Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[linux-2.6] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2  *
3  * Copyright (c) 2004-2007 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Written by: Michael Chan  (mchan@broadcom.com)
10  */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <asm/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50
51 #include "bnx2.h"
52 #include "bnx2_fw.h"
53 #include "bnx2_fw2.h"
54
55 #define FW_BUF_SIZE             0x8000
56
57 #define DRV_MODULE_NAME         "bnx2"
58 #define PFX DRV_MODULE_NAME     ": "
59 #define DRV_MODULE_VERSION      "1.6.7"
60 #define DRV_MODULE_RELDATE      "October 10, 2007"
61
62 #define RUN_AT(x) (jiffies + (x))
63
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT  (5*HZ)
66
67 static const char version[] __devinitdata =
68         "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
69
70 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
71 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74
75 static int disable_msi = 0;
76
77 module_param(disable_msi, int, 0);
78 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
79
80 typedef enum {
81         BCM5706 = 0,
82         NC370T,
83         NC370I,
84         BCM5706S,
85         NC370F,
86         BCM5708,
87         BCM5708S,
88         BCM5709,
89         BCM5709S,
90 } board_t;
91
92 /* indexed by board_t, above */
93 static const struct {
94         char *name;
95 } board_info[] __devinitdata = {
96         { "Broadcom NetXtreme II BCM5706 1000Base-T" },
97         { "HP NC370T Multifunction Gigabit Server Adapter" },
98         { "HP NC370i Multifunction Gigabit Server Adapter" },
99         { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
100         { "HP NC370F Multifunction Gigabit Server Adapter" },
101         { "Broadcom NetXtreme II BCM5708 1000Base-T" },
102         { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
103         { "Broadcom NetXtreme II BCM5709 1000Base-T" },
104         { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
105         };
106
107 static struct pci_device_id bnx2_pci_tbl[] = {
108         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
109           PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
110         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
111           PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
112         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
113           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
114         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
115           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
116         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
117           PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
118         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
119           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
120         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
121           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
122         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
123           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
124         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
125           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
126         { 0, }
127 };
128
129 static struct flash_spec flash_table[] =
130 {
131 #define BUFFERED_FLAGS          (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
132 #define NONBUFFERED_FLAGS       (BNX2_NV_WREN)
133         /* Slow EEPROM */
134         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
135          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
136          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
137          "EEPROM - slow"},
138         /* Expansion entry 0001 */
139         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
140          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
141          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
142          "Entry 0001"},
143         /* Saifun SA25F010 (non-buffered flash) */
144         /* strap, cfg1, & write1 need updates */
145         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
146          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
147          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
148          "Non-buffered flash (128kB)"},
149         /* Saifun SA25F020 (non-buffered flash) */
150         /* strap, cfg1, & write1 need updates */
151         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
152          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
153          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
154          "Non-buffered flash (256kB)"},
155         /* Expansion entry 0100 */
156         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
157          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
158          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
159          "Entry 0100"},
160         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
161         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
162          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
163          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
164          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
165         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
166         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
167          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
168          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
169          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
170         /* Saifun SA25F005 (non-buffered flash) */
171         /* strap, cfg1, & write1 need updates */
172         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
173          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
175          "Non-buffered flash (64kB)"},
176         /* Fast EEPROM */
177         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
178          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
179          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
180          "EEPROM - fast"},
181         /* Expansion entry 1001 */
182         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
183          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
184          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
185          "Entry 1001"},
186         /* Expansion entry 1010 */
187         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
188          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
190          "Entry 1010"},
191         /* ATMEL AT45DB011B (buffered flash) */
192         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
193          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
194          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
195          "Buffered flash (128kB)"},
196         /* Expansion entry 1100 */
197         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
198          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
199          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
200          "Entry 1100"},
201         /* Expansion entry 1101 */
202         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
203          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205          "Entry 1101"},
206         /* Ateml Expansion entry 1110 */
207         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
208          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
209          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
210          "Entry 1110 (Atmel)"},
211         /* ATMEL AT45DB021B (buffered flash) */
212         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
213          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
214          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
215          "Buffered flash (256kB)"},
216 };
217
218 static struct flash_spec flash_5709 = {
219         .flags          = BNX2_NV_BUFFERED,
220         .page_bits      = BCM5709_FLASH_PAGE_BITS,
221         .page_size      = BCM5709_FLASH_PAGE_SIZE,
222         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
223         .total_size     = BUFFERED_FLASH_TOTAL_SIZE*2,
224         .name           = "5709 Buffered flash (256kB)",
225 };
226
227 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
228
229 static inline u32 bnx2_tx_avail(struct bnx2 *bp)
230 {
231         u32 diff;
232
233         smp_mb();
234
235         /* The ring uses 256 indices for 255 entries, one of them
236          * needs to be skipped.
237          */
238         diff = bp->tx_prod - bp->tx_cons;
239         if (unlikely(diff >= TX_DESC_CNT)) {
240                 diff &= 0xffff;
241                 if (diff == TX_DESC_CNT)
242                         diff = MAX_TX_DESC_CNT;
243         }
244         return (bp->tx_ring_size - diff);
245 }
246
247 static u32
248 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
249 {
250         u32 val;
251
252         spin_lock_bh(&bp->indirect_lock);
253         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
254         val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
255         spin_unlock_bh(&bp->indirect_lock);
256         return val;
257 }
258
259 static void
260 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
261 {
262         spin_lock_bh(&bp->indirect_lock);
263         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
264         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
265         spin_unlock_bh(&bp->indirect_lock);
266 }
267
268 static void
269 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
270 {
271         offset += cid_addr;
272         spin_lock_bh(&bp->indirect_lock);
273         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
274                 int i;
275
276                 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
277                 REG_WR(bp, BNX2_CTX_CTX_CTRL,
278                        offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
279                 for (i = 0; i < 5; i++) {
280                         u32 val;
281                         val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
282                         if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
283                                 break;
284                         udelay(5);
285                 }
286         } else {
287                 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
288                 REG_WR(bp, BNX2_CTX_DATA, val);
289         }
290         spin_unlock_bh(&bp->indirect_lock);
291 }
292
293 static int
294 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
295 {
296         u32 val1;
297         int i, ret;
298
299         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
300                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
301                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
302
303                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
304                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
305
306                 udelay(40);
307         }
308
309         val1 = (bp->phy_addr << 21) | (reg << 16) |
310                 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
311                 BNX2_EMAC_MDIO_COMM_START_BUSY;
312         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
313
314         for (i = 0; i < 50; i++) {
315                 udelay(10);
316
317                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
318                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
319                         udelay(5);
320
321                         val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
322                         val1 &= BNX2_EMAC_MDIO_COMM_DATA;
323
324                         break;
325                 }
326         }
327
328         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
329                 *val = 0x0;
330                 ret = -EBUSY;
331         }
332         else {
333                 *val = val1;
334                 ret = 0;
335         }
336
337         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
338                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
339                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
340
341                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
342                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
343
344                 udelay(40);
345         }
346
347         return ret;
348 }
349
350 static int
351 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
352 {
353         u32 val1;
354         int i, ret;
355
356         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
357                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
358                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
359
360                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
361                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
362
363                 udelay(40);
364         }
365
366         val1 = (bp->phy_addr << 21) | (reg << 16) | val |
367                 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
368                 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
369         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
370
371         for (i = 0; i < 50; i++) {
372                 udelay(10);
373
374                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
375                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
376                         udelay(5);
377                         break;
378                 }
379         }
380
381         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
382                 ret = -EBUSY;
383         else
384                 ret = 0;
385
386         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
387                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
388                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
389
390                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
391                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
392
393                 udelay(40);
394         }
395
396         return ret;
397 }
398
399 static void
400 bnx2_disable_int(struct bnx2 *bp)
401 {
402         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
403                BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
404         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
405 }
406
407 static void
408 bnx2_enable_int(struct bnx2 *bp)
409 {
410         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
411                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
412                BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
413
414         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
415                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
416
417         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
418 }
419
420 static void
421 bnx2_disable_int_sync(struct bnx2 *bp)
422 {
423         atomic_inc(&bp->intr_sem);
424         bnx2_disable_int(bp);
425         synchronize_irq(bp->pdev->irq);
426 }
427
428 static void
429 bnx2_netif_stop(struct bnx2 *bp)
430 {
431         bnx2_disable_int_sync(bp);
432         if (netif_running(bp->dev)) {
433                 napi_disable(&bp->napi);
434                 netif_tx_disable(bp->dev);
435                 bp->dev->trans_start = jiffies; /* prevent tx timeout */
436         }
437 }
438
439 static void
440 bnx2_netif_start(struct bnx2 *bp)
441 {
442         if (atomic_dec_and_test(&bp->intr_sem)) {
443                 if (netif_running(bp->dev)) {
444                         netif_wake_queue(bp->dev);
445                         napi_enable(&bp->napi);
446                         bnx2_enable_int(bp);
447                 }
448         }
449 }
450
451 static void
452 bnx2_free_mem(struct bnx2 *bp)
453 {
454         int i;
455
456         for (i = 0; i < bp->ctx_pages; i++) {
457                 if (bp->ctx_blk[i]) {
458                         pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
459                                             bp->ctx_blk[i],
460                                             bp->ctx_blk_mapping[i]);
461                         bp->ctx_blk[i] = NULL;
462                 }
463         }
464         if (bp->status_blk) {
465                 pci_free_consistent(bp->pdev, bp->status_stats_size,
466                                     bp->status_blk, bp->status_blk_mapping);
467                 bp->status_blk = NULL;
468                 bp->stats_blk = NULL;
469         }
470         if (bp->tx_desc_ring) {
471                 pci_free_consistent(bp->pdev,
472                                     sizeof(struct tx_bd) * TX_DESC_CNT,
473                                     bp->tx_desc_ring, bp->tx_desc_mapping);
474                 bp->tx_desc_ring = NULL;
475         }
476         kfree(bp->tx_buf_ring);
477         bp->tx_buf_ring = NULL;
478         for (i = 0; i < bp->rx_max_ring; i++) {
479                 if (bp->rx_desc_ring[i])
480                         pci_free_consistent(bp->pdev,
481                                             sizeof(struct rx_bd) * RX_DESC_CNT,
482                                             bp->rx_desc_ring[i],
483                                             bp->rx_desc_mapping[i]);
484                 bp->rx_desc_ring[i] = NULL;
485         }
486         vfree(bp->rx_buf_ring);
487         bp->rx_buf_ring = NULL;
488 }
489
490 static int
491 bnx2_alloc_mem(struct bnx2 *bp)
492 {
493         int i, status_blk_size;
494
495         bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
496                                   GFP_KERNEL);
497         if (bp->tx_buf_ring == NULL)
498                 return -ENOMEM;
499
500         bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
501                                                 sizeof(struct tx_bd) *
502                                                 TX_DESC_CNT,
503                                                 &bp->tx_desc_mapping);
504         if (bp->tx_desc_ring == NULL)
505                 goto alloc_mem_err;
506
507         bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
508                                   bp->rx_max_ring);
509         if (bp->rx_buf_ring == NULL)
510                 goto alloc_mem_err;
511
512         memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
513                                    bp->rx_max_ring);
514
515         for (i = 0; i < bp->rx_max_ring; i++) {
516                 bp->rx_desc_ring[i] =
517                         pci_alloc_consistent(bp->pdev,
518                                              sizeof(struct rx_bd) * RX_DESC_CNT,
519                                              &bp->rx_desc_mapping[i]);
520                 if (bp->rx_desc_ring[i] == NULL)
521                         goto alloc_mem_err;
522
523         }
524
525         /* Combine status and statistics blocks into one allocation. */
526         status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
527         bp->status_stats_size = status_blk_size +
528                                 sizeof(struct statistics_block);
529
530         bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
531                                               &bp->status_blk_mapping);
532         if (bp->status_blk == NULL)
533                 goto alloc_mem_err;
534
535         memset(bp->status_blk, 0, bp->status_stats_size);
536
537         bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
538                                   status_blk_size);
539
540         bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
541
542         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
543                 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
544                 if (bp->ctx_pages == 0)
545                         bp->ctx_pages = 1;
546                 for (i = 0; i < bp->ctx_pages; i++) {
547                         bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
548                                                 BCM_PAGE_SIZE,
549                                                 &bp->ctx_blk_mapping[i]);
550                         if (bp->ctx_blk[i] == NULL)
551                                 goto alloc_mem_err;
552                 }
553         }
554         return 0;
555
556 alloc_mem_err:
557         bnx2_free_mem(bp);
558         return -ENOMEM;
559 }
560
561 static void
562 bnx2_report_fw_link(struct bnx2 *bp)
563 {
564         u32 fw_link_status = 0;
565
566         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
567                 return;
568
569         if (bp->link_up) {
570                 u32 bmsr;
571
572                 switch (bp->line_speed) {
573                 case SPEED_10:
574                         if (bp->duplex == DUPLEX_HALF)
575                                 fw_link_status = BNX2_LINK_STATUS_10HALF;
576                         else
577                                 fw_link_status = BNX2_LINK_STATUS_10FULL;
578                         break;
579                 case SPEED_100:
580                         if (bp->duplex == DUPLEX_HALF)
581                                 fw_link_status = BNX2_LINK_STATUS_100HALF;
582                         else
583                                 fw_link_status = BNX2_LINK_STATUS_100FULL;
584                         break;
585                 case SPEED_1000:
586                         if (bp->duplex == DUPLEX_HALF)
587                                 fw_link_status = BNX2_LINK_STATUS_1000HALF;
588                         else
589                                 fw_link_status = BNX2_LINK_STATUS_1000FULL;
590                         break;
591                 case SPEED_2500:
592                         if (bp->duplex == DUPLEX_HALF)
593                                 fw_link_status = BNX2_LINK_STATUS_2500HALF;
594                         else
595                                 fw_link_status = BNX2_LINK_STATUS_2500FULL;
596                         break;
597                 }
598
599                 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
600
601                 if (bp->autoneg) {
602                         fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
603
604                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
605                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
606
607                         if (!(bmsr & BMSR_ANEGCOMPLETE) ||
608                             bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
609                                 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
610                         else
611                                 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
612                 }
613         }
614         else
615                 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
616
617         REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
618 }
619
620 static char *
621 bnx2_xceiver_str(struct bnx2 *bp)
622 {
623         return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
624                 ((bp->phy_flags & PHY_SERDES_FLAG) ? "Remote Copper" :
625                  "Copper"));
626 }
627
628 static void
629 bnx2_report_link(struct bnx2 *bp)
630 {
631         if (bp->link_up) {
632                 netif_carrier_on(bp->dev);
633                 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
634                        bnx2_xceiver_str(bp));
635
636                 printk("%d Mbps ", bp->line_speed);
637
638                 if (bp->duplex == DUPLEX_FULL)
639                         printk("full duplex");
640                 else
641                         printk("half duplex");
642
643                 if (bp->flow_ctrl) {
644                         if (bp->flow_ctrl & FLOW_CTRL_RX) {
645                                 printk(", receive ");
646                                 if (bp->flow_ctrl & FLOW_CTRL_TX)
647                                         printk("& transmit ");
648                         }
649                         else {
650                                 printk(", transmit ");
651                         }
652                         printk("flow control ON");
653                 }
654                 printk("\n");
655         }
656         else {
657                 netif_carrier_off(bp->dev);
658                 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
659                        bnx2_xceiver_str(bp));
660         }
661
662         bnx2_report_fw_link(bp);
663 }
664
665 static void
666 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
667 {
668         u32 local_adv, remote_adv;
669
670         bp->flow_ctrl = 0;
671         if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
672                 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
673
674                 if (bp->duplex == DUPLEX_FULL) {
675                         bp->flow_ctrl = bp->req_flow_ctrl;
676                 }
677                 return;
678         }
679
680         if (bp->duplex != DUPLEX_FULL) {
681                 return;
682         }
683
684         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
685             (CHIP_NUM(bp) == CHIP_NUM_5708)) {
686                 u32 val;
687
688                 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
689                 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
690                         bp->flow_ctrl |= FLOW_CTRL_TX;
691                 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
692                         bp->flow_ctrl |= FLOW_CTRL_RX;
693                 return;
694         }
695
696         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
697         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
698
699         if (bp->phy_flags & PHY_SERDES_FLAG) {
700                 u32 new_local_adv = 0;
701                 u32 new_remote_adv = 0;
702
703                 if (local_adv & ADVERTISE_1000XPAUSE)
704                         new_local_adv |= ADVERTISE_PAUSE_CAP;
705                 if (local_adv & ADVERTISE_1000XPSE_ASYM)
706                         new_local_adv |= ADVERTISE_PAUSE_ASYM;
707                 if (remote_adv & ADVERTISE_1000XPAUSE)
708                         new_remote_adv |= ADVERTISE_PAUSE_CAP;
709                 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
710                         new_remote_adv |= ADVERTISE_PAUSE_ASYM;
711
712                 local_adv = new_local_adv;
713                 remote_adv = new_remote_adv;
714         }
715
716         /* See Table 28B-3 of 802.3ab-1999 spec. */
717         if (local_adv & ADVERTISE_PAUSE_CAP) {
718                 if(local_adv & ADVERTISE_PAUSE_ASYM) {
719                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
720                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
721                         }
722                         else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
723                                 bp->flow_ctrl = FLOW_CTRL_RX;
724                         }
725                 }
726                 else {
727                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
728                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
729                         }
730                 }
731         }
732         else if (local_adv & ADVERTISE_PAUSE_ASYM) {
733                 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
734                         (remote_adv & ADVERTISE_PAUSE_ASYM)) {
735
736                         bp->flow_ctrl = FLOW_CTRL_TX;
737                 }
738         }
739 }
740
741 static int
742 bnx2_5709s_linkup(struct bnx2 *bp)
743 {
744         u32 val, speed;
745
746         bp->link_up = 1;
747
748         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
749         bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
750         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
751
752         if ((bp->autoneg & AUTONEG_SPEED) == 0) {
753                 bp->line_speed = bp->req_line_speed;
754                 bp->duplex = bp->req_duplex;
755                 return 0;
756         }
757         speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
758         switch (speed) {
759                 case MII_BNX2_GP_TOP_AN_SPEED_10:
760                         bp->line_speed = SPEED_10;
761                         break;
762                 case MII_BNX2_GP_TOP_AN_SPEED_100:
763                         bp->line_speed = SPEED_100;
764                         break;
765                 case MII_BNX2_GP_TOP_AN_SPEED_1G:
766                 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
767                         bp->line_speed = SPEED_1000;
768                         break;
769                 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
770                         bp->line_speed = SPEED_2500;
771                         break;
772         }
773         if (val & MII_BNX2_GP_TOP_AN_FD)
774                 bp->duplex = DUPLEX_FULL;
775         else
776                 bp->duplex = DUPLEX_HALF;
777         return 0;
778 }
779
780 static int
781 bnx2_5708s_linkup(struct bnx2 *bp)
782 {
783         u32 val;
784
785         bp->link_up = 1;
786         bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
787         switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
788                 case BCM5708S_1000X_STAT1_SPEED_10:
789                         bp->line_speed = SPEED_10;
790                         break;
791                 case BCM5708S_1000X_STAT1_SPEED_100:
792                         bp->line_speed = SPEED_100;
793                         break;
794                 case BCM5708S_1000X_STAT1_SPEED_1G:
795                         bp->line_speed = SPEED_1000;
796                         break;
797                 case BCM5708S_1000X_STAT1_SPEED_2G5:
798                         bp->line_speed = SPEED_2500;
799                         break;
800         }
801         if (val & BCM5708S_1000X_STAT1_FD)
802                 bp->duplex = DUPLEX_FULL;
803         else
804                 bp->duplex = DUPLEX_HALF;
805
806         return 0;
807 }
808
809 static int
810 bnx2_5706s_linkup(struct bnx2 *bp)
811 {
812         u32 bmcr, local_adv, remote_adv, common;
813
814         bp->link_up = 1;
815         bp->line_speed = SPEED_1000;
816
817         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
818         if (bmcr & BMCR_FULLDPLX) {
819                 bp->duplex = DUPLEX_FULL;
820         }
821         else {
822                 bp->duplex = DUPLEX_HALF;
823         }
824
825         if (!(bmcr & BMCR_ANENABLE)) {
826                 return 0;
827         }
828
829         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
830         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
831
832         common = local_adv & remote_adv;
833         if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
834
835                 if (common & ADVERTISE_1000XFULL) {
836                         bp->duplex = DUPLEX_FULL;
837                 }
838                 else {
839                         bp->duplex = DUPLEX_HALF;
840                 }
841         }
842
843         return 0;
844 }
845
846 static int
847 bnx2_copper_linkup(struct bnx2 *bp)
848 {
849         u32 bmcr;
850
851         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
852         if (bmcr & BMCR_ANENABLE) {
853                 u32 local_adv, remote_adv, common;
854
855                 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
856                 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
857
858                 common = local_adv & (remote_adv >> 2);
859                 if (common & ADVERTISE_1000FULL) {
860                         bp->line_speed = SPEED_1000;
861                         bp->duplex = DUPLEX_FULL;
862                 }
863                 else if (common & ADVERTISE_1000HALF) {
864                         bp->line_speed = SPEED_1000;
865                         bp->duplex = DUPLEX_HALF;
866                 }
867                 else {
868                         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
869                         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
870
871                         common = local_adv & remote_adv;
872                         if (common & ADVERTISE_100FULL) {
873                                 bp->line_speed = SPEED_100;
874                                 bp->duplex = DUPLEX_FULL;
875                         }
876                         else if (common & ADVERTISE_100HALF) {
877                                 bp->line_speed = SPEED_100;
878                                 bp->duplex = DUPLEX_HALF;
879                         }
880                         else if (common & ADVERTISE_10FULL) {
881                                 bp->line_speed = SPEED_10;
882                                 bp->duplex = DUPLEX_FULL;
883                         }
884                         else if (common & ADVERTISE_10HALF) {
885                                 bp->line_speed = SPEED_10;
886                                 bp->duplex = DUPLEX_HALF;
887                         }
888                         else {
889                                 bp->line_speed = 0;
890                                 bp->link_up = 0;
891                         }
892                 }
893         }
894         else {
895                 if (bmcr & BMCR_SPEED100) {
896                         bp->line_speed = SPEED_100;
897                 }
898                 else {
899                         bp->line_speed = SPEED_10;
900                 }
901                 if (bmcr & BMCR_FULLDPLX) {
902                         bp->duplex = DUPLEX_FULL;
903                 }
904                 else {
905                         bp->duplex = DUPLEX_HALF;
906                 }
907         }
908
909         return 0;
910 }
911
912 static int
913 bnx2_set_mac_link(struct bnx2 *bp)
914 {
915         u32 val;
916
917         REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
918         if (bp->link_up && (bp->line_speed == SPEED_1000) &&
919                 (bp->duplex == DUPLEX_HALF)) {
920                 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
921         }
922
923         /* Configure the EMAC mode register. */
924         val = REG_RD(bp, BNX2_EMAC_MODE);
925
926         val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
927                 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
928                 BNX2_EMAC_MODE_25G_MODE);
929
930         if (bp->link_up) {
931                 switch (bp->line_speed) {
932                         case SPEED_10:
933                                 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
934                                         val |= BNX2_EMAC_MODE_PORT_MII_10M;
935                                         break;
936                                 }
937                                 /* fall through */
938                         case SPEED_100:
939                                 val |= BNX2_EMAC_MODE_PORT_MII;
940                                 break;
941                         case SPEED_2500:
942                                 val |= BNX2_EMAC_MODE_25G_MODE;
943                                 /* fall through */
944                         case SPEED_1000:
945                                 val |= BNX2_EMAC_MODE_PORT_GMII;
946                                 break;
947                 }
948         }
949         else {
950                 val |= BNX2_EMAC_MODE_PORT_GMII;
951         }
952
953         /* Set the MAC to operate in the appropriate duplex mode. */
954         if (bp->duplex == DUPLEX_HALF)
955                 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
956         REG_WR(bp, BNX2_EMAC_MODE, val);
957
958         /* Enable/disable rx PAUSE. */
959         bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
960
961         if (bp->flow_ctrl & FLOW_CTRL_RX)
962                 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
963         REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
964
965         /* Enable/disable tx PAUSE. */
966         val = REG_RD(bp, BNX2_EMAC_TX_MODE);
967         val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
968
969         if (bp->flow_ctrl & FLOW_CTRL_TX)
970                 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
971         REG_WR(bp, BNX2_EMAC_TX_MODE, val);
972
973         /* Acknowledge the interrupt. */
974         REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
975
976         return 0;
977 }
978
979 static void
980 bnx2_enable_bmsr1(struct bnx2 *bp)
981 {
982         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
983             (CHIP_NUM(bp) == CHIP_NUM_5709))
984                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
985                                MII_BNX2_BLK_ADDR_GP_STATUS);
986 }
987
988 static void
989 bnx2_disable_bmsr1(struct bnx2 *bp)
990 {
991         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
992             (CHIP_NUM(bp) == CHIP_NUM_5709))
993                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
994                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
995 }
996
997 static int
998 bnx2_test_and_enable_2g5(struct bnx2 *bp)
999 {
1000         u32 up1;
1001         int ret = 1;
1002
1003         if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
1004                 return 0;
1005
1006         if (bp->autoneg & AUTONEG_SPEED)
1007                 bp->advertising |= ADVERTISED_2500baseX_Full;
1008
1009         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1010                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1011
1012         bnx2_read_phy(bp, bp->mii_up1, &up1);
1013         if (!(up1 & BCM5708S_UP1_2G5)) {
1014                 up1 |= BCM5708S_UP1_2G5;
1015                 bnx2_write_phy(bp, bp->mii_up1, up1);
1016                 ret = 0;
1017         }
1018
1019         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1020                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1021                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1022
1023         return ret;
1024 }
1025
1026 static int
1027 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1028 {
1029         u32 up1;
1030         int ret = 0;
1031
1032         if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
1033                 return 0;
1034
1035         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1036                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1037
1038         bnx2_read_phy(bp, bp->mii_up1, &up1);
1039         if (up1 & BCM5708S_UP1_2G5) {
1040                 up1 &= ~BCM5708S_UP1_2G5;
1041                 bnx2_write_phy(bp, bp->mii_up1, up1);
1042                 ret = 1;
1043         }
1044
1045         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1046                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1047                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1048
1049         return ret;
1050 }
1051
1052 static void
1053 bnx2_enable_forced_2g5(struct bnx2 *bp)
1054 {
1055         u32 bmcr;
1056
1057         if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
1058                 return;
1059
1060         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1061                 u32 val;
1062
1063                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1064                                MII_BNX2_BLK_ADDR_SERDES_DIG);
1065                 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1066                 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1067                 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1068                 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1069
1070                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1071                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1072                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1073
1074         } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1075                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1076                 bmcr |= BCM5708S_BMCR_FORCE_2500;
1077         }
1078
1079         if (bp->autoneg & AUTONEG_SPEED) {
1080                 bmcr &= ~BMCR_ANENABLE;
1081                 if (bp->req_duplex == DUPLEX_FULL)
1082                         bmcr |= BMCR_FULLDPLX;
1083         }
1084         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1085 }
1086
1087 static void
1088 bnx2_disable_forced_2g5(struct bnx2 *bp)
1089 {
1090         u32 bmcr;
1091
1092         if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
1093                 return;
1094
1095         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1096                 u32 val;
1097
1098                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1099                                MII_BNX2_BLK_ADDR_SERDES_DIG);
1100                 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1101                 val &= ~MII_BNX2_SD_MISC1_FORCE;
1102                 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1103
1104                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1105                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1106                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1107
1108         } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1109                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1110                 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1111         }
1112
1113         if (bp->autoneg & AUTONEG_SPEED)
1114                 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1115         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1116 }
1117
1118 static int
1119 bnx2_set_link(struct bnx2 *bp)
1120 {
1121         u32 bmsr;
1122         u8 link_up;
1123
1124         if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1125                 bp->link_up = 1;
1126                 return 0;
1127         }
1128
1129         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
1130                 return 0;
1131
1132         link_up = bp->link_up;
1133
1134         bnx2_enable_bmsr1(bp);
1135         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1136         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1137         bnx2_disable_bmsr1(bp);
1138
1139         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
1140             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1141                 u32 val;
1142
1143                 val = REG_RD(bp, BNX2_EMAC_STATUS);
1144                 if (val & BNX2_EMAC_STATUS_LINK)
1145                         bmsr |= BMSR_LSTATUS;
1146                 else
1147                         bmsr &= ~BMSR_LSTATUS;
1148         }
1149
1150         if (bmsr & BMSR_LSTATUS) {
1151                 bp->link_up = 1;
1152
1153                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1154                         if (CHIP_NUM(bp) == CHIP_NUM_5706)
1155                                 bnx2_5706s_linkup(bp);
1156                         else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1157                                 bnx2_5708s_linkup(bp);
1158                         else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1159                                 bnx2_5709s_linkup(bp);
1160                 }
1161                 else {
1162                         bnx2_copper_linkup(bp);
1163                 }
1164                 bnx2_resolve_flow_ctrl(bp);
1165         }
1166         else {
1167                 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
1168                     (bp->autoneg & AUTONEG_SPEED))
1169                         bnx2_disable_forced_2g5(bp);
1170
1171                 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1172                 bp->link_up = 0;
1173         }
1174
1175         if (bp->link_up != link_up) {
1176                 bnx2_report_link(bp);
1177         }
1178
1179         bnx2_set_mac_link(bp);
1180
1181         return 0;
1182 }
1183
1184 static int
1185 bnx2_reset_phy(struct bnx2 *bp)
1186 {
1187         int i;
1188         u32 reg;
1189
1190         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1191
1192 #define PHY_RESET_MAX_WAIT 100
1193         for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1194                 udelay(10);
1195
1196                 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1197                 if (!(reg & BMCR_RESET)) {
1198                         udelay(20);
1199                         break;
1200                 }
1201         }
1202         if (i == PHY_RESET_MAX_WAIT) {
1203                 return -EBUSY;
1204         }
1205         return 0;
1206 }
1207
1208 static u32
1209 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1210 {
1211         u32 adv = 0;
1212
1213         if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1214                 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1215
1216                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1217                         adv = ADVERTISE_1000XPAUSE;
1218                 }
1219                 else {
1220                         adv = ADVERTISE_PAUSE_CAP;
1221                 }
1222         }
1223         else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1224                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1225                         adv = ADVERTISE_1000XPSE_ASYM;
1226                 }
1227                 else {
1228                         adv = ADVERTISE_PAUSE_ASYM;
1229                 }
1230         }
1231         else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1232                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1233                         adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1234                 }
1235                 else {
1236                         adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1237                 }
1238         }
1239         return adv;
1240 }
1241
1242 static int bnx2_fw_sync(struct bnx2 *, u32, int);
1243
1244 static int
1245 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1246 {
1247         u32 speed_arg = 0, pause_adv;
1248
1249         pause_adv = bnx2_phy_get_pause_adv(bp);
1250
1251         if (bp->autoneg & AUTONEG_SPEED) {
1252                 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1253                 if (bp->advertising & ADVERTISED_10baseT_Half)
1254                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1255                 if (bp->advertising & ADVERTISED_10baseT_Full)
1256                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1257                 if (bp->advertising & ADVERTISED_100baseT_Half)
1258                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1259                 if (bp->advertising & ADVERTISED_100baseT_Full)
1260                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1261                 if (bp->advertising & ADVERTISED_1000baseT_Full)
1262                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1263                 if (bp->advertising & ADVERTISED_2500baseX_Full)
1264                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1265         } else {
1266                 if (bp->req_line_speed == SPEED_2500)
1267                         speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1268                 else if (bp->req_line_speed == SPEED_1000)
1269                         speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1270                 else if (bp->req_line_speed == SPEED_100) {
1271                         if (bp->req_duplex == DUPLEX_FULL)
1272                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1273                         else
1274                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1275                 } else if (bp->req_line_speed == SPEED_10) {
1276                         if (bp->req_duplex == DUPLEX_FULL)
1277                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1278                         else
1279                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1280                 }
1281         }
1282
1283         if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1284                 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1285         if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_1000XPSE_ASYM))
1286                 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1287
1288         if (port == PORT_TP)
1289                 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1290                              BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1291
1292         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB_ARG0, speed_arg);
1293
1294         spin_unlock_bh(&bp->phy_lock);
1295         bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
1296         spin_lock_bh(&bp->phy_lock);
1297
1298         return 0;
1299 }
1300
1301 static int
1302 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1303 {
1304         u32 adv, bmcr;
1305         u32 new_adv = 0;
1306
1307         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
1308                 return (bnx2_setup_remote_phy(bp, port));
1309
1310         if (!(bp->autoneg & AUTONEG_SPEED)) {
1311                 u32 new_bmcr;
1312                 int force_link_down = 0;
1313
1314                 if (bp->req_line_speed == SPEED_2500) {
1315                         if (!bnx2_test_and_enable_2g5(bp))
1316                                 force_link_down = 1;
1317                 } else if (bp->req_line_speed == SPEED_1000) {
1318                         if (bnx2_test_and_disable_2g5(bp))
1319                                 force_link_down = 1;
1320                 }
1321                 bnx2_read_phy(bp, bp->mii_adv, &adv);
1322                 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1323
1324                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1325                 new_bmcr = bmcr & ~BMCR_ANENABLE;
1326                 new_bmcr |= BMCR_SPEED1000;
1327
1328                 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1329                         if (bp->req_line_speed == SPEED_2500)
1330                                 bnx2_enable_forced_2g5(bp);
1331                         else if (bp->req_line_speed == SPEED_1000) {
1332                                 bnx2_disable_forced_2g5(bp);
1333                                 new_bmcr &= ~0x2000;
1334                         }
1335
1336                 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1337                         if (bp->req_line_speed == SPEED_2500)
1338                                 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1339                         else
1340                                 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1341                 }
1342
1343                 if (bp->req_duplex == DUPLEX_FULL) {
1344                         adv |= ADVERTISE_1000XFULL;
1345                         new_bmcr |= BMCR_FULLDPLX;
1346                 }
1347                 else {
1348                         adv |= ADVERTISE_1000XHALF;
1349                         new_bmcr &= ~BMCR_FULLDPLX;
1350                 }
1351                 if ((new_bmcr != bmcr) || (force_link_down)) {
1352                         /* Force a link down visible on the other side */
1353                         if (bp->link_up) {
1354                                 bnx2_write_phy(bp, bp->mii_adv, adv &
1355                                                ~(ADVERTISE_1000XFULL |
1356                                                  ADVERTISE_1000XHALF));
1357                                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1358                                         BMCR_ANRESTART | BMCR_ANENABLE);
1359
1360                                 bp->link_up = 0;
1361                                 netif_carrier_off(bp->dev);
1362                                 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1363                                 bnx2_report_link(bp);
1364                         }
1365                         bnx2_write_phy(bp, bp->mii_adv, adv);
1366                         bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1367                 } else {
1368                         bnx2_resolve_flow_ctrl(bp);
1369                         bnx2_set_mac_link(bp);
1370                 }
1371                 return 0;
1372         }
1373
1374         bnx2_test_and_enable_2g5(bp);
1375
1376         if (bp->advertising & ADVERTISED_1000baseT_Full)
1377                 new_adv |= ADVERTISE_1000XFULL;
1378
1379         new_adv |= bnx2_phy_get_pause_adv(bp);
1380
1381         bnx2_read_phy(bp, bp->mii_adv, &adv);
1382         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1383
1384         bp->serdes_an_pending = 0;
1385         if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1386                 /* Force a link down visible on the other side */
1387                 if (bp->link_up) {
1388                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1389                         spin_unlock_bh(&bp->phy_lock);
1390                         msleep(20);
1391                         spin_lock_bh(&bp->phy_lock);
1392                 }
1393
1394                 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1395                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1396                         BMCR_ANENABLE);
1397                 /* Speed up link-up time when the link partner
1398                  * does not autonegotiate which is very common
1399                  * in blade servers. Some blade servers use
1400                  * IPMI for kerboard input and it's important
1401                  * to minimize link disruptions. Autoneg. involves
1402                  * exchanging base pages plus 3 next pages and
1403                  * normally completes in about 120 msec.
1404                  */
1405                 bp->current_interval = SERDES_AN_TIMEOUT;
1406                 bp->serdes_an_pending = 1;
1407                 mod_timer(&bp->timer, jiffies + bp->current_interval);
1408         } else {
1409                 bnx2_resolve_flow_ctrl(bp);
1410                 bnx2_set_mac_link(bp);
1411         }
1412
1413         return 0;
1414 }
1415
1416 #define ETHTOOL_ALL_FIBRE_SPEED                                         \
1417         (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ?                       \
1418                 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1419                 (ADVERTISED_1000baseT_Full)
1420
1421 #define ETHTOOL_ALL_COPPER_SPEED                                        \
1422         (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |            \
1423         ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |           \
1424         ADVERTISED_1000baseT_Full)
1425
1426 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1427         ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1428
1429 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1430
1431 static void
1432 bnx2_set_default_remote_link(struct bnx2 *bp)
1433 {
1434         u32 link;
1435
1436         if (bp->phy_port == PORT_TP)
1437                 link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_COPPER_LINK);
1438         else
1439                 link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_SERDES_LINK);
1440
1441         if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1442                 bp->req_line_speed = 0;
1443                 bp->autoneg |= AUTONEG_SPEED;
1444                 bp->advertising = ADVERTISED_Autoneg;
1445                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1446                         bp->advertising |= ADVERTISED_10baseT_Half;
1447                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1448                         bp->advertising |= ADVERTISED_10baseT_Full;
1449                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1450                         bp->advertising |= ADVERTISED_100baseT_Half;
1451                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1452                         bp->advertising |= ADVERTISED_100baseT_Full;
1453                 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1454                         bp->advertising |= ADVERTISED_1000baseT_Full;
1455                 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1456                         bp->advertising |= ADVERTISED_2500baseX_Full;
1457         } else {
1458                 bp->autoneg = 0;
1459                 bp->advertising = 0;
1460                 bp->req_duplex = DUPLEX_FULL;
1461                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1462                         bp->req_line_speed = SPEED_10;
1463                         if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1464                                 bp->req_duplex = DUPLEX_HALF;
1465                 }
1466                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1467                         bp->req_line_speed = SPEED_100;
1468                         if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1469                                 bp->req_duplex = DUPLEX_HALF;
1470                 }
1471                 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1472                         bp->req_line_speed = SPEED_1000;
1473                 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1474                         bp->req_line_speed = SPEED_2500;
1475         }
1476 }
1477
1478 static void
1479 bnx2_set_default_link(struct bnx2 *bp)
1480 {
1481         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
1482                 return bnx2_set_default_remote_link(bp);
1483
1484         bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1485         bp->req_line_speed = 0;
1486         if (bp->phy_flags & PHY_SERDES_FLAG) {
1487                 u32 reg;
1488
1489                 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1490
1491                 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
1492                 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1493                 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1494                         bp->autoneg = 0;
1495                         bp->req_line_speed = bp->line_speed = SPEED_1000;
1496                         bp->req_duplex = DUPLEX_FULL;
1497                 }
1498         } else
1499                 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1500 }
1501
1502 static void
1503 bnx2_send_heart_beat(struct bnx2 *bp)
1504 {
1505         u32 msg;
1506         u32 addr;
1507
1508         spin_lock(&bp->indirect_lock);
1509         msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1510         addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1511         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1512         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1513         spin_unlock(&bp->indirect_lock);
1514 }
1515
1516 static void
1517 bnx2_remote_phy_event(struct bnx2 *bp)
1518 {
1519         u32 msg;
1520         u8 link_up = bp->link_up;
1521         u8 old_port;
1522
1523         msg = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
1524
1525         if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1526                 bnx2_send_heart_beat(bp);
1527
1528         msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1529
1530         if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1531                 bp->link_up = 0;
1532         else {
1533                 u32 speed;
1534
1535                 bp->link_up = 1;
1536                 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1537                 bp->duplex = DUPLEX_FULL;
1538                 switch (speed) {
1539                         case BNX2_LINK_STATUS_10HALF:
1540                                 bp->duplex = DUPLEX_HALF;
1541                         case BNX2_LINK_STATUS_10FULL:
1542                                 bp->line_speed = SPEED_10;
1543                                 break;
1544                         case BNX2_LINK_STATUS_100HALF:
1545                                 bp->duplex = DUPLEX_HALF;
1546                         case BNX2_LINK_STATUS_100BASE_T4:
1547                         case BNX2_LINK_STATUS_100FULL:
1548                                 bp->line_speed = SPEED_100;
1549                                 break;
1550                         case BNX2_LINK_STATUS_1000HALF:
1551                                 bp->duplex = DUPLEX_HALF;
1552                         case BNX2_LINK_STATUS_1000FULL:
1553                                 bp->line_speed = SPEED_1000;
1554                                 break;
1555                         case BNX2_LINK_STATUS_2500HALF:
1556                                 bp->duplex = DUPLEX_HALF;
1557                         case BNX2_LINK_STATUS_2500FULL:
1558                                 bp->line_speed = SPEED_2500;
1559                                 break;
1560                         default:
1561                                 bp->line_speed = 0;
1562                                 break;
1563                 }
1564
1565                 spin_lock(&bp->phy_lock);
1566                 bp->flow_ctrl = 0;
1567                 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1568                     (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1569                         if (bp->duplex == DUPLEX_FULL)
1570                                 bp->flow_ctrl = bp->req_flow_ctrl;
1571                 } else {
1572                         if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1573                                 bp->flow_ctrl |= FLOW_CTRL_TX;
1574                         if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1575                                 bp->flow_ctrl |= FLOW_CTRL_RX;
1576                 }
1577
1578                 old_port = bp->phy_port;
1579                 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
1580                         bp->phy_port = PORT_FIBRE;
1581                 else
1582                         bp->phy_port = PORT_TP;
1583
1584                 if (old_port != bp->phy_port)
1585                         bnx2_set_default_link(bp);
1586
1587                 spin_unlock(&bp->phy_lock);
1588         }
1589         if (bp->link_up != link_up)
1590                 bnx2_report_link(bp);
1591
1592         bnx2_set_mac_link(bp);
1593 }
1594
1595 static int
1596 bnx2_set_remote_link(struct bnx2 *bp)
1597 {
1598         u32 evt_code;
1599
1600         evt_code = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_EVT_CODE_MB);
1601         switch (evt_code) {
1602                 case BNX2_FW_EVT_CODE_LINK_EVENT:
1603                         bnx2_remote_phy_event(bp);
1604                         break;
1605                 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
1606                 default:
1607                         bnx2_send_heart_beat(bp);
1608                         break;
1609         }
1610         return 0;
1611 }
1612
1613 static int
1614 bnx2_setup_copper_phy(struct bnx2 *bp)
1615 {
1616         u32 bmcr;
1617         u32 new_bmcr;
1618
1619         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1620
1621         if (bp->autoneg & AUTONEG_SPEED) {
1622                 u32 adv_reg, adv1000_reg;
1623                 u32 new_adv_reg = 0;
1624                 u32 new_adv1000_reg = 0;
1625
1626                 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
1627                 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1628                         ADVERTISE_PAUSE_ASYM);
1629
1630                 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1631                 adv1000_reg &= PHY_ALL_1000_SPEED;
1632
1633                 if (bp->advertising & ADVERTISED_10baseT_Half)
1634                         new_adv_reg |= ADVERTISE_10HALF;
1635                 if (bp->advertising & ADVERTISED_10baseT_Full)
1636                         new_adv_reg |= ADVERTISE_10FULL;
1637                 if (bp->advertising & ADVERTISED_100baseT_Half)
1638                         new_adv_reg |= ADVERTISE_100HALF;
1639                 if (bp->advertising & ADVERTISED_100baseT_Full)
1640                         new_adv_reg |= ADVERTISE_100FULL;
1641                 if (bp->advertising & ADVERTISED_1000baseT_Full)
1642                         new_adv1000_reg |= ADVERTISE_1000FULL;
1643
1644                 new_adv_reg |= ADVERTISE_CSMA;
1645
1646                 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1647
1648                 if ((adv1000_reg != new_adv1000_reg) ||
1649                         (adv_reg != new_adv_reg) ||
1650                         ((bmcr & BMCR_ANENABLE) == 0)) {
1651
1652                         bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
1653                         bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1654                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
1655                                 BMCR_ANENABLE);
1656                 }
1657                 else if (bp->link_up) {
1658                         /* Flow ctrl may have changed from auto to forced */
1659                         /* or vice-versa. */
1660
1661                         bnx2_resolve_flow_ctrl(bp);
1662                         bnx2_set_mac_link(bp);
1663                 }
1664                 return 0;
1665         }
1666
1667         new_bmcr = 0;
1668         if (bp->req_line_speed == SPEED_100) {
1669                 new_bmcr |= BMCR_SPEED100;
1670         }
1671         if (bp->req_duplex == DUPLEX_FULL) {
1672                 new_bmcr |= BMCR_FULLDPLX;
1673         }
1674         if (new_bmcr != bmcr) {
1675                 u32 bmsr;
1676
1677                 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1678                 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1679
1680                 if (bmsr & BMSR_LSTATUS) {
1681                         /* Force link down */
1682                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1683                         spin_unlock_bh(&bp->phy_lock);
1684                         msleep(50);
1685                         spin_lock_bh(&bp->phy_lock);
1686
1687                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1688                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1689                 }
1690
1691                 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1692
1693                 /* Normally, the new speed is setup after the link has
1694                  * gone down and up again. In some cases, link will not go
1695                  * down so we need to set up the new speed here.
1696                  */
1697                 if (bmsr & BMSR_LSTATUS) {
1698                         bp->line_speed = bp->req_line_speed;
1699                         bp->duplex = bp->req_duplex;
1700                         bnx2_resolve_flow_ctrl(bp);
1701                         bnx2_set_mac_link(bp);
1702                 }
1703         } else {
1704                 bnx2_resolve_flow_ctrl(bp);
1705                 bnx2_set_mac_link(bp);
1706         }
1707         return 0;
1708 }
1709
1710 static int
1711 bnx2_setup_phy(struct bnx2 *bp, u8 port)
1712 {
1713         if (bp->loopback == MAC_LOOPBACK)
1714                 return 0;
1715
1716         if (bp->phy_flags & PHY_SERDES_FLAG) {
1717                 return (bnx2_setup_serdes_phy(bp, port));
1718         }
1719         else {
1720                 return (bnx2_setup_copper_phy(bp));
1721         }
1722 }
1723
1724 static int
1725 bnx2_init_5709s_phy(struct bnx2 *bp)
1726 {
1727         u32 val;
1728
1729         bp->mii_bmcr = MII_BMCR + 0x10;
1730         bp->mii_bmsr = MII_BMSR + 0x10;
1731         bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
1732         bp->mii_adv = MII_ADVERTISE + 0x10;
1733         bp->mii_lpa = MII_LPA + 0x10;
1734         bp->mii_up1 = MII_BNX2_OVER1G_UP1;
1735
1736         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
1737         bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
1738
1739         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1740         bnx2_reset_phy(bp);
1741
1742         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
1743
1744         bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
1745         val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
1746         val |= MII_BNX2_SD_1000XCTL1_FIBER;
1747         bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
1748
1749         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1750         bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
1751         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
1752                 val |= BCM5708S_UP1_2G5;
1753         else
1754                 val &= ~BCM5708S_UP1_2G5;
1755         bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
1756
1757         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
1758         bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
1759         val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
1760         bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
1761
1762         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
1763
1764         val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
1765               MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
1766         bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
1767
1768         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1769
1770         return 0;
1771 }
1772
1773 static int
1774 bnx2_init_5708s_phy(struct bnx2 *bp)
1775 {
1776         u32 val;
1777
1778         bnx2_reset_phy(bp);
1779
1780         bp->mii_up1 = BCM5708S_UP1;
1781
1782         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1783         bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1784         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1785
1786         bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1787         val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1788         bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1789
1790         bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1791         val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1792         bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1793
1794         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1795                 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1796                 val |= BCM5708S_UP1_2G5;
1797                 bnx2_write_phy(bp, BCM5708S_UP1, val);
1798         }
1799
1800         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1801             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1802             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1803                 /* increase tx signal amplitude */
1804                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1805                                BCM5708S_BLK_ADDR_TX_MISC);
1806                 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1807                 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1808                 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1809                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1810         }
1811
1812         val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1813               BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1814
1815         if (val) {
1816                 u32 is_backplane;
1817
1818                 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1819                                           BNX2_SHARED_HW_CFG_CONFIG);
1820                 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1821                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1822                                        BCM5708S_BLK_ADDR_TX_MISC);
1823                         bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1824                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1825                                        BCM5708S_BLK_ADDR_DIG);
1826                 }
1827         }
1828         return 0;
1829 }
1830
1831 static int
1832 bnx2_init_5706s_phy(struct bnx2 *bp)
1833 {
1834         bnx2_reset_phy(bp);
1835
1836         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1837
1838         if (CHIP_NUM(bp) == CHIP_NUM_5706)
1839                 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
1840
1841         if (bp->dev->mtu > 1500) {
1842                 u32 val;
1843
1844                 /* Set extended packet length bit */
1845                 bnx2_write_phy(bp, 0x18, 0x7);
1846                 bnx2_read_phy(bp, 0x18, &val);
1847                 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
1848
1849                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1850                 bnx2_read_phy(bp, 0x1c, &val);
1851                 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
1852         }
1853         else {
1854                 u32 val;
1855
1856                 bnx2_write_phy(bp, 0x18, 0x7);
1857                 bnx2_read_phy(bp, 0x18, &val);
1858                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1859
1860                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1861                 bnx2_read_phy(bp, 0x1c, &val);
1862                 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1863         }
1864
1865         return 0;
1866 }
1867
1868 static int
1869 bnx2_init_copper_phy(struct bnx2 *bp)
1870 {
1871         u32 val;
1872
1873         bnx2_reset_phy(bp);
1874
1875         if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1876                 bnx2_write_phy(bp, 0x18, 0x0c00);
1877                 bnx2_write_phy(bp, 0x17, 0x000a);
1878                 bnx2_write_phy(bp, 0x15, 0x310b);
1879                 bnx2_write_phy(bp, 0x17, 0x201f);
1880                 bnx2_write_phy(bp, 0x15, 0x9506);
1881                 bnx2_write_phy(bp, 0x17, 0x401f);
1882                 bnx2_write_phy(bp, 0x15, 0x14e2);
1883                 bnx2_write_phy(bp, 0x18, 0x0400);
1884         }
1885
1886         if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
1887                 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
1888                                MII_BNX2_DSP_EXPAND_REG | 0x8);
1889                 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1890                 val &= ~(1 << 8);
1891                 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
1892         }
1893
1894         if (bp->dev->mtu > 1500) {
1895                 /* Set extended packet length bit */
1896                 bnx2_write_phy(bp, 0x18, 0x7);
1897                 bnx2_read_phy(bp, 0x18, &val);
1898                 bnx2_write_phy(bp, 0x18, val | 0x4000);
1899
1900                 bnx2_read_phy(bp, 0x10, &val);
1901                 bnx2_write_phy(bp, 0x10, val | 0x1);
1902         }
1903         else {
1904                 bnx2_write_phy(bp, 0x18, 0x7);
1905                 bnx2_read_phy(bp, 0x18, &val);
1906                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1907
1908                 bnx2_read_phy(bp, 0x10, &val);
1909                 bnx2_write_phy(bp, 0x10, val & ~0x1);
1910         }
1911
1912         /* ethernet@wirespeed */
1913         bnx2_write_phy(bp, 0x18, 0x7007);
1914         bnx2_read_phy(bp, 0x18, &val);
1915         bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1916         return 0;
1917 }
1918
1919
1920 static int
1921 bnx2_init_phy(struct bnx2 *bp)
1922 {
1923         u32 val;
1924         int rc = 0;
1925
1926         bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1927         bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1928
1929         bp->mii_bmcr = MII_BMCR;
1930         bp->mii_bmsr = MII_BMSR;
1931         bp->mii_bmsr1 = MII_BMSR;
1932         bp->mii_adv = MII_ADVERTISE;
1933         bp->mii_lpa = MII_LPA;
1934
1935         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1936
1937         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
1938                 goto setup_phy;
1939
1940         bnx2_read_phy(bp, MII_PHYSID1, &val);
1941         bp->phy_id = val << 16;
1942         bnx2_read_phy(bp, MII_PHYSID2, &val);
1943         bp->phy_id |= val & 0xffff;
1944
1945         if (bp->phy_flags & PHY_SERDES_FLAG) {
1946                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1947                         rc = bnx2_init_5706s_phy(bp);
1948                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1949                         rc = bnx2_init_5708s_phy(bp);
1950                 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1951                         rc = bnx2_init_5709s_phy(bp);
1952         }
1953         else {
1954                 rc = bnx2_init_copper_phy(bp);
1955         }
1956
1957 setup_phy:
1958         if (!rc)
1959                 rc = bnx2_setup_phy(bp, bp->phy_port);
1960
1961         return rc;
1962 }
1963
1964 static int
1965 bnx2_set_mac_loopback(struct bnx2 *bp)
1966 {
1967         u32 mac_mode;
1968
1969         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1970         mac_mode &= ~BNX2_EMAC_MODE_PORT;
1971         mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
1972         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1973         bp->link_up = 1;
1974         return 0;
1975 }
1976
1977 static int bnx2_test_link(struct bnx2 *);
1978
1979 static int
1980 bnx2_set_phy_loopback(struct bnx2 *bp)
1981 {
1982         u32 mac_mode;
1983         int rc, i;
1984
1985         spin_lock_bh(&bp->phy_lock);
1986         rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
1987                             BMCR_SPEED1000);
1988         spin_unlock_bh(&bp->phy_lock);
1989         if (rc)
1990                 return rc;
1991
1992         for (i = 0; i < 10; i++) {
1993                 if (bnx2_test_link(bp) == 0)
1994                         break;
1995                 msleep(100);
1996         }
1997
1998         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1999         mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2000                       BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2001                       BNX2_EMAC_MODE_25G_MODE);
2002
2003         mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2004         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2005         bp->link_up = 1;
2006         return 0;
2007 }
2008
2009 static int
2010 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
2011 {
2012         int i;
2013         u32 val;
2014
2015         bp->fw_wr_seq++;
2016         msg_data |= bp->fw_wr_seq;
2017
2018         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
2019
2020         /* wait for an acknowledgement. */
2021         for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
2022                 msleep(10);
2023
2024                 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
2025
2026                 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2027                         break;
2028         }
2029         if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2030                 return 0;
2031
2032         /* If we timed out, inform the firmware that this is the case. */
2033         if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2034                 if (!silent)
2035                         printk(KERN_ERR PFX "fw sync timeout, reset code = "
2036                                             "%x\n", msg_data);
2037
2038                 msg_data &= ~BNX2_DRV_MSG_CODE;
2039                 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2040
2041                 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
2042
2043                 return -EBUSY;
2044         }
2045
2046         if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2047                 return -EIO;
2048
2049         return 0;
2050 }
2051
2052 static int
2053 bnx2_init_5709_context(struct bnx2 *bp)
2054 {
2055         int i, ret = 0;
2056         u32 val;
2057
2058         val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2059         val |= (BCM_PAGE_BITS - 8) << 16;
2060         REG_WR(bp, BNX2_CTX_COMMAND, val);
2061         for (i = 0; i < 10; i++) {
2062                 val = REG_RD(bp, BNX2_CTX_COMMAND);
2063                 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2064                         break;
2065                 udelay(2);
2066         }
2067         if (val & BNX2_CTX_COMMAND_MEM_INIT)
2068                 return -EBUSY;
2069
2070         for (i = 0; i < bp->ctx_pages; i++) {
2071                 int j;
2072
2073                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2074                        (bp->ctx_blk_mapping[i] & 0xffffffff) |
2075                        BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2076                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2077                        (u64) bp->ctx_blk_mapping[i] >> 32);
2078                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2079                        BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2080                 for (j = 0; j < 10; j++) {
2081
2082                         val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2083                         if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2084                                 break;
2085                         udelay(5);
2086                 }
2087                 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2088                         ret = -EBUSY;
2089                         break;
2090                 }
2091         }
2092         return ret;
2093 }
2094
2095 static void
2096 bnx2_init_context(struct bnx2 *bp)
2097 {
2098         u32 vcid;
2099
2100         vcid = 96;
2101         while (vcid) {
2102                 u32 vcid_addr, pcid_addr, offset;
2103                 int i;
2104
2105                 vcid--;
2106
2107                 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2108                         u32 new_vcid;
2109
2110                         vcid_addr = GET_PCID_ADDR(vcid);
2111                         if (vcid & 0x8) {
2112                                 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2113                         }
2114                         else {
2115                                 new_vcid = vcid;
2116                         }
2117                         pcid_addr = GET_PCID_ADDR(new_vcid);
2118                 }
2119                 else {
2120                         vcid_addr = GET_CID_ADDR(vcid);
2121                         pcid_addr = vcid_addr;
2122                 }
2123
2124                 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2125                         vcid_addr += (i << PHY_CTX_SHIFT);
2126                         pcid_addr += (i << PHY_CTX_SHIFT);
2127
2128                         REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
2129                         REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2130
2131                         /* Zero out the context. */
2132                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2133                                 CTX_WR(bp, 0x00, offset, 0);
2134
2135                         REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2136                         REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2137                 }
2138         }
2139 }
2140
2141 static int
2142 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2143 {
2144         u16 *good_mbuf;
2145         u32 good_mbuf_cnt;
2146         u32 val;
2147
2148         good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2149         if (good_mbuf == NULL) {
2150                 printk(KERN_ERR PFX "Failed to allocate memory in "
2151                                     "bnx2_alloc_bad_rbuf\n");
2152                 return -ENOMEM;
2153         }
2154
2155         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2156                 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2157
2158         good_mbuf_cnt = 0;
2159
2160         /* Allocate a bunch of mbufs and save the good ones in an array. */
2161         val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
2162         while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2163                 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
2164
2165                 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
2166
2167                 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2168
2169                 /* The addresses with Bit 9 set are bad memory blocks. */
2170                 if (!(val & (1 << 9))) {
2171                         good_mbuf[good_mbuf_cnt] = (u16) val;
2172                         good_mbuf_cnt++;
2173                 }
2174
2175                 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
2176         }
2177
2178         /* Free the good ones back to the mbuf pool thus discarding
2179          * all the bad ones. */
2180         while (good_mbuf_cnt) {
2181                 good_mbuf_cnt--;
2182
2183                 val = good_mbuf[good_mbuf_cnt];
2184                 val = (val << 9) | val | 1;
2185
2186                 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
2187         }
2188         kfree(good_mbuf);
2189         return 0;
2190 }
2191
2192 static void
2193 bnx2_set_mac_addr(struct bnx2 *bp)
2194 {
2195         u32 val;
2196         u8 *mac_addr = bp->dev->dev_addr;
2197
2198         val = (mac_addr[0] << 8) | mac_addr[1];
2199
2200         REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
2201
2202         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2203                 (mac_addr[4] << 8) | mac_addr[5];
2204
2205         REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
2206 }
2207
2208 static inline int
2209 bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
2210 {
2211         struct sk_buff *skb;
2212         struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
2213         dma_addr_t mapping;
2214         struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2215         unsigned long align;
2216
2217         skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2218         if (skb == NULL) {
2219                 return -ENOMEM;
2220         }
2221
2222         if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2223                 skb_reserve(skb, BNX2_RX_ALIGN - align);
2224
2225         mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2226                 PCI_DMA_FROMDEVICE);
2227
2228         rx_buf->skb = skb;
2229         pci_unmap_addr_set(rx_buf, mapping, mapping);
2230
2231         rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2232         rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2233
2234         bp->rx_prod_bseq += bp->rx_buf_use_size;
2235
2236         return 0;
2237 }
2238
2239 static int
2240 bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
2241 {
2242         struct status_block *sblk = bp->status_blk;
2243         u32 new_link_state, old_link_state;
2244         int is_set = 1;
2245
2246         new_link_state = sblk->status_attn_bits & event;
2247         old_link_state = sblk->status_attn_bits_ack & event;
2248         if (new_link_state != old_link_state) {
2249                 if (new_link_state)
2250                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2251                 else
2252                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2253         } else
2254                 is_set = 0;
2255
2256         return is_set;
2257 }
2258
2259 static void
2260 bnx2_phy_int(struct bnx2 *bp)
2261 {
2262         if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
2263                 spin_lock(&bp->phy_lock);
2264                 bnx2_set_link(bp);
2265                 spin_unlock(&bp->phy_lock);
2266         }
2267         if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_TIMER_ABORT))
2268                 bnx2_set_remote_link(bp);
2269
2270 }
2271
2272 static void
2273 bnx2_tx_int(struct bnx2 *bp)
2274 {
2275         struct status_block *sblk = bp->status_blk;
2276         u16 hw_cons, sw_cons, sw_ring_cons;
2277         int tx_free_bd = 0;
2278
2279         hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
2280         if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
2281                 hw_cons++;
2282         }
2283         sw_cons = bp->tx_cons;
2284
2285         while (sw_cons != hw_cons) {
2286                 struct sw_bd *tx_buf;
2287                 struct sk_buff *skb;
2288                 int i, last;
2289
2290                 sw_ring_cons = TX_RING_IDX(sw_cons);
2291
2292                 tx_buf = &bp->tx_buf_ring[sw_ring_cons];
2293                 skb = tx_buf->skb;
2294
2295                 /* partial BD completions possible with TSO packets */
2296                 if (skb_is_gso(skb)) {
2297                         u16 last_idx, last_ring_idx;
2298
2299                         last_idx = sw_cons +
2300                                 skb_shinfo(skb)->nr_frags + 1;
2301                         last_ring_idx = sw_ring_cons +
2302                                 skb_shinfo(skb)->nr_frags + 1;
2303                         if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2304                                 last_idx++;
2305                         }
2306                         if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2307                                 break;
2308                         }
2309                 }
2310
2311                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
2312                         skb_headlen(skb), PCI_DMA_TODEVICE);
2313
2314                 tx_buf->skb = NULL;
2315                 last = skb_shinfo(skb)->nr_frags;
2316
2317                 for (i = 0; i < last; i++) {
2318                         sw_cons = NEXT_TX_BD(sw_cons);
2319
2320                         pci_unmap_page(bp->pdev,
2321                                 pci_unmap_addr(
2322                                         &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
2323                                         mapping),
2324                                 skb_shinfo(skb)->frags[i].size,
2325                                 PCI_DMA_TODEVICE);
2326                 }
2327
2328                 sw_cons = NEXT_TX_BD(sw_cons);
2329
2330                 tx_free_bd += last + 1;
2331
2332                 dev_kfree_skb(skb);
2333
2334                 hw_cons = bp->hw_tx_cons =
2335                         sblk->status_tx_quick_consumer_index0;
2336
2337                 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
2338                         hw_cons++;
2339                 }
2340         }
2341
2342         bp->tx_cons = sw_cons;
2343         /* Need to make the tx_cons update visible to bnx2_start_xmit()
2344          * before checking for netif_queue_stopped().  Without the
2345          * memory barrier, there is a small possibility that bnx2_start_xmit()
2346          * will miss it and cause the queue to be stopped forever.
2347          */
2348         smp_mb();
2349
2350         if (unlikely(netif_queue_stopped(bp->dev)) &&
2351                      (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
2352                 netif_tx_lock(bp->dev);
2353                 if ((netif_queue_stopped(bp->dev)) &&
2354                     (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
2355                         netif_wake_queue(bp->dev);
2356                 netif_tx_unlock(bp->dev);
2357         }
2358 }
2359
2360 static inline void
2361 bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
2362         u16 cons, u16 prod)
2363 {
2364         struct sw_bd *cons_rx_buf, *prod_rx_buf;
2365         struct rx_bd *cons_bd, *prod_bd;
2366
2367         cons_rx_buf = &bp->rx_buf_ring[cons];
2368         prod_rx_buf = &bp->rx_buf_ring[prod];
2369
2370         pci_dma_sync_single_for_device(bp->pdev,
2371                 pci_unmap_addr(cons_rx_buf, mapping),
2372                 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2373
2374         bp->rx_prod_bseq += bp->rx_buf_use_size;
2375
2376         prod_rx_buf->skb = skb;
2377
2378         if (cons == prod)
2379                 return;
2380
2381         pci_unmap_addr_set(prod_rx_buf, mapping,
2382                         pci_unmap_addr(cons_rx_buf, mapping));
2383
2384         cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2385         prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2386         prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2387         prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2388 }
2389
2390 static int
2391 bnx2_rx_int(struct bnx2 *bp, int budget)
2392 {
2393         struct status_block *sblk = bp->status_blk;
2394         u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2395         struct l2_fhdr *rx_hdr;
2396         int rx_pkt = 0;
2397
2398         hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
2399         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
2400                 hw_cons++;
2401         }
2402         sw_cons = bp->rx_cons;
2403         sw_prod = bp->rx_prod;
2404
2405         /* Memory barrier necessary as speculative reads of the rx
2406          * buffer can be ahead of the index in the status block
2407          */
2408         rmb();
2409         while (sw_cons != hw_cons) {
2410                 unsigned int len;
2411                 u32 status;
2412                 struct sw_bd *rx_buf;
2413                 struct sk_buff *skb;
2414                 dma_addr_t dma_addr;
2415
2416                 sw_ring_cons = RX_RING_IDX(sw_cons);
2417                 sw_ring_prod = RX_RING_IDX(sw_prod);
2418
2419                 rx_buf = &bp->rx_buf_ring[sw_ring_cons];
2420                 skb = rx_buf->skb;
2421
2422                 rx_buf->skb = NULL;
2423
2424                 dma_addr = pci_unmap_addr(rx_buf, mapping);
2425
2426                 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
2427                         bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2428
2429                 rx_hdr = (struct l2_fhdr *) skb->data;
2430                 len = rx_hdr->l2_fhdr_pkt_len - 4;
2431
2432                 if ((status = rx_hdr->l2_fhdr_status) &
2433                         (L2_FHDR_ERRORS_BAD_CRC |
2434                         L2_FHDR_ERRORS_PHY_DECODE |
2435                         L2_FHDR_ERRORS_ALIGNMENT |
2436                         L2_FHDR_ERRORS_TOO_SHORT |
2437                         L2_FHDR_ERRORS_GIANT_FRAME)) {
2438
2439                         goto reuse_rx;
2440                 }
2441
2442                 /* Since we don't have a jumbo ring, copy small packets
2443                  * if mtu > 1500
2444                  */
2445                 if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
2446                         struct sk_buff *new_skb;
2447
2448                         new_skb = netdev_alloc_skb(bp->dev, len + 2);
2449                         if (new_skb == NULL)
2450                                 goto reuse_rx;
2451
2452                         /* aligned copy */
2453                         skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
2454                                       new_skb->data, len + 2);
2455                         skb_reserve(new_skb, 2);
2456                         skb_put(new_skb, len);
2457
2458                         bnx2_reuse_rx_skb(bp, skb,
2459                                 sw_ring_cons, sw_ring_prod);
2460
2461                         skb = new_skb;
2462                 }
2463                 else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
2464                         pci_unmap_single(bp->pdev, dma_addr,
2465                                 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
2466
2467                         skb_reserve(skb, bp->rx_offset);
2468                         skb_put(skb, len);
2469                 }
2470                 else {
2471 reuse_rx:
2472                         bnx2_reuse_rx_skb(bp, skb,
2473                                 sw_ring_cons, sw_ring_prod);
2474                         goto next_rx;
2475                 }
2476
2477                 skb->protocol = eth_type_trans(skb, bp->dev);
2478
2479                 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
2480                         (ntohs(skb->protocol) != 0x8100)) {
2481
2482                         dev_kfree_skb(skb);
2483                         goto next_rx;
2484
2485                 }
2486
2487                 skb->ip_summed = CHECKSUM_NONE;
2488                 if (bp->rx_csum &&
2489                         (status & (L2_FHDR_STATUS_TCP_SEGMENT |
2490                         L2_FHDR_STATUS_UDP_DATAGRAM))) {
2491
2492                         if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
2493                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0))
2494                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2495                 }
2496
2497 #ifdef BCM_VLAN
2498                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
2499                         vlan_hwaccel_receive_skb(skb, bp->vlgrp,
2500                                 rx_hdr->l2_fhdr_vlan_tag);
2501                 }
2502                 else
2503 #endif
2504                         netif_receive_skb(skb);
2505
2506                 bp->dev->last_rx = jiffies;
2507                 rx_pkt++;
2508
2509 next_rx:
2510                 sw_cons = NEXT_RX_BD(sw_cons);
2511                 sw_prod = NEXT_RX_BD(sw_prod);
2512
2513                 if ((rx_pkt == budget))
2514                         break;
2515
2516                 /* Refresh hw_cons to see if there is new work */
2517                 if (sw_cons == hw_cons) {
2518                         hw_cons = bp->hw_rx_cons =
2519                                 sblk->status_rx_quick_consumer_index0;
2520                         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
2521                                 hw_cons++;
2522                         rmb();
2523                 }
2524         }
2525         bp->rx_cons = sw_cons;
2526         bp->rx_prod = sw_prod;
2527
2528         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
2529
2530         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
2531
2532         mmiowb();
2533
2534         return rx_pkt;
2535
2536 }
2537
2538 /* MSI ISR - The only difference between this and the INTx ISR
2539  * is that the MSI interrupt is always serviced.
2540  */
2541 static irqreturn_t
2542 bnx2_msi(int irq, void *dev_instance)
2543 {
2544         struct net_device *dev = dev_instance;
2545         struct bnx2 *bp = netdev_priv(dev);
2546
2547         prefetch(bp->status_blk);
2548         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2549                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
2550                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
2551
2552         /* Return here if interrupt is disabled. */
2553         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2554                 return IRQ_HANDLED;
2555
2556         netif_rx_schedule(dev, &bp->napi);
2557
2558         return IRQ_HANDLED;
2559 }
2560
2561 static irqreturn_t
2562 bnx2_msi_1shot(int irq, void *dev_instance)
2563 {
2564         struct net_device *dev = dev_instance;
2565         struct bnx2 *bp = netdev_priv(dev);
2566
2567         prefetch(bp->status_blk);
2568
2569         /* Return here if interrupt is disabled. */
2570         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2571                 return IRQ_HANDLED;
2572
2573         netif_rx_schedule(dev, &bp->napi);
2574
2575         return IRQ_HANDLED;
2576 }
2577
2578 static irqreturn_t
2579 bnx2_interrupt(int irq, void *dev_instance)
2580 {
2581         struct net_device *dev = dev_instance;
2582         struct bnx2 *bp = netdev_priv(dev);
2583         struct status_block *sblk = bp->status_blk;
2584
2585         /* When using INTx, it is possible for the interrupt to arrive
2586          * at the CPU before the status block posted prior to the
2587          * interrupt. Reading a register will flush the status block.
2588          * When using MSI, the MSI message will always complete after
2589          * the status block write.
2590          */
2591         if ((sblk->status_idx == bp->last_status_idx) &&
2592             (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
2593              BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
2594                 return IRQ_NONE;
2595
2596         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2597                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
2598                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
2599
2600         /* Read back to deassert IRQ immediately to avoid too many
2601          * spurious interrupts.
2602          */
2603         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
2604
2605         /* Return here if interrupt is shared and is disabled. */
2606         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2607                 return IRQ_HANDLED;
2608
2609         if (netif_rx_schedule_prep(dev, &bp->napi)) {
2610                 bp->last_status_idx = sblk->status_idx;
2611                 __netif_rx_schedule(dev, &bp->napi);
2612         }
2613
2614         return IRQ_HANDLED;
2615 }
2616
2617 #define STATUS_ATTN_EVENTS      (STATUS_ATTN_BITS_LINK_STATE | \
2618                                  STATUS_ATTN_BITS_TIMER_ABORT)
2619
2620 static inline int
2621 bnx2_has_work(struct bnx2 *bp)
2622 {
2623         struct status_block *sblk = bp->status_blk;
2624
2625         if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
2626             (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
2627                 return 1;
2628
2629         if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
2630             (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
2631                 return 1;
2632
2633         return 0;
2634 }
2635
2636 static int bnx2_poll_work(struct bnx2 *bp, int work_done, int budget)
2637 {
2638         struct status_block *sblk = bp->status_blk;
2639         u32 status_attn_bits = sblk->status_attn_bits;
2640         u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
2641
2642         if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
2643             (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
2644
2645                 bnx2_phy_int(bp);
2646
2647                 /* This is needed to take care of transient status
2648                  * during link changes.
2649                  */
2650                 REG_WR(bp, BNX2_HC_COMMAND,
2651                        bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
2652                 REG_RD(bp, BNX2_HC_COMMAND);
2653         }
2654
2655         if (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
2656                 bnx2_tx_int(bp);
2657
2658         if (sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons)
2659                 work_done += bnx2_rx_int(bp, budget - work_done);
2660
2661         return work_done;
2662 }
2663
2664 static int bnx2_poll(struct napi_struct *napi, int budget)
2665 {
2666         struct bnx2 *bp = container_of(napi, struct bnx2, napi);
2667         int work_done = 0;
2668         struct status_block *sblk = bp->status_blk;
2669
2670         while (1) {
2671                 work_done = bnx2_poll_work(bp, work_done, budget);
2672
2673                 if (unlikely(work_done >= budget))
2674                         break;
2675
2676                 /* bp->last_status_idx is used below to tell the hw how
2677                  * much work has been processed, so we must read it before
2678                  * checking for more work.
2679                  */
2680                 bp->last_status_idx = sblk->status_idx;
2681                 rmb();
2682                 if (likely(!bnx2_has_work(bp))) {
2683                         netif_rx_complete(bp->dev, napi);
2684                         if (likely(bp->flags & USING_MSI_FLAG)) {
2685                                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2686                                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2687                                        bp->last_status_idx);
2688                                 break;
2689                         }
2690                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2691                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2692                                BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2693                                bp->last_status_idx);
2694
2695                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2696                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2697                                bp->last_status_idx);
2698                         break;
2699                 }
2700         }
2701
2702         return work_done;
2703 }
2704
2705 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
2706  * from set_multicast.
2707  */
2708 static void
2709 bnx2_set_rx_mode(struct net_device *dev)
2710 {
2711         struct bnx2 *bp = netdev_priv(dev);
2712         u32 rx_mode, sort_mode;
2713         int i;
2714
2715         spin_lock_bh(&bp->phy_lock);
2716
2717         rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
2718                                   BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
2719         sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
2720 #ifdef BCM_VLAN
2721         if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
2722                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2723 #else
2724         if (!(bp->flags & ASF_ENABLE_FLAG))
2725                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2726 #endif
2727         if (dev->flags & IFF_PROMISC) {
2728                 /* Promiscuous mode. */
2729                 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
2730                 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
2731                              BNX2_RPM_SORT_USER0_PROM_VLAN;
2732         }
2733         else if (dev->flags & IFF_ALLMULTI) {
2734                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2735                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2736                                0xffffffff);
2737                 }
2738                 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
2739         }
2740         else {
2741                 /* Accept one or more multicast(s). */
2742                 struct dev_mc_list *mclist;
2743                 u32 mc_filter[NUM_MC_HASH_REGISTERS];
2744                 u32 regidx;
2745                 u32 bit;
2746                 u32 crc;
2747
2748                 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
2749
2750                 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2751                      i++, mclist = mclist->next) {
2752
2753                         crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
2754                         bit = crc & 0xff;
2755                         regidx = (bit & 0xe0) >> 5;
2756                         bit &= 0x1f;
2757                         mc_filter[regidx] |= (1 << bit);
2758                 }
2759
2760                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2761                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2762                                mc_filter[i]);
2763                 }
2764
2765                 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
2766         }
2767
2768         if (rx_mode != bp->rx_mode) {
2769                 bp->rx_mode = rx_mode;
2770                 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
2771         }
2772
2773         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2774         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
2775         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
2776
2777         spin_unlock_bh(&bp->phy_lock);
2778 }
2779
2780 static void
2781 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
2782         u32 rv2p_proc)
2783 {
2784         int i;
2785         u32 val;
2786
2787
2788         for (i = 0; i < rv2p_code_len; i += 8) {
2789                 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
2790                 rv2p_code++;
2791                 REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
2792                 rv2p_code++;
2793
2794                 if (rv2p_proc == RV2P_PROC1) {
2795                         val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
2796                         REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
2797                 }
2798                 else {
2799                         val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
2800                         REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
2801                 }
2802         }
2803
2804         /* Reset the processor, un-stall is done later. */
2805         if (rv2p_proc == RV2P_PROC1) {
2806                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
2807         }
2808         else {
2809                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
2810         }
2811 }
2812
2813 static int
2814 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
2815 {
2816         u32 offset;
2817         u32 val;
2818         int rc;
2819
2820         /* Halt the CPU. */
2821         val = REG_RD_IND(bp, cpu_reg->mode);
2822         val |= cpu_reg->mode_value_halt;
2823         REG_WR_IND(bp, cpu_reg->mode, val);
2824         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2825
2826         /* Load the Text area. */
2827         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2828         if (fw->gz_text) {
2829                 int j;
2830
2831                 rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
2832                                        fw->gz_text_len);
2833                 if (rc < 0)
2834                         return rc;
2835
2836                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
2837                         REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
2838                 }
2839         }
2840
2841         /* Load the Data area. */
2842         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2843         if (fw->data) {
2844                 int j;
2845
2846                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
2847                         REG_WR_IND(bp, offset, fw->data[j]);
2848                 }
2849         }
2850
2851         /* Load the SBSS area. */
2852         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2853         if (fw->sbss_len) {
2854                 int j;
2855
2856                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
2857                         REG_WR_IND(bp, offset, 0);
2858                 }
2859         }
2860
2861         /* Load the BSS area. */
2862         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2863         if (fw->bss_len) {
2864                 int j;
2865
2866                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
2867                         REG_WR_IND(bp, offset, 0);
2868                 }
2869         }
2870
2871         /* Load the Read-Only area. */
2872         offset = cpu_reg->spad_base +
2873                 (fw->rodata_addr - cpu_reg->mips_view_base);
2874         if (fw->rodata) {
2875                 int j;
2876
2877                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
2878                         REG_WR_IND(bp, offset, fw->rodata[j]);
2879                 }
2880         }
2881
2882         /* Clear the pre-fetch instruction. */
2883         REG_WR_IND(bp, cpu_reg->inst, 0);
2884         REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
2885
2886         /* Start the CPU. */
2887         val = REG_RD_IND(bp, cpu_reg->mode);
2888         val &= ~cpu_reg->mode_value_halt;
2889         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2890         REG_WR_IND(bp, cpu_reg->mode, val);
2891
2892         return 0;
2893 }
2894
2895 static int
2896 bnx2_init_cpus(struct bnx2 *bp)
2897 {
2898         struct cpu_reg cpu_reg;
2899         struct fw_info *fw;
2900         int rc;
2901         void *text;
2902
2903         /* Initialize the RV2P processor. */
2904         text = vmalloc(FW_BUF_SIZE);
2905         if (!text)
2906                 return -ENOMEM;
2907         rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1));
2908         if (rc < 0)
2909                 goto init_cpu_err;
2910
2911         load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
2912
2913         rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2));
2914         if (rc < 0)
2915                 goto init_cpu_err;
2916
2917         load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
2918
2919         /* Initialize the RX Processor. */
2920         cpu_reg.mode = BNX2_RXP_CPU_MODE;
2921         cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
2922         cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
2923         cpu_reg.state = BNX2_RXP_CPU_STATE;
2924         cpu_reg.state_value_clear = 0xffffff;
2925         cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
2926         cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
2927         cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
2928         cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
2929         cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
2930         cpu_reg.spad_base = BNX2_RXP_SCRATCH;
2931         cpu_reg.mips_view_base = 0x8000000;
2932
2933         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2934                 fw = &bnx2_rxp_fw_09;
2935         else
2936                 fw = &bnx2_rxp_fw_06;
2937
2938         fw->text = text;
2939         rc = load_cpu_fw(bp, &cpu_reg, fw);
2940         if (rc)
2941                 goto init_cpu_err;
2942
2943         /* Initialize the TX Processor. */
2944         cpu_reg.mode = BNX2_TXP_CPU_MODE;
2945         cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
2946         cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
2947         cpu_reg.state = BNX2_TXP_CPU_STATE;
2948         cpu_reg.state_value_clear = 0xffffff;
2949         cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
2950         cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
2951         cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
2952         cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
2953         cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
2954         cpu_reg.spad_base = BNX2_TXP_SCRATCH;
2955         cpu_reg.mips_view_base = 0x8000000;
2956
2957         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2958                 fw = &bnx2_txp_fw_09;
2959         else
2960                 fw = &bnx2_txp_fw_06;
2961
2962         fw->text = text;
2963         rc = load_cpu_fw(bp, &cpu_reg, fw);
2964         if (rc)
2965                 goto init_cpu_err;
2966
2967         /* Initialize the TX Patch-up Processor. */
2968         cpu_reg.mode = BNX2_TPAT_CPU_MODE;
2969         cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
2970         cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
2971         cpu_reg.state = BNX2_TPAT_CPU_STATE;
2972         cpu_reg.state_value_clear = 0xffffff;
2973         cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
2974         cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
2975         cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
2976         cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
2977         cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
2978         cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
2979         cpu_reg.mips_view_base = 0x8000000;
2980
2981         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2982                 fw = &bnx2_tpat_fw_09;
2983         else
2984                 fw = &bnx2_tpat_fw_06;
2985
2986         fw->text = text;
2987         rc = load_cpu_fw(bp, &cpu_reg, fw);
2988         if (rc)
2989                 goto init_cpu_err;
2990
2991         /* Initialize the Completion Processor. */
2992         cpu_reg.mode = BNX2_COM_CPU_MODE;
2993         cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
2994         cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
2995         cpu_reg.state = BNX2_COM_CPU_STATE;
2996         cpu_reg.state_value_clear = 0xffffff;
2997         cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
2998         cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
2999         cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
3000         cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
3001         cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
3002         cpu_reg.spad_base = BNX2_COM_SCRATCH;
3003         cpu_reg.mips_view_base = 0x8000000;
3004
3005         if (CHIP_NUM(bp) == CHIP_NUM_5709)
3006                 fw = &bnx2_com_fw_09;
3007         else
3008                 fw = &bnx2_com_fw_06;
3009
3010         fw->text = text;
3011         rc = load_cpu_fw(bp, &cpu_reg, fw);
3012         if (rc)
3013                 goto init_cpu_err;
3014
3015         /* Initialize the Command Processor. */
3016         cpu_reg.mode = BNX2_CP_CPU_MODE;
3017         cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
3018         cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
3019         cpu_reg.state = BNX2_CP_CPU_STATE;
3020         cpu_reg.state_value_clear = 0xffffff;
3021         cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
3022         cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
3023         cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
3024         cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
3025         cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
3026         cpu_reg.spad_base = BNX2_CP_SCRATCH;
3027         cpu_reg.mips_view_base = 0x8000000;
3028
3029         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3030                 fw = &bnx2_cp_fw_09;
3031
3032                 fw->text = text;
3033                 rc = load_cpu_fw(bp, &cpu_reg, fw);
3034                 if (rc)
3035                         goto init_cpu_err;
3036         }
3037 init_cpu_err:
3038         vfree(text);
3039         return rc;
3040 }
3041
3042 static int
3043 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3044 {
3045         u16 pmcsr;
3046
3047         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3048
3049         switch (state) {
3050         case PCI_D0: {
3051                 u32 val;
3052
3053                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3054                         (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3055                         PCI_PM_CTRL_PME_STATUS);
3056
3057                 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3058                         /* delay required during transition out of D3hot */
3059                         msleep(20);
3060
3061                 val = REG_RD(bp, BNX2_EMAC_MODE);
3062                 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3063                 val &= ~BNX2_EMAC_MODE_MPKT;
3064                 REG_WR(bp, BNX2_EMAC_MODE, val);
3065
3066                 val = REG_RD(bp, BNX2_RPM_CONFIG);
3067                 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3068                 REG_WR(bp, BNX2_RPM_CONFIG, val);
3069                 break;
3070         }
3071         case PCI_D3hot: {
3072                 int i;
3073                 u32 val, wol_msg;
3074
3075                 if (bp->wol) {
3076                         u32 advertising;
3077                         u8 autoneg;
3078
3079                         autoneg = bp->autoneg;
3080                         advertising = bp->advertising;
3081
3082                         bp->autoneg = AUTONEG_SPEED;
3083                         bp->advertising = ADVERTISED_10baseT_Half |
3084                                 ADVERTISED_10baseT_Full |
3085                                 ADVERTISED_100baseT_Half |
3086                                 ADVERTISED_100baseT_Full |
3087                                 ADVERTISED_Autoneg;
3088
3089                         bnx2_setup_copper_phy(bp);
3090
3091                         bp->autoneg = autoneg;
3092                         bp->advertising = advertising;
3093
3094                         bnx2_set_mac_addr(bp);
3095
3096                         val = REG_RD(bp, BNX2_EMAC_MODE);
3097
3098                         /* Enable port mode. */
3099                         val &= ~BNX2_EMAC_MODE_PORT;
3100                         val |= BNX2_EMAC_MODE_PORT_MII |
3101                                BNX2_EMAC_MODE_MPKT_RCVD |
3102                                BNX2_EMAC_MODE_ACPI_RCVD |
3103                                BNX2_EMAC_MODE_MPKT;
3104
3105                         REG_WR(bp, BNX2_EMAC_MODE, val);
3106
3107                         /* receive all multicast */
3108                         for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3109                                 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3110                                        0xffffffff);
3111                         }
3112                         REG_WR(bp, BNX2_EMAC_RX_MODE,
3113                                BNX2_EMAC_RX_MODE_SORT_MODE);
3114
3115                         val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3116                               BNX2_RPM_SORT_USER0_MC_EN;
3117                         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3118                         REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3119                         REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3120                                BNX2_RPM_SORT_USER0_ENA);
3121
3122                         /* Need to enable EMAC and RPM for WOL. */
3123                         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3124                                BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3125                                BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3126                                BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3127
3128                         val = REG_RD(bp, BNX2_RPM_CONFIG);
3129                         val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3130                         REG_WR(bp, BNX2_RPM_CONFIG, val);
3131
3132                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3133                 }
3134                 else {
3135                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3136                 }
3137
3138                 if (!(bp->flags & NO_WOL_FLAG))
3139                         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
3140
3141                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3143                     (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3144
3145                         if (bp->wol)
3146                                 pmcsr |= 3;
3147                 }
3148                 else {
3149                         pmcsr |= 3;
3150                 }
3151                 if (bp->wol) {
3152                         pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3153                 }
3154                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3155                                       pmcsr);
3156
3157                 /* No more memory access after this point until
3158                  * device is brought back to D0.
3159                  */
3160                 udelay(50);
3161                 break;
3162         }
3163         default:
3164                 return -EINVAL;
3165         }
3166         return 0;
3167 }
3168
3169 static int
3170 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3171 {
3172         u32 val;
3173         int j;
3174
3175         /* Request access to the flash interface. */
3176         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3177         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3178                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3179                 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3180                         break;
3181
3182                 udelay(5);
3183         }
3184
3185         if (j >= NVRAM_TIMEOUT_COUNT)
3186                 return -EBUSY;
3187
3188         return 0;
3189 }
3190
3191 static int
3192 bnx2_release_nvram_lock(struct bnx2 *bp)
3193 {
3194         int j;
3195         u32 val;
3196
3197         /* Relinquish nvram interface. */
3198         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
3199
3200         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3201                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3202                 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
3203                         break;
3204
3205                 udelay(5);
3206         }
3207
3208         if (j >= NVRAM_TIMEOUT_COUNT)
3209                 return -EBUSY;
3210
3211         return 0;
3212 }
3213
3214
3215 static int
3216 bnx2_enable_nvram_write(struct bnx2 *bp)
3217 {
3218         u32 val;
3219
3220         val = REG_RD(bp, BNX2_MISC_CFG);
3221         REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
3222
3223         if (bp->flash_info->flags & BNX2_NV_WREN) {
3224                 int j;
3225
3226                 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3227                 REG_WR(bp, BNX2_NVM_COMMAND,
3228                        BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
3229
3230                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3231                         udelay(5);
3232
3233                         val = REG_RD(bp, BNX2_NVM_COMMAND);
3234                         if (val & BNX2_NVM_COMMAND_DONE)
3235                                 break;
3236                 }
3237
3238                 if (j >= NVRAM_TIMEOUT_COUNT)
3239                         return -EBUSY;
3240         }
3241         return 0;
3242 }
3243
3244 static void
3245 bnx2_disable_nvram_write(struct bnx2 *bp)
3246 {
3247         u32 val;
3248
3249         val = REG_RD(bp, BNX2_MISC_CFG);
3250         REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
3251 }
3252
3253
3254 static void
3255 bnx2_enable_nvram_access(struct bnx2 *bp)
3256 {
3257         u32 val;
3258
3259         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3260         /* Enable both bits, even on read. */
3261         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3262                val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
3263 }
3264
3265 static void
3266 bnx2_disable_nvram_access(struct bnx2 *bp)
3267 {
3268         u32 val;
3269
3270         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3271         /* Disable both bits, even after read. */
3272         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3273                 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
3274                         BNX2_NVM_ACCESS_ENABLE_WR_EN));
3275 }
3276
3277 static int
3278 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
3279 {
3280         u32 cmd;
3281         int j;
3282
3283         if (bp->flash_info->flags & BNX2_NV_BUFFERED)
3284                 /* Buffered flash, no erase needed */
3285                 return 0;
3286
3287         /* Build an erase command */
3288         cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
3289               BNX2_NVM_COMMAND_DOIT;
3290
3291         /* Need to clear DONE bit separately. */
3292         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3293
3294         /* Address of the NVRAM to read from. */
3295         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3296
3297         /* Issue an erase command. */
3298         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3299
3300         /* Wait for completion. */
3301         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3302                 u32 val;
3303
3304                 udelay(5);
3305
3306                 val = REG_RD(bp, BNX2_NVM_COMMAND);
3307                 if (val & BNX2_NVM_COMMAND_DONE)
3308                         break;
3309         }
3310
3311         if (j >= NVRAM_TIMEOUT_COUNT)
3312                 return -EBUSY;
3313
3314         return 0;
3315 }
3316
3317 static int
3318 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
3319 {
3320         u32 cmd;
3321         int j;
3322
3323         /* Build the command word. */
3324         cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
3325
3326         /* Calculate an offset of a buffered flash, not needed for 5709. */
3327         if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3328                 offset = ((offset / bp->flash_info->page_size) <<
3329                            bp->flash_info->page_bits) +
3330                           (offset % bp->flash_info->page_size);
3331         }
3332
3333         /* Need to clear DONE bit separately. */
3334         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3335
3336         /* Address of the NVRAM to read from. */
3337         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3338
3339         /* Issue a read command. */
3340         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3341
3342         /* Wait for completion. */
3343         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3344                 u32 val;
3345
3346                 udelay(5);
3347
3348                 val = REG_RD(bp, BNX2_NVM_COMMAND);
3349                 if (val & BNX2_NVM_COMMAND_DONE) {
3350                         val = REG_RD(bp, BNX2_NVM_READ);
3351
3352                         val = be32_to_cpu(val);
3353                         memcpy(ret_val, &val, 4);
3354                         break;
3355                 }
3356         }
3357         if (j >= NVRAM_TIMEOUT_COUNT)
3358                 return -EBUSY;
3359
3360         return 0;
3361 }
3362
3363
3364 static int
3365 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
3366 {
3367         u32 cmd, val32;
3368         int j;
3369
3370         /* Build the command word. */
3371         cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
3372
3373         /* Calculate an offset of a buffered flash, not needed for 5709. */
3374         if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3375                 offset = ((offset / bp->flash_info->page_size) <<
3376                           bp->flash_info->page_bits) +
3377                          (offset % bp->flash_info->page_size);
3378         }
3379
3380         /* Need to clear DONE bit separately. */
3381         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3382
3383         memcpy(&val32, val, 4);
3384         val32 = cpu_to_be32(val32);
3385
3386         /* Write the data. */
3387         REG_WR(bp, BNX2_NVM_WRITE, val32);
3388
3389         /* Address of the NVRAM to write to. */
3390         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3391
3392         /* Issue the write command. */
3393         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3394
3395         /* Wait for completion. */
3396         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3397                 udelay(5);
3398
3399                 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
3400                         break;
3401         }
3402         if (j >= NVRAM_TIMEOUT_COUNT)
3403                 return -EBUSY;
3404
3405         return 0;
3406 }
3407
3408 static int
3409 bnx2_init_nvram(struct bnx2 *bp)
3410 {
3411         u32 val;
3412         int j, entry_count, rc = 0;
3413         struct flash_spec *flash;
3414
3415         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3416                 bp->flash_info = &flash_5709;
3417                 goto get_flash_size;
3418         }
3419
3420         /* Determine the selected interface. */
3421         val = REG_RD(bp, BNX2_NVM_CFG1);
3422
3423         entry_count = ARRAY_SIZE(flash_table);
3424
3425         if (val & 0x40000000) {
3426
3427                 /* Flash interface has been reconfigured */
3428                 for (j = 0, flash = &flash_table[0]; j < entry_count;
3429                      j++, flash++) {
3430                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
3431                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
3432                                 bp->flash_info = flash;
3433                                 break;
3434                         }
3435                 }
3436         }
3437         else {
3438                 u32 mask;
3439                 /* Not yet been reconfigured */
3440
3441                 if (val & (1 << 23))
3442                         mask = FLASH_BACKUP_STRAP_MASK;
3443                 else
3444                         mask = FLASH_STRAP_MASK;
3445
3446                 for (j = 0, flash = &flash_table[0]; j < entry_count;
3447                         j++, flash++) {
3448
3449                         if ((val & mask) == (flash->strapping & mask)) {
3450                                 bp->flash_info = flash;
3451
3452                                 /* Request access to the flash interface. */
3453                                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3454                                         return rc;
3455
3456                                 /* Enable access to flash interface */
3457                                 bnx2_enable_nvram_access(bp);
3458
3459                                 /* Reconfigure the flash interface */
3460                                 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
3461                                 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
3462                                 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
3463                                 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
3464
3465                                 /* Disable access to flash interface */
3466                                 bnx2_disable_nvram_access(bp);
3467                                 bnx2_release_nvram_lock(bp);
3468
3469                                 break;
3470                         }
3471                 }
3472         } /* if (val & 0x40000000) */
3473
3474         if (j == entry_count) {
3475                 bp->flash_info = NULL;
3476                 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
3477                 return -ENODEV;
3478         }
3479
3480 get_flash_size:
3481         val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
3482         val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
3483         if (val)
3484                 bp->flash_size = val;
3485         else
3486                 bp->flash_size = bp->flash_info->total_size;
3487
3488         return rc;
3489 }
3490
3491 static int
3492 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
3493                 int buf_size)
3494 {
3495         int rc = 0;
3496         u32 cmd_flags, offset32, len32, extra;
3497
3498         if (buf_size == 0)
3499                 return 0;
3500
3501         /* Request access to the flash interface. */
3502         if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3503                 return rc;
3504
3505         /* Enable access to flash interface */
3506         bnx2_enable_nvram_access(bp);
3507
3508         len32 = buf_size;
3509         offset32 = offset;
3510         extra = 0;
3511
3512         cmd_flags = 0;
3513
3514         if (offset32 & 3) {
3515                 u8 buf[4];
3516                 u32 pre_len;
3517
3518                 offset32 &= ~3;
3519                 pre_len = 4 - (offset & 3);
3520
3521                 if (pre_len >= len32) {
3522                         pre_len = len32;
3523                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
3524                                     BNX2_NVM_COMMAND_LAST;
3525                 }
3526                 else {
3527                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
3528                 }
3529
3530                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3531
3532                 if (rc)
3533                         return rc;
3534
3535                 memcpy(ret_buf, buf + (offset & 3), pre_len);
3536
3537                 offset32 += 4;
3538                 ret_buf += pre_len;
3539                 len32 -= pre_len;
3540         }
3541         if (len32 & 3) {
3542                 extra = 4 - (len32 & 3);
3543                 len32 = (len32 + 4) & ~3;
3544         }
3545
3546         if (len32 == 4) {
3547                 u8 buf[4];
3548
3549                 if (cmd_flags)
3550                         cmd_flags = BNX2_NVM_COMMAND_LAST;
3551                 else
3552                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
3553                                     BNX2_NVM_COMMAND_LAST;
3554
3555                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3556
3557                 memcpy(ret_buf, buf, 4 - extra);
3558         }
3559         else if (len32 > 0) {
3560                 u8 buf[4];
3561
3562                 /* Read the first word. */
3563                 if (cmd_flags)
3564                         cmd_flags = 0;
3565                 else
3566                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
3567
3568                 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
3569
3570                 /* Advance to the next dword. */
3571                 offset32 += 4;
3572                 ret_buf += 4;
3573                 len32 -= 4;
3574
3575                 while (len32 > 4 && rc == 0) {
3576                         rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
3577
3578                         /* Advance to the next dword. */
3579                         offset32 += 4;
3580                         ret_buf += 4;
3581                         len32 -= 4;
3582                 }
3583
3584                 if (rc)
3585                         return rc;
3586
3587                 cmd_flags = BNX2_NVM_COMMAND_LAST;
3588                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3589
3590                 memcpy(ret_buf, buf, 4 - extra);
3591         }
3592
3593         /* Disable access to flash interface */
3594         bnx2_disable_nvram_access(bp);
3595
3596         bnx2_release_nvram_lock(bp);
3597
3598         return rc;
3599 }
3600
3601 static int
3602 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
3603                 int buf_size)
3604 {
3605         u32 written, offset32, len32;
3606         u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
3607         int rc = 0;
3608         int align_start, align_end;
3609
3610         buf = data_buf;
3611         offset32 = offset;
3612         len32 = buf_size;
3613         align_start = align_end = 0;
3614
3615         if ((align_start = (offset32 & 3))) {
3616                 offset32 &= ~3;
3617                 len32 += align_start;
3618                 if (len32 < 4)
3619                         len32 = 4;
3620                 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
3621                         return rc;
3622         }
3623
3624         if (len32 & 3) {
3625                 align_end = 4 - (len32 & 3);
3626                 len32 += align_end;
3627                 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
3628                         return rc;
3629         }
3630
3631         if (align_start || align_end) {
3632                 align_buf = kmalloc(len32, GFP_KERNEL);
3633                 if (align_buf == NULL)
3634                         return -ENOMEM;
3635                 if (align_start) {
3636                         memcpy(align_buf, start, 4);
3637                 }
3638                 if (align_end) {
3639                         memcpy(align_buf + len32 - 4, end, 4);
3640                 }
3641                 memcpy(align_buf + align_start, data_buf, buf_size);
3642                 buf = align_buf;
3643         }
3644
3645         if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
3646                 flash_buffer = kmalloc(264, GFP_KERNEL);
3647                 if (flash_buffer == NULL) {
3648                         rc = -ENOMEM;
3649                         goto nvram_write_end;
3650                 }
3651         }
3652
3653         written = 0;
3654         while ((written < len32) && (rc == 0)) {
3655                 u32 page_start, page_end, data_start, data_end;
3656                 u32 addr, cmd_flags;
3657                 int i;
3658
3659                 /* Find the page_start addr */
3660                 page_start = offset32 + written;
3661                 page_start -= (page_start % bp->flash_info->page_size);
3662                 /* Find the page_end addr */
3663                 page_end = page_start + bp->flash_info->page_size;
3664                 /* Find the data_start addr */
3665                 data_start = (written == 0) ? offset32 : page_start;
3666                 /* Find the data_end addr */
3667                 data_end = (page_end > offset32 + len32) ?
3668                         (offset32 + len32) : page_end;
3669
3670                 /* Request access to the flash interface. */
3671                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3672                         goto nvram_write_end;
3673
3674                 /* Enable access to flash interface */
3675                 bnx2_enable_nvram_access(bp);
3676
3677                 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3678                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
3679                         int j;
3680
3681                         /* Read the whole page into the buffer
3682                          * (non-buffer flash only) */
3683                         for (j = 0; j < bp->flash_info->page_size; j += 4) {
3684                                 if (j == (bp->flash_info->page_size - 4)) {
3685                                         cmd_flags |= BNX2_NVM_COMMAND_LAST;
3686                                 }
3687                                 rc = bnx2_nvram_read_dword(bp,
3688                                         page_start + j,
3689                                         &flash_buffer[j],
3690                                         cmd_flags);
3691
3692                                 if (rc)
3693                                         goto nvram_write_end;
3694
3695                                 cmd_flags = 0;
3696                         }
3697                 }
3698
3699                 /* Enable writes to flash interface (unlock write-protect) */
3700                 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
3701                         goto nvram_write_end;
3702
3703                 /* Loop to write back the buffer data from page_start to
3704                  * data_start */
3705                 i = 0;
3706                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
3707                         /* Erase the page */
3708                         if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
3709                                 goto nvram_write_end;
3710
3711                         /* Re-enable the write again for the actual write */
3712                         bnx2_enable_nvram_write(bp);
3713
3714                         for (addr = page_start; addr < data_start;
3715                                 addr += 4, i += 4) {
3716
3717                                 rc = bnx2_nvram_write_dword(bp, addr,
3718                                         &flash_buffer[i], cmd_flags);
3719
3720                                 if (rc != 0)
3721                                         goto nvram_write_end;
3722
3723                                 cmd_flags = 0;
3724                         }
3725                 }
3726
3727                 /* Loop to write the new data from data_start to data_end */
3728                 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
3729                         if ((addr == page_end - 4) ||
3730                                 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
3731                                  (addr == data_end - 4))) {
3732
3733                                 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3734                         }
3735                         rc = bnx2_nvram_write_dword(bp, addr, buf,
3736                                 cmd_flags);
3737
3738                         if (rc != 0)
3739                                 goto nvram_write_end;
3740
3741                         cmd_flags = 0;
3742                         buf += 4;
3743                 }
3744
3745                 /* Loop to write back the buffer data from data_end
3746                  * to page_end */
3747                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
3748                         for (addr = data_end; addr < page_end;
3749                                 addr += 4, i += 4) {
3750
3751                                 if (addr == page_end-4) {
3752                                         cmd_flags = BNX2_NVM_COMMAND_LAST;
3753                                 }
3754                                 rc = bnx2_nvram_write_dword(bp, addr,
3755                                         &flash_buffer[i], cmd_flags);
3756
3757                                 if (rc != 0)
3758                                         goto nvram_write_end;
3759
3760                                 cmd_flags = 0;
3761                         }
3762                 }
3763
3764                 /* Disable writes to flash interface (lock write-protect) */
3765                 bnx2_disable_nvram_write(bp);
3766
3767                 /* Disable access to flash interface */
3768                 bnx2_disable_nvram_access(bp);
3769                 bnx2_release_nvram_lock(bp);
3770
3771                 /* Increment written */
3772                 written += data_end - data_start;
3773         }
3774
3775 nvram_write_end:
3776         kfree(flash_buffer);
3777         kfree(align_buf);
3778         return rc;
3779 }
3780
3781 static void
3782 bnx2_init_remote_phy(struct bnx2 *bp)
3783 {
3784         u32 val;
3785
3786         bp->phy_flags &= ~REMOTE_PHY_CAP_FLAG;
3787         if (!(bp->phy_flags & PHY_SERDES_FLAG))
3788                 return;
3789
3790         val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_CAP_MB);
3791         if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
3792                 return;
3793
3794         if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
3795                 bp->phy_flags |= REMOTE_PHY_CAP_FLAG;
3796
3797                 val = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
3798                 if (val & BNX2_LINK_STATUS_SERDES_LINK)
3799                         bp->phy_port = PORT_FIBRE;
3800                 else
3801                         bp->phy_port = PORT_TP;
3802
3803                 if (netif_running(bp->dev)) {
3804                         u32 sig;
3805
3806                         if (val & BNX2_LINK_STATUS_LINK_UP) {
3807                                 bp->link_up = 1;
3808                                 netif_carrier_on(bp->dev);
3809                         } else {
3810                                 bp->link_up = 0;
3811                                 netif_carrier_off(bp->dev);
3812                         }
3813                         sig = BNX2_DRV_ACK_CAP_SIGNATURE |
3814                               BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
3815                         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_ACK_CAP_MB,
3816                                    sig);
3817                 }
3818         }
3819 }
3820
3821 static int
3822 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
3823 {
3824         u32 val;
3825         int i, rc = 0;
3826         u8 old_port;
3827
3828         /* Wait for the current PCI transaction to complete before
3829          * issuing a reset. */
3830         REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
3831                BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3832                BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3833                BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3834                BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3835         val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
3836         udelay(5);
3837
3838         /* Wait for the firmware to tell us it is ok to issue a reset. */
3839         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
3840
3841         /* Deposit a driver reset signature so the firmware knows that
3842          * this is a soft reset. */
3843         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
3844                    BNX2_DRV_RESET_SIGNATURE_MAGIC);
3845
3846         /* Do a dummy read to force the chip to complete all current transaction
3847          * before we issue a reset. */
3848         val = REG_RD(bp, BNX2_MISC_ID);
3849
3850         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3851                 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
3852                 REG_RD(bp, BNX2_MISC_COMMAND);
3853                 udelay(5);
3854
3855                 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3856                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3857
3858                 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
3859
3860         } else {
3861                 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3862                       BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3863                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3864
3865                 /* Chip reset. */
3866                 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
3867
3868                 /* Reading back any register after chip reset will hang the
3869                  * bus on 5706 A0 and A1.  The msleep below provides plenty
3870                  * of margin for write posting.
3871                  */
3872                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3873                     (CHIP_ID(bp) == CHIP_ID_5706_A1))
3874                         msleep(20);
3875
3876                 /* Reset takes approximate 30 usec */
3877                 for (i = 0; i < 10; i++) {
3878                         val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
3879                         if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3880                                     BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3881                                 break;
3882                         udelay(10);
3883                 }
3884
3885                 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3886                            BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3887                         printk(KERN_ERR PFX "Chip reset did not complete\n");
3888                         return -EBUSY;
3889                 }
3890         }
3891
3892         /* Make sure byte swapping is properly configured. */
3893         val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
3894         if (val != 0x01020304) {
3895                 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
3896                 return -ENODEV;
3897         }
3898
3899         /* Wait for the firmware to finish its initialization. */
3900         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
3901         if (rc)
3902                 return rc;
3903
3904         spin_lock_bh(&bp->phy_lock);
3905         old_port = bp->phy_port;
3906         bnx2_init_remote_phy(bp);
3907         if ((bp->phy_flags & REMOTE_PHY_CAP_FLAG) && old_port != bp->phy_port)
3908                 bnx2_set_default_remote_link(bp);
3909         spin_unlock_bh(&bp->phy_lock);
3910
3911         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3912                 /* Adjust the voltage regular to two steps lower.  The default
3913                  * of this register is 0x0000000e. */
3914                 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
3915
3916                 /* Remove bad rbuf memory from the free pool. */
3917                 rc = bnx2_alloc_bad_rbuf(bp);
3918         }
3919
3920         return rc;
3921 }
3922
3923 static int
3924 bnx2_init_chip(struct bnx2 *bp)
3925 {
3926         u32 val;
3927         int rc;
3928
3929         /* Make sure the interrupt is not active. */
3930         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3931
3932         val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
3933               BNX2_DMA_CONFIG_DATA_WORD_SWAP |
3934 #ifdef __BIG_ENDIAN
3935               BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
3936 #endif
3937               BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
3938               DMA_READ_CHANS << 12 |
3939               DMA_WRITE_CHANS << 16;
3940
3941         val |= (0x2 << 20) | (1 << 11);
3942
3943         if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
3944                 val |= (1 << 23);
3945
3946         if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
3947             (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
3948                 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
3949
3950         REG_WR(bp, BNX2_DMA_CONFIG, val);
3951
3952         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3953                 val = REG_RD(bp, BNX2_TDMA_CONFIG);
3954                 val |= BNX2_TDMA_CONFIG_ONE_DMA;
3955                 REG_WR(bp, BNX2_TDMA_CONFIG, val);
3956         }
3957
3958         if (bp->flags & PCIX_FLAG) {
3959                 u16 val16;
3960
3961                 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3962                                      &val16);
3963                 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3964                                       val16 & ~PCI_X_CMD_ERO);
3965         }
3966
3967         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3968                BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3969                BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3970                BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3971
3972         /* Initialize context mapping and zero out the quick contexts.  The
3973          * context block must have already been enabled. */
3974         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3975                 rc = bnx2_init_5709_context(bp);
3976                 if (rc)
3977                         return rc;
3978         } else
3979                 bnx2_init_context(bp);
3980
3981         if ((rc = bnx2_init_cpus(bp)) != 0)
3982                 return rc;
3983
3984         bnx2_init_nvram(bp);
3985
3986         bnx2_set_mac_addr(bp);
3987
3988         val = REG_RD(bp, BNX2_MQ_CONFIG);
3989         val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3990         val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3991         if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
3992                 val |= BNX2_MQ_CONFIG_HALT_DIS;
3993
3994         REG_WR(bp, BNX2_MQ_CONFIG, val);
3995
3996         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3997         REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
3998         REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
3999
4000         val = (BCM_PAGE_BITS - 8) << 24;
4001         REG_WR(bp, BNX2_RV2P_CONFIG, val);
4002
4003         /* Configure page size. */
4004         val = REG_RD(bp, BNX2_TBDR_CONFIG);
4005         val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4006         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4007         REG_WR(bp, BNX2_TBDR_CONFIG, val);
4008
4009         val = bp->mac_addr[0] +
4010               (bp->mac_addr[1] << 8) +
4011               (bp->mac_addr[2] << 16) +
4012               bp->mac_addr[3] +
4013               (bp->mac_addr[4] << 8) +
4014               (bp->mac_addr[5] << 16);
4015         REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4016
4017         /* Program the MTU.  Also include 4 bytes for CRC32. */
4018         val = bp->dev->mtu + ETH_HLEN + 4;
4019         if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4020                 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4021         REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4022
4023         bp->last_status_idx = 0;
4024         bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4025
4026         /* Set up how to generate a link change interrupt. */
4027         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4028
4029         REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4030                (u64) bp->status_blk_mapping & 0xffffffff);
4031         REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4032
4033         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4034                (u64) bp->stats_blk_mapping & 0xffffffff);
4035         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4036                (u64) bp->stats_blk_mapping >> 32);
4037
4038         REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4039                (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4040
4041         REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4042                (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4043
4044         REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4045                (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4046
4047         REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4048
4049         REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4050
4051         REG_WR(bp, BNX2_HC_COM_TICKS,
4052                (bp->com_ticks_int << 16) | bp->com_ticks);
4053
4054         REG_WR(bp, BNX2_HC_CMD_TICKS,
4055                (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4056
4057         if (CHIP_NUM(bp) == CHIP_NUM_5708)
4058                 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4059         else
4060                 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4061         REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4062
4063         if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4064                 val = BNX2_HC_CONFIG_COLLECT_STATS;
4065         else {
4066                 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4067                       BNX2_HC_CONFIG_COLLECT_STATS;
4068         }
4069
4070         if (bp->flags & ONE_SHOT_MSI_FLAG)
4071                 val |= BNX2_HC_CONFIG_ONE_SHOT;
4072
4073         REG_WR(bp, BNX2_HC_CONFIG, val);
4074
4075         /* Clear internal stats counters. */
4076         REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4077
4078         REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4079
4080         /* Initialize the receive filter. */
4081         bnx2_set_rx_mode(bp->dev);
4082
4083         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4084                 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4085                 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4086                 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4087         }
4088         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4089                           0);
4090
4091         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4092         REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4093
4094         udelay(20);
4095
4096         bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4097
4098         return rc;
4099 }
4100
4101 static void
4102 bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
4103 {
4104         u32 val, offset0, offset1, offset2, offset3;
4105
4106         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4107                 offset0 = BNX2_L2CTX_TYPE_XI;
4108                 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
4109                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
4110                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
4111         } else {
4112                 offset0 = BNX2_L2CTX_TYPE;
4113                 offset1 = BNX2_L2CTX_CMD_TYPE;
4114                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
4115                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
4116         }
4117         val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
4118         CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
4119
4120         val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4121         CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
4122
4123         val = (u64) bp->tx_desc_mapping >> 32;
4124         CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
4125
4126         val = (u64) bp->tx_desc_mapping & 0xffffffff;
4127         CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
4128 }
4129
4130 static void
4131 bnx2_init_tx_ring(struct bnx2 *bp)
4132 {
4133         struct tx_bd *txbd;
4134         u32 cid;
4135
4136         bp->tx_wake_thresh = bp->tx_ring_size / 2;
4137
4138         txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
4139
4140         txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
4141         txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
4142
4143         bp->tx_prod = 0;
4144         bp->tx_cons = 0;
4145         bp->hw_tx_cons = 0;
4146         bp->tx_prod_bseq = 0;
4147
4148         cid = TX_CID;
4149         bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
4150         bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
4151
4152         bnx2_init_tx_context(bp, cid);
4153 }
4154
4155 static void
4156 bnx2_init_rx_ring(struct bnx2 *bp)
4157 {
4158         struct rx_bd *rxbd;
4159         int i;
4160         u16 prod, ring_prod;
4161         u32 val;
4162
4163         /* 8 for CRC and VLAN */
4164         bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
4165         /* hw alignment */
4166         bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
4167
4168         ring_prod = prod = bp->rx_prod = 0;
4169         bp->rx_cons = 0;
4170         bp->hw_rx_cons = 0;
4171         bp->rx_prod_bseq = 0;
4172
4173         for (i = 0; i < bp->rx_max_ring; i++) {
4174                 int j;
4175
4176                 rxbd = &bp->rx_desc_ring[i][0];
4177                 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
4178                         rxbd->rx_bd_len = bp->rx_buf_use_size;
4179                         rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
4180                 }
4181                 if (i == (bp->rx_max_ring - 1))
4182                         j = 0;
4183                 else
4184                         j = i + 1;
4185                 rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
4186                 rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
4187                                        0xffffffff;
4188         }
4189
4190         val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
4191         val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
4192         val |= 0x02 << 8;
4193         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
4194
4195         val = (u64) bp->rx_desc_mapping[0] >> 32;
4196         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
4197
4198         val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
4199         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
4200
4201         for (i = 0; i < bp->rx_ring_size; i++) {
4202                 if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
4203                         break;
4204                 }
4205                 prod = NEXT_RX_BD(prod);
4206                 ring_prod = RX_RING_IDX(prod);
4207         }
4208         bp->rx_prod = prod;
4209
4210         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
4211
4212         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
4213 }
4214
4215 static void
4216 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
4217 {
4218         u32 num_rings, max;
4219
4220         bp->rx_ring_size = size;
4221         num_rings = 1;
4222         while (size > MAX_RX_DESC_CNT) {
4223                 size -= MAX_RX_DESC_CNT;
4224                 num_rings++;
4225         }
4226         /* round to next power of 2 */
4227         max = MAX_RX_RINGS;
4228         while ((max & num_rings) == 0)
4229                 max >>= 1;
4230
4231         if (num_rings != max)
4232                 max <<= 1;
4233
4234         bp->rx_max_ring = max;
4235         bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
4236 }
4237
4238 static void
4239 bnx2_free_tx_skbs(struct bnx2 *bp)
4240 {
4241         int i;
4242
4243         if (bp->tx_buf_ring == NULL)
4244                 return;
4245
4246         for (i = 0; i < TX_DESC_CNT; ) {
4247                 struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
4248                 struct sk_buff *skb = tx_buf->skb;
4249                 int j, last;
4250
4251                 if (skb == NULL) {
4252                         i++;
4253                         continue;
4254                 }
4255
4256                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
4257                         skb_headlen(skb), PCI_DMA_TODEVICE);
4258
4259                 tx_buf->skb = NULL;
4260
4261                 last = skb_shinfo(skb)->nr_frags;
4262                 for (j = 0; j < last; j++) {
4263                         tx_buf = &bp->tx_buf_ring[i + j + 1];
4264                         pci_unmap_page(bp->pdev,
4265                                 pci_unmap_addr(tx_buf, mapping),
4266                                 skb_shinfo(skb)->frags[j].size,
4267                                 PCI_DMA_TODEVICE);
4268                 }
4269                 dev_kfree_skb(skb);
4270                 i += j + 1;
4271         }
4272
4273 }
4274
4275 static void
4276 bnx2_free_rx_skbs(struct bnx2 *bp)
4277 {
4278         int i;
4279
4280         if (bp->rx_buf_ring == NULL)
4281                 return;
4282
4283         for (i = 0; i < bp->rx_max_ring_idx; i++) {
4284                 struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
4285                 struct sk_buff *skb = rx_buf->skb;
4286
4287                 if (skb == NULL)
4288                         continue;
4289
4290                 pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
4291                         bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
4292
4293                 rx_buf->skb = NULL;
4294
4295                 dev_kfree_skb(skb);
4296         }
4297 }
4298
4299 static void
4300 bnx2_free_skbs(struct bnx2 *bp)
4301 {
4302         bnx2_free_tx_skbs(bp);
4303         bnx2_free_rx_skbs(bp);
4304 }
4305
4306 static int
4307 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
4308 {
4309         int rc;
4310
4311         rc = bnx2_reset_chip(bp, reset_code);
4312         bnx2_free_skbs(bp);
4313         if (rc)
4314                 return rc;
4315
4316         if ((rc = bnx2_init_chip(bp)) != 0)
4317                 return rc;
4318
4319         bnx2_init_tx_ring(bp);
4320         bnx2_init_rx_ring(bp);
4321         return 0;
4322 }
4323
4324 static int
4325 bnx2_init_nic(struct bnx2 *bp)
4326 {
4327         int rc;
4328
4329         if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
4330                 return rc;
4331
4332         spin_lock_bh(&bp->phy_lock);
4333         bnx2_init_phy(bp);
4334         bnx2_set_link(bp);
4335         spin_unlock_bh(&bp->phy_lock);
4336         return 0;
4337 }
4338
4339 static int
4340 bnx2_test_registers(struct bnx2 *bp)
4341 {
4342         int ret;
4343         int i, is_5709;
4344         static const struct {
4345                 u16   offset;
4346                 u16   flags;
4347 #define BNX2_FL_NOT_5709        1
4348                 u32   rw_mask;
4349                 u32   ro_mask;
4350         } reg_tbl[] = {
4351                 { 0x006c, 0, 0x00000000, 0x0000003f },
4352                 { 0x0090, 0, 0xffffffff, 0x00000000 },
4353                 { 0x0094, 0, 0x00000000, 0x00000000 },
4354
4355                 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
4356                 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4357                 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4358                 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
4359                 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
4360                 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
4361                 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
4362                 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4363                 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4364
4365                 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4366                 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
4367                 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
4368                 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
4369                 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
4370                 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
4371
4372                 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
4373                 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
4374                 { 0x0c08, BNX2_FL_NOT_5709,  0x0f0ff073, 0x00000000 },
4375
4376                 { 0x1000, 0, 0x00000000, 0x00000001 },
4377                 { 0x1004, 0, 0x00000000, 0x000f0001 },
4378
4379                 { 0x1408, 0, 0x01c00800, 0x00000000 },
4380                 { 0x149c, 0, 0x8000ffff, 0x00000000 },
4381                 { 0x14a8, 0, 0x00000000, 0x000001ff },
4382                 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
4383                 { 0x14b0, 0, 0x00000002, 0x00000001 },
4384                 { 0x14b8, 0, 0x00000000, 0x00000000 },
4385                 { 0x14c0, 0, 0x00000000, 0x00000009 },
4386                 { 0x14c4, 0, 0x00003fff, 0x00000000 },
4387                 { 0x14cc, 0, 0x00000000, 0x00000001 },
4388                 { 0x14d0, 0, 0xffffffff, 0x00000000 },
4389
4390                 { 0x1800, 0, 0x00000000, 0x00000001 },
4391                 { 0x1804, 0, 0x00000000, 0x00000003 },
4392
4393                 { 0x2800, 0, 0x00000000, 0x00000001 },
4394                 { 0x2804, 0, 0x00000000, 0x00003f01 },
4395                 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
4396                 { 0x2810, 0, 0xffff0000, 0x00000000 },
4397                 { 0x2814, 0, 0xffff0000, 0x00000000 },
4398                 { 0x2818, 0, 0xffff0000, 0x00000000 },
4399                 { 0x281c, 0, 0xffff0000, 0x00000000 },
4400                 { 0x2834, 0, 0xffffffff, 0x00000000 },
4401                 { 0x2840, 0, 0x00000000, 0xffffffff },
4402                 { 0x2844, 0, 0x00000000, 0xffffffff },
4403                 { 0x2848, 0, 0xffffffff, 0x00000000 },
4404                 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
4405
4406                 { 0x2c00, 0, 0x00000000, 0x00000011 },
4407                 { 0x2c04, 0, 0x00000000, 0x00030007 },
4408
4409                 { 0x3c00, 0, 0x00000000, 0x00000001 },
4410                 { 0x3c04, 0, 0x00000000, 0x00070000 },
4411                 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
4412                 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
4413                 { 0x3c10, 0, 0xffffffff, 0x00000000 },
4414                 { 0x3c14, 0, 0x00000000, 0xffffffff },
4415                 { 0x3c18, 0, 0x00000000, 0xffffffff },
4416                 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
4417                 { 0x3c20, 0, 0xffffff00, 0x00000000 },
4418
4419                 { 0x5004, 0, 0x00000000, 0x0000007f },
4420                 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
4421
4422                 { 0x5c00, 0, 0x00000000, 0x00000001 },
4423                 { 0x5c04, 0, 0x00000000, 0x0003000f },
4424                 { 0x5c08, 0, 0x00000003, 0x00000000 },
4425                 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
4426                 { 0x5c10, 0, 0x00000000, 0xffffffff },
4427                 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
4428                 { 0x5c84, 0, 0x00000000, 0x0000f333 },
4429                 { 0x5c88, 0, 0x00000000, 0x00077373 },
4430                 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
4431
4432                 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
4433                 { 0x680c, 0, 0xffffffff, 0x00000000 },
4434                 { 0x6810, 0, 0xffffffff, 0x00000000 },
4435                 { 0x6814, 0, 0xffffffff, 0x00000000 },
4436                 { 0x6818, 0, 0xffffffff, 0x00000000 },
4437                 { 0x681c, 0, 0xffffffff, 0x00000000 },
4438                 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
4439                 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
4440                 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
4441                 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
4442                 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
4443                 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
4444                 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
4445                 { 0x683c, 0, 0x0000ffff, 0x00000000 },
4446                 { 0x6840, 0, 0x00000ff0, 0x00000000 },
4447                 { 0x6844, 0, 0x00ffff00, 0x00000000 },
4448                 { 0x684c, 0, 0xffffffff, 0x00000000 },
4449                 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
4450                 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
4451                 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
4452                 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
4453                 { 0x6908, 0, 0x00000000, 0x0001ff0f },
4454                 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
4455
4456                 { 0xffff, 0, 0x00000000, 0x00000000 },
4457         };
4458
4459         ret = 0;
4460         is_5709 = 0;
4461         if (CHIP_NUM(bp) == CHIP_NUM_5709)
4462                 is_5709 = 1;
4463
4464         for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
4465                 u32 offset, rw_mask, ro_mask, save_val, val;
4466                 u16 flags = reg_tbl[i].flags;
4467
4468                 if (is_5709 && (flags & BNX2_FL_NOT_5709))
4469                         continue;
4470
4471                 offset = (u32) reg_tbl[i].offset;
4472                 rw_mask = reg_tbl[i].rw_mask;
4473                 ro_mask = reg_tbl[i].ro_mask;
4474
4475                 save_val = readl(bp->regview + offset);
4476
4477                 writel(0, bp->regview + offset);
4478
4479                 val = readl(bp->regview + offset);
4480                 if ((val & rw_mask) != 0) {
4481                         goto reg_test_err;
4482                 }
4483
4484                 if ((val & ro_mask) != (save_val & ro_mask)) {
4485                         goto reg_test_err;
4486                 }
4487
4488                 writel(0xffffffff, bp->regview + offset);
4489
4490                 val = readl(bp->regview + offset);
4491                 if ((val & rw_mask) != rw_mask) {
4492                         goto reg_test_err;
4493                 }
4494
4495                 if ((val & ro_mask) != (save_val & ro_mask)) {
4496                         goto reg_test_err;
4497                 }
4498
4499                 writel(save_val, bp->regview + offset);
4500                 continue;
4501
4502 reg_test_err:
4503                 writel(save_val, bp->regview + offset);
4504                 ret = -ENODEV;
4505                 break;
4506         }
4507         return ret;
4508 }
4509
4510 static int
4511 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
4512 {
4513         static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
4514                 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
4515         int i;
4516
4517         for (i = 0; i < sizeof(test_pattern) / 4; i++) {
4518                 u32 offset;
4519
4520                 for (offset = 0; offset < size; offset += 4) {
4521
4522                         REG_WR_IND(bp, start + offset, test_pattern[i]);
4523
4524                         if (REG_RD_IND(bp, start + offset) !=
4525                                 test_pattern[i]) {
4526                                 return -ENODEV;
4527                         }
4528                 }
4529         }
4530         return 0;
4531 }
4532
4533 static int
4534 bnx2_test_memory(struct bnx2 *bp)
4535 {
4536         int ret = 0;
4537         int i;
4538         static struct mem_entry {
4539                 u32   offset;
4540                 u32   len;
4541         } mem_tbl_5706[] = {
4542                 { 0x60000,  0x4000 },
4543                 { 0xa0000,  0x3000 },
4544                 { 0xe0000,  0x4000 },
4545                 { 0x120000, 0x4000 },
4546                 { 0x1a0000, 0x4000 },
4547                 { 0x160000, 0x4000 },
4548                 { 0xffffffff, 0    },
4549         },
4550         mem_tbl_5709[] = {
4551                 { 0x60000,  0x4000 },
4552                 { 0xa0000,  0x3000 },
4553                 { 0xe0000,  0x4000 },
4554                 { 0x120000, 0x4000 },
4555                 { 0x1a0000, 0x4000 },
4556                 { 0xffffffff, 0    },
4557         };
4558         struct mem_entry *mem_tbl;
4559
4560         if (CHIP_NUM(bp) == CHIP_NUM_5709)
4561                 mem_tbl = mem_tbl_5709;
4562         else
4563                 mem_tbl = mem_tbl_5706;
4564
4565         for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
4566                 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
4567                         mem_tbl[i].len)) != 0) {
4568                         return ret;
4569                 }
4570         }
4571
4572         return ret;
4573 }
4574
4575 #define BNX2_MAC_LOOPBACK       0
4576 #define BNX2_PHY_LOOPBACK       1
4577
4578 static int
4579 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
4580 {
4581         unsigned int pkt_size, num_pkts, i;
4582         struct sk_buff *skb, *rx_skb;
4583         unsigned char *packet;
4584         u16 rx_start_idx, rx_idx;
4585         dma_addr_t map;
4586         struct tx_bd *txbd;
4587         struct sw_bd *rx_buf;
4588         struct l2_fhdr *rx_hdr;
4589         int ret = -ENODEV;
4590
4591         if (loopback_mode == BNX2_MAC_LOOPBACK) {
4592                 bp->loopback = MAC_LOOPBACK;
4593                 bnx2_set_mac_loopback(bp);
4594         }
4595         else if (loopback_mode == BNX2_PHY_LOOPBACK) {
4596                 if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
4597                         return 0;
4598
4599                 bp->loopback = PHY_LOOPBACK;
4600                 bnx2_set_phy_loopback(bp);
4601         }
4602         else
4603                 return -EINVAL;
4604
4605         pkt_size = 1514;
4606         skb = netdev_alloc_skb(bp->dev, pkt_size);
4607         if (!skb)
4608                 return -ENOMEM;
4609         packet = skb_put(skb, pkt_size);
4610         memcpy(packet, bp->dev->dev_addr, 6);
4611         memset(packet + 6, 0x0, 8);
4612         for (i = 14; i < pkt_size; i++)
4613                 packet[i] = (unsigned char) (i & 0xff);
4614
4615         map = pci_map_single(bp->pdev, skb->data, pkt_size,
4616                 PCI_DMA_TODEVICE);
4617
4618         REG_WR(bp, BNX2_HC_COMMAND,
4619                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4620
4621         REG_RD(bp, BNX2_HC_COMMAND);
4622
4623         udelay(5);
4624         rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
4625
4626         num_pkts = 0;
4627
4628         txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
4629
4630         txbd->tx_bd_haddr_hi = (u64) map >> 32;
4631         txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
4632         txbd->tx_bd_mss_nbytes = pkt_size;
4633         txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
4634
4635         num_pkts++;
4636         bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
4637         bp->tx_prod_bseq += pkt_size;
4638
4639         REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
4640         REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
4641
4642         udelay(100);
4643
4644         REG_WR(bp, BNX2_HC_COMMAND,
4645                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4646
4647         REG_RD(bp, BNX2_HC_COMMAND);
4648
4649         udelay(5);
4650
4651         pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
4652         dev_kfree_skb(skb);
4653
4654         if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
4655                 goto loopback_test_done;
4656         }
4657
4658         rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
4659         if (rx_idx != rx_start_idx + num_pkts) {
4660                 goto loopback_test_done;
4661         }
4662
4663         rx_buf = &bp->rx_buf_ring[rx_start_idx];
4664         rx_skb = rx_buf->skb;
4665
4666         rx_hdr = (struct l2_fhdr *) rx_skb->data;
4667         skb_reserve(rx_skb, bp->rx_offset);
4668
4669         pci_dma_sync_single_for_cpu(bp->pdev,
4670                 pci_unmap_addr(rx_buf, mapping),
4671                 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
4672
4673         if (rx_hdr->l2_fhdr_status &
4674                 (L2_FHDR_ERRORS_BAD_CRC |
4675                 L2_FHDR_ERRORS_PHY_DECODE |
4676                 L2_FHDR_ERRORS_ALIGNMENT |
4677                 L2_FHDR_ERRORS_TOO_SHORT |
4678                 L2_FHDR_ERRORS_GIANT_FRAME)) {
4679
4680                 goto loopback_test_done;
4681         }
4682
4683         if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
4684                 goto loopback_test_done;
4685         }
4686
4687         for (i = 14; i < pkt_size; i++) {
4688                 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
4689                         goto loopback_test_done;
4690                 }
4691         }
4692
4693         ret = 0;
4694
4695 loopback_test_done:
4696         bp->loopback = 0;
4697         return ret;
4698 }
4699
4700 #define BNX2_MAC_LOOPBACK_FAILED        1
4701 #define BNX2_PHY_LOOPBACK_FAILED        2
4702 #define BNX2_LOOPBACK_FAILED            (BNX2_MAC_LOOPBACK_FAILED |     \
4703                                          BNX2_PHY_LOOPBACK_FAILED)
4704
4705 static int
4706 bnx2_test_loopback(struct bnx2 *bp)
4707 {
4708         int rc = 0;
4709
4710         if (!netif_running(bp->dev))
4711                 return BNX2_LOOPBACK_FAILED;
4712
4713         bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
4714         spin_lock_bh(&bp->phy_lock);
4715         bnx2_init_phy(bp);
4716         spin_unlock_bh(&bp->phy_lock);
4717         if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
4718                 rc |= BNX2_MAC_LOOPBACK_FAILED;
4719         if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
4720                 rc |= BNX2_PHY_LOOPBACK_FAILED;
4721         return rc;
4722 }
4723
4724 #define NVRAM_SIZE 0x200
4725 #define CRC32_RESIDUAL 0xdebb20e3
4726
4727 static int
4728 bnx2_test_nvram(struct bnx2 *bp)
4729 {
4730         u32 buf[NVRAM_SIZE / 4];
4731         u8 *data = (u8 *) buf;
4732         int rc = 0;
4733         u32 magic, csum;
4734
4735         if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
4736                 goto test_nvram_done;
4737
4738         magic = be32_to_cpu(buf[0]);
4739         if (magic != 0x669955aa) {
4740                 rc = -ENODEV;
4741                 goto test_nvram_done;
4742         }
4743
4744         if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
4745                 goto test_nvram_done;
4746
4747         csum = ether_crc_le(0x100, data);
4748         if (csum != CRC32_RESIDUAL) {
4749                 rc = -ENODEV;
4750                 goto test_nvram_done;
4751         }
4752
4753         csum = ether_crc_le(0x100, data + 0x100);
4754         if (csum != CRC32_RESIDUAL) {
4755                 rc = -ENODEV;
4756         }
4757
4758 test_nvram_done:
4759         return rc;
4760 }
4761
4762 static int
4763 bnx2_test_link(struct bnx2 *bp)
4764 {
4765         u32 bmsr;
4766
4767         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
4768                 if (bp->link_up)
4769                         return 0;
4770                 return -ENODEV;
4771         }
4772         spin_lock_bh(&bp->phy_lock);
4773         bnx2_enable_bmsr1(bp);
4774         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
4775         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
4776         bnx2_disable_bmsr1(bp);
4777         spin_unlock_bh(&bp->phy_lock);
4778
4779         if (bmsr & BMSR_LSTATUS) {
4780                 return 0;
4781         }
4782         return -ENODEV;
4783 }
4784
4785 static int
4786 bnx2_test_intr(struct bnx2 *bp)
4787 {
4788         int i;
4789         u16 status_idx;
4790
4791         if (!netif_running(bp->dev))
4792                 return -ENODEV;
4793
4794         status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
4795
4796         /* This register is not touched during run-time. */
4797         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
4798         REG_RD(bp, BNX2_HC_COMMAND);
4799
4800         for (i = 0; i < 10; i++) {
4801                 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
4802                         status_idx) {
4803
4804                         break;
4805                 }
4806
4807                 msleep_interruptible(10);
4808         }
4809         if (i < 10)
4810                 return 0;
4811
4812         return -ENODEV;
4813 }
4814
4815 static void
4816 bnx2_5706_serdes_timer(struct bnx2 *bp)
4817 {
4818         spin_lock(&bp->phy_lock);
4819         if (bp->serdes_an_pending)
4820                 bp->serdes_an_pending--;
4821         else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4822                 u32 bmcr;
4823
4824                 bp->current_interval = bp->timer_interval;
4825
4826                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
4827
4828                 if (bmcr & BMCR_ANENABLE) {
4829                         u32 phy1, phy2;
4830
4831                         bnx2_write_phy(bp, 0x1c, 0x7c00);
4832                         bnx2_read_phy(bp, 0x1c, &phy1);
4833
4834                         bnx2_write_phy(bp, 0x17, 0x0f01);
4835                         bnx2_read_phy(bp, 0x15, &phy2);
4836                         bnx2_write_phy(bp, 0x17, 0x0f01);
4837                         bnx2_read_phy(bp, 0x15, &phy2);
4838
4839                         if ((phy1 & 0x10) &&    /* SIGNAL DETECT */
4840                                 !(phy2 & 0x20)) {       /* no CONFIG */
4841
4842                                 bmcr &= ~BMCR_ANENABLE;
4843                                 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
4844                                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
4845                                 bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
4846                         }
4847                 }
4848         }
4849         else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
4850                  (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
4851                 u32 phy2;
4852
4853                 bnx2_write_phy(bp, 0x17, 0x0f01);
4854                 bnx2_read_phy(bp, 0x15, &phy2);
4855                 if (phy2 & 0x20) {
4856                         u32 bmcr;
4857
4858                         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
4859                         bmcr |= BMCR_ANENABLE;
4860                         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
4861
4862                         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
4863                 }
4864         } else
4865                 bp->current_interval = bp->timer_interval;
4866
4867         spin_unlock(&bp->phy_lock);
4868 }
4869
4870 static void
4871 bnx2_5708_serdes_timer(struct bnx2 *bp)
4872 {
4873         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
4874                 return;
4875
4876         if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
4877                 bp->serdes_an_pending = 0;
4878                 return;
4879         }
4880
4881         spin_lock(&bp->phy_lock);
4882         if (bp->serdes_an_pending)
4883                 bp->serdes_an_pending--;
4884         else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4885                 u32 bmcr;
4886
4887                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
4888                 if (bmcr & BMCR_ANENABLE) {
4889                         bnx2_enable_forced_2g5(bp);
4890                         bp->current_interval = SERDES_FORCED_TIMEOUT;
4891                 } else {
4892                         bnx2_disable_forced_2g5(bp);
4893                         bp->serdes_an_pending = 2;
4894                         bp->current_interval = bp->timer_interval;
4895                 }
4896
4897         } else
4898                 bp->current_interval = bp->timer_interval;
4899
4900         spin_unlock(&bp->phy_lock);
4901 }
4902
4903 static void
4904 bnx2_timer(unsigned long data)
4905 {
4906         struct bnx2 *bp = (struct bnx2 *) data;
4907
4908         if (!netif_running(bp->dev))
4909                 return;
4910
4911         if (atomic_read(&bp->intr_sem) != 0)
4912                 goto bnx2_restart_timer;
4913
4914         bnx2_send_heart_beat(bp);
4915
4916         bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
4917
4918         /* workaround occasional corrupted counters */
4919         if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
4920                 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
4921                                             BNX2_HC_COMMAND_STATS_NOW);
4922
4923         if (bp->phy_flags & PHY_SERDES_FLAG) {
4924                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
4925                         bnx2_5706_serdes_timer(bp);
4926                 else
4927                         bnx2_5708_serdes_timer(bp);
4928         }
4929
4930 bnx2_restart_timer:
4931         mod_timer(&bp->timer, jiffies + bp->current_interval);
4932 }
4933
4934 static int
4935 bnx2_request_irq(struct bnx2 *bp)
4936 {
4937         struct net_device *dev = bp->dev;
4938         int rc = 0;
4939
4940         if (bp->flags & USING_MSI_FLAG) {
4941                 irq_handler_t   fn = bnx2_msi;
4942
4943                 if (bp->flags & ONE_SHOT_MSI_FLAG)
4944                         fn = bnx2_msi_1shot;
4945
4946                 rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
4947         } else
4948                 rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4949                                  IRQF_SHARED, dev->name, dev);
4950         return rc;
4951 }
4952
4953 static void
4954 bnx2_free_irq(struct bnx2 *bp)
4955 {
4956         struct net_device *dev = bp->dev;
4957
4958         if (bp->flags & USING_MSI_FLAG) {
4959                 free_irq(bp->pdev->irq, dev);
4960                 pci_disable_msi(bp->pdev);
4961                 bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
4962         } else
4963                 free_irq(bp->pdev->irq, dev);
4964 }
4965
4966 /* Called with rtnl_lock */
4967 static int
4968 bnx2_open(struct net_device *dev)
4969 {
4970         struct bnx2 *bp = netdev_priv(dev);
4971         int rc;
4972
4973         netif_carrier_off(dev);
4974
4975         bnx2_set_power_state(bp, PCI_D0);
4976         bnx2_disable_int(bp);
4977
4978         rc = bnx2_alloc_mem(bp);
4979         if (rc)
4980                 return rc;
4981
4982         napi_enable(&bp->napi);
4983
4984         if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
4985                 if (pci_enable_msi(bp->pdev) == 0) {
4986                         bp->flags |= USING_MSI_FLAG;
4987                         if (CHIP_NUM(bp) == CHIP_NUM_5709)
4988                                 bp->flags |= ONE_SHOT_MSI_FLAG;
4989                 }
4990         }
4991         rc = bnx2_request_irq(bp);
4992
4993         if (rc) {
4994                 napi_disable(&bp->napi);
4995                 bnx2_free_mem(bp);
4996                 return rc;
4997         }
4998
4999         rc = bnx2_init_nic(bp);
5000
5001         if (rc) {
5002                 napi_disable(&bp->napi);
5003                 bnx2_free_irq(bp);
5004                 bnx2_free_skbs(bp);
5005                 bnx2_free_mem(bp);
5006                 return rc;
5007         }
5008
5009         mod_timer(&bp->timer, jiffies + bp->current_interval);
5010
5011         atomic_set(&bp->intr_sem, 0);
5012
5013         bnx2_enable_int(bp);
5014
5015         if (bp->flags & USING_MSI_FLAG) {
5016                 /* Test MSI to make sure it is working
5017                  * If MSI test fails, go back to INTx mode
5018                  */
5019                 if (bnx2_test_intr(bp) != 0) {
5020                         printk(KERN_WARNING PFX "%s: No interrupt was generated"
5021                                " using MSI, switching to INTx mode. Please"
5022                                " report this failure to the PCI maintainer"
5023                                " and include system chipset information.\n",
5024                                bp->dev->name);
5025
5026                         bnx2_disable_int(bp);
5027                         bnx2_free_irq(bp);
5028
5029                         rc = bnx2_init_nic(bp);
5030
5031                         if (!rc)
5032                                 rc = bnx2_request_irq(bp);
5033
5034                         if (rc) {
5035                                 napi_disable(&bp->napi);
5036                                 bnx2_free_skbs(bp);
5037                                 bnx2_free_mem(bp);
5038                                 del_timer_sync(&bp->timer);
5039                                 return rc;
5040                         }
5041                         bnx2_enable_int(bp);
5042                 }
5043         }
5044         if (bp->flags & USING_MSI_FLAG) {
5045                 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
5046         }
5047
5048         netif_start_queue(dev);
5049
5050         return 0;
5051 }
5052
5053 static void
5054 bnx2_reset_task(struct work_struct *work)
5055 {
5056         struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
5057
5058         if (!netif_running(bp->dev))
5059                 return;
5060
5061         bp->in_reset_task = 1;
5062         bnx2_netif_stop(bp);
5063
5064         bnx2_init_nic(bp);
5065
5066         atomic_set(&bp->intr_sem, 1);
5067         bnx2_netif_start(bp);
5068         bp->in_reset_task = 0;
5069 }
5070
5071 static void
5072 bnx2_tx_timeout(struct net_device *dev)
5073 {
5074         struct bnx2 *bp = netdev_priv(dev);
5075
5076         /* This allows the netif to be shutdown gracefully before resetting */
5077         schedule_work(&bp->reset_task);
5078 }
5079
5080 #ifdef BCM_VLAN
5081 /* Called with rtnl_lock */
5082 static void
5083 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
5084 {
5085         struct bnx2 *bp = netdev_priv(dev);
5086
5087         bnx2_netif_stop(bp);
5088
5089         bp->vlgrp = vlgrp;
5090         bnx2_set_rx_mode(dev);
5091
5092         bnx2_netif_start(bp);
5093 }
5094 #endif
5095
5096 /* Called with netif_tx_lock.
5097  * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5098  * netif_wake_queue().
5099  */
5100 static int
5101 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
5102 {
5103         struct bnx2 *bp = netdev_priv(dev);
5104         dma_addr_t mapping;
5105         struct tx_bd *txbd;
5106         struct sw_bd *tx_buf;
5107         u32 len, vlan_tag_flags, last_frag, mss;
5108         u16 prod, ring_prod;
5109         int i;
5110
5111         if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
5112                 netif_stop_queue(dev);
5113                 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
5114                         dev->name);
5115
5116                 return NETDEV_TX_BUSY;
5117         }
5118         len = skb_headlen(skb);
5119         prod = bp->tx_prod;
5120         ring_prod = TX_RING_IDX(prod);
5121
5122         vlan_tag_flags = 0;
5123         if (skb->ip_summed == CHECKSUM_PARTIAL) {
5124                 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5125         }
5126
5127         if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
5128                 vlan_tag_flags |=
5129                         (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
5130         }
5131         if ((mss = skb_shinfo(skb)->gso_size)) {
5132                 u32 tcp_opt_len, ip_tcp_len;
5133                 struct iphdr *iph;
5134
5135                 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
5136
5137                 tcp_opt_len = tcp_optlen(skb);
5138
5139                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
5140                         u32 tcp_off = skb_transport_offset(skb) -
5141                                       sizeof(struct ipv6hdr) - ETH_HLEN;
5142
5143                         vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
5144                                           TX_BD_FLAGS_SW_FLAGS;
5145                         if (likely(tcp_off == 0))
5146                                 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
5147                         else {
5148                                 tcp_off >>= 3;
5149                                 vlan_tag_flags |= ((tcp_off & 0x3) <<
5150                                                    TX_BD_FLAGS_TCP6_OFF0_SHL) |
5151                                                   ((tcp_off & 0x10) <<
5152                                                    TX_BD_FLAGS_TCP6_OFF4_SHL);
5153                                 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
5154                         }
5155                 } else {
5156                         if (skb_header_cloned(skb) &&
5157                             pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
5158                                 dev_kfree_skb(skb);
5159                                 return NETDEV_TX_OK;
5160                         }
5161
5162                         ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
5163
5164                         iph = ip_hdr(skb);
5165                         iph->check = 0;
5166                         iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
5167                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
5168                                                                  iph->daddr, 0,
5169                                                                  IPPROTO_TCP,
5170                                                                  0);
5171                         if (tcp_opt_len || (iph->ihl > 5)) {
5172                                 vlan_tag_flags |= ((iph->ihl - 5) +
5173                                                    (tcp_opt_len >> 2)) << 8;
5174                         }
5175                 }
5176         } else
5177                 mss = 0;
5178
5179         mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
5180
5181         tx_buf = &bp->tx_buf_ring[ring_prod];
5182         tx_buf->skb = skb;
5183         pci_unmap_addr_set(tx_buf, mapping, mapping);
5184
5185         txbd = &bp->tx_desc_ring[ring_prod];
5186
5187         txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
5188         txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
5189         txbd->tx_bd_mss_nbytes = len | (mss << 16);
5190         txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
5191
5192         last_frag = skb_shinfo(skb)->nr_frags;
5193
5194         for (i = 0; i < last_frag; i++) {
5195                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5196
5197                 prod = NEXT_TX_BD(prod);
5198                 ring_prod = TX_RING_IDX(prod);
5199                 txbd = &bp->tx_desc_ring[ring_prod];
5200
5201                 len = frag->size;
5202                 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
5203                         len, PCI_DMA_TODEVICE);
5204                 pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
5205                                 mapping, mapping);
5206
5207                 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
5208                 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
5209                 txbd->tx_bd_mss_nbytes = len | (mss << 16);
5210                 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
5211
5212         }
5213         txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
5214
5215         prod = NEXT_TX_BD(prod);
5216         bp->tx_prod_bseq += skb->len;
5217
5218         REG_WR16(bp, bp->tx_bidx_addr, prod);
5219         REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
5220
5221         mmiowb();
5222
5223         bp->tx_prod = prod;
5224         dev->trans_start = jiffies;
5225
5226         if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
5227                 netif_stop_queue(dev);
5228                 if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
5229                         netif_wake_queue(dev);
5230         }
5231
5232         return NETDEV_TX_OK;
5233 }
5234
5235 /* Called with rtnl_lock */
5236 static int
5237 bnx2_close(struct net_device *dev)
5238 {
5239         struct bnx2 *bp = netdev_priv(dev);
5240         u32 reset_code;
5241
5242         /* Calling flush_scheduled_work() may deadlock because
5243          * linkwatch_event() may be on the workqueue and it will try to get
5244          * the rtnl_lock which we are holding.
5245          */
5246         while (bp->in_reset_task)
5247                 msleep(1);
5248
5249         bnx2_disable_int_sync(bp);
5250         napi_disable(&bp->napi);
5251         del_timer_sync(&bp->timer);
5252         if (bp->flags & NO_WOL_FLAG)
5253                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5254         else if (bp->wol)
5255                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5256         else
5257                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5258         bnx2_reset_chip(bp, reset_code);
5259         bnx2_free_irq(bp);
5260         bnx2_free_skbs(bp);
5261         bnx2_free_mem(bp);
5262         bp->link_up = 0;
5263         netif_carrier_off(bp->dev);
5264         bnx2_set_power_state(bp, PCI_D3hot);
5265         return 0;
5266 }
5267
5268 #define GET_NET_STATS64(ctr)                                    \
5269         (unsigned long) ((unsigned long) (ctr##_hi) << 32) +    \
5270         (unsigned long) (ctr##_lo)
5271
5272 #define GET_NET_STATS32(ctr)            \
5273         (ctr##_lo)
5274
5275 #if (BITS_PER_LONG == 64)
5276 #define GET_NET_STATS   GET_NET_STATS64
5277 #else
5278 #define GET_NET_STATS   GET_NET_STATS32
5279 #endif
5280
5281 static struct net_device_stats *
5282 bnx2_get_stats(struct net_device *dev)
5283 {
5284         struct bnx2 *bp = netdev_priv(dev);
5285         struct statistics_block *stats_blk = bp->stats_blk;
5286         struct net_device_stats *net_stats = &bp->net_stats;
5287
5288         if (bp->stats_blk == NULL) {
5289                 return net_stats;
5290         }
5291         net_stats->rx_packets =
5292                 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
5293                 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
5294                 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
5295
5296         net_stats->tx_packets =
5297                 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
5298                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
5299                 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
5300
5301         net_stats->rx_bytes =
5302                 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
5303
5304         net_stats->tx_bytes =
5305                 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
5306
5307         net_stats->multicast =
5308                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
5309
5310         net_stats->collisions =
5311                 (unsigned long) stats_blk->stat_EtherStatsCollisions;
5312
5313         net_stats->rx_length_errors =
5314                 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
5315                 stats_blk->stat_EtherStatsOverrsizePkts);
5316
5317         net_stats->rx_over_errors =
5318                 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
5319
5320         net_stats->rx_frame_errors =
5321                 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
5322
5323         net_stats->rx_crc_errors =
5324                 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
5325
5326         net_stats->rx_errors = net_stats->rx_length_errors +
5327                 net_stats->rx_over_errors + net_stats->rx_frame_errors +
5328                 net_stats->rx_crc_errors;
5329
5330         net_stats->tx_aborted_errors =
5331                 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
5332                 stats_blk->stat_Dot3StatsLateCollisions);
5333
5334         if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
5335             (CHIP_ID(bp) == CHIP_ID_5708_A0))
5336                 net_stats->tx_carrier_errors = 0;
5337         else {
5338                 net_stats->tx_carrier_errors =
5339                         (unsigned long)
5340                         stats_blk->stat_Dot3StatsCarrierSenseErrors;
5341         }
5342
5343         net_stats->tx_errors =
5344                 (unsigned long)
5345                 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
5346                 +
5347                 net_stats->tx_aborted_errors +
5348                 net_stats->tx_carrier_errors;
5349
5350         net_stats->rx_missed_errors =
5351                 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
5352                 stats_blk->stat_FwRxDrop);
5353
5354         return net_stats;
5355 }
5356
5357 /* All ethtool functions called with rtnl_lock */
5358
5359 static int
5360 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5361 {
5362         struct bnx2 *bp = netdev_priv(dev);
5363         int support_serdes = 0, support_copper = 0;
5364
5365         cmd->supported = SUPPORTED_Autoneg;
5366         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
5367                 support_serdes = 1;
5368                 support_copper = 1;
5369         } else if (bp->phy_port == PORT_FIBRE)
5370                 support_serdes = 1;
5371         else
5372                 support_copper = 1;
5373
5374         if (support_serdes) {
5375                 cmd->supported |= SUPPORTED_1000baseT_Full |
5376                         SUPPORTED_FIBRE;
5377                 if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
5378                         cmd->supported |= SUPPORTED_2500baseX_Full;
5379
5380         }
5381         if (support_copper) {
5382                 cmd->supported |= SUPPORTED_10baseT_Half |
5383                         SUPPORTED_10baseT_Full |
5384                         SUPPORTED_100baseT_Half |
5385                         SUPPORTED_100baseT_Full |
5386                         SUPPORTED_1000baseT_Full |
5387                         SUPPORTED_TP;
5388
5389         }
5390
5391         spin_lock_bh(&bp->phy_lock);
5392         cmd->port = bp->phy_port;
5393         cmd->advertising = bp->advertising;
5394
5395         if (bp->autoneg & AUTONEG_SPEED) {
5396                 cmd->autoneg = AUTONEG_ENABLE;
5397         }
5398         else {
5399                 cmd->autoneg = AUTONEG_DISABLE;
5400         }
5401
5402         if (netif_carrier_ok(dev)) {
5403                 cmd->speed = bp->line_speed;
5404                 cmd->duplex = bp->duplex;
5405         }
5406         else {
5407                 cmd->speed = -1;
5408                 cmd->duplex = -1;
5409         }
5410         spin_unlock_bh(&bp->phy_lock);
5411
5412         cmd->transceiver = XCVR_INTERNAL;
5413         cmd->phy_address = bp->phy_addr;
5414
5415         return 0;
5416 }
5417
5418 static int
5419 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5420 {
5421         struct bnx2 *bp = netdev_priv(dev);
5422         u8 autoneg = bp->autoneg;
5423         u8 req_duplex = bp->req_duplex;
5424         u16 req_line_speed = bp->req_line_speed;
5425         u32 advertising = bp->advertising;
5426         int err = -EINVAL;
5427
5428         spin_lock_bh(&bp->phy_lock);
5429
5430         if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
5431                 goto err_out_unlock;
5432
5433         if (cmd->port != bp->phy_port && !(bp->phy_flags & REMOTE_PHY_CAP_FLAG))
5434                 goto err_out_unlock;
5435
5436         if (cmd->autoneg == AUTONEG_ENABLE) {
5437                 autoneg |= AUTONEG_SPEED;
5438
5439                 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
5440
5441                 /* allow advertising 1 speed */
5442                 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
5443                         (cmd->advertising == ADVERTISED_10baseT_Full) ||
5444                         (cmd->advertising == ADVERTISED_100baseT_Half) ||
5445                         (cmd->advertising == ADVERTISED_100baseT_Full)) {
5446
5447                         if (cmd->port == PORT_FIBRE)
5448                                 goto err_out_unlock;
5449
5450                         advertising = cmd->advertising;
5451
5452                 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
5453                         if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ||
5454                             (cmd->port == PORT_TP))
5455                                 goto err_out_unlock;
5456                 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
5457                         advertising = cmd->advertising;
5458                 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
5459                         goto err_out_unlock;
5460                 else {
5461                         if (cmd->port == PORT_FIBRE)
5462                                 advertising = ETHTOOL_ALL_FIBRE_SPEED;
5463                         else
5464                                 advertising = ETHTOOL_ALL_COPPER_SPEED;
5465                 }
5466                 advertising |= ADVERTISED_Autoneg;
5467         }
5468         else {
5469                 if (cmd->port == PORT_FIBRE) {
5470                         if ((cmd->speed != SPEED_1000 &&
5471                              cmd->speed != SPEED_2500) ||
5472                             (cmd->duplex != DUPLEX_FULL))
5473                                 goto err_out_unlock;
5474
5475                         if (cmd->speed == SPEED_2500 &&
5476                             !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
5477                                 goto err_out_unlock;
5478                 }
5479                 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
5480                         goto err_out_unlock;
5481
5482                 autoneg &= ~AUTONEG_SPEED;
5483                 req_line_speed = cmd->speed;
5484                 req_duplex = cmd->duplex;
5485                 advertising = 0;
5486         }
5487
5488         bp->autoneg = autoneg;
5489         bp->advertising = advertising;
5490         bp->req_line_speed = req_line_speed;
5491         bp->req_duplex = req_duplex;
5492
5493         err = bnx2_setup_phy(bp, cmd->port);
5494
5495 err_out_unlock:
5496         spin_unlock_bh(&bp->phy_lock);
5497
5498         return err;
5499 }
5500
5501 static void
5502 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
5503 {
5504         struct bnx2 *bp = netdev_priv(dev);
5505
5506         strcpy(info->driver, DRV_MODULE_NAME);
5507         strcpy(info->version, DRV_MODULE_VERSION);
5508         strcpy(info->bus_info, pci_name(bp->pdev));
5509         strcpy(info->fw_version, bp->fw_version);
5510 }
5511
5512 #define BNX2_REGDUMP_LEN                (32 * 1024)
5513
5514 static int
5515 bnx2_get_regs_len(struct net_device *dev)
5516 {
5517         return BNX2_REGDUMP_LEN;
5518 }
5519
5520 static void
5521 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
5522 {
5523         u32 *p = _p, i, offset;
5524         u8 *orig_p = _p;
5525         struct bnx2 *bp = netdev_priv(dev);
5526         u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
5527                                  0x0800, 0x0880, 0x0c00, 0x0c10,
5528                                  0x0c30, 0x0d08, 0x1000, 0x101c,
5529                                  0x1040, 0x1048, 0x1080, 0x10a4,
5530                                  0x1400, 0x1490, 0x1498, 0x14f0,
5531                                  0x1500, 0x155c, 0x1580, 0x15dc,
5532                                  0x1600, 0x1658, 0x1680, 0x16d8,
5533                                  0x1800, 0x1820, 0x1840, 0x1854,
5534                                  0x1880, 0x1894, 0x1900, 0x1984,
5535                                  0x1c00, 0x1c0c, 0x1c40, 0x1c54,
5536                                  0x1c80, 0x1c94, 0x1d00, 0x1d84,
5537                                  0x2000, 0x2030, 0x23c0, 0x2400,
5538                                  0x2800, 0x2820, 0x2830, 0x2850,
5539                                  0x2b40, 0x2c10, 0x2fc0, 0x3058,
5540                                  0x3c00, 0x3c94, 0x4000, 0x4010,
5541                                  0x4080, 0x4090, 0x43c0, 0x4458,
5542                                  0x4c00, 0x4c18, 0x4c40, 0x4c54,
5543                                  0x4fc0, 0x5010, 0x53c0, 0x5444,
5544                                  0x5c00, 0x5c18, 0x5c80, 0x5c90,
5545                                  0x5fc0, 0x6000, 0x6400, 0x6428,
5546                                  0x6800, 0x6848, 0x684c, 0x6860,
5547                                  0x6888, 0x6910, 0x8000 };
5548
5549         regs->version = 0;
5550
5551         memset(p, 0, BNX2_REGDUMP_LEN);
5552
5553         if (!netif_running(bp->dev))
5554                 return;
5555
5556         i = 0;
5557         offset = reg_boundaries[0];
5558         p += offset;
5559         while (offset < BNX2_REGDUMP_LEN) {
5560                 *p++ = REG_RD(bp, offset);
5561                 offset += 4;
5562                 if (offset == reg_boundaries[i + 1]) {
5563                         offset = reg_boundaries[i + 2];
5564                         p = (u32 *) (orig_p + offset);
5565                         i += 2;
5566                 }
5567         }
5568 }
5569
5570 static void
5571 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
5572 {
5573         struct bnx2 *bp = netdev_priv(dev);
5574
5575         if (bp->flags & NO_WOL_FLAG) {
5576                 wol->supported = 0;
5577                 wol->wolopts = 0;
5578         }
5579         else {
5580                 wol->supported = WAKE_MAGIC;
5581                 if (bp->wol)
5582                         wol->wolopts = WAKE_MAGIC;
5583                 else
5584                         wol->wolopts = 0;
5585         }
5586         memset(&wol->sopass, 0, sizeof(wol->sopass));
5587 }
5588
5589 static int
5590 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
5591 {
5592         struct bnx2 *bp = netdev_priv(dev);
5593
5594         if (wol->wolopts & ~WAKE_MAGIC)
5595                 return -EINVAL;
5596
5597         if (wol->wolopts & WAKE_MAGIC) {
5598                 if (bp->flags & NO_WOL_FLAG)
5599                         return -EINVAL;
5600
5601                 bp->wol = 1;
5602         }
5603         else {
5604                 bp->wol = 0;
5605         }
5606         return 0;
5607 }
5608
5609 static int
5610 bnx2_nway_reset(struct net_device *dev)
5611 {
5612         struct bnx2 *bp = netdev_priv(dev);
5613         u32 bmcr;
5614
5615         if (!(bp->autoneg & AUTONEG_SPEED)) {
5616                 return -EINVAL;
5617         }
5618
5619         spin_lock_bh(&bp->phy_lock);
5620
5621         if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
5622                 int rc;
5623
5624                 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
5625                 spin_unlock_bh(&bp->phy_lock);
5626                 return rc;
5627         }
5628
5629         /* Force a link down visible on the other side */
5630         if (bp->phy_flags & PHY_SERDES_FLAG) {
5631                 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
5632                 spin_unlock_bh(&bp->phy_lock);
5633
5634                 msleep(20);
5635
5636                 spin_lock_bh(&bp->phy_lock);
5637
5638                 bp->current_interval = SERDES_AN_TIMEOUT;
5639                 bp->serdes_an_pending = 1;
5640                 mod_timer(&bp->timer, jiffies + bp->current_interval);
5641         }
5642
5643         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5644         bmcr &= ~BMCR_LOOPBACK;
5645         bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
5646
5647         spin_unlock_bh(&bp->phy_lock);
5648
5649         return 0;
5650 }
5651
5652 static int
5653 bnx2_get_eeprom_len(struct net_device *dev)
5654 {
5655         struct bnx2 *bp = netdev_priv(dev);
5656
5657         if (bp->flash_info == NULL)
5658                 return 0;
5659
5660         return (int) bp->flash_size;
5661 }
5662
5663 static int
5664 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5665                 u8 *eebuf)
5666 {
5667         struct bnx2 *bp = netdev_priv(dev);
5668         int rc;
5669
5670         /* parameters already validated in ethtool_get_eeprom */
5671
5672         rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
5673
5674         return rc;
5675 }
5676
5677 static int
5678 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5679                 u8 *eebuf)
5680 {
5681         struct bnx2 *bp = netdev_priv(dev);
5682         int rc;
5683
5684         /* parameters already validated in ethtool_set_eeprom */
5685
5686         rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
5687
5688         return rc;
5689 }
5690
5691 static int
5692 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5693 {
5694         struct bnx2 *bp = netdev_priv(dev);
5695
5696         memset(coal, 0, sizeof(struct ethtool_coalesce));
5697
5698         coal->rx_coalesce_usecs = bp->rx_ticks;
5699         coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
5700         coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
5701         coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
5702
5703         coal->tx_coalesce_usecs = bp->tx_ticks;
5704         coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
5705         coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
5706         coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
5707
5708         coal->stats_block_coalesce_usecs = bp->stats_ticks;
5709
5710         return 0;
5711 }
5712
5713 static int
5714 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5715 {
5716         struct bnx2 *bp = netdev_priv(dev);
5717
5718         bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
5719         if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
5720
5721         bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
5722         if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
5723
5724         bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
5725         if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
5726
5727         bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
5728         if (bp->rx_quick_cons_trip_int > 0xff)
5729                 bp->rx_quick_cons_trip_int = 0xff;
5730
5731         bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
5732         if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
5733
5734         bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
5735         if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
5736
5737         bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
5738         if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
5739
5740         bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
5741         if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
5742                 0xff;
5743
5744         bp->stats_ticks = coal->stats_block_coalesce_usecs;
5745         if (CHIP_NUM(bp) == CHIP_NUM_5708) {
5746                 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
5747                         bp->stats_ticks = USEC_PER_SEC;
5748         }
5749         if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
5750                 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
5751         bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
5752
5753         if (netif_running(bp->dev)) {
5754                 bnx2_netif_stop(bp);
5755                 bnx2_init_nic(bp);
5756                 bnx2_netif_start(bp);
5757         }
5758
5759         return 0;
5760 }
5761
5762 static void
5763 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5764 {
5765         struct bnx2 *bp = netdev_priv(dev);
5766
5767         ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
5768         ering->rx_mini_max_pending = 0;
5769         ering->rx_jumbo_max_pending = 0;
5770
5771         ering->rx_pending = bp->rx_ring_size;
5772         ering->rx_mini_pending = 0;
5773         ering->rx_jumbo_pending = 0;
5774
5775         ering->tx_max_pending = MAX_TX_DESC_CNT;
5776         ering->tx_pending = bp->tx_ring_size;
5777 }
5778
5779 static int
5780 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5781 {
5782         struct bnx2 *bp = netdev_priv(dev);
5783
5784         if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
5785                 (ering->tx_pending > MAX_TX_DESC_CNT) ||
5786                 (ering->tx_pending <= MAX_SKB_FRAGS)) {
5787
5788                 return -EINVAL;
5789         }
5790         if (netif_running(bp->dev)) {
5791                 bnx2_netif_stop(bp);
5792                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5793                 bnx2_free_skbs(bp);
5794                 bnx2_free_mem(bp);
5795         }
5796
5797         bnx2_set_rx_ring_size(bp, ering->rx_pending);
5798         bp->tx_ring_size = ering->tx_pending;
5799
5800         if (netif_running(bp->dev)) {
5801                 int rc;
5802
5803                 rc = bnx2_alloc_mem(bp);
5804                 if (rc)
5805                         return rc;
5806                 bnx2_init_nic(bp);
5807                 bnx2_netif_start(bp);
5808         }
5809
5810         return 0;
5811 }
5812
5813 static void
5814 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5815 {
5816         struct bnx2 *bp = netdev_priv(dev);
5817
5818         epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
5819         epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
5820         epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
5821 }
5822
5823 static int
5824 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5825 {
5826         struct bnx2 *bp = netdev_priv(dev);
5827
5828         bp->req_flow_ctrl = 0;
5829         if (epause->rx_pause)
5830                 bp->req_flow_ctrl |= FLOW_CTRL_RX;
5831         if (epause->tx_pause)
5832                 bp->req_flow_ctrl |= FLOW_CTRL_TX;
5833
5834         if (epause->autoneg) {
5835                 bp->autoneg |= AUTONEG_FLOW_CTRL;
5836         }
5837         else {
5838                 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
5839         }
5840
5841         spin_lock_bh(&bp->phy_lock);
5842
5843         bnx2_setup_phy(bp, bp->phy_port);
5844
5845         spin_unlock_bh(&bp->phy_lock);
5846
5847         return 0;
5848 }
5849
5850 static u32
5851 bnx2_get_rx_csum(struct net_device *dev)
5852 {
5853         struct bnx2 *bp = netdev_priv(dev);
5854
5855         return bp->rx_csum;
5856 }
5857
5858 static int
5859 bnx2_set_rx_csum(struct net_device *dev, u32 data)
5860 {
5861         struct bnx2 *bp = netdev_priv(dev);
5862
5863         bp->rx_csum = data;
5864         return 0;
5865 }
5866
5867 static int
5868 bnx2_set_tso(struct net_device *dev, u32 data)
5869 {
5870         struct bnx2 *bp = netdev_priv(dev);
5871
5872         if (data) {
5873                 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
5874                 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5875                         dev->features |= NETIF_F_TSO6;
5876         } else
5877                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
5878                                    NETIF_F_TSO_ECN);
5879         return 0;
5880 }
5881
5882 #define BNX2_NUM_STATS 46
5883
5884 static struct {
5885         char string[ETH_GSTRING_LEN];
5886 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
5887         { "rx_bytes" },
5888         { "rx_error_bytes" },
5889         { "tx_bytes" },
5890         { "tx_error_bytes" },
5891         { "rx_ucast_packets" },
5892         { "rx_mcast_packets" },
5893         { "rx_bcast_packets" },
5894         { "tx_ucast_packets" },
5895         { "tx_mcast_packets" },
5896         { "tx_bcast_packets" },
5897         { "tx_mac_errors" },
5898         { "tx_carrier_errors" },
5899         { "rx_crc_errors" },
5900         { "rx_align_errors" },
5901         { "tx_single_collisions" },
5902         { "tx_multi_collisions" },
5903         { "tx_deferred" },
5904         { "tx_excess_collisions" },
5905         { "tx_late_collisions" },
5906         { "tx_total_collisions" },
5907         { "rx_fragments" },
5908         { "rx_jabbers" },
5909         { "rx_undersize_packets" },
5910         { "rx_oversize_packets" },
5911         { "rx_64_byte_packets" },
5912         { "rx_65_to_127_byte_packets" },
5913         { "rx_128_to_255_byte_packets" },
5914         { "rx_256_to_511_byte_packets" },
5915         { "rx_512_to_1023_byte_packets" },
5916         { "rx_1024_to_1522_byte_packets" },
5917         { "rx_1523_to_9022_byte_packets" },
5918         { "tx_64_byte_packets" },
5919         { "tx_65_to_127_byte_packets" },
5920         { "tx_128_to_255_byte_packets" },
5921         { "tx_256_to_511_byte_packets" },
5922         { "tx_512_to_1023_byte_packets" },
5923         { "tx_1024_to_1522_byte_packets" },
5924         { "tx_1523_to_9022_byte_packets" },
5925         { "rx_xon_frames" },
5926         { "rx_xoff_frames" },
5927         { "tx_xon_frames" },
5928         { "tx_xoff_frames" },
5929         { "rx_mac_ctrl_frames" },
5930         { "rx_filtered_packets" },
5931         { "rx_discards" },
5932         { "rx_fw_discards" },
5933 };
5934
5935 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5936
5937 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
5938     STATS_OFFSET32(stat_IfHCInOctets_hi),
5939     STATS_OFFSET32(stat_IfHCInBadOctets_hi),
5940     STATS_OFFSET32(stat_IfHCOutOctets_hi),
5941     STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
5942     STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
5943     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
5944     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
5945     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
5946     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
5947     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
5948     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
5949     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
5950     STATS_OFFSET32(stat_Dot3StatsFCSErrors),
5951     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
5952     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
5953     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
5954     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
5955     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
5956     STATS_OFFSET32(stat_Dot3StatsLateCollisions),
5957     STATS_OFFSET32(stat_EtherStatsCollisions),
5958     STATS_OFFSET32(stat_EtherStatsFragments),
5959     STATS_OFFSET32(stat_EtherStatsJabbers),
5960     STATS_OFFSET32(stat_EtherStatsUndersizePkts),
5961     STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
5962     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
5963     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
5964     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
5965     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
5966     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
5967     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
5968     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
5969     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
5970     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
5971     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
5972     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
5973     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
5974     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
5975     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
5976     STATS_OFFSET32(stat_XonPauseFramesReceived),
5977     STATS_OFFSET32(stat_XoffPauseFramesReceived),
5978     STATS_OFFSET32(stat_OutXonSent),
5979     STATS_OFFSET32(stat_OutXoffSent),
5980     STATS_OFFSET32(stat_MacControlFramesReceived),
5981     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
5982     STATS_OFFSET32(stat_IfInMBUFDiscards),
5983     STATS_OFFSET32(stat_FwRxDrop),
5984 };
5985
5986 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5987  * skipped because of errata.
5988  */
5989 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
5990         8,0,8,8,8,8,8,8,8,8,
5991         4,0,4,4,4,4,4,4,4,4,
5992         4,4,4,4,4,4,4,4,4,4,
5993         4,4,4,4,4,4,4,4,4,4,
5994         4,4,4,4,4,4,
5995 };
5996
5997 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
5998         8,0,8,8,8,8,8,8,8,8,
5999         4,4,4,4,4,4,4,4,4,4,
6000         4,4,4,4,4,4,4,4,4,4,
6001         4,4,4,4,4,4,4,4,4,4,
6002         4,4,4,4,4,4,
6003 };
6004
6005 #define BNX2_NUM_TESTS 6
6006
6007 static struct {
6008         char string[ETH_GSTRING_LEN];
6009 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
6010         { "register_test (offline)" },
6011         { "memory_test (offline)" },
6012         { "loopback_test (offline)" },
6013         { "nvram_test (online)" },
6014         { "interrupt_test (online)" },
6015         { "link_test (online)" },
6016 };
6017
6018 static int
6019 bnx2_get_sset_count(struct net_device *dev, int sset)
6020 {
6021         switch (sset) {
6022         case ETH_SS_TEST:
6023                 return BNX2_NUM_TESTS;
6024         case ETH_SS_STATS:
6025                 return BNX2_NUM_STATS;
6026         default:
6027                 return -EOPNOTSUPP;
6028         }
6029 }
6030
6031 static void
6032 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
6033 {
6034         struct bnx2 *bp = netdev_priv(dev);
6035
6036         memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
6037         if (etest->flags & ETH_TEST_FL_OFFLINE) {
6038                 int i;
6039
6040                 bnx2_netif_stop(bp);
6041                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
6042                 bnx2_free_skbs(bp);
6043
6044                 if (bnx2_test_registers(bp) != 0) {
6045                         buf[0] = 1;
6046                         etest->flags |= ETH_TEST_FL_FAILED;
6047                 }
6048                 if (bnx2_test_memory(bp) != 0) {
6049                         buf[1] = 1;
6050                         etest->flags |= ETH_TEST_FL_FAILED;
6051                 }
6052                 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
6053                         etest->flags |= ETH_TEST_FL_FAILED;
6054
6055                 if (!netif_running(bp->dev)) {
6056                         bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6057                 }
6058                 else {
6059                         bnx2_init_nic(bp);
6060                         bnx2_netif_start(bp);
6061                 }
6062
6063                 /* wait for link up */
6064                 for (i = 0; i < 7; i++) {
6065                         if (bp->link_up)
6066                                 break;
6067                         msleep_interruptible(1000);
6068                 }
6069         }
6070
6071         if (bnx2_test_nvram(bp) != 0) {
6072                 buf[3] = 1;
6073                 etest->flags |= ETH_TEST_FL_FAILED;
6074         }
6075         if (bnx2_test_intr(bp) != 0) {
6076                 buf[4] = 1;
6077                 etest->flags |= ETH_TEST_FL_FAILED;
6078         }
6079
6080         if (bnx2_test_link(bp) != 0) {
6081                 buf[5] = 1;
6082                 etest->flags |= ETH_TEST_FL_FAILED;
6083
6084         }
6085 }
6086
6087 static void
6088 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6089 {
6090         switch (stringset) {
6091         case ETH_SS_STATS:
6092                 memcpy(buf, bnx2_stats_str_arr,
6093                         sizeof(bnx2_stats_str_arr));
6094                 break;
6095         case ETH_SS_TEST:
6096                 memcpy(buf, bnx2_tests_str_arr,
6097                         sizeof(bnx2_tests_str_arr));
6098                 break;
6099         }
6100 }
6101
6102 static void
6103 bnx2_get_ethtool_stats(struct net_device *dev,
6104                 struct ethtool_stats *stats, u64 *buf)
6105 {
6106         struct bnx2 *bp = netdev_priv(dev);
6107         int i;
6108         u32 *hw_stats = (u32 *) bp->stats_blk;
6109         u8 *stats_len_arr = NULL;
6110
6111         if (hw_stats == NULL) {
6112                 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
6113                 return;
6114         }
6115
6116         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
6117             (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
6118             (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
6119             (CHIP_ID(bp) == CHIP_ID_5708_A0))
6120                 stats_len_arr = bnx2_5706_stats_len_arr;
6121         else
6122                 stats_len_arr = bnx2_5708_stats_len_arr;
6123
6124         for (i = 0; i < BNX2_NUM_STATS; i++) {
6125                 if (stats_len_arr[i] == 0) {
6126                         /* skip this counter */
6127                         buf[i] = 0;
6128                         continue;
6129                 }
6130                 if (stats_len_arr[i] == 4) {
6131                         /* 4-byte counter */
6132                         buf[i] = (u64)
6133                                 *(hw_stats + bnx2_stats_offset_arr[i]);
6134                         continue;
6135                 }
6136                 /* 8-byte counter */
6137                 buf[i] = (((u64) *(hw_stats +
6138                                         bnx2_stats_offset_arr[i])) << 32) +
6139                                 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
6140         }
6141 }
6142
6143 static int
6144 bnx2_phys_id(struct net_device *dev, u32 data)
6145 {
6146         struct bnx2 *bp = netdev_priv(dev);
6147         int i;
6148         u32 save;
6149
6150         if (data == 0)
6151                 data = 2;
6152
6153         save = REG_RD(bp, BNX2_MISC_CFG);
6154         REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
6155
6156         for (i = 0; i < (data * 2); i++) {
6157                 if ((i % 2) == 0) {
6158                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
6159                 }
6160                 else {
6161                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
6162                                 BNX2_EMAC_LED_1000MB_OVERRIDE |
6163                                 BNX2_EMAC_LED_100MB_OVERRIDE |
6164                                 BNX2_EMAC_LED_10MB_OVERRIDE |
6165                                 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
6166                                 BNX2_EMAC_LED_TRAFFIC);
6167                 }
6168                 msleep_interruptible(500);
6169                 if (signal_pending(current))
6170                         break;
6171         }
6172         REG_WR(bp, BNX2_EMAC_LED, 0);
6173         REG_WR(bp, BNX2_MISC_CFG, save);
6174         return 0;
6175 }
6176
6177 static int
6178 bnx2_set_tx_csum(struct net_device *dev, u32 data)
6179 {
6180         struct bnx2 *bp = netdev_priv(dev);
6181
6182         if (CHIP_NUM(bp) == CHIP_NUM_5709)
6183                 return (ethtool_op_set_tx_ipv6_csum(dev, data));
6184         else
6185                 return (ethtool_op_set_tx_csum(dev, data));
6186 }
6187
6188 static const struct ethtool_ops bnx2_ethtool_ops = {
6189         .get_settings           = bnx2_get_settings,
6190         .set_settings           = bnx2_set_settings,
6191         .get_drvinfo            = bnx2_get_drvinfo,
6192         .get_regs_len           = bnx2_get_regs_len,
6193         .get_regs               = bnx2_get_regs,
6194         .get_wol                = bnx2_get_wol,
6195         .set_wol                = bnx2_set_wol,
6196         .nway_reset             = bnx2_nway_reset,
6197         .get_link               = ethtool_op_get_link,
6198         .get_eeprom_len         = bnx2_get_eeprom_len,
6199         .get_eeprom             = bnx2_get_eeprom,
6200         .set_eeprom             = bnx2_set_eeprom,
6201         .get_coalesce           = bnx2_get_coalesce,
6202         .set_coalesce           = bnx2_set_coalesce,
6203         .get_ringparam          = bnx2_get_ringparam,
6204         .set_ringparam          = bnx2_set_ringparam,
6205         .get_pauseparam         = bnx2_get_pauseparam,
6206         .set_pauseparam         = bnx2_set_pauseparam,
6207         .get_rx_csum            = bnx2_get_rx_csum,
6208         .set_rx_csum            = bnx2_set_rx_csum,
6209         .set_tx_csum            = bnx2_set_tx_csum,
6210         .set_sg                 = ethtool_op_set_sg,
6211         .set_tso                = bnx2_set_tso,
6212         .self_test              = bnx2_self_test,
6213         .get_strings            = bnx2_get_strings,
6214         .phys_id                = bnx2_phys_id,
6215         .get_ethtool_stats      = bnx2_get_ethtool_stats,
6216         .get_sset_count         = bnx2_get_sset_count,
6217 };
6218
6219 /* Called with rtnl_lock */
6220 static int
6221 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6222 {
6223         struct mii_ioctl_data *data = if_mii(ifr);
6224         struct bnx2 *bp = netdev_priv(dev);
6225         int err;
6226
6227         switch(cmd) {
6228         case SIOCGMIIPHY:
6229                 data->phy_id = bp->phy_addr;
6230
6231                 /* fallthru */
6232         case SIOCGMIIREG: {
6233                 u32 mii_regval;
6234
6235                 if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
6236                         return -EOPNOTSUPP;
6237
6238                 if (!netif_running(dev))
6239                         return -EAGAIN;
6240
6241                 spin_lock_bh(&bp->phy_lock);
6242                 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
6243                 spin_unlock_bh(&bp->phy_lock);
6244
6245                 data->val_out = mii_regval;
6246
6247                 return err;
6248         }
6249
6250         case SIOCSMIIREG:
6251                 if (!capable(CAP_NET_ADMIN))
6252                         return -EPERM;
6253
6254                 if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
6255                         return -EOPNOTSUPP;
6256
6257                 if (!netif_running(dev))
6258                         return -EAGAIN;
6259
6260                 spin_lock_bh(&bp->phy_lock);
6261                 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
6262                 spin_unlock_bh(&bp->phy_lock);
6263
6264                 return err;
6265
6266         default:
6267                 /* do nothing */
6268                 break;
6269         }
6270         return -EOPNOTSUPP;
6271 }
6272
6273 /* Called with rtnl_lock */
6274 static int
6275 bnx2_change_mac_addr(struct net_device *dev, void *p)
6276 {
6277         struct sockaddr *addr = p;
6278         struct bnx2 *bp = netdev_priv(dev);
6279
6280         if (!is_valid_ether_addr(addr->sa_data))
6281                 return -EINVAL;
6282
6283         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6284         if (netif_running(dev))
6285                 bnx2_set_mac_addr(bp);
6286
6287         return 0;
6288 }
6289
6290 /* Called with rtnl_lock */
6291 static int
6292 bnx2_change_mtu(struct net_device *dev, int new_mtu)
6293 {
6294         struct bnx2 *bp = netdev_priv(dev);
6295
6296         if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
6297                 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
6298                 return -EINVAL;
6299
6300         dev->mtu = new_mtu;
6301         if (netif_running(dev)) {
6302                 bnx2_netif_stop(bp);
6303
6304                 bnx2_init_nic(bp);
6305
6306                 bnx2_netif_start(bp);
6307         }
6308         return 0;
6309 }
6310
6311 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6312 static void
6313 poll_bnx2(struct net_device *dev)
6314 {
6315         struct bnx2 *bp = netdev_priv(dev);
6316
6317         disable_irq(bp->pdev->irq);
6318         bnx2_interrupt(bp->pdev->irq, dev);
6319         enable_irq(bp->pdev->irq);
6320 }
6321 #endif
6322
6323 static void __devinit
6324 bnx2_get_5709_media(struct bnx2 *bp)
6325 {
6326         u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
6327         u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
6328         u32 strap;
6329
6330         if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
6331                 return;
6332         else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
6333                 bp->phy_flags |= PHY_SERDES_FLAG;
6334                 return;
6335         }
6336
6337         if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
6338                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
6339         else
6340                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
6341
6342         if (PCI_FUNC(bp->pdev->devfn) == 0) {
6343                 switch (strap) {
6344                 case 0x4:
6345                 case 0x5:
6346                 case 0x6:
6347                         bp->phy_flags |= PHY_SERDES_FLAG;
6348                         return;
6349                 }
6350         } else {
6351                 switch (strap) {
6352                 case 0x1:
6353                 case 0x2:
6354                 case 0x4:
6355                         bp->phy_flags |= PHY_SERDES_FLAG;
6356                         return;
6357                 }
6358         }
6359 }
6360
6361 static void __devinit
6362 bnx2_get_pci_speed(struct bnx2 *bp)
6363 {
6364         u32 reg;
6365
6366         reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
6367         if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
6368                 u32 clkreg;
6369
6370                 bp->flags |= PCIX_FLAG;
6371
6372                 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
6373
6374                 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
6375                 switch (clkreg) {
6376                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
6377                         bp->bus_speed_mhz = 133;
6378                         break;
6379
6380                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
6381                         bp->bus_speed_mhz = 100;
6382                         break;
6383
6384                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
6385                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
6386                         bp->bus_speed_mhz = 66;
6387                         break;
6388
6389                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
6390                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
6391                         bp->bus_speed_mhz = 50;
6392                         break;
6393
6394                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
6395                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
6396                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
6397                         bp->bus_speed_mhz = 33;
6398                         break;
6399                 }
6400         }
6401         else {
6402                 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
6403                         bp->bus_speed_mhz = 66;
6404                 else
6405                         bp->bus_speed_mhz = 33;
6406         }
6407
6408         if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
6409                 bp->flags |= PCI_32BIT_FLAG;
6410
6411 }
6412
6413 static int __devinit
6414 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
6415 {
6416         struct bnx2 *bp;
6417         unsigned long mem_len;
6418         int rc, i, j;
6419         u32 reg;
6420         u64 dma_mask, persist_dma_mask;
6421
6422         SET_NETDEV_DEV(dev, &pdev->dev);
6423         bp = netdev_priv(dev);
6424
6425         bp->flags = 0;
6426         bp->phy_flags = 0;
6427
6428         /* enable device (incl. PCI PM wakeup), and bus-mastering */
6429         rc = pci_enable_device(pdev);
6430         if (rc) {
6431                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
6432                 goto err_out;
6433         }
6434
6435         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6436                 dev_err(&pdev->dev,
6437                         "Cannot find PCI device base address, aborting.\n");
6438                 rc = -ENODEV;
6439                 goto err_out_disable;
6440         }
6441
6442         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6443         if (rc) {
6444                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
6445                 goto err_out_disable;
6446         }
6447
6448         pci_set_master(pdev);
6449
6450         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
6451         if (bp->pm_cap == 0) {
6452                 dev_err(&pdev->dev,
6453                         "Cannot find power management capability, aborting.\n");
6454                 rc = -EIO;
6455                 goto err_out_release;
6456         }
6457
6458         bp->dev = dev;
6459         bp->pdev = pdev;
6460
6461         spin_lock_init(&bp->phy_lock);
6462         spin_lock_init(&bp->indirect_lock);
6463         INIT_WORK(&bp->reset_task, bnx2_reset_task);
6464
6465         dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
6466         mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
6467         dev->mem_end = dev->mem_start + mem_len;
6468         dev->irq = pdev->irq;
6469
6470         bp->regview = ioremap_nocache(dev->base_addr, mem_len);
6471
6472         if (!bp->regview) {
6473                 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
6474                 rc = -ENOMEM;
6475                 goto err_out_release;
6476         }
6477
6478         /* Configure byte swap and enable write to the reg_window registers.
6479          * Rely on CPU to do target byte swapping on big endian systems
6480          * The chip's target access swapping will not swap all accesses
6481          */
6482         pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
6483                                BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
6484                                BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
6485
6486         bnx2_set_power_state(bp, PCI_D0);
6487
6488         bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
6489
6490         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6491                 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
6492                         dev_err(&pdev->dev,
6493                                 "Cannot find PCIE capability, aborting.\n");
6494                         rc = -EIO;
6495                         goto err_out_unmap;
6496                 }
6497                 bp->flags |= PCIE_FLAG;
6498         } else {
6499                 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
6500                 if (bp->pcix_cap == 0) {
6501                         dev_err(&pdev->dev,
6502                                 "Cannot find PCIX capability, aborting.\n");
6503                         rc = -EIO;
6504                         goto err_out_unmap;
6505                 }
6506         }
6507
6508         if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
6509                 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
6510                         bp->flags |= MSI_CAP_FLAG;
6511         }
6512
6513         /* 5708 cannot support DMA addresses > 40-bit.  */
6514         if (CHIP_NUM(bp) == CHIP_NUM_5708)
6515                 persist_dma_mask = dma_mask = DMA_40BIT_MASK;
6516         else
6517                 persist_dma_mask = dma_mask = DMA_64BIT_MASK;
6518
6519         /* Configure DMA attributes. */
6520         if (pci_set_dma_mask(pdev, dma_mask) == 0) {
6521                 dev->features |= NETIF_F_HIGHDMA;
6522                 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
6523                 if (rc) {
6524                         dev_err(&pdev->dev,
6525                                 "pci_set_consistent_dma_mask failed, aborting.\n");
6526                         goto err_out_unmap;
6527                 }
6528         } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
6529                 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
6530                 goto err_out_unmap;
6531         }
6532
6533         if (!(bp->flags & PCIE_FLAG))
6534                 bnx2_get_pci_speed(bp);
6535
6536         /* 5706A0 may falsely detect SERR and PERR. */
6537         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
6538                 reg = REG_RD(bp, PCI_COMMAND);
6539                 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
6540                 REG_WR(bp, PCI_COMMAND, reg);
6541         }
6542         else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
6543                 !(bp->flags & PCIX_FLAG)) {
6544
6545                 dev_err(&pdev->dev,
6546                         "5706 A1 can only be used in a PCIX bus, aborting.\n");
6547                 goto err_out_unmap;
6548         }
6549
6550         bnx2_init_nvram(bp);
6551
6552         reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
6553
6554         if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
6555             BNX2_SHM_HDR_SIGNATURE_SIG) {
6556                 u32 off = PCI_FUNC(pdev->devfn) << 2;
6557
6558                 bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
6559         } else
6560                 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
6561
6562         /* Get the permanent MAC address.  First we need to make sure the
6563          * firmware is actually running.
6564          */
6565         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
6566
6567         if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
6568             BNX2_DEV_INFO_SIGNATURE_MAGIC) {
6569                 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
6570                 rc = -ENODEV;
6571                 goto err_out_unmap;
6572         }
6573
6574         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
6575         for (i = 0, j = 0; i < 3; i++) {
6576                 u8 num, k, skip0;
6577
6578                 num = (u8) (reg >> (24 - (i * 8)));
6579                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
6580                         if (num >= k || !skip0 || k == 1) {
6581                                 bp->fw_version[j++] = (num / k) + '0';
6582                                 skip0 = 0;
6583                         }
6584                 }
6585                 if (i != 2)
6586                         bp->fw_version[j++] = '.';
6587         }
6588         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE);
6589         if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
6590                 bp->wol = 1;
6591
6592         if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
6593                 bp->flags |= ASF_ENABLE_FLAG;
6594
6595                 for (i = 0; i < 30; i++) {
6596                         reg = REG_RD_IND(bp, bp->shmem_base +
6597                                              BNX2_BC_STATE_CONDITION);
6598                         if (reg & BNX2_CONDITION_MFW_RUN_MASK)
6599                                 break;
6600                         msleep(10);
6601                 }
6602         }
6603         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_BC_STATE_CONDITION);
6604         reg &= BNX2_CONDITION_MFW_RUN_MASK;
6605         if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
6606             reg != BNX2_CONDITION_MFW_RUN_NONE) {
6607                 int i;
6608                 u32 addr = REG_RD_IND(bp, bp->shmem_base + BNX2_MFW_VER_PTR);
6609
6610                 bp->fw_version[j++] = ' ';
6611                 for (i = 0; i < 3; i++) {
6612                         reg = REG_RD_IND(bp, addr + i * 4);
6613                         reg = swab32(reg);
6614                         memcpy(&bp->fw_version[j], &reg, 4);
6615                         j += 4;
6616                 }
6617         }
6618
6619         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
6620         bp->mac_addr[0] = (u8) (reg >> 8);
6621         bp->mac_addr[1] = (u8) reg;
6622
6623         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
6624         bp->mac_addr[2] = (u8) (reg >> 24);
6625         bp->mac_addr[3] = (u8) (reg >> 16);
6626         bp->mac_addr[4] = (u8) (reg >> 8);
6627         bp->mac_addr[5] = (u8) reg;
6628
6629         bp->tx_ring_size = MAX_TX_DESC_CNT;
6630         bnx2_set_rx_ring_size(bp, 255);
6631
6632         bp->rx_csum = 1;
6633
6634         bp->rx_offset = sizeof(struct l2_fhdr) + 2;
6635
6636         bp->tx_quick_cons_trip_int = 20;
6637         bp->tx_quick_cons_trip = 20;
6638         bp->tx_ticks_int = 80;
6639         bp->tx_ticks = 80;
6640
6641         bp->rx_quick_cons_trip_int = 6;
6642         bp->rx_quick_cons_trip = 6;
6643         bp->rx_ticks_int = 18;
6644         bp->rx_ticks = 18;
6645
6646         bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6647
6648         bp->timer_interval =  HZ;
6649         bp->current_interval =  HZ;
6650
6651         bp->phy_addr = 1;
6652
6653         /* Disable WOL support if we are running on a SERDES chip. */
6654         if (CHIP_NUM(bp) == CHIP_NUM_5709)
6655                 bnx2_get_5709_media(bp);
6656         else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
6657                 bp->phy_flags |= PHY_SERDES_FLAG;
6658
6659         bp->phy_port = PORT_TP;
6660         if (bp->phy_flags & PHY_SERDES_FLAG) {
6661                 bp->phy_port = PORT_FIBRE;
6662                 reg = REG_RD_IND(bp, bp->shmem_base +
6663                                      BNX2_SHARED_HW_CFG_CONFIG);
6664                 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
6665                         bp->flags |= NO_WOL_FLAG;
6666                         bp->wol = 0;
6667                 }
6668                 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
6669                         bp->phy_addr = 2;
6670                         if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
6671                                 bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
6672                 }
6673                 bnx2_init_remote_phy(bp);
6674
6675         } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
6676                    CHIP_NUM(bp) == CHIP_NUM_5708)
6677                 bp->phy_flags |= PHY_CRC_FIX_FLAG;
6678         else if (CHIP_ID(bp) == CHIP_ID_5709_A0 ||
6679                  CHIP_ID(bp) == CHIP_ID_5709_A1)
6680                 bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
6681
6682         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
6683             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
6684             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
6685                 bp->flags |= NO_WOL_FLAG;
6686                 bp->wol = 0;
6687         }
6688
6689         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
6690                 bp->tx_quick_cons_trip_int =
6691                         bp->tx_quick_cons_trip;
6692                 bp->tx_ticks_int = bp->tx_ticks;
6693                 bp->rx_quick_cons_trip_int =
6694                         bp->rx_quick_cons_trip;
6695                 bp->rx_ticks_int = bp->rx_ticks;
6696                 bp->comp_prod_trip_int = bp->comp_prod_trip;
6697                 bp->com_ticks_int = bp->com_ticks;
6698                 bp->cmd_ticks_int = bp->cmd_ticks;
6699         }
6700
6701         /* Disable MSI on 5706 if AMD 8132 bridge is found.
6702          *
6703          * MSI is defined to be 32-bit write.  The 5706 does 64-bit MSI writes
6704          * with byte enables disabled on the unused 32-bit word.  This is legal
6705          * but causes problems on the AMD 8132 which will eventually stop
6706          * responding after a while.
6707          *
6708          * AMD believes this incompatibility is unique to the 5706, and
6709          * prefers to locally disable MSI rather than globally disabling it.
6710          */
6711         if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
6712                 struct pci_dev *amd_8132 = NULL;
6713
6714                 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
6715                                                   PCI_DEVICE_ID_AMD_8132_BRIDGE,
6716                                                   amd_8132))) {
6717
6718                         if (amd_8132->revision >= 0x10 &&
6719                             amd_8132->revision <= 0x13) {
6720                                 disable_msi = 1;
6721                                 pci_dev_put(amd_8132);
6722                                 break;
6723                         }
6724                 }
6725         }
6726
6727         bnx2_set_default_link(bp);
6728         bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
6729
6730         init_timer(&bp->timer);
6731         bp->timer.expires = RUN_AT(bp->timer_interval);
6732         bp->timer.data = (unsigned long) bp;
6733         bp->timer.function = bnx2_timer;
6734
6735         return 0;
6736
6737 err_out_unmap:
6738         if (bp->regview) {
6739                 iounmap(bp->regview);
6740                 bp->regview = NULL;
6741         }
6742
6743 err_out_release:
6744         pci_release_regions(pdev);
6745
6746 err_out_disable:
6747         pci_disable_device(pdev);
6748         pci_set_drvdata(pdev, NULL);
6749
6750 err_out:
6751         return rc;
6752 }
6753
6754 static char * __devinit
6755 bnx2_bus_string(struct bnx2 *bp, char *str)
6756 {
6757         char *s = str;
6758
6759         if (bp->flags & PCIE_FLAG) {
6760                 s += sprintf(s, "PCI Express");
6761         } else {
6762                 s += sprintf(s, "PCI");
6763                 if (bp->flags & PCIX_FLAG)
6764                         s += sprintf(s, "-X");
6765                 if (bp->flags & PCI_32BIT_FLAG)
6766                         s += sprintf(s, " 32-bit");
6767                 else
6768                         s += sprintf(s, " 64-bit");
6769                 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
6770         }
6771         return str;
6772 }
6773
6774 static int __devinit
6775 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6776 {
6777         static int version_printed = 0;
6778         struct net_device *dev = NULL;
6779         struct bnx2 *bp;
6780         int rc;
6781         char str[40];
6782         DECLARE_MAC_BUF(mac);
6783
6784         if (version_printed++ == 0)
6785                 printk(KERN_INFO "%s", version);
6786
6787         /* dev zeroed in init_etherdev */
6788         dev = alloc_etherdev(sizeof(*bp));
6789
6790         if (!dev)
6791                 return -ENOMEM;
6792
6793         rc = bnx2_init_board(pdev, dev);
6794         if (rc < 0) {
6795                 free_netdev(dev);
6796                 return rc;
6797         }
6798
6799         dev->open = bnx2_open;
6800         dev->hard_start_xmit = bnx2_start_xmit;
6801         dev->stop = bnx2_close;
6802         dev->get_stats = bnx2_get_stats;
6803         dev->set_multicast_list = bnx2_set_rx_mode;
6804         dev->do_ioctl = bnx2_ioctl;
6805         dev->set_mac_address = bnx2_change_mac_addr;
6806         dev->change_mtu = bnx2_change_mtu;
6807         dev->tx_timeout = bnx2_tx_timeout;
6808         dev->watchdog_timeo = TX_TIMEOUT;
6809 #ifdef BCM_VLAN
6810         dev->vlan_rx_register = bnx2_vlan_rx_register;
6811 #endif
6812         dev->ethtool_ops = &bnx2_ethtool_ops;
6813
6814         bp = netdev_priv(dev);
6815         netif_napi_add(dev, &bp->napi, bnx2_poll, 64);
6816
6817 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6818         dev->poll_controller = poll_bnx2;
6819 #endif
6820
6821         pci_set_drvdata(pdev, dev);
6822
6823         memcpy(dev->dev_addr, bp->mac_addr, 6);
6824         memcpy(dev->perm_addr, bp->mac_addr, 6);
6825         bp->name = board_info[ent->driver_data].name;
6826
6827         dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
6828         if (CHIP_NUM(bp) == CHIP_NUM_5709)
6829                 dev->features |= NETIF_F_IPV6_CSUM;
6830
6831 #ifdef BCM_VLAN
6832         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6833 #endif
6834         dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6835         if (CHIP_NUM(bp) == CHIP_NUM_5709)
6836                 dev->features |= NETIF_F_TSO6;
6837
6838         if ((rc = register_netdev(dev))) {
6839                 dev_err(&pdev->dev, "Cannot register net device\n");
6840                 if (bp->regview)
6841                         iounmap(bp->regview);
6842                 pci_release_regions(pdev);
6843                 pci_disable_device(pdev);
6844                 pci_set_drvdata(pdev, NULL);
6845                 free_netdev(dev);
6846                 return rc;
6847         }
6848
6849         printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
6850                 "IRQ %d, node addr %s\n",
6851                 dev->name,
6852                 bp->name,
6853                 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
6854                 ((CHIP_ID(bp) & 0x0ff0) >> 4),
6855                 bnx2_bus_string(bp, str),
6856                 dev->base_addr,
6857                 bp->pdev->irq, print_mac(mac, dev->dev_addr));
6858
6859         return 0;
6860 }
6861
6862 static void __devexit
6863 bnx2_remove_one(struct pci_dev *pdev)
6864 {
6865         struct net_device *dev = pci_get_drvdata(pdev);
6866         struct bnx2 *bp = netdev_priv(dev);
6867
6868         flush_scheduled_work();
6869
6870         unregister_netdev(dev);
6871
6872         if (bp->regview)
6873                 iounmap(bp->regview);
6874
6875         free_netdev(dev);
6876         pci_release_regions(pdev);
6877         pci_disable_device(pdev);
6878         pci_set_drvdata(pdev, NULL);
6879 }
6880
6881 static int
6882 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
6883 {
6884         struct net_device *dev = pci_get_drvdata(pdev);
6885         struct bnx2 *bp = netdev_priv(dev);
6886         u32 reset_code;
6887
6888         /* PCI register 4 needs to be saved whether netif_running() or not.
6889          * MSI address and data need to be saved if using MSI and
6890          * netif_running().
6891          */
6892         pci_save_state(pdev);
6893         if (!netif_running(dev))
6894                 return 0;
6895
6896         flush_scheduled_work();
6897         bnx2_netif_stop(bp);
6898         netif_device_detach(dev);
6899         del_timer_sync(&bp->timer);
6900         if (bp->flags & NO_WOL_FLAG)
6901                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
6902         else if (bp->wol)
6903                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
6904         else
6905                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
6906         bnx2_reset_chip(bp, reset_code);
6907         bnx2_free_skbs(bp);
6908         bnx2_set_power_state(bp, pci_choose_state(pdev, state));
6909         return 0;
6910 }
6911
6912 static int
6913 bnx2_resume(struct pci_dev *pdev)
6914 {
6915         struct net_device *dev = pci_get_drvdata(pdev);
6916         struct bnx2 *bp = netdev_priv(dev);
6917
6918         pci_restore_state(pdev);
6919         if (!netif_running(dev))
6920                 return 0;
6921
6922         bnx2_set_power_state(bp, PCI_D0);
6923         netif_device_attach(dev);
6924         bnx2_init_nic(bp);
6925         bnx2_netif_start(bp);
6926         return 0;
6927 }
6928
6929 static struct pci_driver bnx2_pci_driver = {
6930         .name           = DRV_MODULE_NAME,
6931         .id_table       = bnx2_pci_tbl,
6932         .probe          = bnx2_init_one,
6933         .remove         = __devexit_p(bnx2_remove_one),
6934         .suspend        = bnx2_suspend,
6935         .resume         = bnx2_resume,
6936 };
6937
6938 static int __init bnx2_init(void)
6939 {
6940         return pci_register_driver(&bnx2_pci_driver);
6941 }
6942
6943 static void __exit bnx2_cleanup(void)
6944 {
6945         pci_unregister_driver(&bnx2_pci_driver);
6946 }
6947
6948 module_init(bnx2_init);
6949 module_exit(bnx2_cleanup);
6950
6951
6952