         if (substream->oss.oss) {
2309                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2310                 if (setup != NULL) {
2311                         if (setup->nonblock)
2312                                 nonblock = 1;
2313                         else if (setup->block)
2314                                 nonblock = 0;
2315                 }
2316         }
2317 #endif
2318
2319         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2320             runtime->channels > 1)
2321                 return -EINVAL;
2322         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2323                                   snd_pcm_lib_write_transfer);
2324 }
2325
2326 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2327                                        unsigned int hwoff,
2328                                        unsigned long data, unsigned int off,
2329                                        snd_pcm_uframes_t frames)
2330 {
2331         snd_pcm_runtime_t *runtime = substream->runtime;
2332         int err;
2333         void __user **bufs = (void __user **)data;
2334         int channels = runtime->channels;
2335         int c;
2336         if (substream->ops->copy) {
2337                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2338                 for (c = 0; c < channels; ++c, ++bufs) {
2339                         if (*bufs == NULL) {
2340                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2341                                         return err;
2342                         } else {
2343                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2344                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2345                                         return err;
2346                         }
2347                 }
2348         } else {
2349                 /* default transfer behaviour */
2350                 size_t dma_csize = runtime->dma_bytes / channels;
2351                 snd_assert(runtime->dma_area, return -EFAULT);
2352                 for (c = 0; c < channels; ++c, ++bufs) {
2353                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354                         if (*bufs == NULL) {
2355                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2356                         } else {
2357                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2358                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2359                                         return -EFAULT;
2360                         }
2361                 }
2362         }
2363         return 0;
2364 }
2365  
2366 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2367                                      void __user **bufs,
2368                                      snd_pcm_uframes_t frames)
2369 {
2370         snd_pcm_runtime_t *runtime;
2371         int nonblock;
2372
2373         snd_assert(substream != NULL, return -ENXIO);
2374         runtime = substream->runtime;
2375         snd_assert(runtime != NULL, return -ENXIO);
2376         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2377         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2378                 return -EBADFD;
2379
2380         snd_assert(substream->ffile != NULL, return -ENXIO);
2381         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2382 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2383         if (substream->oss.oss) {
2384                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2385                 if (setup != NULL) {
2386                         if (setup->nonblock)
2387                                 nonblock = 1;
2388                         else if (setup->block)
2389                                 nonblock = 0;
2390                 }
2391         }
2392 #endif
2393
2394         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2395                 return -EINVAL;
2396         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2397                                   nonblock, snd_pcm_lib_writev_transfer);
2398 }
2399
2400 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream, 
2401                                      unsigned int hwoff,
2402                                      unsigned long data, unsigned int off,
2403                                      snd_pcm_uframes_t frames)
2404 {
2405         snd_pcm_runtime_t *runtime = substream->runtime;
2406         int err;
2407         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2408         if (substream->ops->copy) {
2409                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2410                         return err;
2411         } else {
2412                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2413                 snd_assert(runtime->dma_area, return -EFAULT);
2414                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2415                         return -EFAULT;
2416         }
2417         return 0;
2418 }
2419
2420 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2421                                            unsigned long data,
2422                                            snd_pcm_uframes_t size,
2423                                            int nonblock,
2424                                            transfer_f transfer)
2425 {
2426         snd_pcm_runtime_t *runtime = substream->runtime;
2427         snd_pcm_uframes_t xfer = 0;
2428         snd_pcm_uframes_t offset = 0;
2429         int err = 0;
2430
2431         if (size == 0)
2432                 return 0;
2433         if (size > runtime->xfer_align)
2434                 size -= size % runtime->xfer_align;
2435
2436         snd_pcm_stream_lock_irq(substream);
2437         switch (runtime->status->state) {
2438         case SNDRV_PCM_STATE_PREPARED:
2439                 if (size >= runtime->start_threshold) {
2440                         err = snd_pcm_start(substream);
2441                         if (err < 0)
2442                                 goto _end_unlock;
2443                 }
2444                 break;
2445         case SNDRV_PCM_STATE_DRAINING:
2446         case SNDRV_PCM_STATE_RUNNING:
2447         case SNDRV_PCM_STATE_PAUSED:
2448                 break;
2449         case SNDRV_PCM_STATE_XRUN:
2450                 err = -EPIPE;
2451                 goto _end_unlock;
2452         case SNDRV_PCM_STATE_SUSPENDED:
2453                 err = -ESTRPIPE;
2454                 goto _end_unlock;
2455         default:
2456                 err = -EBADFD;
2457                 goto _end_unlock;
2458         }
2459
2460         while (size > 0) {
2461                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2462                 snd_pcm_uframes_t avail;
2463                 snd_pcm_uframes_t cont;
2464                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2465                         snd_pcm_update_hw_ptr(substream);
2466               __draining:
2467                 avail = snd_pcm_capture_avail(runtime);
2468                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2469                         if (avail < runtime->xfer_align) {
2470                                 err = -EPIPE;
2471                                 goto _end_unlock;
2472                         }
2473                 } else if ((avail < runtime->control->avail_min && size > avail) ||
2474                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2475                         wait_queue_t wait;
2476                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2477                         long tout;
2478
2479                         if (nonblock) {
2480                                 err = -EAGAIN;
2481                                 goto _end_unlock;
2482                         }
2483
2484                         init_waitqueue_entry(&wait, current);
2485                         add_wait_queue(&runtime->sleep, &wait);
2486                         while (1) {
2487                                 if (signal_pending(current)) {
2488                                         state = SIGNALED;
2489                                         break;
2490                                 }
2491                                 set_current_state(TASK_INTERRUPTIBLE);
2492                                 snd_pcm_stream_unlock_irq(substream);
2493                                 tout = schedule_timeout(10 * HZ);
2494                                 snd_pcm_stream_lock_irq(substream);
2495                                 if (tout == 0) {
2496                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2497                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2498                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2499                                                 break;
2500                                         }
2501                                 }
2502                                 switch (runtime->status->state) {
2503                                 case SNDRV_PCM_STATE_XRUN:
2504                                         state = ERROR;
2505                                         goto _end_loop;
2506                                 case SNDRV_PCM_STATE_SUSPENDED:
2507                                         state = SUSPENDED;
2508                                         goto _end_loop;
2509                                 case SNDRV_PCM_STATE_DRAINING:
2510                                         goto __draining;
2511                                 case SNDRV_PCM_STATE_SETUP:
2512                                         state = DROPPED;
2513                                         goto _end_loop;
2514                                 default:
2515                                         break;
2516                                 }
2517                                 avail = snd_pcm_capture_avail(runtime);
2518                                 if (avail >= runtime->control->avail_min) {
2519                                         state = READY;
2520                                         break;
2521                                 }
2522                         }
2523                        _end_loop:
2524                         remove_wait_queue(&runtime->sleep, &wait);
2525
2526                         switch (state) {
2527                         case ERROR:
2528                                 err = -EPIPE;
2529                                 goto _end_unlock;
2530                         case SUSPENDED:
2531                                 err = -ESTRPIPE;
2532                                 goto _end_unlock;
2533                         case SIGNALED:
2534                                 err = -ERESTARTSYS;
2535                                 goto _end_unlock;
2536                         case EXPIRED:
2537                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2538                                 err = -EIO;
2539                                 goto _end_unlock;
2540                         case DROPPED:
2541                                 err = -EBADFD;
2542                                 goto _end_unlock;
2543                         default:
2544                                 break;
2545                         }
2546                 }
2547                 if (avail > runtime->xfer_align)
2548                         avail -= avail % runtime->xfer_align;
2549                 frames = size > avail ? avail : size;
2550                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2551                 if (frames > cont)
2552                         frames = cont;
2553                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2554                 appl_ptr = runtime->control->appl_ptr;
2555                 appl_ofs = appl_ptr % runtime->buffer_size;
2556                 snd_pcm_stream_unlock_irq(substream);
2557                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2558                         goto _end;
2559                 snd_pcm_stream_lock_irq(substream);
2560                 switch (runtime->status->state) {
2561                 case SNDRV_PCM_STATE_XRUN:
2562                         err = -EPIPE;
2563                         goto _end_unlock;
2564                 case SNDRV_PCM_STATE_SUSPENDED:
2565                         err = -ESTRPIPE;
2566                         goto _end_unlock;
2567                 default:
2568                         break;
2569                 }
2570                 appl_ptr += frames;
2571                 if (appl_ptr >= runtime->boundary)
2572                         appl_ptr -= runtime->boundary;
2573                 runtime->control->appl_ptr = appl_ptr;
2574                 if (substream->ops->ack)
2575                         substream->ops->ack(substream);
2576
2577                 offset += frames;
2578                 size -= frames;
2579                 xfer += frames;
2580                 if (runtime->sleep_min &&
2581                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2582                         snd_pcm_tick_prepare(substream);
2583         }
2584  _end_unlock:
2585         snd_pcm_stream_unlock_irq(substream);
2586  _end:
2587         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2588 }
2589
2590 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2591 {
2592         snd_pcm_runtime_t *runtime;
2593         int nonblock;
2594         
2595         snd_assert(substream != NULL, return -ENXIO);
2596         runtime = substream->runtime;
2597         snd_assert(runtime != NULL, return -ENXIO);
2598         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2599         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2600                 return -EBADFD;
2601
2602         snd_assert(substream->ffile != NULL, return -ENXIO);
2603         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2604 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2605         if (substream->oss.oss) {
2606                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2607                 if (setup != NULL) {
2608                         if (setup->nonblock)
2609                                 nonblock = 1;
2610                         else if (setup->block)
2611                                 nonblock = 0;
2612                 }
2613         }
2614 #endif
2615         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2616                 return -EINVAL;
2617         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2618 }
2619
2620 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2621                                       unsigned int hwoff,
2622                                       unsigned long data, unsigned int off,
2623                                       snd_pcm_uframes_t frames)
2624 {
2625         snd_pcm_runtime_t *runtime = substream->runtime;
2626         int err;
2627         void __user **bufs = (void __user **)data;
2628         int channels = runtime->channels;
2629         int c;
2630         if (substream->ops->copy) {
2631                 for (c = 0; c < channels; ++c, ++bufs) {
2632                         char __user *buf;
2633                         if (*bufs == NULL)
2634                                 continue;
2635                         buf = *bufs + samples_to_bytes(runtime, off);
2636                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2637                                 return err;
2638                 }
2639         } else {
2640                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2641                 snd_assert(runtime->dma_area, return -EFAULT);
2642                 for (c = 0; c < channels; ++c, ++bufs) {
2643                         char *hwbuf;
2644                         char __user *buf;
2645                         if (*bufs == NULL)
2646                                 continue;
2647
2648                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2649                         buf = *bufs + samples_to_bytes(runtime, off);
2650                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2651                                 return -EFAULT;
2652                 }
2653         }
2654         return 0;
2655 }
2656  
2657 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2658                                     void __user **bufs,
2659                                     snd_pcm_uframes_t frames)
2660 {
2661         snd_pcm_runtime_t *runtime;
2662         int nonblock;
2663
2664         snd_assert(substream != NULL, return -ENXIO);
2665         runtime = substream->runtime;
2666         snd_assert(runtime != NULL, return -ENXIO);
2667         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2668         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2669                 return -EBADFD;
2670
2671         snd_assert(substream->ffile != NULL, return -ENXIO);
2672         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2673 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2674         if (substream->oss.oss) {
2675                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2676                 if (setup != NULL) {
2677                         if (setup->nonblock)
2678                                 nonblock = 1;
2679                         else if (setup->block)
2680                                 nonblock = 0;
2681                 }
2682         }
2683 #endif
2684
2685         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2686                 return -EINVAL;
2687         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2688 }
2689
2690 /*
2691  *  Exported symbols
2692  */
2693
2694 EXPORT_SYMBOL(snd_interval_refine);
2695 EXPORT_SYMBOL(snd_interval_list);
2696 EXPORT_SYMBOL(snd_interval_ratnum);
2697 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2698 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2699 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2700 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2701 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2702 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2703 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2704 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2705 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2706 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2707 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2708 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2709 EXPORT_SYMBOL(snd_pcm_hw_refine);
2710 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2711 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2712 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2713 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2714 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2715 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2716 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2717 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2718 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2719 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2720 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2721 EXPORT_SYMBOL(snd_pcm_set_ops);
2722 EXPORT_SYMBOL(snd_pcm_set_sync);
2723 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2724 EXPORT_SYMBOL(snd_pcm_stop);
2725 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2726 EXPORT_SYMBOL(snd_pcm_lib_write);
2727 EXPORT_SYMBOL(snd_pcm_lib_read);
2728 EXPORT_SYMBOL(snd_pcm_lib_writev);
2729 EXPORT_SYMBOL(snd_pcm_lib_readv);
2730 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2731 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2732 /* pcm_memory.c */
2733 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2734 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2735 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2736 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2737 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2738 EXPORT_SYMBOL(snd_pcm_lib_free_pages);