Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.5"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         {"alarm_transceiver_temp_high"},
280         {"alarm_transceiver_temp_low"},
281         {"alarm_laser_bias_current_high"},
282         {"alarm_laser_bias_current_low"},
283         {"alarm_laser_output_power_high"},
284         {"alarm_laser_output_power_low"},
285         {"warn_transceiver_temp_high"},
286         {"warn_transceiver_temp_low"},
287         {"warn_laser_bias_current_high"},
288         {"warn_laser_bias_current_low"},
289         {"warn_laser_output_power_high"},
290         {"warn_laser_output_power_low"},
291         {"lro_aggregated_pkts"},
292         {"lro_flush_both_count"},
293         {"lro_out_of_sequence_pkts"},
294         {"lro_flush_due_to_max_pkts"},
295         {"lro_avg_aggr_pkts"},
296         {"mem_alloc_fail_cnt"},
297         {"pci_map_fail_cnt"},
298         {"watchdog_timer_cnt"},
299         {"mem_allocated"},
300         {"mem_freed"},
301         {"link_up_cnt"},
302         {"link_down_cnt"},
303         {"link_up_time"},
304         {"link_down_time"},
305         {"tx_tcode_buf_abort_cnt"},
306         {"tx_tcode_desc_abort_cnt"},
307         {"tx_tcode_parity_err_cnt"},
308         {"tx_tcode_link_loss_cnt"},
309         {"tx_tcode_list_proc_err_cnt"},
310         {"rx_tcode_parity_err_cnt"},
311         {"rx_tcode_abort_cnt"},
312         {"rx_tcode_parity_abort_cnt"},
313         {"rx_tcode_rda_fail_cnt"},
314         {"rx_tcode_unkn_prot_cnt"},
315         {"rx_tcode_fcs_err_cnt"},
316         {"rx_tcode_buf_size_err_cnt"},
317         {"rx_tcode_rxd_corrupt_cnt"},
318         {"rx_tcode_unkn_err_cnt"},
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340                                         ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
353                         init_timer(&timer);                     \
354                         timer.function = handle;                \
355                         timer.data = (unsigned long) arg;       \
356                         mod_timer(&timer, (jiffies + exp))      \
357
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 {
361         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 }
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370                                         struct vlan_group *grp)
371 {
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags;
374
375         spin_lock_irqsave(&nic->tx_lock, flags);
376         nic->vlgrp = grp;
377         spin_unlock_irqrestore(&nic->tx_lock, flags);
378 }
379
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
382
383 /*
384  * Constants to be programmed into the Xena's registers, to configure
385  * the XAUI.
386  */
387
388 #define END_SIGN        0x0
389 static const u64 herc_act_dtx_cfg[] = {
390         /* Set address */
391         0x8000051536750000ULL, 0x80000515367500E0ULL,
392         /* Write data */
393         0x8000051536750004ULL, 0x80000515367500E4ULL,
394         /* Set address */
395         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396         /* Write data */
397         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398         /* Set address */
399         0x801205150D440000ULL, 0x801205150D4400E0ULL,
400         /* Write data */
401         0x801205150D440004ULL, 0x801205150D4400E4ULL,
402         /* Set address */
403         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404         /* Write data */
405         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406         /* Done */
407         END_SIGN
408 };
409
410 static const u64 xena_dtx_cfg[] = {
411         /* Set address */
412         0x8000051500000000ULL, 0x80000515000000E0ULL,
413         /* Write data */
414         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415         /* Set address */
416         0x8001051500000000ULL, 0x80010515000000E0ULL,
417         /* Write data */
418         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419         /* Set address */
420         0x8002051500000000ULL, 0x80020515000000E0ULL,
421         /* Write data */
422         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423         END_SIGN
424 };
425
426 /*
427  * Constants for Fixing the MacAddress problem seen mostly on
428  * Alpha machines.
429  */
430 static const u64 fix_mac[] = {
431         0x0060000000000000ULL, 0x0060600000000000ULL,
432         0x0040600000000000ULL, 0x0000600000000000ULL,
433         0x0020600000000000ULL, 0x0060600000000000ULL,
434         0x0020600000000000ULL, 0x0060600000000000ULL,
435         0x0020600000000000ULL, 0x0060600000000000ULL,
436         0x0020600000000000ULL, 0x0060600000000000ULL,
437         0x0020600000000000ULL, 0x0060600000000000ULL,
438         0x0020600000000000ULL, 0x0060600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0000600000000000ULL,
444         0x0040600000000000ULL, 0x0060600000000000ULL,
445         END_SIGN
446 };
447
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
450
451
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
455
456
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
473
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475  * aggregation happens until we hit max IP pkt size(64K)
476  */
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
479
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
494
495 /*
496  * S2IO device table.
497  * This table lists all the devices that this driver supports.
498  */
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501          PCI_ANY_ID, PCI_ANY_ID},
502         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503          PCI_ANY_ID, PCI_ANY_ID},
504         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505          PCI_ANY_ID, PCI_ANY_ID},
506         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507          PCI_ANY_ID, PCI_ANY_ID},
508         {0,}
509 };
510
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512
513 static struct pci_error_handlers s2io_err_handler = {
514         .error_detected = s2io_io_error_detected,
515         .slot_reset = s2io_io_slot_reset,
516         .resume = s2io_io_resume,
517 };
518
519 static struct pci_driver s2io_driver = {
520       .name = "S2IO",
521       .id_table = s2io_tbl,
522       .probe = s2io_init_nic,
523       .remove = __devexit_p(s2io_rem_nic),
524       .err_handler = &s2io_err_handler,
525 };
526
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
529
530 /**
531  * init_shared_mem - Allocation and Initialization of Memory
532  * @nic: Device private variable.
533  * Description: The function allocates all the memory areas shared
534  * between the NIC and the driver. This includes Tx descriptors,
535  * Rx descriptors and the statistics block.
536  */
537
538 static int init_shared_mem(struct s2io_nic *nic)
539 {
540         u32 size;
541         void *tmp_v_addr, *tmp_v_addr_next;
542         dma_addr_t tmp_p_addr, tmp_p_addr_next;
543         struct RxD_block *pre_rxd_blk = NULL;
544         int i, j, blk_cnt;
545         int lst_size, lst_per_page;
546         struct net_device *dev = nic->dev;
547         unsigned long tmp;
548         struct buffAdd *ba;
549
550         struct mac_info *mac_control;
551         struct config_param *config;
552         unsigned long long mem_allocated = 0;
553
554         mac_control = &nic->mac_control;
555         config = &nic->config;
556
557
558         /* Allocation and initialization of TXDLs in FIOFs */
559         size = 0;
560         for (i = 0; i < config->tx_fifo_num; i++) {
561                 size += config->tx_cfg[i].fifo_len;
562         }
563         if (size > MAX_AVAILABLE_TXDS) {
564                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566                 return -EINVAL;
567         }
568
569         lst_size = (sizeof(struct TxD) * config->max_txds);
570         lst_per_page = PAGE_SIZE / lst_size;
571
572         for (i = 0; i < config->tx_fifo_num; i++) {
573                 int fifo_len = config->tx_cfg[i].fifo_len;
574                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576                                                           GFP_KERNEL);
577                 if (!mac_control->fifos[i].list_info) {
578                         DBG_PRINT(INFO_DBG,
579                                   "Malloc failed for list_info\n");
580                         return -ENOMEM;
581                 }
582                 mem_allocated += list_holder_size;
583         }
584         for (i = 0; i < config->tx_fifo_num; i++) {
585                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586                                                 lst_per_page);
587                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589                     config->tx_cfg[i].fifo_len - 1;
590                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592                     config->tx_cfg[i].fifo_len - 1;
593                 mac_control->fifos[i].fifo_no = i;
594                 mac_control->fifos[i].nic = nic;
595                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596
597                 for (j = 0; j < page_num; j++) {
598                         int k = 0;
599                         dma_addr_t tmp_p;
600                         void *tmp_v;
601                         tmp_v = pci_alloc_consistent(nic->pdev,
602                                                      PAGE_SIZE, &tmp_p);
603                         if (!tmp_v) {
604                                 DBG_PRINT(INFO_DBG,
605                                           "pci_alloc_consistent ");
606                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607                                 return -ENOMEM;
608                         }
609                         /* If we got a zero DMA address(can happen on
610                          * certain platforms like PPC), reallocate.
611                          * Store virtual address of page we don't want,
612                          * to be freed later.
613                          */
614                         if (!tmp_p) {
615                                 mac_control->zerodma_virt_addr = tmp_v;
616                                 DBG_PRINT(INIT_DBG,
617                                 "%s: Zero DMA address for TxDL. ", dev->name);
618                                 DBG_PRINT(INIT_DBG,
619                                 "Virtual address %p\n", tmp_v);
620                                 tmp_v = pci_alloc_consistent(nic->pdev,
621                                                      PAGE_SIZE, &tmp_p);
622                                 if (!tmp_v) {
623                                         DBG_PRINT(INFO_DBG,
624                                           "pci_alloc_consistent ");
625                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626                                         return -ENOMEM;
627                                 }
628                                 mem_allocated += PAGE_SIZE;
629                         }
630                         while (k < lst_per_page) {
631                                 int l = (j * lst_per_page) + k;
632                                 if (l == config->tx_cfg[i].fifo_len)
633                                         break;
634                                 mac_control->fifos[i].list_info[l].list_virt_addr =
635                                     tmp_v + (k * lst_size);
636                                 mac_control->fifos[i].list_info[l].list_phy_addr =
637                                     tmp_p + (k * lst_size);
638                                 k++;
639                         }
640                 }
641         }
642
643         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644         if (!nic->ufo_in_band_v)
645                 return -ENOMEM;
646          mem_allocated += (size * sizeof(u64));
647
648         /* Allocation and initialization of RXDs in Rings */
649         size = 0;
650         for (i = 0; i < config->rx_ring_num; i++) {
651                 if (config->rx_cfg[i].num_rxd %
652                     (rxd_count[nic->rxd_mode] + 1)) {
653                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655                                   i);
656                         DBG_PRINT(ERR_DBG, "RxDs per Block");
657                         return FAILURE;
658                 }
659                 size += config->rx_cfg[i].num_rxd;
660                 mac_control->rings[i].block_count =
661                         config->rx_cfg[i].num_rxd /
662                         (rxd_count[nic->rxd_mode] + 1 );
663                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664                         mac_control->rings[i].block_count;
665         }
666         if (nic->rxd_mode == RXD_MODE_1)
667                 size = (size * (sizeof(struct RxD1)));
668         else
669                 size = (size * (sizeof(struct RxD3)));
670
671         for (i = 0; i < config->rx_ring_num; i++) {
672                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673                 mac_control->rings[i].rx_curr_get_info.offset = 0;
674                 mac_control->rings[i].rx_curr_get_info.ring_len =
675                     config->rx_cfg[i].num_rxd - 1;
676                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677                 mac_control->rings[i].rx_curr_put_info.offset = 0;
678                 mac_control->rings[i].rx_curr_put_info.ring_len =
679                     config->rx_cfg[i].num_rxd - 1;
680                 mac_control->rings[i].nic = nic;
681                 mac_control->rings[i].ring_no = i;
682
683                 blk_cnt = config->rx_cfg[i].num_rxd /
684                                 (rxd_count[nic->rxd_mode] + 1);
685                 /*  Allocating all the Rx blocks */
686                 for (j = 0; j < blk_cnt; j++) {
687                         struct rx_block_info *rx_blocks;
688                         int l;
689
690                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
691                         size = SIZE_OF_BLOCK; //size is always page size
692                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693                                                           &tmp_p_addr);
694                         if (tmp_v_addr == NULL) {
695                                 /*
696                                  * In case of failure, free_shared_mem()
697                                  * is called, which should free any
698                                  * memory that was alloced till the
699                                  * failure happened.
700                                  */
701                                 rx_blocks->block_virt_addr = tmp_v_addr;
702                                 return -ENOMEM;
703                         }
704                         mem_allocated += size;
705                         memset(tmp_v_addr, 0, size);
706                         rx_blocks->block_virt_addr = tmp_v_addr;
707                         rx_blocks->block_dma_addr = tmp_p_addr;
708                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709                                                   rxd_count[nic->rxd_mode],
710                                                   GFP_KERNEL);
711                         if (!rx_blocks->rxds)
712                                 return -ENOMEM;
713                         mem_allocated +=
714                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716                                 rx_blocks->rxds[l].virt_addr =
717                                         rx_blocks->block_virt_addr +
718                                         (rxd_size[nic->rxd_mode] * l);
719                                 rx_blocks->rxds[l].dma_addr =
720                                         rx_blocks->block_dma_addr +
721                                         (rxd_size[nic->rxd_mode] * l);
722                         }
723                 }
724                 /* Interlinking all Rx Blocks */
725                 for (j = 0; j < blk_cnt; j++) {
726                         tmp_v_addr =
727                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728                         tmp_v_addr_next =
729                                 mac_control->rings[i].rx_blocks[(j + 1) %
730                                               blk_cnt].block_virt_addr;
731                         tmp_p_addr =
732                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733                         tmp_p_addr_next =
734                                 mac_control->rings[i].rx_blocks[(j + 1) %
735                                               blk_cnt].block_dma_addr;
736
737                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738                         pre_rxd_blk->reserved_2_pNext_RxD_block =
739                             (unsigned long) tmp_v_addr_next;
740                         pre_rxd_blk->pNext_RxD_Blk_physical =
741                             (u64) tmp_p_addr_next;
742                 }
743         }
744         if (nic->rxd_mode == RXD_MODE_3B) {
745                 /*
746                  * Allocation of Storages for buffer addresses in 2BUFF mode
747                  * and the buffers as well.
748                  */
749                 for (i = 0; i < config->rx_ring_num; i++) {
750                         blk_cnt = config->rx_cfg[i].num_rxd /
751                            (rxd_count[nic->rxd_mode]+ 1);
752                         mac_control->rings[i].ba =
753                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754                                      GFP_KERNEL);
755                         if (!mac_control->rings[i].ba)
756                                 return -ENOMEM;
757                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758                         for (j = 0; j < blk_cnt; j++) {
759                                 int k = 0;
760                                 mac_control->rings[i].ba[j] =
761                                         kmalloc((sizeof(struct buffAdd) *
762                                                 (rxd_count[nic->rxd_mode] + 1)),
763                                                 GFP_KERNEL);
764                                 if (!mac_control->rings[i].ba[j])
765                                         return -ENOMEM;
766                                 mem_allocated += (sizeof(struct buffAdd) *  \
767                                         (rxd_count[nic->rxd_mode] + 1));
768                                 while (k != rxd_count[nic->rxd_mode]) {
769                                         ba = &mac_control->rings[i].ba[j][k];
770
771                                         ba->ba_0_org = (void *) kmalloc
772                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773                                         if (!ba->ba_0_org)
774                                                 return -ENOMEM;
775                                         mem_allocated +=
776                                                 (BUF0_LEN + ALIGN_SIZE);
777                                         tmp = (unsigned long)ba->ba_0_org;
778                                         tmp += ALIGN_SIZE;
779                                         tmp &= ~((unsigned long) ALIGN_SIZE);
780                                         ba->ba_0 = (void *) tmp;
781
782                                         ba->ba_1_org = (void *) kmalloc
783                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784                                         if (!ba->ba_1_org)
785                                                 return -ENOMEM;
786                                         mem_allocated
787                                                 += (BUF1_LEN + ALIGN_SIZE);
788                                         tmp = (unsigned long) ba->ba_1_org;
789                                         tmp += ALIGN_SIZE;
790                                         tmp &= ~((unsigned long) ALIGN_SIZE);
791                                         ba->ba_1 = (void *) tmp;
792                                         k++;
793                                 }
794                         }
795                 }
796         }
797
798         /* Allocation and initialization of Statistics block */
799         size = sizeof(struct stat_block);
800         mac_control->stats_mem = pci_alloc_consistent
801             (nic->pdev, size, &mac_control->stats_mem_phy);
802
803         if (!mac_control->stats_mem) {
804                 /*
805                  * In case of failure, free_shared_mem() is called, which
806                  * should free any memory that was alloced till the
807                  * failure happened.
808                  */
809                 return -ENOMEM;
810         }
811         mem_allocated += size;
812         mac_control->stats_mem_sz = size;
813
814         tmp_v_addr = mac_control->stats_mem;
815         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816         memset(tmp_v_addr, 0, size);
817         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818                   (unsigned long long) tmp_p_addr);
819         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820         return SUCCESS;
821 }
822
823 /**
824  * free_shared_mem - Free the allocated Memory
825  * @nic:  Device private variable.
826  * Description: This function is to free all memory locations allocated by
827  * the init_shared_mem() function and return it to the kernel.
828  */
829
830 static void free_shared_mem(struct s2io_nic *nic)
831 {
832         int i, j, blk_cnt, size;
833         u32 ufo_size = 0;
834         void *tmp_v_addr;
835         dma_addr_t tmp_p_addr;
836         struct mac_info *mac_control;
837         struct config_param *config;
838         int lst_size, lst_per_page;
839         struct net_device *dev;
840         int page_num = 0;
841
842         if (!nic)
843                 return;
844
845         dev = nic->dev;
846
847         mac_control = &nic->mac_control;
848         config = &nic->config;
849
850         lst_size = (sizeof(struct TxD) * config->max_txds);
851         lst_per_page = PAGE_SIZE / lst_size;
852
853         for (i = 0; i < config->tx_fifo_num; i++) {
854                 ufo_size += config->tx_cfg[i].fifo_len;
855                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856                                                         lst_per_page);
857                 for (j = 0; j < page_num; j++) {
858                         int mem_blks = (j * lst_per_page);
859                         if (!mac_control->fifos[i].list_info)
860                                 return;
861                         if (!mac_control->fifos[i].list_info[mem_blks].
862                                  list_virt_addr)
863                                 break;
864                         pci_free_consistent(nic->pdev, PAGE_SIZE,
865                                             mac_control->fifos[i].
866                                             list_info[mem_blks].
867                                             list_virt_addr,
868                                             mac_control->fifos[i].
869                                             list_info[mem_blks].
870                                             list_phy_addr);
871                         nic->mac_control.stats_info->sw_stat.mem_freed
872                                                 += PAGE_SIZE;
873                 }
874                 /* If we got a zero DMA address during allocation,
875                  * free the page now
876                  */
877                 if (mac_control->zerodma_virt_addr) {
878                         pci_free_consistent(nic->pdev, PAGE_SIZE,
879                                             mac_control->zerodma_virt_addr,
880                                             (dma_addr_t)0);
881                         DBG_PRINT(INIT_DBG,
882                                 "%s: Freeing TxDL with zero DMA addr. ",
883                                 dev->name);
884                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885                                 mac_control->zerodma_virt_addr);
886                         nic->mac_control.stats_info->sw_stat.mem_freed
887                                                 += PAGE_SIZE;
888                 }
889                 kfree(mac_control->fifos[i].list_info);
890                 nic->mac_control.stats_info->sw_stat.mem_freed +=
891                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
892         }
893
894         size = SIZE_OF_BLOCK;
895         for (i = 0; i < config->rx_ring_num; i++) {
896                 blk_cnt = mac_control->rings[i].block_count;
897                 for (j = 0; j < blk_cnt; j++) {
898                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899                                 block_virt_addr;
900                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901                                 block_dma_addr;
902                         if (tmp_v_addr == NULL)
903                                 break;
904                         pci_free_consistent(nic->pdev, size,
905                                             tmp_v_addr, tmp_p_addr);
906                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
907                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
908                         nic->mac_control.stats_info->sw_stat.mem_freed +=
909                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
910                 }
911         }
912
913         if (nic->rxd_mode == RXD_MODE_3B) {
914                 /* Freeing buffer storage addresses in 2BUFF mode. */
915                 for (i = 0; i < config->rx_ring_num; i++) {
916                         blk_cnt = config->rx_cfg[i].num_rxd /
917                             (rxd_count[nic->rxd_mode] + 1);
918                         for (j = 0; j < blk_cnt; j++) {
919                                 int k = 0;
920                                 if (!mac_control->rings[i].ba[j])
921                                         continue;
922                                 while (k != rxd_count[nic->rxd_mode]) {
923                                         struct buffAdd *ba =
924                                                 &mac_control->rings[i].ba[j][k];
925                                         kfree(ba->ba_0_org);
926                                         nic->mac_control.stats_info->sw_stat.\
927                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
928                                         kfree(ba->ba_1_org);
929                                         nic->mac_control.stats_info->sw_stat.\
930                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
931                                         k++;
932                                 }
933                                 kfree(mac_control->rings[i].ba[j]);
934                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
935                                         (sizeof(struct buffAdd) *
936                                         (rxd_count[nic->rxd_mode] + 1));
937                         }
938                         kfree(mac_control->rings[i].ba);
939                         nic->mac_control.stats_info->sw_stat.mem_freed +=
940                         (sizeof(struct buffAdd *) * blk_cnt);
941                 }
942         }
943
944         if (mac_control->stats_mem) {
945                 pci_free_consistent(nic->pdev,
946                                     mac_control->stats_mem_sz,
947                                     mac_control->stats_mem,
948                                     mac_control->stats_mem_phy);
949                 nic->mac_control.stats_info->sw_stat.mem_freed +=
950                         mac_control->stats_mem_sz;
951         }
952         if (nic->ufo_in_band_v) {
953                 kfree(nic->ufo_in_band_v);
954                 nic->mac_control.stats_info->sw_stat.mem_freed
955                         += (ufo_size * sizeof(u64));
956         }
957 }
958
959 /**
960  * s2io_verify_pci_mode -
961  */
962
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 {
965         struct XENA_dev_config __iomem *bar0 = nic->bar0;
966         register u64 val64 = 0;
967         int     mode;
968
969         val64 = readq(&bar0->pci_mode);
970         mode = (u8)GET_PCI_MODE(val64);
971
972         if ( val64 & PCI_MODE_UNKNOWN_MODE)
973                 return -1;      /* Unknown PCI mode */
974         return mode;
975 }
976
977 #define NEC_VENID   0x1033
978 #define NEC_DEVID   0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 {
981         struct pci_dev *tdev = NULL;
982         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984                         if (tdev->bus == s2io_pdev->bus->parent)
985                                 pci_dev_put(tdev);
986                                 return 1;
987                 }
988         }
989         return 0;
990 }
991
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 /**
994  * s2io_print_pci_mode -
995  */
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 {
998         struct XENA_dev_config __iomem *bar0 = nic->bar0;
999         register u64 val64 = 0;
1000         int     mode;
1001         struct config_param *config = &nic->config;
1002
1003         val64 = readq(&bar0->pci_mode);
1004         mode = (u8)GET_PCI_MODE(val64);
1005
1006         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007                 return -1;      /* Unknown PCI mode */
1008
1009         config->bus_speed = bus_speed[mode];
1010
1011         if (s2io_on_nec_bridge(nic->pdev)) {
1012                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013                                                         nic->dev->name);
1014                 return mode;
1015         }
1016
1017         if (val64 & PCI_MODE_32_BITS) {
1018                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019         } else {
1020                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1021         }
1022
1023         switch(mode) {
1024                 case PCI_MODE_PCI_33:
1025                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026                         break;
1027                 case PCI_MODE_PCI_66:
1028                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029                         break;
1030                 case PCI_MODE_PCIX_M1_66:
1031                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032                         break;
1033                 case PCI_MODE_PCIX_M1_100:
1034                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035                         break;
1036                 case PCI_MODE_PCIX_M1_133:
1037                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038                         break;
1039                 case PCI_MODE_PCIX_M2_66:
1040                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041                         break;
1042                 case PCI_MODE_PCIX_M2_100:
1043                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044                         break;
1045                 case PCI_MODE_PCIX_M2_133:
1046                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047                         break;
1048                 default:
1049                         return -1;      /* Unsupported bus speed */
1050         }
1051
1052         return mode;
1053 }
1054
1055 /**
1056  *  init_nic - Initialization of hardware
1057  *  @nic: device peivate variable
1058  *  Description: The function sequentially configures every block
1059  *  of the H/W from their reset values.
1060  *  Return Value:  SUCCESS on success and
1061  *  '-1' on failure (endian settings incorrect).
1062  */
1063
1064 static int init_nic(struct s2io_nic *nic)
1065 {
1066         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067         struct net_device *dev = nic->dev;
1068         register u64 val64 = 0;
1069         void __iomem *add;
1070         u32 time;
1071         int i, j;
1072         struct mac_info *mac_control;
1073         struct config_param *config;
1074         int dtx_cnt = 0;
1075         unsigned long long mem_share;
1076         int mem_size;
1077
1078         mac_control = &nic->mac_control;
1079         config = &nic->config;
1080
1081         /* to set the swapper controle on the card */
1082         if(s2io_set_swapper(nic)) {
1083                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084                 return -1;
1085         }
1086
1087         /*
1088          * Herc requires EOI to be removed from reset before XGXS, so..
1089          */
1090         if (nic->device_type & XFRAME_II_DEVICE) {
1091                 val64 = 0xA500000000ULL;
1092                 writeq(val64, &bar0->sw_reset);
1093                 msleep(500);
1094                 val64 = readq(&bar0->sw_reset);
1095         }
1096
1097         /* Remove XGXS from reset state */
1098         val64 = 0;
1099         writeq(val64, &bar0->sw_reset);
1100         msleep(500);
1101         val64 = readq(&bar0->sw_reset);
1102
1103         /*  Enable Receiving broadcasts */
1104         add = &bar0->mac_cfg;
1105         val64 = readq(&bar0->mac_cfg);
1106         val64 |= MAC_RMAC_BCAST_ENABLE;
1107         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108         writel((u32) val64, add);
1109         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1110         writel((u32) (val64 >> 32), (add + 4));
1111
1112         /* Read registers in all blocks */
1113         val64 = readq(&bar0->mac_int_mask);
1114         val64 = readq(&bar0->mc_int_mask);
1115         val64 = readq(&bar0->xgxs_int_mask);
1116
1117         /*  Set MTU */
1118         val64 = dev->mtu;
1119         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1120
1121         if (nic->device_type & XFRAME_II_DEVICE) {
1122                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1123                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1124                                           &bar0->dtx_control, UF);
1125                         if (dtx_cnt & 0x1)
1126                                 msleep(1); /* Necessary!! */
1127                         dtx_cnt++;
1128                 }
1129         } else {
1130                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1131                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1132                                           &bar0->dtx_control, UF);
1133                         val64 = readq(&bar0->dtx_control);
1134                         dtx_cnt++;
1135                 }
1136         }
1137
1138         /*  Tx DMA Initialization */
1139         val64 = 0;
1140         writeq(val64, &bar0->tx_fifo_partition_0);
1141         writeq(val64, &bar0->tx_fifo_partition_1);
1142         writeq(val64, &bar0->tx_fifo_partition_2);
1143         writeq(val64, &bar0->tx_fifo_partition_3);
1144
1145
1146         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1147                 val64 |=
1148                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1149                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1150                                     ((i * 32) + 5), 3);
1151
1152                 if (i == (config->tx_fifo_num - 1)) {
1153                         if (i % 2 == 0)
1154                                 i++;
1155                 }
1156
1157                 switch (i) {
1158                 case 1:
1159                         writeq(val64, &bar0->tx_fifo_partition_0);
1160                         val64 = 0;
1161                         break;
1162                 case 3:
1163                         writeq(val64, &bar0->tx_fifo_partition_1);
1164                         val64 = 0;
1165                         break;
1166                 case 5:
1167                         writeq(val64, &bar0->tx_fifo_partition_2);
1168                         val64 = 0;
1169                         break;
1170                 case 7:
1171                         writeq(val64, &bar0->tx_fifo_partition_3);
1172                         break;
1173                 }
1174         }
1175
1176         /*
1177          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1178          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1179          */
1180         if ((nic->device_type == XFRAME_I_DEVICE) &&
1181                 (nic->pdev->revision < 4))
1182                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1183
1184         val64 = readq(&bar0->tx_fifo_partition_0);
1185         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1186                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1187
1188         /*
1189          * Initialization of Tx_PA_CONFIG register to ignore packet
1190          * integrity checking.
1191          */
1192         val64 = readq(&bar0->tx_pa_cfg);
1193         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1194             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1195         writeq(val64, &bar0->tx_pa_cfg);
1196
1197         /* Rx DMA intialization. */
1198         val64 = 0;
1199         for (i = 0; i < config->rx_ring_num; i++) {
1200                 val64 |=
1201                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1202                          3);
1203         }
1204         writeq(val64, &bar0->rx_queue_priority);
1205
1206         /*
1207          * Allocating equal share of memory to all the
1208          * configured Rings.
1209          */
1210         val64 = 0;
1211         if (nic->device_type & XFRAME_II_DEVICE)
1212                 mem_size = 32;
1213         else
1214                 mem_size = 64;
1215
1216         for (i = 0; i < config->rx_ring_num; i++) {
1217                 switch (i) {
1218                 case 0:
1219                         mem_share = (mem_size / config->rx_ring_num +
1220                                      mem_size % config->rx_ring_num);
1221                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1222                         continue;
1223                 case 1:
1224                         mem_share = (mem_size / config->rx_ring_num);
1225                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1226                         continue;
1227                 case 2:
1228                         mem_share = (mem_size / config->rx_ring_num);
1229                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1230                         continue;
1231                 case 3:
1232                         mem_share = (mem_size / config->rx_ring_num);
1233                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1234                         continue;
1235                 case 4:
1236                         mem_share = (mem_size / config->rx_ring_num);
1237                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1238                         continue;
1239                 case 5:
1240                         mem_share = (mem_size / config->rx_ring_num);
1241                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1242                         continue;
1243                 case 6:
1244                         mem_share = (mem_size / config->rx_ring_num);
1245                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1246                         continue;
1247                 case 7:
1248                         mem_share = (mem_size / config->rx_ring_num);
1249                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1250                         continue;
1251                 }
1252         }
1253         writeq(val64, &bar0->rx_queue_cfg);
1254
1255         /*
1256          * Filling Tx round robin registers
1257          * as per the number of FIFOs
1258          */
1259         switch (config->tx_fifo_num) {
1260         case 1:
1261                 val64 = 0x0000000000000000ULL;
1262                 writeq(val64, &bar0->tx_w_round_robin_0);
1263                 writeq(val64, &bar0->tx_w_round_robin_1);
1264                 writeq(val64, &bar0->tx_w_round_robin_2);
1265                 writeq(val64, &bar0->tx_w_round_robin_3);
1266                 writeq(val64, &bar0->tx_w_round_robin_4);
1267                 break;
1268         case 2:
1269                 val64 = 0x0000010000010000ULL;
1270                 writeq(val64, &bar0->tx_w_round_robin_0);
1271                 val64 = 0x0100000100000100ULL;
1272                 writeq(val64, &bar0->tx_w_round_robin_1);
1273                 val64 = 0x0001000001000001ULL;
1274                 writeq(val64, &bar0->tx_w_round_robin_2);
1275                 val64 = 0x0000010000010000ULL;
1276                 writeq(val64, &bar0->tx_w_round_robin_3);
1277                 val64 = 0x0100000000000000ULL;
1278                 writeq(val64, &bar0->tx_w_round_robin_4);
1279                 break;
1280         case 3:
1281                 val64 = 0x0001000102000001ULL;
1282                 writeq(val64, &bar0->tx_w_round_robin_0);
1283                 val64 = 0x0001020000010001ULL;
1284                 writeq(val64, &bar0->tx_w_round_robin_1);
1285                 val64 = 0x0200000100010200ULL;
1286                 writeq(val64, &bar0->tx_w_round_robin_2);
1287                 val64 = 0x0001000102000001ULL;
1288                 writeq(val64, &bar0->tx_w_round_robin_3);
1289                 val64 = 0x0001020000000000ULL;
1290                 writeq(val64, &bar0->tx_w_round_robin_4);
1291                 break;
1292         case 4:
1293                 val64 = 0x0001020300010200ULL;
1294                 writeq(val64, &bar0->tx_w_round_robin_0);
1295                 val64 = 0x0100000102030001ULL;
1296                 writeq(val64, &bar0->tx_w_round_robin_1);
1297                 val64 = 0x0200010000010203ULL;
1298                 writeq(val64, &bar0->tx_w_round_robin_2);
1299                 val64 = 0x0001020001000001ULL;
1300                 writeq(val64, &bar0->tx_w_round_robin_3);
1301                 val64 = 0x0203000100000000ULL;
1302                 writeq(val64, &bar0->tx_w_round_robin_4);
1303                 break;
1304         case 5:
1305                 val64 = 0x0001000203000102ULL;
1306                 writeq(val64, &bar0->tx_w_round_robin_0);
1307                 val64 = 0x0001020001030004ULL;
1308                 writeq(val64, &bar0->tx_w_round_robin_1);
1309                 val64 = 0x0001000203000102ULL;
1310                 writeq(val64, &bar0->tx_w_round_robin_2);
1311                 val64 = 0x0001020001030004ULL;
1312                 writeq(val64, &bar0->tx_w_round_robin_3);
1313                 val64 = 0x0001000000000000ULL;
1314                 writeq(val64, &bar0->tx_w_round_robin_4);
1315                 break;
1316         case 6:
1317                 val64 = 0x0001020304000102ULL;
1318                 writeq(val64, &bar0->tx_w_round_robin_0);
1319                 val64 = 0x0304050001020001ULL;
1320                 writeq(val64, &bar0->tx_w_round_robin_1);
1321                 val64 = 0x0203000100000102ULL;
1322                 writeq(val64, &bar0->tx_w_round_robin_2);
1323                 val64 = 0x0304000102030405ULL;
1324                 writeq(val64, &bar0->tx_w_round_robin_3);
1325                 val64 = 0x0001000200000000ULL;
1326                 writeq(val64, &bar0->tx_w_round_robin_4);
1327                 break;
1328         case 7:
1329                 val64 = 0x0001020001020300ULL;
1330                 writeq(val64, &bar0->tx_w_round_robin_0);
1331                 val64 = 0x0102030400010203ULL;
1332                 writeq(val64, &bar0->tx_w_round_robin_1);
1333                 val64 = 0x0405060001020001ULL;
1334                 writeq(val64, &bar0->tx_w_round_robin_2);
1335                 val64 = 0x0304050000010200ULL;
1336                 writeq(val64, &bar0->tx_w_round_robin_3);
1337                 val64 = 0x0102030000000000ULL;
1338                 writeq(val64, &bar0->tx_w_round_robin_4);
1339                 break;
1340         case 8:
1341                 val64 = 0x0001020300040105ULL;
1342                 writeq(val64, &bar0->tx_w_round_robin_0);
1343                 val64 = 0x0200030106000204ULL;
1344                 writeq(val64, &bar0->tx_w_round_robin_1);
1345                 val64 = 0x0103000502010007ULL;
1346                 writeq(val64, &bar0->tx_w_round_robin_2);
1347                 val64 = 0x0304010002060500ULL;
1348                 writeq(val64, &bar0->tx_w_round_robin_3);
1349                 val64 = 0x0103020400000000ULL;
1350                 writeq(val64, &bar0->tx_w_round_robin_4);
1351                 break;
1352         }
1353
1354         /* Enable all configured Tx FIFO partitions */
1355         val64 = readq(&bar0->tx_fifo_partition_0);
1356         val64 |= (TX_FIFO_PARTITION_EN);
1357         writeq(val64, &bar0->tx_fifo_partition_0);
1358
1359         /* Filling the Rx round robin registers as per the
1360          * number of Rings and steering based on QoS.
1361          */
1362         switch (config->rx_ring_num) {
1363         case 1:
1364                 val64 = 0x8080808080808080ULL;
1365                 writeq(val64, &bar0->rts_qos_steering);
1366                 break;
1367         case 2:
1368                 val64 = 0x0000010000010000ULL;
1369                 writeq(val64, &bar0->rx_w_round_robin_0);
1370                 val64 = 0x0100000100000100ULL;
1371                 writeq(val64, &bar0->rx_w_round_robin_1);
1372                 val64 = 0x0001000001000001ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_2);
1374                 val64 = 0x0000010000010000ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_3);
1376                 val64 = 0x0100000000000000ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_4);
1378
1379                 val64 = 0x8080808040404040ULL;
1380                 writeq(val64, &bar0->rts_qos_steering);
1381                 break;
1382         case 3:
1383                 val64 = 0x0001000102000001ULL;
1384                 writeq(val64, &bar0->rx_w_round_robin_0);
1385                 val64 = 0x0001020000010001ULL;
1386                 writeq(val64, &bar0->rx_w_round_robin_1);
1387                 val64 = 0x0200000100010200ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_2);
1389                 val64 = 0x0001000102000001ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_3);
1391                 val64 = 0x0001020000000000ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_4);
1393
1394                 val64 = 0x8080804040402020ULL;
1395                 writeq(val64, &bar0->rts_qos_steering);
1396                 break;
1397         case 4:
1398                 val64 = 0x0001020300010200ULL;
1399                 writeq(val64, &bar0->rx_w_round_robin_0);
1400                 val64 = 0x0100000102030001ULL;
1401                 writeq(val64, &bar0->rx_w_round_robin_1);
1402                 val64 = 0x0200010000010203ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_2);
1404                 val64 = 0x0001020001000001ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_3);
1406                 val64 = 0x0203000100000000ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_4);
1408
1409                 val64 = 0x8080404020201010ULL;
1410                 writeq(val64, &bar0->rts_qos_steering);
1411                 break;
1412         case 5:
1413                 val64 = 0x0001000203000102ULL;
1414                 writeq(val64, &bar0->rx_w_round_robin_0);
1415                 val64 = 0x0001020001030004ULL;
1416                 writeq(val64, &bar0->rx_w_round_robin_1);
1417                 val64 = 0x0001000203000102ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_2);
1419                 val64 = 0x0001020001030004ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_3);
1421                 val64 = 0x0001000000000000ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_4);
1423
1424                 val64 = 0x8080404020201008ULL;
1425                 writeq(val64, &bar0->rts_qos_steering);
1426                 break;
1427         case 6:
1428                 val64 = 0x0001020304000102ULL;
1429                 writeq(val64, &bar0->rx_w_round_robin_0);
1430                 val64 = 0x0304050001020001ULL;
1431                 writeq(val64, &bar0->rx_w_round_robin_1);
1432                 val64 = 0x0203000100000102ULL;
1433                 writeq(val64, &bar0->rx_w_round_robin_2);
1434                 val64 = 0x0304000102030405ULL;
1435                 writeq(val64, &bar0->rx_w_round_robin_3);
1436                 val64 = 0x0001000200000000ULL;
1437                 writeq(val64, &bar0->rx_w_round_robin_4);
1438
1439                 val64 = 0x8080404020100804ULL;
1440                 writeq(val64, &bar0->rts_qos_steering);
1441                 break;
1442         case 7:
1443                 val64 = 0x0001020001020300ULL;
1444                 writeq(val64, &bar0->rx_w_round_robin_0);
1445                 val64 = 0x0102030400010203ULL;
1446                 writeq(val64, &bar0->rx_w_round_robin_1);
1447                 val64 = 0x0405060001020001ULL;
1448                 writeq(val64, &bar0->rx_w_round_robin_2);
1449                 val64 = 0x0304050000010200ULL;
1450                 writeq(val64, &bar0->rx_w_round_robin_3);
1451                 val64 = 0x0102030000000000ULL;
1452                 writeq(val64, &bar0->rx_w_round_robin_4);
1453
1454                 val64 = 0x8080402010080402ULL;
1455                 writeq(val64, &bar0->rts_qos_steering);
1456                 break;
1457         case 8:
1458                 val64 = 0x0001020300040105ULL;
1459                 writeq(val64, &bar0->rx_w_round_robin_0);
1460                 val64 = 0x0200030106000204ULL;
1461                 writeq(val64, &bar0->rx_w_round_robin_1);
1462                 val64 = 0x0103000502010007ULL;
1463                 writeq(val64, &bar0->rx_w_round_robin_2);
1464                 val64 = 0x0304010002060500ULL;
1465                 writeq(val64, &bar0->rx_w_round_robin_3);
1466                 val64 = 0x0103020400000000ULL;
1467                 writeq(val64, &bar0->rx_w_round_robin_4);
1468
1469                 val64 = 0x8040201008040201ULL;
1470                 writeq(val64, &bar0->rts_qos_steering);
1471                 break;
1472         }
1473
1474         /* UDP Fix */
1475         val64 = 0;
1476         for (i = 0; i < 8; i++)
1477                 writeq(val64, &bar0->rts_frm_len_n[i]);
1478
1479         /* Set the default rts frame length for the rings configured */
1480         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1481         for (i = 0 ; i < config->rx_ring_num ; i++)
1482                 writeq(val64, &bar0->rts_frm_len_n[i]);
1483
1484         /* Set the frame length for the configured rings
1485          * desired by the user
1486          */
1487         for (i = 0; i < config->rx_ring_num; i++) {
1488                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1489                  * specified frame length steering.
1490                  * If the user provides the frame length then program
1491                  * the rts_frm_len register for those values or else
1492                  * leave it as it is.
1493                  */
1494                 if (rts_frm_len[i] != 0) {
1495                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1496                                 &bar0->rts_frm_len_n[i]);
1497                 }
1498         }
1499
1500         /* Disable differentiated services steering logic */
1501         for (i = 0; i < 64; i++) {
1502                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1503                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1504                                 dev->name);
1505                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1506                         return FAILURE;
1507                 }
1508         }
1509
1510         /* Program statistics memory */
1511         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1512
1513         if (nic->device_type == XFRAME_II_DEVICE) {
1514                 val64 = STAT_BC(0x320);
1515                 writeq(val64, &bar0->stat_byte_cnt);
1516         }
1517
1518         /*
1519          * Initializing the sampling rate for the device to calculate the
1520          * bandwidth utilization.
1521          */
1522         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1523             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1524         writeq(val64, &bar0->mac_link_util);
1525
1526
1527         /*
1528          * Initializing the Transmit and Receive Traffic Interrupt
1529          * Scheme.
1530          */
1531         /*
1532          * TTI Initialization. Default Tx timer gets us about
1533          * 250 interrupts per sec. Continuous interrupts are enabled
1534          * by default.
1535          */
1536         if (nic->device_type == XFRAME_II_DEVICE) {
1537                 int count = (nic->config.bus_speed * 125)/2;
1538                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1539         } else {
1540
1541                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1542         }
1543         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1544             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1545             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1546                 if (use_continuous_tx_intrs)
1547                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1548         writeq(val64, &bar0->tti_data1_mem);
1549
1550         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1551             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1552             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1553         writeq(val64, &bar0->tti_data2_mem);
1554
1555         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1556         writeq(val64, &bar0->tti_command_mem);
1557
1558         /*
1559          * Once the operation completes, the Strobe bit of the command
1560          * register will be reset. We poll for this particular condition
1561          * We wait for a maximum of 500ms for the operation to complete,
1562          * if it's not complete by then we return error.
1563          */
1564         time = 0;
1565         while (TRUE) {
1566                 val64 = readq(&bar0->tti_command_mem);
1567                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1568                         break;
1569                 }
1570                 if (time > 10) {
1571                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1572                                   dev->name);
1573                         return -1;
1574                 }
1575                 msleep(50);
1576                 time++;
1577         }
1578
1579         /* RTI Initialization */
1580         if (nic->device_type == XFRAME_II_DEVICE) {
1581                 /*
1582                  * Programmed to generate Apprx 500 Intrs per
1583                  * second
1584                  */
1585                 int count = (nic->config.bus_speed * 125)/4;
1586                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1587         } else
1588                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1589         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1590                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1591                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1592
1593         writeq(val64, &bar0->rti_data1_mem);
1594
1595         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1596                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1597         if (nic->config.intr_type == MSI_X)
1598             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1599                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1600         else
1601             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1602                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1603         writeq(val64, &bar0->rti_data2_mem);
1604
1605         for (i = 0; i < config->rx_ring_num; i++) {
1606                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1607                                 | RTI_CMD_MEM_OFFSET(i);
1608                 writeq(val64, &bar0->rti_command_mem);
1609
1610                 /*
1611                  * Once the operation completes, the Strobe bit of the
1612                  * command register will be reset. We poll for this
1613                  * particular condition. We wait for a maximum of 500ms
1614                  * for the operation to complete, if it's not complete
1615                  * by then we return error.
1616                  */
1617                 time = 0;
1618                 while (TRUE) {
1619                         val64 = readq(&bar0->rti_command_mem);
1620                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1621                                 break;
1622
1623                         if (time > 10) {
1624                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1625                                           dev->name);
1626                                 return -1;
1627                         }
1628                         time++;
1629                         msleep(50);
1630                 }
1631         }
1632
1633         /*
1634          * Initializing proper values as Pause threshold into all
1635          * the 8 Queues on Rx side.
1636          */
1637         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1638         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1639
1640         /* Disable RMAC PAD STRIPPING */
1641         add = &bar0->mac_cfg;
1642         val64 = readq(&bar0->mac_cfg);
1643         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1644         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645         writel((u32) (val64), add);
1646         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1647         writel((u32) (val64 >> 32), (add + 4));
1648         val64 = readq(&bar0->mac_cfg);
1649
1650         /* Enable FCS stripping by adapter */
1651         add = &bar0->mac_cfg;
1652         val64 = readq(&bar0->mac_cfg);
1653         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1654         if (nic->device_type == XFRAME_II_DEVICE)
1655                 writeq(val64, &bar0->mac_cfg);
1656         else {
1657                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658                 writel((u32) (val64), add);
1659                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660                 writel((u32) (val64 >> 32), (add + 4));
1661         }
1662
1663         /*
1664          * Set the time value to be inserted in the pause frame
1665          * generated by xena.
1666          */
1667         val64 = readq(&bar0->rmac_pause_cfg);
1668         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1669         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1670         writeq(val64, &bar0->rmac_pause_cfg);
1671
1672         /*
1673          * Set the Threshold Limit for Generating the pause frame
1674          * If the amount of data in any Queue exceeds ratio of
1675          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1676          * pause frame is generated
1677          */
1678         val64 = 0;
1679         for (i = 0; i < 4; i++) {
1680                 val64 |=
1681                     (((u64) 0xFF00 | nic->mac_control.
1682                       mc_pause_threshold_q0q3)
1683                      << (i * 2 * 8));
1684         }
1685         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1686
1687         val64 = 0;
1688         for (i = 0; i < 4; i++) {
1689                 val64 |=
1690                     (((u64) 0xFF00 | nic->mac_control.
1691                       mc_pause_threshold_q4q7)
1692                      << (i * 2 * 8));
1693         }
1694         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1695
1696         /*
1697          * TxDMA will stop Read request if the number of read split has
1698          * exceeded the limit pointed by shared_splits
1699          */
1700         val64 = readq(&bar0->pic_control);
1701         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1702         writeq(val64, &bar0->pic_control);
1703
1704         if (nic->config.bus_speed == 266) {
1705                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1706                 writeq(0x0, &bar0->read_retry_delay);
1707                 writeq(0x0, &bar0->write_retry_delay);
1708         }
1709
1710         /*
1711          * Programming the Herc to split every write transaction
1712          * that does not start on an ADB to reduce disconnects.
1713          */
1714         if (nic->device_type == XFRAME_II_DEVICE) {
1715                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1716                         MISC_LINK_STABILITY_PRD(3);
1717                 writeq(val64, &bar0->misc_control);
1718                 val64 = readq(&bar0->pic_control2);
1719                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1720                 writeq(val64, &bar0->pic_control2);
1721         }
1722         if (strstr(nic->product_name, "CX4")) {
1723                 val64 = TMAC_AVG_IPG(0x17);
1724                 writeq(val64, &bar0->tmac_avg_ipg);
1725         }
1726
1727         return SUCCESS;
1728 }
1729 #define LINK_UP_DOWN_INTERRUPT          1
1730 #define MAC_RMAC_ERR_TIMER              2
1731
1732 static int s2io_link_fault_indication(struct s2io_nic *nic)
1733 {
1734         if (nic->config.intr_type != INTA)
1735                 return MAC_RMAC_ERR_TIMER;
1736         if (nic->device_type == XFRAME_II_DEVICE)
1737                 return LINK_UP_DOWN_INTERRUPT;
1738         else
1739                 return MAC_RMAC_ERR_TIMER;
1740 }
1741
1742 /**
1743  *  do_s2io_write_bits -  update alarm bits in alarm register
1744  *  @value: alarm bits
1745  *  @flag: interrupt status
1746  *  @addr: address value
1747  *  Description: update alarm bits in alarm register
1748  *  Return Value:
1749  *  NONE.
1750  */
1751 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1752 {
1753         u64 temp64;
1754
1755         temp64 = readq(addr);
1756
1757         if(flag == ENABLE_INTRS)
1758                 temp64 &= ~((u64) value);
1759         else
1760                 temp64 |= ((u64) value);
1761         writeq(temp64, addr);
1762 }
1763
1764 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1765 {
1766         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1767         register u64 gen_int_mask = 0;
1768
1769         if (mask & TX_DMA_INTR) {
1770
1771                 gen_int_mask |= TXDMA_INT_M;
1772
1773                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1774                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1775                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1776                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1777
1778                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1779                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1780                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1781                                 &bar0->pfc_err_mask);
1782
1783                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1784                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1785                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1786
1787                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1788                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1789                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1790                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1791                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1792                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1793
1794                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1795                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1796
1797                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1798                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1799                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1800                                 flag, &bar0->lso_err_mask);
1801
1802                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1803                                 flag, &bar0->tpa_err_mask);
1804
1805                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1806
1807         }
1808
1809         if (mask & TX_MAC_INTR) {
1810                 gen_int_mask |= TXMAC_INT_M;
1811                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1812                                 &bar0->mac_int_mask);
1813                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1814                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1815                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1816                                 flag, &bar0->mac_tmac_err_mask);
1817         }
1818
1819         if (mask & TX_XGXS_INTR) {
1820                 gen_int_mask |= TXXGXS_INT_M;
1821                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1822                                 &bar0->xgxs_int_mask);
1823                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1824                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1825                                 flag, &bar0->xgxs_txgxs_err_mask);
1826         }
1827
1828         if (mask & RX_DMA_INTR) {
1829                 gen_int_mask |= RXDMA_INT_M;
1830                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1831                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1832                                 flag, &bar0->rxdma_int_mask);
1833                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1834                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1835                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1836                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1837                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1838                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1839                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1840                                 &bar0->prc_pcix_err_mask);
1841                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1842                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1843                                 &bar0->rpa_err_mask);
1844                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1845                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1846                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1847                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1848                                 flag, &bar0->rda_err_mask);
1849                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1850                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1851                                 flag, &bar0->rti_err_mask);
1852         }
1853
1854         if (mask & RX_MAC_INTR) {
1855                 gen_int_mask |= RXMAC_INT_M;
1856                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1857                                 &bar0->mac_int_mask);
1858                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1859                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1860                                 RMAC_DOUBLE_ECC_ERR |
1861                                 RMAC_LINK_STATE_CHANGE_INT,
1862                                 flag, &bar0->mac_rmac_err_mask);
1863         }
1864
1865         if (mask & RX_XGXS_INTR)
1866         {
1867                 gen_int_mask |= RXXGXS_INT_M;
1868                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1869                                 &bar0->xgxs_int_mask);
1870                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1871                                 &bar0->xgxs_rxgxs_err_mask);
1872         }
1873
1874         if (mask & MC_INTR) {
1875                 gen_int_mask |= MC_INT_M;
1876                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1877                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1878                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1879                                 &bar0->mc_err_mask);
1880         }
1881         nic->general_int_mask = gen_int_mask;
1882
1883         /* Remove this line when alarm interrupts are enabled */
1884         nic->general_int_mask = 0;
1885 }
1886 /**
1887  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1888  *  @nic: device private variable,
1889  *  @mask: A mask indicating which Intr block must be modified and,
1890  *  @flag: A flag indicating whether to enable or disable the Intrs.
1891  *  Description: This function will either disable or enable the interrupts
1892  *  depending on the flag argument. The mask argument can be used to
1893  *  enable/disable any Intr block.
1894  *  Return Value: NONE.
1895  */
1896
1897 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1898 {
1899         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1900         register u64 temp64 = 0, intr_mask = 0;
1901
1902         intr_mask = nic->general_int_mask;
1903
1904         /*  Top level interrupt classification */
1905         /*  PIC Interrupts */
1906         if (mask & TX_PIC_INTR) {
1907                 /*  Enable PIC Intrs in the general intr mask register */
1908                 intr_mask |= TXPIC_INT_M;
1909                 if (flag == ENABLE_INTRS) {
1910                         /*
1911                          * If Hercules adapter enable GPIO otherwise
1912                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1913                          * interrupts for now.
1914                          * TODO
1915                          */
1916                         if (s2io_link_fault_indication(nic) ==
1917                                         LINK_UP_DOWN_INTERRUPT ) {
1918                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1919                                                 &bar0->pic_int_mask);
1920                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1921                                                 &bar0->gpio_int_mask);
1922                         } else
1923                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1924                 } else if (flag == DISABLE_INTRS) {
1925                         /*
1926                          * Disable PIC Intrs in the general
1927                          * intr mask register
1928                          */
1929                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1930                 }
1931         }
1932
1933         /*  Tx traffic interrupts */
1934         if (mask & TX_TRAFFIC_INTR) {
1935                 intr_mask |= TXTRAFFIC_INT_M;
1936                 if (flag == ENABLE_INTRS) {
1937                         /*
1938                          * Enable all the Tx side interrupts
1939                          * writing 0 Enables all 64 TX interrupt levels
1940                          */
1941                         writeq(0x0, &bar0->tx_traffic_mask);
1942                 } else if (flag == DISABLE_INTRS) {
1943                         /*
1944                          * Disable Tx Traffic Intrs in the general intr mask
1945                          * register.
1946                          */
1947                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1948                 }
1949         }
1950
1951         /*  Rx traffic interrupts */
1952         if (mask & RX_TRAFFIC_INTR) {
1953                 intr_mask |= RXTRAFFIC_INT_M;
1954                 if (flag == ENABLE_INTRS) {
1955                         /* writing 0 Enables all 8 RX interrupt levels */
1956                         writeq(0x0, &bar0->rx_traffic_mask);
1957                 } else if (flag == DISABLE_INTRS) {
1958                         /*
1959                          * Disable Rx Traffic Intrs in the general intr mask
1960                          * register.
1961                          */
1962                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1963                 }
1964         }
1965
1966         temp64 = readq(&bar0->general_int_mask);
1967         if (flag == ENABLE_INTRS)
1968                 temp64 &= ~((u64) intr_mask);
1969         else
1970                 temp64 = DISABLE_ALL_INTRS;
1971         writeq(temp64, &bar0->general_int_mask);
1972
1973         nic->general_int_mask = readq(&bar0->general_int_mask);
1974 }
1975
1976 /**
1977  *  verify_pcc_quiescent- Checks for PCC quiescent state
1978  *  Return: 1 If PCC is quiescence
1979  *          0 If PCC is not quiescence
1980  */
1981 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1982 {
1983         int ret = 0, herc;
1984         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1985         u64 val64 = readq(&bar0->adapter_status);
1986
1987         herc = (sp->device_type == XFRAME_II_DEVICE);
1988
1989         if (flag == FALSE) {
1990                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1991                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1992                                 ret = 1;
1993                 } else {
1994                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1995                                 ret = 1;
1996                 }
1997         } else {
1998                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1999                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2000                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2001                                 ret = 1;
2002                 } else {
2003                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2004                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2005                                 ret = 1;
2006                 }
2007         }
2008
2009         return ret;
2010 }
2011 /**
2012  *  verify_xena_quiescence - Checks whether the H/W is ready
2013  *  Description: Returns whether the H/W is ready to go or not. Depending
2014  *  on whether adapter enable bit was written or not the comparison
2015  *  differs and the calling function passes the input argument flag to
2016  *  indicate this.
2017  *  Return: 1 If xena is quiescence
2018  *          0 If Xena is not quiescence
2019  */
2020
2021 static int verify_xena_quiescence(struct s2io_nic *sp)
2022 {
2023         int  mode;
2024         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2025         u64 val64 = readq(&bar0->adapter_status);
2026         mode = s2io_verify_pci_mode(sp);
2027
2028         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2029                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2030                 return 0;
2031         }
2032         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2033         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2034                 return 0;
2035         }
2036         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2037                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2038                 return 0;
2039         }
2040         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2041                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2042                 return 0;
2043         }
2044         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2045                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2046                 return 0;
2047         }
2048         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2049                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2050                 return 0;
2051         }
2052         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2053                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2054                 return 0;
2055         }
2056         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2057                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2058                 return 0;
2059         }
2060
2061         /*
2062          * In PCI 33 mode, the P_PLL is not used, and therefore,
2063          * the the P_PLL_LOCK bit in the adapter_status register will
2064          * not be asserted.
2065          */
2066         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2067                 sp->device_type == XFRAME_II_DEVICE && mode !=
2068                 PCI_MODE_PCI_33) {
2069                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2070                 return 0;
2071         }
2072         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2073                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2074                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2075                 return 0;
2076         }
2077         return 1;
2078 }
2079
2080 /**
2081  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2082  * @sp: Pointer to device specifc structure
2083  * Description :
2084  * New procedure to clear mac address reading  problems on Alpha platforms
2085  *
2086  */
2087
2088 static void fix_mac_address(struct s2io_nic * sp)
2089 {
2090         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091         u64 val64;
2092         int i = 0;
2093
2094         while (fix_mac[i] != END_SIGN) {
2095                 writeq(fix_mac[i++], &bar0->gpio_control);
2096                 udelay(10);
2097                 val64 = readq(&bar0->gpio_control);
2098         }
2099 }
2100
2101 /**
2102  *  start_nic - Turns the device on
2103  *  @nic : device private variable.
2104  *  Description:
2105  *  This function actually turns the device on. Before this  function is
2106  *  called,all Registers are configured from their reset states
2107  *  and shared memory is allocated but the NIC is still quiescent. On
2108  *  calling this function, the device interrupts are cleared and the NIC is
2109  *  literally switched on by writing into the adapter control register.
2110  *  Return Value:
2111  *  SUCCESS on success and -1 on failure.
2112  */
2113
2114 static int start_nic(struct s2io_nic *nic)
2115 {
2116         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2117         struct net_device *dev = nic->dev;
2118         register u64 val64 = 0;
2119         u16 subid, i;
2120         struct mac_info *mac_control;
2121         struct config_param *config;
2122
2123         mac_control = &nic->mac_control;
2124         config = &nic->config;
2125
2126         /*  PRC Initialization and configuration */
2127         for (i = 0; i < config->rx_ring_num; i++) {
2128                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2129                        &bar0->prc_rxd0_n[i]);
2130
2131                 val64 = readq(&bar0->prc_ctrl_n[i]);
2132                 if (nic->rxd_mode == RXD_MODE_1)
2133                         val64 |= PRC_CTRL_RC_ENABLED;
2134                 else
2135                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2136                 if (nic->device_type == XFRAME_II_DEVICE)
2137                         val64 |= PRC_CTRL_GROUP_READS;
2138                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2139                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2140                 writeq(val64, &bar0->prc_ctrl_n[i]);
2141         }
2142
2143         if (nic->rxd_mode == RXD_MODE_3B) {
2144                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2145                 val64 = readq(&bar0->rx_pa_cfg);
2146                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2147                 writeq(val64, &bar0->rx_pa_cfg);
2148         }
2149
2150         if (vlan_tag_strip == 0) {
2151                 val64 = readq(&bar0->rx_pa_cfg);
2152                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2153                 writeq(val64, &bar0->rx_pa_cfg);
2154                 vlan_strip_flag = 0;
2155         }
2156
2157         /*
2158          * Enabling MC-RLDRAM. After enabling the device, we timeout
2159          * for around 100ms, which is approximately the time required
2160          * for the device to be ready for operation.
2161          */
2162         val64 = readq(&bar0->mc_rldram_mrs);
2163         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2164         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2165         val64 = readq(&bar0->mc_rldram_mrs);
2166
2167         msleep(100);    /* Delay by around 100 ms. */
2168
2169         /* Enabling ECC Protection. */
2170         val64 = readq(&bar0->adapter_control);
2171         val64 &= ~ADAPTER_ECC_EN;
2172         writeq(val64, &bar0->adapter_control);
2173
2174         /*
2175          * Verify if the device is ready to be enabled, if so enable
2176          * it.
2177          */
2178         val64 = readq(&bar0->adapter_status);
2179         if (!verify_xena_quiescence(nic)) {
2180                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2181                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2182                           (unsigned long long) val64);
2183                 return FAILURE;
2184         }
2185
2186         /*
2187          * With some switches, link might be already up at this point.
2188          * Because of this weird behavior, when we enable laser,
2189          * we may not get link. We need to handle this. We cannot
2190          * figure out which switch is misbehaving. So we are forced to
2191          * make a global change.
2192          */
2193
2194         /* Enabling Laser. */
2195         val64 = readq(&bar0->adapter_control);
2196         val64 |= ADAPTER_EOI_TX_ON;
2197         writeq(val64, &bar0->adapter_control);
2198
2199         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2200                 /*
2201                  * Dont see link state interrupts initally on some switches,
2202                  * so directly scheduling the link state task here.
2203                  */
2204                 schedule_work(&nic->set_link_task);
2205         }
2206         /* SXE-002: Initialize link and activity LED */
2207         subid = nic->pdev->subsystem_device;
2208         if (((subid & 0xFF) >= 0x07) &&
2209             (nic->device_type == XFRAME_I_DEVICE)) {
2210                 val64 = readq(&bar0->gpio_control);
2211                 val64 |= 0x0000800000000000ULL;
2212                 writeq(val64, &bar0->gpio_control);
2213                 val64 = 0x0411040400000000ULL;
2214                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2215         }
2216
2217         return SUCCESS;
2218 }
2219 /**
2220  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2221  */
2222 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2223                                         TxD *txdlp, int get_off)
2224 {
2225         struct s2io_nic *nic = fifo_data->nic;
2226         struct sk_buff *skb;
2227         struct TxD *txds;
2228         u16 j, frg_cnt;
2229
2230         txds = txdlp;
2231         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2232                 pci_unmap_single(nic->pdev, (dma_addr_t)
2233                         txds->Buffer_Pointer, sizeof(u64),
2234                         PCI_DMA_TODEVICE);
2235                 txds++;
2236         }
2237
2238         skb = (struct sk_buff *) ((unsigned long)
2239                         txds->Host_Control);
2240         if (!skb) {
2241                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2242                 return NULL;
2243         }
2244         pci_unmap_single(nic->pdev, (dma_addr_t)
2245                          txds->Buffer_Pointer,
2246                          skb->len - skb->data_len,
2247                          PCI_DMA_TODEVICE);
2248         frg_cnt = skb_shinfo(skb)->nr_frags;
2249         if (frg_cnt) {
2250                 txds++;
2251                 for (j = 0; j < frg_cnt; j++, txds++) {
2252                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2253                         if (!txds->Buffer_Pointer)
2254                                 break;
2255                         pci_unmap_page(nic->pdev, (dma_addr_t)
2256                                         txds->Buffer_Pointer,
2257                                        frag->size, PCI_DMA_TODEVICE);
2258                 }
2259         }
2260         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2261         return(skb);
2262 }
2263
2264 /**
2265  *  free_tx_buffers - Free all queued Tx buffers
2266  *  @nic : device private variable.
2267  *  Description:
2268  *  Free all queued Tx buffers.
2269  *  Return Value: void
2270 */
2271
2272 static void free_tx_buffers(struct s2io_nic *nic)
2273 {
2274         struct net_device *dev = nic->dev;
2275         struct sk_buff *skb;
2276         struct TxD *txdp;
2277         int i, j;
2278         struct mac_info *mac_control;
2279         struct config_param *config;
2280         int cnt = 0;
2281
2282         mac_control = &nic->mac_control;
2283         config = &nic->config;
2284
2285         for (i = 0; i < config->tx_fifo_num; i++) {
2286                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2287                         txdp = (struct TxD *) \
2288                         mac_control->fifos[i].list_info[j].list_virt_addr;
2289                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2290                         if (skb) {
2291                                 nic->mac_control.stats_info->sw_stat.mem_freed
2292                                         += skb->truesize;
2293                                 dev_kfree_skb(skb);
2294                                 cnt++;
2295                         }
2296                 }
2297                 DBG_PRINT(INTR_DBG,
2298                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2299                           dev->name, cnt, i);
2300                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2301                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2302         }
2303 }
2304
2305 /**
2306  *   stop_nic -  To stop the nic
2307  *   @nic ; device private variable.
2308  *   Description:
2309  *   This function does exactly the opposite of what the start_nic()
2310  *   function does. This function is called to stop the device.
2311  *   Return Value:
2312  *   void.
2313  */
2314
2315 static void stop_nic(struct s2io_nic *nic)
2316 {
2317         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2318         register u64 val64 = 0;
2319         u16 interruptible;
2320         struct mac_info *mac_control;
2321         struct config_param *config;
2322
2323         mac_control = &nic->mac_control;
2324         config = &nic->config;
2325
2326         /*  Disable all interrupts */
2327         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2328         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2329         interruptible |= TX_PIC_INTR;
2330         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2331
2332         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2333         val64 = readq(&bar0->adapter_control);
2334         val64 &= ~(ADAPTER_CNTL_EN);
2335         writeq(val64, &bar0->adapter_control);
2336 }
2337
2338 /**
2339  *  fill_rx_buffers - Allocates the Rx side skbs
2340  *  @nic:  device private variable
2341  *  @ring_no: ring number
2342  *  Description:
2343  *  The function allocates Rx side skbs and puts the physical
2344  *  address of these buffers into the RxD buffer pointers, so that the NIC
2345  *  can DMA the received frame into these locations.
2346  *  The NIC supports 3 receive modes, viz
2347  *  1. single buffer,
2348  *  2. three buffer and
2349  *  3. Five buffer modes.
2350  *  Each mode defines how many fragments the received frame will be split
2351  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2352  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2353  *  is split into 3 fragments. As of now only single buffer mode is
2354  *  supported.
2355  *   Return Value:
2356  *  SUCCESS on success or an appropriate -ve value on failure.
2357  */
2358
2359 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2360 {
2361         struct net_device *dev = nic->dev;
2362         struct sk_buff *skb;
2363         struct RxD_t *rxdp;
2364         int off, off1, size, block_no, block_no1;
2365         u32 alloc_tab = 0;
2366         u32 alloc_cnt;
2367         struct mac_info *mac_control;
2368         struct config_param *config;
2369         u64 tmp;
2370         struct buffAdd *ba;
2371         unsigned long flags;
2372         struct RxD_t *first_rxdp = NULL;
2373         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2374         struct RxD1 *rxdp1;
2375         struct RxD3 *rxdp3;
2376         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2377
2378         mac_control = &nic->mac_control;
2379         config = &nic->config;
2380         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2381             atomic_read(&nic->rx_bufs_left[ring_no]);
2382
2383         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2384         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2385         while (alloc_tab < alloc_cnt) {
2386                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2387                     block_index;
2388                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2389
2390                 rxdp = mac_control->rings[ring_no].
2391                                 rx_blocks[block_no].rxds[off].virt_addr;
2392
2393                 if ((block_no == block_no1) && (off == off1) &&
2394                                         (rxdp->Host_Control)) {
2395                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2396                                   dev->name);
2397                         DBG_PRINT(INTR_DBG, " info equated\n");
2398                         goto end;
2399                 }
2400                 if (off && (off == rxd_count[nic->rxd_mode])) {
2401                         mac_control->rings[ring_no].rx_curr_put_info.
2402                             block_index++;
2403                         if (mac_control->rings[ring_no].rx_curr_put_info.
2404                             block_index == mac_control->rings[ring_no].
2405                                         block_count)
2406                                 mac_control->rings[ring_no].rx_curr_put_info.
2407                                         block_index = 0;
2408                         block_no = mac_control->rings[ring_no].
2409                                         rx_curr_put_info.block_index;
2410                         if (off == rxd_count[nic->rxd_mode])
2411                                 off = 0;
2412                         mac_control->rings[ring_no].rx_curr_put_info.
2413                                 offset = off;
2414                         rxdp = mac_control->rings[ring_no].
2415                                 rx_blocks[block_no].block_virt_addr;
2416                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2417                                   dev->name, rxdp);
2418                 }
2419                 if(!napi) {
2420                         spin_lock_irqsave(&nic->put_lock, flags);
2421                         mac_control->rings[ring_no].put_pos =
2422                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2423                         spin_unlock_irqrestore(&nic->put_lock, flags);
2424                 } else {
2425                         mac_control->rings[ring_no].put_pos =
2426                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2427                 }
2428                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2429                         ((nic->rxd_mode == RXD_MODE_3B) &&
2430                                 (rxdp->Control_2 & BIT(0)))) {
2431                         mac_control->rings[ring_no].rx_curr_put_info.
2432                                         offset = off;
2433                         goto end;
2434                 }
2435                 /* calculate size of skb based on ring mode */
2436                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2437                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2438                 if (nic->rxd_mode == RXD_MODE_1)
2439                         size += NET_IP_ALIGN;
2440                 else
2441                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2442
2443                 /* allocate skb */
2444                 skb = dev_alloc_skb(size);
2445                 if(!skb) {
2446                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2447                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2448                         if (first_rxdp) {
2449                                 wmb();
2450                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2451                         }
2452                         nic->mac_control.stats_info->sw_stat. \
2453                                 mem_alloc_fail_cnt++;
2454                         return -ENOMEM ;
2455                 }
2456                 nic->mac_control.stats_info->sw_stat.mem_allocated
2457                         += skb->truesize;
2458                 if (nic->rxd_mode == RXD_MODE_1) {
2459                         /* 1 buffer mode - normal operation mode */
2460                         rxdp1 = (struct RxD1*)rxdp;
2461                         memset(rxdp, 0, sizeof(struct RxD1));
2462                         skb_reserve(skb, NET_IP_ALIGN);
2463                         rxdp1->Buffer0_ptr = pci_map_single
2464                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2465                                 PCI_DMA_FROMDEVICE);
2466                         if( (rxdp1->Buffer0_ptr == 0) ||
2467                                 (rxdp1->Buffer0_ptr ==
2468                                 DMA_ERROR_CODE))
2469                                 goto pci_map_failed;
2470
2471                         rxdp->Control_2 =
2472                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2473
2474                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2475                         /*
2476                          * 2 buffer mode -
2477                          * 2 buffer mode provides 128
2478                          * byte aligned receive buffers.
2479                          */
2480
2481                         rxdp3 = (struct RxD3*)rxdp;
2482                         /* save buffer pointers to avoid frequent dma mapping */
2483                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2484                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2485                         memset(rxdp, 0, sizeof(struct RxD3));
2486                         /* restore the buffer pointers for dma sync*/
2487                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2488                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2489
2490                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2491                         skb_reserve(skb, BUF0_LEN);
2492                         tmp = (u64)(unsigned long) skb->data;
2493                         tmp += ALIGN_SIZE;
2494                         tmp &= ~ALIGN_SIZE;
2495                         skb->data = (void *) (unsigned long)tmp;
2496                         skb_reset_tail_pointer(skb);
2497
2498                         if (!(rxdp3->Buffer0_ptr))
2499                                 rxdp3->Buffer0_ptr =
2500                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2501                                            PCI_DMA_FROMDEVICE);
2502                         else
2503                                 pci_dma_sync_single_for_device(nic->pdev,
2504                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2505                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2506                         if( (rxdp3->Buffer0_ptr == 0) ||
2507                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2508                                 goto pci_map_failed;
2509
2510                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2511                         if (nic->rxd_mode == RXD_MODE_3B) {
2512                                 /* Two buffer mode */
2513
2514                                 /*
2515                                  * Buffer2 will have L3/L4 header plus
2516                                  * L4 payload
2517                                  */
2518                                 rxdp3->Buffer2_ptr = pci_map_single
2519                                 (nic->pdev, skb->data, dev->mtu + 4,
2520                                                 PCI_DMA_FROMDEVICE);
2521
2522                                 if( (rxdp3->Buffer2_ptr == 0) ||
2523                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2524                                         goto pci_map_failed;
2525
2526                                 rxdp3->Buffer1_ptr =
2527                                                 pci_map_single(nic->pdev,
2528                                                 ba->ba_1, BUF1_LEN,
2529                                                 PCI_DMA_FROMDEVICE);
2530                                 if( (rxdp3->Buffer1_ptr == 0) ||
2531                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2532                                         pci_unmap_single
2533                                                 (nic->pdev,
2534                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2535                                                 dev->mtu + 4,
2536                                                 PCI_DMA_FROMDEVICE);
2537                                         goto pci_map_failed;
2538                                 }
2539                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2540                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2541                                                                 (dev->mtu + 4);
2542                         }
2543                         rxdp->Control_2 |= BIT(0);
2544                 }
2545                 rxdp->Host_Control = (unsigned long) (skb);
2546                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2547                         rxdp->Control_1 |= RXD_OWN_XENA;
2548                 off++;
2549                 if (off == (rxd_count[nic->rxd_mode] + 1))
2550                         off = 0;
2551                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2552
2553                 rxdp->Control_2 |= SET_RXD_MARKER;
2554                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2555                         if (first_rxdp) {
2556                                 wmb();
2557                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2558                         }
2559                         first_rxdp = rxdp;
2560                 }
2561                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2562                 alloc_tab++;
2563         }
2564
2565       end:
2566         /* Transfer ownership of first descriptor to adapter just before
2567          * exiting. Before that, use memory barrier so that ownership
2568          * and other fields are seen by adapter correctly.
2569          */
2570         if (first_rxdp) {
2571                 wmb();
2572                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2573         }
2574
2575         return SUCCESS;
2576 pci_map_failed:
2577         stats->pci_map_fail_cnt++;
2578         stats->mem_freed += skb->truesize;
2579         dev_kfree_skb_irq(skb);
2580         return -ENOMEM;
2581 }
2582
2583 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2584 {
2585         struct net_device *dev = sp->dev;
2586         int j;
2587         struct sk_buff *skb;
2588         struct RxD_t *rxdp;
2589         struct mac_info *mac_control;
2590         struct buffAdd *ba;
2591         struct RxD1 *rxdp1;
2592         struct RxD3 *rxdp3;
2593
2594         mac_control = &sp->mac_control;
2595         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2596                 rxdp = mac_control->rings[ring_no].
2597                                 rx_blocks[blk].rxds[j].virt_addr;
2598                 skb = (struct sk_buff *)
2599                         ((unsigned long) rxdp->Host_Control);
2600                 if (!skb) {
2601                         continue;
2602                 }
2603                 if (sp->rxd_mode == RXD_MODE_1) {
2604                         rxdp1 = (struct RxD1*)rxdp;
2605                         pci_unmap_single(sp->pdev, (dma_addr_t)
2606                                 rxdp1->Buffer0_ptr,
2607                                 dev->mtu +
2608                                 HEADER_ETHERNET_II_802_3_SIZE
2609                                 + HEADER_802_2_SIZE +
2610                                 HEADER_SNAP_SIZE,
2611                                 PCI_DMA_FROMDEVICE);
2612                         memset(rxdp, 0, sizeof(struct RxD1));
2613                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2614                         rxdp3 = (struct RxD3*)rxdp;
2615                         ba = &mac_control->rings[ring_no].
2616                                 ba[blk][j];
2617                         pci_unmap_single(sp->pdev, (dma_addr_t)
2618                                 rxdp3->Buffer0_ptr,
2619                                 BUF0_LEN,
2620                                 PCI_DMA_FROMDEVICE);
2621                         pci_unmap_single(sp->pdev, (dma_addr_t)
2622                                 rxdp3->Buffer1_ptr,
2623                                 BUF1_LEN,
2624                                 PCI_DMA_FROMDEVICE);
2625                         pci_unmap_single(sp->pdev, (dma_addr_t)
2626                                 rxdp3->Buffer2_ptr,
2627                                 dev->mtu + 4,
2628                                 PCI_DMA_FROMDEVICE);
2629                         memset(rxdp, 0, sizeof(struct RxD3));
2630                 }
2631                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2632                 dev_kfree_skb(skb);
2633                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2634         }
2635 }
2636
2637 /**
2638  *  free_rx_buffers - Frees all Rx buffers
2639  *  @sp: device private variable.
2640  *  Description:
2641  *  This function will free all Rx buffers allocated by host.
2642  *  Return Value:
2643  *  NONE.
2644  */
2645
2646 static void free_rx_buffers(struct s2io_nic *sp)
2647 {
2648         struct net_device *dev = sp->dev;
2649         int i, blk = 0, buf_cnt = 0;
2650         struct mac_info *mac_control;
2651         struct config_param *config;
2652
2653         mac_control = &sp->mac_control;
2654         config = &sp->config;
2655
2656         for (i = 0; i < config->rx_ring_num; i++) {
2657                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2658                         free_rxd_blk(sp,i,blk);
2659
2660                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2661                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2662                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2663                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2664                 atomic_set(&sp->rx_bufs_left[i], 0);
2665                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2666                           dev->name, buf_cnt, i);
2667         }
2668 }
2669
2670 /**
2671  * s2io_poll - Rx interrupt handler for NAPI support
2672  * @napi : pointer to the napi structure.
2673  * @budget : The number of packets that were budgeted to be processed
2674  * during  one pass through the 'Poll" function.
2675  * Description:
2676  * Comes into picture only if NAPI support has been incorporated. It does
2677  * the same thing that rx_intr_handler does, but not in a interrupt context
2678  * also It will process only a given number of packets.
2679  * Return value:
2680  * 0 on success and 1 if there are No Rx packets to be processed.
2681  */
2682
2683 static int s2io_poll(struct napi_struct *napi, int budget)
2684 {
2685         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2686         struct net_device *dev = nic->dev;
2687         int pkt_cnt = 0, org_pkts_to_process;
2688         struct mac_info *mac_control;
2689         struct config_param *config;
2690         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2691         int i;
2692
2693         if (!is_s2io_card_up(nic))
2694                 return 0;
2695
2696         mac_control = &nic->mac_control;
2697         config = &nic->config;
2698
2699         nic->pkts_to_process = budget;
2700         org_pkts_to_process = nic->pkts_to_process;
2701
2702         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2703         readl(&bar0->rx_traffic_int);
2704
2705         for (i = 0; i < config->rx_ring_num; i++) {
2706                 rx_intr_handler(&mac_control->rings[i]);
2707                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2708                 if (!nic->pkts_to_process) {
2709                         /* Quota for the current iteration has been met */
2710                         goto no_rx;
2711                 }
2712         }
2713
2714         netif_rx_complete(dev, napi);
2715
2716         for (i = 0; i < config->rx_ring_num; i++) {
2717                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2718                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2719                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2720                         break;
2721                 }
2722         }
2723         /* Re enable the Rx interrupts. */
2724         writeq(0x0, &bar0->rx_traffic_mask);
2725         readl(&bar0->rx_traffic_mask);
2726         return pkt_cnt;
2727
2728 no_rx:
2729         for (i = 0; i < config->rx_ring_num; i++) {
2730                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2731                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2732                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2733                         break;
2734                 }
2735         }
2736         return pkt_cnt;
2737 }
2738
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 /**
2741  * s2io_netpoll - netpoll event handler entry point
2742  * @dev : pointer to the device structure.
2743  * Description:
2744  *      This function will be called by upper layer to check for events on the
2745  * interface in situations where interrupts are disabled. It is used for
2746  * specific in-kernel networking tasks, such as remote consoles and kernel
2747  * debugging over the network (example netdump in RedHat).
2748  */
2749 static void s2io_netpoll(struct net_device *dev)
2750 {
2751         struct s2io_nic *nic = dev->priv;
2752         struct mac_info *mac_control;
2753         struct config_param *config;
2754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2755         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2756         int i;
2757
2758         if (pci_channel_offline(nic->pdev))
2759                 return;
2760
2761         disable_irq(dev->irq);
2762
2763         mac_control = &nic->mac_control;
2764         config = &nic->config;
2765
2766         writeq(val64, &bar0->rx_traffic_int);
2767         writeq(val64, &bar0->tx_traffic_int);
2768
2769         /* we need to free up the transmitted skbufs or else netpoll will
2770          * run out of skbs and will fail and eventually netpoll application such
2771          * as netdump will fail.
2772          */
2773         for (i = 0; i < config->tx_fifo_num; i++)
2774                 tx_intr_handler(&mac_control->fifos[i]);
2775
2776         /* check for received packet and indicate up to network */
2777         for (i = 0; i < config->rx_ring_num; i++)
2778                 rx_intr_handler(&mac_control->rings[i]);
2779
2780         for (i = 0; i < config->rx_ring_num; i++) {
2781                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2782                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2783                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2784                         break;
2785                 }
2786         }
2787         enable_irq(dev->irq);
2788         return;
2789 }
2790 #endif
2791
2792 /**
2793  *  rx_intr_handler - Rx interrupt handler
2794  *  @nic: device private variable.
2795  *  Description:
2796  *  If the interrupt is because of a received frame or if the
2797  *  receive ring contains fresh as yet un-processed frames,this function is
2798  *  called. It picks out the RxD at which place the last Rx processing had
2799  *  stopped and sends the skb to the OSM's Rx handler and then increments
2800  *  the offset.
2801  *  Return Value:
2802  *  NONE.
2803  */
2804 static void rx_intr_handler(struct ring_info *ring_data)
2805 {
2806         struct s2io_nic *nic = ring_data->nic;
2807         struct net_device *dev = (struct net_device *) nic->dev;
2808         int get_block, put_block, put_offset;
2809         struct rx_curr_get_info get_info, put_info;
2810         struct RxD_t *rxdp;
2811         struct sk_buff *skb;
2812         int pkt_cnt = 0;
2813         int i;
2814         struct RxD1* rxdp1;
2815         struct RxD3* rxdp3;
2816
2817         spin_lock(&nic->rx_lock);
2818
2819         get_info = ring_data->rx_curr_get_info;
2820         get_block = get_info.block_index;
2821         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2822         put_block = put_info.block_index;
2823         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2824         if (!napi) {
2825                 spin_lock(&nic->put_lock);
2826                 put_offset = ring_data->put_pos;
2827                 spin_unlock(&nic->put_lock);
2828         } else
2829                 put_offset = ring_data->put_pos;
2830
2831         while (RXD_IS_UP2DT(rxdp)) {
2832                 /*
2833                  * If your are next to put index then it's
2834                  * FIFO full condition
2835                  */
2836                 if ((get_block == put_block) &&
2837                     (get_info.offset + 1) == put_info.offset) {
2838                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2839                         break;
2840                 }
2841                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2842                 if (skb == NULL) {
2843                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2844                                   dev->name);
2845                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2846                         spin_unlock(&nic->rx_lock);
2847                         return;
2848                 }
2849                 if (nic->rxd_mode == RXD_MODE_1) {
2850                         rxdp1 = (struct RxD1*)rxdp;
2851                         pci_unmap_single(nic->pdev, (dma_addr_t)
2852                                 rxdp1->Buffer0_ptr,
2853                                 dev->mtu +
2854                                 HEADER_ETHERNET_II_802_3_SIZE +
2855                                 HEADER_802_2_SIZE +
2856                                 HEADER_SNAP_SIZE,
2857                                 PCI_DMA_FROMDEVICE);
2858                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2859                         rxdp3 = (struct RxD3*)rxdp;
2860                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2861                                 rxdp3->Buffer0_ptr,
2862                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2863                         pci_unmap_single(nic->pdev, (dma_addr_t)
2864                                 rxdp3->Buffer2_ptr,
2865                                 dev->mtu + 4,
2866                                 PCI_DMA_FROMDEVICE);
2867                 }
2868                 prefetch(skb->data);
2869                 rx_osm_handler(ring_data, rxdp);
2870                 get_info.offset++;
2871                 ring_data->rx_curr_get_info.offset = get_info.offset;
2872                 rxdp = ring_data->rx_blocks[get_block].
2873                                 rxds[get_info.offset].virt_addr;
2874                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2875                         get_info.offset = 0;
2876                         ring_data->rx_curr_get_info.offset = get_info.offset;
2877                         get_block++;
2878                         if (get_block == ring_data->block_count)
2879                                 get_block = 0;
2880                         ring_data->rx_curr_get_info.block_index = get_block;
2881                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2882                 }
2883
2884                 nic->pkts_to_process -= 1;
2885                 if ((napi) && (!nic->pkts_to_process))
2886                         break;
2887                 pkt_cnt++;
2888                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2889                         break;
2890         }
2891         if (nic->lro) {
2892                 /* Clear all LRO sessions before exiting */
2893                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2894                         struct lro *lro = &nic->lro0_n[i];
2895                         if (lro->in_use) {
2896                                 update_L3L4_header(nic, lro);
2897                                 queue_rx_frame(lro->parent);
2898                                 clear_lro_session(lro);
2899                         }
2900                 }
2901         }
2902
2903         spin_unlock(&nic->rx_lock);
2904 }
2905
2906 /**
2907  *  tx_intr_handler - Transmit interrupt handler
2908  *  @nic : device private variable
2909  *  Description:
2910  *  If an interrupt was raised to indicate DMA complete of the
2911  *  Tx packet, this function is called. It identifies the last TxD
2912  *  whose buffer was freed and frees all skbs whose data have already
2913  *  DMA'ed into the NICs internal memory.
2914  *  Return Value:
2915  *  NONE
2916  */
2917
2918 static void tx_intr_handler(struct fifo_info *fifo_data)
2919 {
2920         struct s2io_nic *nic = fifo_data->nic;
2921         struct net_device *dev = (struct net_device *) nic->dev;
2922         struct tx_curr_get_info get_info, put_info;
2923         struct sk_buff *skb;
2924         struct TxD *txdlp;
2925         u8 err_mask;
2926
2927         get_info = fifo_data->tx_curr_get_info;
2928         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2929         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2930             list_virt_addr;
2931         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2932                (get_info.offset != put_info.offset) &&
2933                (txdlp->Host_Control)) {
2934                 /* Check for TxD errors */
2935                 if (txdlp->Control_1 & TXD_T_CODE) {
2936                         unsigned long long err;
2937                         err = txdlp->Control_1 & TXD_T_CODE;
2938                         if (err & 0x1) {
2939                                 nic->mac_control.stats_info->sw_stat.
2940                                                 parity_err_cnt++;
2941                         }
2942
2943                         /* update t_code statistics */
2944                         err_mask = err >> 48;
2945                         switch(err_mask) {
2946                                 case 2:
2947                                         nic->mac_control.stats_info->sw_stat.
2948                                                         tx_buf_abort_cnt++;
2949                                 break;
2950
2951                                 case 3:
2952                                         nic->mac_control.stats_info->sw_stat.
2953                                                         tx_desc_abort_cnt++;
2954                                 break;
2955
2956                                 case 7:
2957                                         nic->mac_control.stats_info->sw_stat.
2958                                                         tx_parity_err_cnt++;
2959                                 break;
2960
2961                                 case 10:
2962                                         nic->mac_control.stats_info->sw_stat.
2963                                                         tx_link_loss_cnt++;
2964                                 break;
2965
2966                                 case 15:
2967                                         nic->mac_control.stats_info->sw_stat.
2968                                                         tx_list_proc_err_cnt++;
2969                                 break;
2970                         }
2971                 }
2972
2973                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2974                 if (skb == NULL) {
2975                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2976                         __FUNCTION__);
2977                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2978                         return;
2979                 }
2980
2981                 /* Updating the statistics block */
2982                 nic->stats.tx_bytes += skb->len;
2983                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2984                 dev_kfree_skb_irq(skb);
2985
2986                 get_info.offset++;
2987                 if (get_info.offset == get_info.fifo_len + 1)
2988                         get_info.offset = 0;
2989                 txdlp = (struct TxD *) fifo_data->list_info
2990                     [get_info.offset].list_virt_addr;
2991                 fifo_data->tx_curr_get_info.offset =
2992                     get_info.offset;
2993         }
2994
2995         spin_lock(&nic->tx_lock);
2996         if (netif_queue_stopped(dev))
2997                 netif_wake_queue(dev);
2998         spin_unlock(&nic->tx_lock);
2999 }
3000
3001 /**
3002  *  s2io_mdio_write - Function to write in to MDIO registers
3003  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3004  *  @addr     : address value
3005  *  @value    : data value
3006  *  @dev      : pointer to net_device structure
3007  *  Description:
3008  *  This function is used to write values to the MDIO registers
3009  *  NONE
3010  */
3011 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3012 {
3013         u64 val64 = 0x0;
3014         struct s2io_nic *sp = dev->priv;
3015         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3016
3017         //address transaction
3018         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3019                         | MDIO_MMD_DEV_ADDR(mmd_type)
3020                         | MDIO_MMS_PRT_ADDR(0x0);
3021         writeq(val64, &bar0->mdio_control);
3022         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3023         writeq(val64, &bar0->mdio_control);
3024         udelay(100);
3025
3026         //Data transaction
3027         val64 = 0x0;
3028         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029                         | MDIO_MMD_DEV_ADDR(mmd_type)
3030                         | MDIO_MMS_PRT_ADDR(0x0)
3031                         | MDIO_MDIO_DATA(value)
3032                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3033         writeq(val64, &bar0->mdio_control);
3034         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3035         writeq(val64, &bar0->mdio_control);
3036         udelay(100);
3037
3038         val64 = 0x0;
3039         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040         | MDIO_MMD_DEV_ADDR(mmd_type)
3041         | MDIO_MMS_PRT_ADDR(0x0)
3042         | MDIO_OP(MDIO_OP_READ_TRANS);
3043         writeq(val64, &bar0->mdio_control);
3044         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045         writeq(val64, &bar0->mdio_control);
3046         udelay(100);
3047
3048 }
3049
3050 /**
3051  *  s2io_mdio_read - Function to write in to MDIO registers
3052  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3053  *  @addr     : address value
3054  *  @dev      : pointer to net_device structure
3055  *  Description:
3056  *  This function is used to read values to the MDIO registers
3057  *  NONE
3058  */
3059 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3060 {
3061         u64 val64 = 0x0;
3062         u64 rval64 = 0x0;
3063         struct s2io_nic *sp = dev->priv;
3064         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3065
3066         /* address transaction */
3067         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3068                         | MDIO_MMD_DEV_ADDR(mmd_type)
3069                         | MDIO_MMS_PRT_ADDR(0x0);
3070         writeq(val64, &bar0->mdio_control);
3071         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3072         writeq(val64, &bar0->mdio_control);
3073         udelay(100);
3074
3075         /* Data transaction */
3076         val64 = 0x0;
3077         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078                         | MDIO_MMD_DEV_ADDR(mmd_type)
3079                         | MDIO_MMS_PRT_ADDR(0x0)
3080                         | MDIO_OP(MDIO_OP_READ_TRANS);
3081         writeq(val64, &bar0->mdio_control);
3082         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083         writeq(val64, &bar0->mdio_control);
3084         udelay(100);
3085
3086         /* Read the value from regs */
3087         rval64 = readq(&bar0->mdio_control);
3088         rval64 = rval64 & 0xFFFF0000;
3089         rval64 = rval64 >> 16;
3090         return rval64;
3091 }
3092 /**
3093  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3094  *  @counter      : couter value to be updated
3095  *  @flag         : flag to indicate the status
3096  *  @type         : counter type
3097  *  Description:
3098  *  This function is to check the status of the xpak counters value
3099  *  NONE
3100  */
3101
3102 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3103 {
3104         u64 mask = 0x3;
3105         u64 val64;
3106         int i;
3107         for(i = 0; i <index; i++)
3108                 mask = mask << 0x2;
3109
3110         if(flag > 0)
3111         {
3112                 *counter = *counter + 1;
3113                 val64 = *regs_stat & mask;
3114                 val64 = val64 >> (index * 0x2);
3115                 val64 = val64 + 1;
3116                 if(val64 == 3)
3117                 {
3118                         switch(type)
3119                         {
3120                         case 1:
3121                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3122                                           "service. Excessive temperatures may "
3123                                           "result in premature transceiver "
3124                                           "failure \n");
3125                         break;
3126                         case 2:
3127                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3128                                           "service Excessive bias currents may "
3129                                           "indicate imminent laser diode "
3130                                           "failure \n");
3131                         break;
3132                         case 3:
3133                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3134                                           "service Excessive laser output "
3135                                           "power may saturate far-end "
3136                                           "receiver\n");
3137                         break;
3138                         default:
3139                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3140                                           "type \n");
3141                         }
3142                         val64 = 0x0;
3143                 }
3144                 val64 = val64 << (index * 0x2);
3145                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3146
3147         } else {
3148                 *regs_stat = *regs_stat & (~mask);
3149         }
3150 }
3151
3152 /**
3153  *  s2io_updt_xpak_counter - Function to update the xpak counters
3154  *  @dev         : pointer to net_device struct
3155  *  Description:
3156  *  This function is to upate the status of the xpak counters value
3157  *  NONE
3158  */
3159 static void s2io_updt_xpak_counter(struct net_device *dev)
3160 {
3161         u16 flag  = 0x0;
3162         u16 type  = 0x0;
3163         u16 val16 = 0x0;
3164         u64 val64 = 0x0;
3165         u64 addr  = 0x0;
3166
3167         struct s2io_nic *sp = dev->priv;
3168         struct stat_block *stat_info = sp->mac_control.stats_info;
3169
3170         /* Check the communication with the MDIO slave */
3171         addr = 0x0000;
3172         val64 = 0x0;
3173         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3174         if((val64 == 0xFFFF) || (val64 == 0x0000))
3175         {
3176                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3177                           "Returned %llx\n", (unsigned long long)val64);
3178                 return;
3179         }
3180
3181         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3182         if(val64 != 0x2040)
3183         {
3184                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3185                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3186                           (unsigned long long)val64);
3187                 return;
3188         }
3189
3190         /* Loading the DOM register to MDIO register */
3191         addr = 0xA100;
3192         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3193         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3194
3195         /* Reading the Alarm flags */
3196         addr = 0xA070;
3197         val64 = 0x0;
3198         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3199
3200         flag = CHECKBIT(val64, 0x7);
3201         type = 1;
3202         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3203                                 &stat_info->xpak_stat.xpak_regs_stat,
3204                                 0x0, flag, type);
3205
3206         if(CHECKBIT(val64, 0x6))
3207                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3208
3209         flag = CHECKBIT(val64, 0x3);
3210         type = 2;
3211         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3212                                 &stat_info->xpak_stat.xpak_regs_stat,
3213                                 0x2, flag, type);
3214
3215         if(CHECKBIT(val64, 0x2))
3216                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3217
3218         flag = CHECKBIT(val64, 0x1);
3219         type = 3;
3220         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3221                                 &stat_info->xpak_stat.xpak_regs_stat,
3222                                 0x4, flag, type);
3223
3224         if(CHECKBIT(val64, 0x0))
3225                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3226
3227         /* Reading the Warning flags */
3228         addr = 0xA074;
3229         val64 = 0x0;
3230         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3231
3232         if(CHECKBIT(val64, 0x7))
3233                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3234
3235         if(CHECKBIT(val64, 0x6))
3236                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3237
3238         if(CHECKBIT(val64, 0x3))
3239                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3240
3241         if(CHECKBIT(val64, 0x2))
3242                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3243
3244         if(CHECKBIT(val64, 0x1))
3245                 stat_info->xpak_stat.warn_laser_output_power_high++;
3246
3247         if(CHECKBIT(val64, 0x0))
3248                 stat_info->xpak_stat.warn_laser_output_power_low++;
3249 }
3250
3251 /**
3252  *  wait_for_cmd_complete - waits for a command to complete.
3253  *  @sp : private member of the device structure, which is a pointer to the
3254  *  s2io_nic structure.
3255  *  Description: Function that waits for a command to Write into RMAC
3256  *  ADDR DATA registers to be completed and returns either success or
3257  *  error depending on whether the command was complete or not.
3258  *  Return value:
3259  *   SUCCESS on success and FAILURE on failure.
3260  */
3261
3262 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3263                                 int bit_state)
3264 {
3265         int ret = FAILURE, cnt = 0, delay = 1;
3266         u64 val64;
3267
3268         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3269                 return FAILURE;
3270
3271         do {
3272                 val64 = readq(addr);
3273                 if (bit_state == S2IO_BIT_RESET) {
3274                         if (!(val64 & busy_bit)) {
3275                                 ret = SUCCESS;
3276                                 break;
3277                         }
3278                 } else {
3279                         if (!(val64 & busy_bit)) {
3280                                 ret = SUCCESS;
3281                                 break;
3282                         }
3283                 }
3284
3285                 if(in_interrupt())
3286                         mdelay(delay);
3287                 else
3288                         msleep(delay);
3289
3290                 if (++cnt >= 10)
3291                         delay = 50;
3292         } while (cnt < 20);
3293         return ret;
3294 }
3295 /*
3296  * check_pci_device_id - Checks if the device id is supported
3297  * @id : device id
3298  * Description: Function to check if the pci device id is supported by driver.
3299  * Return value: Actual device id if supported else PCI_ANY_ID
3300  */
3301 static u16 check_pci_device_id(u16 id)
3302 {
3303         switch (id) {
3304         case PCI_DEVICE_ID_HERC_WIN:
3305         case PCI_DEVICE_ID_HERC_UNI:
3306                 return XFRAME_II_DEVICE;
3307         case PCI_DEVICE_ID_S2IO_UNI:
3308         case PCI_DEVICE_ID_S2IO_WIN:
3309                 return XFRAME_I_DEVICE;
3310         default:
3311                 return PCI_ANY_ID;
3312         }
3313 }
3314
3315 /**
3316  *  s2io_reset - Resets the card.
3317  *  @sp : private member of the device structure.
3318  *  Description: Function to Reset the card. This function then also
3319  *  restores the previously saved PCI configuration space registers as
3320  *  the card reset also resets the configuration space.
3321  *  Return value:
3322  *  void.
3323  */
3324
3325 static void s2io_reset(struct s2io_nic * sp)
3326 {
3327         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3328         u64 val64;
3329         u16 subid, pci_cmd;
3330         int i;
3331         u16 val16;
3332         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3333         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3334
3335         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3336                         __FUNCTION__, sp->dev->name);
3337
3338         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3339         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3340
3341         val64 = SW_RESET_ALL;
3342         writeq(val64, &bar0->sw_reset);
3343         if (strstr(sp->product_name, "CX4")) {
3344                 msleep(750);
3345         }
3346         msleep(250);
3347         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3348
3349                 /* Restore the PCI state saved during initialization. */
3350                 pci_restore_state(sp->pdev);
3351                 pci_read_config_word(sp->pdev, 0x2, &val16);
3352                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3353                         break;
3354                 msleep(200);
3355         }
3356
3357         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3358                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3359         }
3360
3361         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3362
3363         s2io_init_pci(sp);
3364
3365         /* Set swapper to enable I/O register access */
3366         s2io_set_swapper(sp);
3367
3368         /* Restore the MSIX table entries from local variables */
3369         restore_xmsi_data(sp);
3370
3371         /* Clear certain PCI/PCI-X fields after reset */
3372         if (sp->device_type == XFRAME_II_DEVICE) {
3373                 /* Clear "detected parity error" bit */
3374                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3375
3376                 /* Clearing PCIX Ecc status register */
3377                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3378
3379                 /* Clearing PCI_STATUS error reflected here */
3380                 writeq(BIT(62), &bar0->txpic_int_reg);
3381         }
3382
3383         /* Reset device statistics maintained by OS */
3384         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3385
3386         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3387         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3388         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3389         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3390         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3391         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3392         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3393         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3394         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3395         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3396         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3397         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3398         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3399         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3400         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3401         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3402         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3403         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3404         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3405
3406         /* SXE-002: Configure link and activity LED to turn it off */
3407         subid = sp->pdev->subsystem_device;
3408         if (((subid & 0xFF) >= 0x07) &&
3409             (sp->device_type == XFRAME_I_DEVICE)) {
3410                 val64 = readq(&bar0->gpio_control);
3411                 val64 |= 0x0000800000000000ULL;
3412                 writeq(val64, &bar0->gpio_control);
3413                 val64 = 0x0411040400000000ULL;
3414                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3415         }
3416
3417         /*
3418          * Clear spurious ECC interrupts that would have occured on
3419          * XFRAME II cards after reset.
3420          */
3421         if (sp->device_type == XFRAME_II_DEVICE) {
3422                 val64 = readq(&bar0->pcc_err_reg);
3423                 writeq(val64, &bar0->pcc_err_reg);
3424         }
3425
3426         /* restore the previously assigned mac address */
3427         do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3428
3429         sp->device_enabled_once = FALSE;
3430 }
3431
3432 /**
3433  *  s2io_set_swapper - to set the swapper controle on the card
3434  *  @sp : private member of the device structure,
3435  *  pointer to the s2io_nic structure.
3436  *  Description: Function to set the swapper control on the card
3437  *  correctly depending on the 'endianness' of the system.
3438  *  Return value:
3439  *  SUCCESS on success and FAILURE on failure.
3440  */
3441
3442 static int s2io_set_swapper(struct s2io_nic * sp)
3443 {
3444         struct net_device *dev = sp->dev;
3445         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3446         u64 val64, valt, valr;
3447
3448         /*
3449          * Set proper endian settings and verify the same by reading
3450          * the PIF Feed-back register.
3451          */
3452
3453         val64 = readq(&bar0->pif_rd_swapper_fb);
3454         if (val64 != 0x0123456789ABCDEFULL) {
3455                 int i = 0;
3456                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3457                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3458                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3459                                 0};                     /* FE=0, SE=0 */
3460
3461                 while(i<4) {
3462                         writeq(value[i], &bar0->swapper_ctrl);
3463                         val64 = readq(&bar0->pif_rd_swapper_fb);
3464                         if (val64 == 0x0123456789ABCDEFULL)
3465                                 break;
3466                         i++;
3467                 }
3468                 if (i == 4) {
3469                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3470                                 dev->name);
3471                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3472                                 (unsigned long long) val64);
3473                         return FAILURE;
3474                 }
3475                 valr = value[i];
3476         } else {
3477                 valr = readq(&bar0->swapper_ctrl);
3478         }
3479
3480         valt = 0x0123456789ABCDEFULL;
3481         writeq(valt, &bar0->xmsi_address);
3482         val64 = readq(&bar0->xmsi_address);
3483
3484         if(val64 != valt) {
3485                 int i = 0;
3486                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3487                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3488                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3489                                 0};                     /* FE=0, SE=0 */
3490
3491                 while(i<4) {
3492                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3493                         writeq(valt, &bar0->xmsi_address);
3494                         val64 = readq(&bar0->xmsi_address);
3495                         if(val64 == valt)
3496                                 break;
3497                         i++;
3498                 }
3499                 if(i == 4) {
3500                         unsigned long long x = val64;
3501                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3502                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3503                         return FAILURE;
3504                 }
3505         }
3506         val64 = readq(&bar0->swapper_ctrl);
3507         val64 &= 0xFFFF000000000000ULL;
3508
3509 #ifdef  __BIG_ENDIAN
3510         /*
3511          * The device by default set to a big endian format, so a
3512          * big endian driver need not set anything.
3513          */
3514         val64 |= (SWAPPER_CTRL_TXP_FE |
3515                  SWAPPER_CTRL_TXP_SE |
3516                  SWAPPER_CTRL_TXD_R_FE |
3517                  SWAPPER_CTRL_TXD_W_FE |
3518                  SWAPPER_CTRL_TXF_R_FE |
3519                  SWAPPER_CTRL_RXD_R_FE |
3520                  SWAPPER_CTRL_RXD_W_FE |
3521                  SWAPPER_CTRL_RXF_W_FE |
3522                  SWAPPER_CTRL_XMSI_FE |
3523                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3524         if (sp->config.intr_type == INTA)
3525                 val64 |= SWAPPER_CTRL_XMSI_SE;
3526         writeq(val64, &bar0->swapper_ctrl);
3527 #else
3528         /*
3529          * Initially we enable all bits to make it accessible by the
3530          * driver, then we selectively enable only those bits that
3531          * we want to set.
3532          */
3533         val64 |= (SWAPPER_CTRL_TXP_FE |
3534                  SWAPPER_CTRL_TXP_SE |
3535                  SWAPPER_CTRL_TXD_R_FE |
3536                  SWAPPER_CTRL_TXD_R_SE |
3537                  SWAPPER_CTRL_TXD_W_FE |
3538                  SWAPPER_CTRL_TXD_W_SE |
3539                  SWAPPER_CTRL_TXF_R_FE |
3540                  SWAPPER_CTRL_RXD_R_FE |
3541                  SWAPPER_CTRL_RXD_R_SE |
3542                  SWAPPER_CTRL_RXD_W_FE |
3543                  SWAPPER_CTRL_RXD_W_SE |
3544                  SWAPPER_CTRL_RXF_W_FE |
3545                  SWAPPER_CTRL_XMSI_FE |
3546                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3547         if (sp->config.intr_type == INTA)
3548                 val64 |= SWAPPER_CTRL_XMSI_SE;
3549         writeq(val64, &bar0->swapper_ctrl);
3550 #endif
3551         val64 = readq(&bar0->swapper_ctrl);
3552
3553         /*
3554          * Verifying if endian settings are accurate by reading a
3555          * feedback register.
3556          */
3557         val64 = readq(&bar0->pif_rd_swapper_fb);
3558         if (val64 != 0x0123456789ABCDEFULL) {
3559                 /* Endian settings are incorrect, calls for another dekko. */
3560                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3561                           dev->name);
3562                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3563                           (unsigned long long) val64);
3564                 return FAILURE;
3565         }
3566
3567         return SUCCESS;
3568 }
3569
3570 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3571 {
3572         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3573         u64 val64;
3574         int ret = 0, cnt = 0;
3575
3576         do {
3577                 val64 = readq(&bar0->xmsi_access);
3578                 if (!(val64 & BIT(15)))
3579                         break;
3580                 mdelay(1);
3581                 cnt++;
3582         } while(cnt < 5);
3583         if (cnt == 5) {
3584                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3585                 ret = 1;
3586         }
3587
3588         return ret;
3589 }
3590
3591 static void restore_xmsi_data(struct s2io_nic *nic)
3592 {
3593         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3594         u64 val64;
3595         int i;
3596
3597         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3598                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3599                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3600                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3601                 writeq(val64, &bar0->xmsi_access);
3602                 if (wait_for_msix_trans(nic, i)) {
3603                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3604                         continue;
3605                 }
3606         }
3607 }
3608
3609 static void store_xmsi_data(struct s2io_nic *nic)
3610 {
3611         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3612         u64 val64, addr, data;
3613         int i;
3614
3615         /* Store and display */
3616         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3617                 val64 = (BIT(15) | vBIT(i, 26, 6));
3618                 writeq(val64, &bar0->xmsi_access);
3619                 if (wait_for_msix_trans(nic, i)) {
3620                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3621                         continue;
3622                 }
3623                 addr = readq(&bar0->xmsi_address);
3624                 data = readq(&bar0->xmsi_data);
3625                 if (addr && data) {
3626                         nic->msix_info[i].addr = addr;
3627                         nic->msix_info[i].data = data;
3628                 }
3629         }
3630 }
3631
3632 static int s2io_enable_msi_x(struct s2io_nic *nic)
3633 {
3634         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3635         u64 tx_mat, rx_mat;
3636         u16 msi_control; /* Temp variable */
3637         int ret, i, j, msix_indx = 1;
3638
3639         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3640                                GFP_KERNEL);
3641         if (!nic->entries) {
3642                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3643                         __FUNCTION__);
3644                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3645                 return -ENOMEM;
3646         }
3647         nic->mac_control.stats_info->sw_stat.mem_allocated
3648                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3649
3650         nic->s2io_entries =
3651                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3652                                    GFP_KERNEL);
3653         if (!nic->s2io_entries) {
3654                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3655                         __FUNCTION__);
3656                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3657                 kfree(nic->entries);
3658                 nic->mac_control.stats_info->sw_stat.mem_freed
3659                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660                 return -ENOMEM;
3661         }
3662          nic->mac_control.stats_info->sw_stat.mem_allocated
3663                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3664
3665         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3666                 nic->entries[i].entry = i;
3667                 nic->s2io_entries[i].entry = i;
3668                 nic->s2io_entries[i].arg = NULL;
3669                 nic->s2io_entries[i].in_use = 0;
3670         }
3671
3672         tx_mat = readq(&bar0->tx_mat0_n[0]);
3673         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3674                 tx_mat |= TX_MAT_SET(i, msix_indx);
3675                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3676                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3677                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3678         }
3679         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3680
3681         rx_mat = readq(&bar0->rx_mat);
3682         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3683                 rx_mat |= RX_MAT_SET(j, msix_indx);
3684                 nic->s2io_entries[msix_indx].arg
3685                         = &nic->mac_control.rings[j];
3686                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3687                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3688         }
3689         writeq(rx_mat, &bar0->rx_mat);
3690
3691         nic->avail_msix_vectors = 0;
3692         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3693         /* We fail init if error or we get less vectors than min required */
3694         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3695                 nic->avail_msix_vectors = ret;
3696                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3697         }
3698         if (ret) {
3699                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3700                 kfree(nic->entries);
3701                 nic->mac_control.stats_info->sw_stat.mem_freed
3702                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3703                 kfree(nic->s2io_entries);
3704                 nic->mac_control.stats_info->sw_stat.mem_freed
3705                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3706                 nic->entries = NULL;
3707                 nic->s2io_entries = NULL;
3708                 nic->avail_msix_vectors = 0;
3709                 return -ENOMEM;
3710         }
3711         if (!nic->avail_msix_vectors)
3712                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3713
3714         /*
3715          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3716          * in the herc NIC. (Temp change, needs to be removed later)
3717          */
3718         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3719         msi_control |= 0x1; /* Enable MSI */
3720         pci_write_config_word(nic->pdev, 0x42, msi_control);
3721
3722         return 0;
3723 }
3724
3725 /* Handle software interrupt used during MSI(X) test */
3726 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3727 {
3728         struct s2io_nic *sp = dev_id;
3729
3730         sp->msi_detected = 1;
3731         wake_up(&sp->msi_wait);
3732
3733         return IRQ_HANDLED;
3734 }
3735
3736 /* Test interrupt path by forcing a a software IRQ */
3737 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3738 {
3739         struct pci_dev *pdev = sp->pdev;
3740         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3741         int err;
3742         u64 val64, saved64;
3743
3744         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3745                         sp->name, sp);
3746         if (err) {
3747                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3748                        sp->dev->name, pci_name(pdev), pdev->irq);
3749                 return err;
3750         }
3751
3752         init_waitqueue_head (&sp->msi_wait);
3753         sp->msi_detected = 0;
3754
3755         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3756         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3757         val64 |= SCHED_INT_CTRL_TIMER_EN;
3758         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3759         writeq(val64, &bar0->scheduled_int_ctrl);
3760
3761         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3762
3763         if (!sp->msi_detected) {
3764                 /* MSI(X) test failed, go back to INTx mode */
3765                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3766                         "using MSI(X) during test\n", sp->dev->name,
3767                         pci_name(pdev));
3768
3769                 err = -EOPNOTSUPP;
3770         }
3771
3772         free_irq(sp->entries[1].vector, sp);
3773
3774         writeq(saved64, &bar0->scheduled_int_ctrl);
3775
3776         return err;
3777 }
3778 /* ********************************************************* *
3779  * Functions defined below concern the OS part of the driver *
3780  * ********************************************************* */
3781
3782 /**
3783  *  s2io_open - open entry point of the driver
3784  *  @dev : pointer to the device structure.
3785  *  Description:
3786  *  This function is the open entry point of the driver. It mainly calls a
3787  *  function to allocate Rx buffers and inserts them into the buffer
3788  *  descriptors and then enables the Rx part of the NIC.
3789  *  Return value:
3790  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3791  *   file on failure.
3792  */
3793
3794 static int s2io_open(struct net_device *dev)
3795 {
3796         struct s2io_nic *sp = dev->priv;
3797         int err = 0;
3798
3799         /*
3800          * Make sure you have link off by default every time
3801          * Nic is initialized
3802          */
3803         netif_carrier_off(dev);
3804         sp->last_link_state = 0;
3805
3806         napi_enable(&sp->napi);
3807
3808         if (sp->config.intr_type == MSI_X) {
3809                 int ret = s2io_enable_msi_x(sp);
3810
3811                 if (!ret) {
3812                         u16 msi_control;
3813
3814                         ret = s2io_test_msi(sp);
3815
3816                         /* rollback MSI-X, will re-enable during add_isr() */
3817                         kfree(sp->entries);
3818                         sp->mac_control.stats_info->sw_stat.mem_freed +=
3819                                 (MAX_REQUESTED_MSI_X *
3820                                 sizeof(struct msix_entry));
3821                         kfree(sp->s2io_entries);
3822                         sp->mac_control.stats_info->sw_stat.mem_freed +=
3823                                 (MAX_REQUESTED_MSI_X *
3824                                 sizeof(struct s2io_msix_entry));
3825                         sp->entries = NULL;
3826                         sp->s2io_entries = NULL;
3827
3828                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3829                         msi_control &= 0xFFFE; /* Disable MSI */
3830                         pci_write_config_word(sp->pdev, 0x42, msi_control);
3831
3832                         pci_disable_msix(sp->pdev);
3833
3834                 }
3835                 if (ret) {
3836
3837                         DBG_PRINT(ERR_DBG,
3838                           "%s: MSI-X requested but failed to enable\n",
3839                           dev->name);
3840                         sp->config.intr_type = INTA;
3841                 }
3842         }
3843
3844         /* NAPI doesn't work well with MSI(X) */
3845          if (sp->config.intr_type != INTA) {
3846                 if(sp->config.napi)
3847                         sp->config.napi = 0;
3848         }
3849
3850         /* Initialize H/W and enable interrupts */
3851         err = s2io_card_up(sp);
3852         if (err) {
3853                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3854                           dev->name);
3855                 goto hw_init_failed;
3856         }
3857
3858         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3859                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3860                 s2io_card_down(sp);
3861                 err = -ENODEV;
3862                 goto hw_init_failed;
3863         }
3864
3865         netif_start_queue(dev);
3866         return 0;
3867
3868 hw_init_failed:
3869         napi_disable(&sp->napi);
3870         if (sp->config.intr_type == MSI_X) {
3871                 if (sp->entries) {
3872                         kfree(sp->entries);
3873                         sp->mac_control.stats_info->sw_stat.mem_freed
3874                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3875                 }
3876                 if (sp->s2io_entries) {
3877                         kfree(sp->s2io_entries);
3878                         sp->mac_control.stats_info->sw_stat.mem_freed
3879                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3880                 }
3881         }
3882         return err;
3883 }
3884
3885 /**
3886  *  s2io_close -close entry point of the driver
3887  *  @dev : device pointer.
3888  *  Description:
3889  *  This is the stop entry point of the driver. It needs to undo exactly
3890  *  whatever was done by the open entry point,thus it's usually referred to
3891  *  as the close function.Among other things this function mainly stops the
3892  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3893  *  Return value:
3894  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3895  *  file on failure.
3896  */
3897
3898 static int s2io_close(struct net_device *dev)
3899 {
3900         struct s2io_nic *sp = dev->priv;
3901
3902         netif_stop_queue(dev);
3903         napi_disable(&sp->napi);
3904         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3905         s2io_card_down(sp);
3906
3907         return 0;
3908 }
3909
3910 /**
3911  *  s2io_xmit - Tx entry point of te driver
3912  *  @skb : the socket buffer containing the Tx data.
3913  *  @dev : device pointer.
3914  *  Description :
3915  *  This function is the Tx entry point of the driver. S2IO NIC supports
3916  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3917  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3918  *  not be upadted.
3919  *  Return value:
3920  *  0 on success & 1 on failure.
3921  */
3922
3923 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3924 {
3925         struct s2io_nic *sp = dev->priv;
3926         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3927         register u64 val64;
3928         struct TxD *txdp;
3929         struct TxFIFO_element __iomem *tx_fifo;
3930         unsigned long flags;
3931         u16 vlan_tag = 0;
3932         int vlan_priority = 0;
3933         struct mac_info *mac_control;
3934         struct config_param *config;
3935         int offload_type;
3936         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3937
3938         mac_control = &sp->mac_control;
3939         config = &sp->config;
3940
3941         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3942
3943         if (unlikely(skb->len <= 0)) {
3944                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3945                 dev_kfree_skb_any(skb);
3946                 return 0;
3947 }
3948
3949         spin_lock_irqsave(&sp->tx_lock, flags);
3950         if (!is_s2io_card_up(sp)) {
3951                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3952                           dev->name);
3953                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3954                 dev_kfree_skb(skb);
3955                 return 0;
3956         }
3957
3958         queue = 0;
3959         /* Get Fifo number to Transmit based on vlan priority */
3960         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3961                 vlan_tag = vlan_tx_tag_get(skb);
3962                 vlan_priority = vlan_tag >> 13;
3963                 queue = config->fifo_mapping[vlan_priority];
3964         }
3965
3966         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3967         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3968         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3969                 list_virt_addr;
3970
3971         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3972         /* Avoid "put" pointer going beyond "get" pointer */
3973         if (txdp->Host_Control ||
3974                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3975                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3976                 netif_stop_queue(dev);
3977                 dev_kfree_skb(skb);
3978                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3979                 return 0;
3980         }
3981
3982         offload_type = s2io_offload_type(skb);
3983         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3984                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3985                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3986         }
3987         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3988                 txdp->Control_2 |=
3989                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3990                      TXD_TX_CKO_UDP_EN);
3991         }
3992         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3993         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3994         txdp->Control_2 |= config->tx_intr_type;
3995
3996         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3997                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3998                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3999         }
4000
4001         frg_len = skb->len - skb->data_len;
4002         if (offload_type == SKB_GSO_UDP) {
4003                 int ufo_size;
4004
4005                 ufo_size = s2io_udp_mss(skb);
4006                 ufo_size &= ~7;
4007                 txdp->Control_1 |= TXD_UFO_EN;
4008                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4009                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4010 #ifdef __BIG_ENDIAN
4011                 sp->ufo_in_band_v[put_off] =
4012                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4013 #else
4014                 sp->ufo_in_band_v[put_off] =
4015                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4016 #endif
4017                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4018                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4019                                         sp->ufo_in_band_v,
4020                                         sizeof(u64), PCI_DMA_TODEVICE);
4021                 if((txdp->Buffer_Pointer == 0) ||
4022                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4023                         goto pci_map_failed;
4024                 txdp++;
4025         }
4026
4027         txdp->Buffer_Pointer = pci_map_single
4028             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4029         if((txdp->Buffer_Pointer == 0) ||
4030                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4031                 goto pci_map_failed;
4032
4033         txdp->Host_Control = (unsigned long) skb;
4034         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4035         if (offload_type == SKB_GSO_UDP)
4036                 txdp->Control_1 |= TXD_UFO_EN;
4037
4038         frg_cnt = skb_shinfo(skb)->nr_frags;
4039         /* For fragmented SKB. */
4040         for (i = 0; i < frg_cnt; i++) {
4041                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4042                 /* A '0' length fragment will be ignored */
4043                 if (!frag->size)
4044                         continue;
4045                 txdp++;
4046                 txdp->Buffer_Pointer = (u64) pci_map_page
4047                     (sp->pdev, frag->page, frag->page_offset,
4048                      frag->size, PCI_DMA_TODEVICE);
4049                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4050                 if (offload_type == SKB_GSO_UDP)
4051                         txdp->Control_1 |= TXD_UFO_EN;
4052         }
4053         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4054
4055         if (offload_type == SKB_GSO_UDP)
4056                 frg_cnt++; /* as Txd0 was used for inband header */
4057
4058         tx_fifo = mac_control->tx_FIFO_start[queue];
4059         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4060         writeq(val64, &tx_fifo->TxDL_Pointer);
4061
4062         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4063                  TX_FIFO_LAST_LIST);
4064         if (offload_type)
4065                 val64 |= TX_FIFO_SPECIAL_FUNC;
4066
4067         writeq(val64, &tx_fifo->List_Control);
4068
4069         mmiowb();
4070
4071         put_off++;
4072         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4073                 put_off = 0;
4074         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4075
4076         /* Avoid "put" pointer going beyond "get" pointer */
4077         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4078                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4079                 DBG_PRINT(TX_DBG,
4080                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4081                           put_off, get_off);
4082                 netif_stop_queue(dev);
4083         }
4084         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4085         dev->trans_start = jiffies;
4086         spin_unlock_irqrestore(&sp->tx_lock, flags);
4087
4088         return 0;
4089 pci_map_failed:
4090         stats->pci_map_fail_cnt++;
4091         netif_stop_queue(dev);
4092         stats->mem_freed += skb->truesize;
4093         dev_kfree_skb(skb);
4094         spin_unlock_irqrestore(&sp->tx_lock, flags);
4095         return 0;
4096 }
4097
4098 static void
4099 s2io_alarm_handle(unsigned long data)
4100 {
4101         struct s2io_nic *sp = (struct s2io_nic *)data;
4102         struct net_device *dev = sp->dev;
4103
4104         s2io_handle_errors(dev);
4105         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4106 }
4107
4108 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4109 {
4110         int rxb_size, level;
4111
4112         if (!sp->lro) {
4113                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4114                 level = rx_buffer_level(sp, rxb_size, rng_n);
4115
4116                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4117                         int ret;
4118                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4119                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4120                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4121                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4122                                           __FUNCTION__);
4123                                 clear_bit(0, (&sp->tasklet_status));
4124                                 return -1;
4125                         }
4126                         clear_bit(0, (&sp->tasklet_status));
4127                 } else if (level == LOW)
4128                         tasklet_schedule(&sp->task);
4129
4130         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4131                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4132                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4133         }
4134         return 0;
4135 }
4136
4137 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4138 {
4139         struct ring_info *ring = (struct ring_info *)dev_id;
4140         struct s2io_nic *sp = ring->nic;
4141
4142         if (!is_s2io_card_up(sp))
4143                 return IRQ_HANDLED;
4144
4145         rx_intr_handler(ring);
4146         s2io_chk_rx_buffers(sp, ring->ring_no);
4147
4148         return IRQ_HANDLED;
4149 }
4150
4151 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4152 {
4153         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4154         struct s2io_nic *sp = fifo->nic;
4155
4156         if (!is_s2io_card_up(sp))
4157                 return IRQ_HANDLED;
4158
4159         tx_intr_handler(fifo);
4160         return IRQ_HANDLED;
4161 }
4162 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4163 {
4164         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4165         u64 val64;
4166
4167         val64 = readq(&bar0->pic_int_status);
4168         if (val64 & PIC_INT_GPIO) {
4169                 val64 = readq(&bar0->gpio_int_reg);
4170                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4171                     (val64 & GPIO_INT_REG_LINK_UP)) {
4172                         /*
4173                          * This is unstable state so clear both up/down
4174                          * interrupt and adapter to re-evaluate the link state.
4175                          */
4176                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4177                         val64 |= GPIO_INT_REG_LINK_UP;
4178                         writeq(val64, &bar0->gpio_int_reg);
4179                         val64 = readq(&bar0->gpio_int_mask);
4180                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4181                                    GPIO_INT_MASK_LINK_DOWN);
4182                         writeq(val64, &bar0->gpio_int_mask);
4183                 }
4184                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4185                         val64 = readq(&bar0->adapter_status);
4186                                 /* Enable Adapter */
4187                         val64 = readq(&bar0->adapter_control);
4188                         val64 |= ADAPTER_CNTL_EN;
4189                         writeq(val64, &bar0->adapter_control);
4190                         val64 |= ADAPTER_LED_ON;
4191                         writeq(val64, &bar0->adapter_control);
4192                         if (!sp->device_enabled_once)
4193                                 sp->device_enabled_once = 1;
4194
4195                         s2io_link(sp, LINK_UP);
4196                         /*
4197                          * unmask link down interrupt and mask link-up
4198                          * intr
4199                          */
4200                         val64 = readq(&bar0->gpio_int_mask);
4201                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4202                         val64 |= GPIO_INT_MASK_LINK_UP;
4203                         writeq(val64, &bar0->gpio_int_mask);
4204
4205                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4206                         val64 = readq(&bar0->adapter_status);
4207                         s2io_link(sp, LINK_DOWN);
4208                         /* Link is down so unmaks link up interrupt */
4209                         val64 = readq(&bar0->gpio_int_mask);
4210                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4211                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4212                         writeq(val64, &bar0->gpio_int_mask);
4213
4214                         /* turn off LED */
4215                         val64 = readq(&bar0->adapter_control);
4216                         val64 = val64 &(~ADAPTER_LED_ON);
4217                         writeq(val64, &bar0->adapter_control);
4218                 }
4219         }
4220         val64 = readq(&bar0->gpio_int_mask);
4221 }
4222
4223 /**
4224  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4225  *  @value: alarm bits
4226  *  @addr: address value
4227  *  @cnt: counter variable
4228  *  Description: Check for alarm and increment the counter
4229  *  Return Value:
4230  *  1 - if alarm bit set
4231  *  0 - if alarm bit is not set
4232  */
4233 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4234                           unsigned long long *cnt)
4235 {
4236         u64 val64;
4237         val64 = readq(addr);
4238         if ( val64 & value ) {
4239                 writeq(val64, addr);
4240                 (*cnt)++;
4241                 return 1;
4242         }
4243         return 0;
4244
4245 }
4246
4247 /**
4248  *  s2io_handle_errors - Xframe error indication handler
4249  *  @nic: device private variable
4250  *  Description: Handle alarms such as loss of link, single or
4251  *  double ECC errors, critical and serious errors.
4252  *  Return Value:
4253  *  NONE
4254  */
4255 static void s2io_handle_errors(void * dev_id)
4256 {
4257         struct net_device *dev = (struct net_device *) dev_id;
4258         struct s2io_nic *sp = dev->priv;
4259         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4260         u64 temp64 = 0,val64=0;
4261         int i = 0;
4262
4263         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4264         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4265
4266         if (!is_s2io_card_up(sp))
4267                 return;
4268
4269         if (pci_channel_offline(sp->pdev))
4270                 return;
4271
4272         memset(&sw_stat->ring_full_cnt, 0,
4273                 sizeof(sw_stat->ring_full_cnt));
4274
4275         /* Handling the XPAK counters update */
4276         if(stats->xpak_timer_count < 72000) {
4277                 /* waiting for an hour */
4278                 stats->xpak_timer_count++;
4279         } else {
4280                 s2io_updt_xpak_counter(dev);
4281                 /* reset the count to zero */
4282                 stats->xpak_timer_count = 0;
4283         }
4284
4285         /* Handling link status change error Intr */
4286         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4287                 val64 = readq(&bar0->mac_rmac_err_reg);
4288                 writeq(val64, &bar0->mac_rmac_err_reg);
4289                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4290                         schedule_work(&sp->set_link_task);
4291         }
4292
4293         /* In case of a serious error, the device will be Reset. */
4294         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4295                                 &sw_stat->serious_err_cnt))
4296                 goto reset;
4297
4298         /* Check for data parity error */
4299         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4300                                 &sw_stat->parity_err_cnt))
4301                 goto reset;
4302
4303         /* Check for ring full counter */
4304         if (sp->device_type == XFRAME_II_DEVICE) {
4305                 val64 = readq(&bar0->ring_bump_counter1);
4306                 for (i=0; i<4; i++) {
4307                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4308                         temp64 >>= 64 - ((i+1)*16);
4309                         sw_stat->ring_full_cnt[i] += temp64;
4310                 }
4311
4312                 val64 = readq(&bar0->ring_bump_counter2);
4313                 for (i=0; i<4; i++) {
4314                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4315                         temp64 >>= 64 - ((i+1)*16);
4316                          sw_stat->ring_full_cnt[i+4] += temp64;
4317                 }
4318         }
4319
4320         val64 = readq(&bar0->txdma_int_status);
4321         /*check for pfc_err*/
4322         if (val64 & TXDMA_PFC_INT) {
4323                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4324                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4325                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4326                                 &sw_stat->pfc_err_cnt))
4327                         goto reset;
4328                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4329                                 &sw_stat->pfc_err_cnt);
4330         }
4331
4332         /*check for tda_err*/
4333         if (val64 & TXDMA_TDA_INT) {
4334                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4335                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4336                                 &sw_stat->tda_err_cnt))
4337                         goto reset;
4338                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4339                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4340         }
4341         /*check for pcc_err*/
4342         if (val64 & TXDMA_PCC_INT) {
4343                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4344                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4345                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4346                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4347                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4348                                 &sw_stat->pcc_err_cnt))
4349                         goto reset;
4350                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4351                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4352         }
4353
4354         /*check for tti_err*/
4355         if (val64 & TXDMA_TTI_INT) {
4356                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4357                                 &sw_stat->tti_err_cnt))
4358                         goto reset;
4359                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4360                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4361         }
4362
4363         /*check for lso_err*/
4364         if (val64 & TXDMA_LSO_INT) {
4365                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4366                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4367                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4368                         goto reset;
4369                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4370                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4371         }
4372
4373         /*check for tpa_err*/
4374         if (val64 & TXDMA_TPA_INT) {
4375                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4376                         &sw_stat->tpa_err_cnt))
4377                         goto reset;
4378                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4379                         &sw_stat->tpa_err_cnt);
4380         }
4381
4382         /*check for sm_err*/
4383         if (val64 & TXDMA_SM_INT) {
4384                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4385                         &sw_stat->sm_err_cnt))
4386                         goto reset;
4387         }
4388
4389         val64 = readq(&bar0->mac_int_status);
4390         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4391                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4392                                 &bar0->mac_tmac_err_reg,
4393                                 &sw_stat->mac_tmac_err_cnt))
4394                         goto reset;
4395                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4396                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4397                                 &bar0->mac_tmac_err_reg,
4398                                 &sw_stat->mac_tmac_err_cnt);
4399         }
4400
4401         val64 = readq(&bar0->xgxs_int_status);
4402         if (val64 & XGXS_INT_STATUS_TXGXS) {
4403                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4404                                 &bar0->xgxs_txgxs_err_reg,
4405                                 &sw_stat->xgxs_txgxs_err_cnt))
4406                         goto reset;
4407                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4408                                 &bar0->xgxs_txgxs_err_reg,
4409                                 &sw_stat->xgxs_txgxs_err_cnt);
4410         }
4411
4412         val64 = readq(&bar0->rxdma_int_status);
4413         if (val64 & RXDMA_INT_RC_INT_M) {
4414                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4415                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4416                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4417                         goto reset;
4418                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4419                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4420                                 &sw_stat->rc_err_cnt);
4421                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4422                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4423                                 &sw_stat->prc_pcix_err_cnt))
4424                         goto reset;
4425                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4426                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4427                                 &sw_stat->prc_pcix_err_cnt);
4428         }
4429
4430         if (val64 & RXDMA_INT_RPA_INT_M) {
4431                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4432                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4433                         goto reset;
4434                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4435                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4436         }
4437
4438         if (val64 & RXDMA_INT_RDA_INT_M) {
4439                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4440                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4441                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4442                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4443                         goto reset;
4444                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4445                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4446                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4447         }
4448
4449         if (val64 & RXDMA_INT_RTI_INT_M) {
4450                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4451                                 &sw_stat->rti_err_cnt))
4452                         goto reset;
4453                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4454                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4455         }
4456
4457         val64 = readq(&bar0->mac_int_status);
4458         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4459                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4460                                 &bar0->mac_rmac_err_reg,
4461                                 &sw_stat->mac_rmac_err_cnt))
4462                         goto reset;
4463                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4464                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4465                                 &sw_stat->mac_rmac_err_cnt);
4466         }
4467
4468         val64 = readq(&bar0->xgxs_int_status);
4469         if (val64 & XGXS_INT_STATUS_RXGXS) {
4470                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4471                                 &bar0->xgxs_rxgxs_err_reg,
4472                                 &sw_stat->xgxs_rxgxs_err_cnt))
4473                         goto reset;
4474         }
4475
4476         val64 = readq(&bar0->mc_int_status);
4477         if(val64 & MC_INT_STATUS_MC_INT) {
4478                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4479                                 &sw_stat->mc_err_cnt))
4480                         goto reset;
4481
4482                 /* Handling Ecc errors */
4483                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4484                         writeq(val64, &bar0->mc_err_reg);
4485                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4486                                 sw_stat->double_ecc_errs++;
4487                                 if (sp->device_type != XFRAME_II_DEVICE) {
4488                                         /*
4489                                          * Reset XframeI only if critical error
4490                                          */
4491                                         if (val64 &
4492                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4493                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4494                                                                 goto reset;
4495                                         }
4496                         } else
4497                                 sw_stat->single_ecc_errs++;
4498                 }
4499         }
4500         return;
4501
4502 reset:
4503         netif_stop_queue(dev);
4504         schedule_work(&sp->rst_timer_task);
4505         sw_stat->soft_reset_cnt++;
4506         return;
4507 }
4508
4509 /**
4510  *  s2io_isr - ISR handler of the device .
4511  *  @irq: the irq of the device.
4512  *  @dev_id: a void pointer to the dev structure of the NIC.
4513  *  Description:  This function is the ISR handler of the device. It
4514  *  identifies the reason for the interrupt and calls the relevant
4515  *  service routines. As a contongency measure, this ISR allocates the
4516  *  recv buffers, if their numbers are below the panic value which is
4517  *  presently set to 25% of the original number of rcv buffers allocated.
4518  *  Return value:
4519  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4520  *   IRQ_NONE: will be returned if interrupt is not from our device
4521  */
4522 static irqreturn_t s2io_isr(int irq, void *dev_id)
4523 {
4524         struct net_device *dev = (struct net_device *) dev_id;
4525         struct s2io_nic *sp = dev->priv;
4526         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4527         int i;
4528         u64 reason = 0;
4529         struct mac_info *mac_control;
4530         struct config_param *config;
4531
4532         /* Pretend we handled any irq's from a disconnected card */
4533         if (pci_channel_offline(sp->pdev))
4534                 return IRQ_NONE;
4535
4536         if (!is_s2io_card_up(sp))
4537                 return IRQ_NONE;
4538
4539         mac_control = &sp->mac_control;
4540         config = &sp->config;
4541
4542         /*
4543          * Identify the cause for interrupt and call the appropriate
4544          * interrupt handler. Causes for the interrupt could be;
4545          * 1. Rx of packet.
4546          * 2. Tx complete.
4547          * 3. Link down.
4548          */
4549         reason = readq(&bar0->general_int_status);
4550
4551         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4552                 /* Nothing much can be done. Get out */
4553                 return IRQ_HANDLED;
4554         }
4555
4556         if (reason & (GEN_INTR_RXTRAFFIC |
4557                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4558         {
4559                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4560
4561                 if (config->napi) {
4562                         if (reason & GEN_INTR_RXTRAFFIC) {
4563                                 if (likely(netif_rx_schedule_prep(dev,
4564                                                         &sp->napi))) {
4565                                         __netif_rx_schedule(dev, &sp->napi);
4566                                         writeq(S2IO_MINUS_ONE,
4567                                                &bar0->rx_traffic_mask);
4568                                 } else
4569                                         writeq(S2IO_MINUS_ONE,
4570                                                &bar0->rx_traffic_int);
4571                         }
4572                 } else {
4573                         /*
4574                          * rx_traffic_int reg is an R1 register, writing all 1's
4575                          * will ensure that the actual interrupt causing bit
4576                          * get's cleared and hence a read can be avoided.
4577                          */
4578                         if (reason & GEN_INTR_RXTRAFFIC)
4579                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4580
4581                         for (i = 0; i < config->rx_ring_num; i++)
4582                                 rx_intr_handler(&mac_control->rings[i]);
4583                 }
4584
4585                 /*
4586                  * tx_traffic_int reg is an R1 register, writing all 1's
4587                  * will ensure that the actual interrupt causing bit get's
4588                  * cleared and hence a read can be avoided.
4589                  */
4590                 if (reason & GEN_INTR_TXTRAFFIC)
4591                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4592
4593                 for (i = 0; i < config->tx_fifo_num; i++)
4594                         tx_intr_handler(&mac_control->fifos[i]);
4595
4596                 if (reason & GEN_INTR_TXPIC)
4597                         s2io_txpic_intr_handle(sp);
4598
4599                 /*
4600                  * Reallocate the buffers from the interrupt handler itself.
4601                  */
4602                 if (!config->napi) {
4603                         for (i = 0; i < config->rx_ring_num; i++)
4604                                 s2io_chk_rx_buffers(sp, i);
4605                 }
4606                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4607                 readl(&bar0->general_int_status);
4608
4609                 return IRQ_HANDLED;
4610
4611         }
4612         else if (!reason) {
4613                 /* The interrupt was not raised by us */
4614                 return IRQ_NONE;
4615         }
4616
4617         return IRQ_HANDLED;
4618 }
4619
4620 /**
4621  * s2io_updt_stats -
4622  */
4623 static void s2io_updt_stats(struct s2io_nic *sp)
4624 {
4625         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4626         u64 val64;
4627         int cnt = 0;
4628
4629         if (is_s2io_card_up(sp)) {
4630                 /* Apprx 30us on a 133 MHz bus */
4631                 val64 = SET_UPDT_CLICKS(10) |
4632                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4633                 writeq(val64, &bar0->stat_cfg);
4634                 do {
4635                         udelay(100);
4636                         val64 = readq(&bar0->stat_cfg);
4637                         if (!(val64 & BIT(0)))
4638                                 break;
4639                         cnt++;
4640                         if (cnt == 5)
4641                                 break; /* Updt failed */
4642                 } while(1);
4643         }
4644 }
4645
4646 /**
4647  *  s2io_get_stats - Updates the device statistics structure.
4648  *  @dev : pointer to the device structure.
4649  *  Description:
4650  *  This function updates the device statistics structure in the s2io_nic
4651  *  structure and returns a pointer to the same.
4652  *  Return value:
4653  *  pointer to the updated net_device_stats structure.
4654  */
4655
4656 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4657 {
4658         struct s2io_nic *sp = dev->priv;
4659         struct mac_info *mac_control;
4660         struct config_param *config;
4661
4662
4663         mac_control = &sp->mac_control;
4664         config = &sp->config;
4665
4666         /* Configure Stats for immediate updt */
4667         s2io_updt_stats(sp);
4668
4669         sp->stats.tx_packets =
4670                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4671         sp->stats.tx_errors =
4672                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4673         sp->stats.rx_errors =
4674                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4675         sp->stats.multicast =
4676                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4677         sp->stats.rx_length_errors =
4678                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4679
4680         return (&sp->stats);
4681 }
4682
4683 /**
4684  *  s2io_set_multicast - entry point for multicast address enable/disable.
4685  *  @dev : pointer to the device structure
4686  *  Description:
4687  *  This function is a driver entry point which gets called by the kernel
4688  *  whenever multicast addresses must be enabled/disabled. This also gets
4689  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4690  *  determine, if multicast address must be enabled or if promiscuous mode
4691  *  is to be disabled etc.
4692  *  Return value:
4693  *  void.
4694  */
4695
4696 static void s2io_set_multicast(struct net_device *dev)
4697 {
4698         int i, j, prev_cnt;
4699         struct dev_mc_list *mclist;
4700         struct s2io_nic *sp = dev->priv;
4701         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4702         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4703             0xfeffffffffffULL;
4704         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4705         void __iomem *add;
4706
4707         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4708                 /*  Enable all Multicast addresses */
4709                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4710                        &bar0->rmac_addr_data0_mem);
4711                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4712                        &bar0->rmac_addr_data1_mem);
4713                 val64 = RMAC_ADDR_CMD_MEM_WE |
4714                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4715                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4716                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4717                 /* Wait till command completes */
4718                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4719                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4720                                         S2IO_BIT_RESET);
4721
4722                 sp->m_cast_flg = 1;
4723                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4724         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4725                 /*  Disable all Multicast addresses */
4726                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4727                        &bar0->rmac_addr_data0_mem);
4728                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4729                        &bar0->rmac_addr_data1_mem);
4730                 val64 = RMAC_ADDR_CMD_MEM_WE |
4731                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4732                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4733                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4734                 /* Wait till command completes */
4735                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4736                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4737                                         S2IO_BIT_RESET);
4738
4739                 sp->m_cast_flg = 0;
4740                 sp->all_multi_pos = 0;
4741         }
4742
4743         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4744                 /*  Put the NIC into promiscuous mode */
4745                 add = &bar0->mac_cfg;
4746                 val64 = readq(&bar0->mac_cfg);
4747                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4748
4749                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4750                 writel((u32) val64, add);
4751                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4752                 writel((u32) (val64 >> 32), (add + 4));
4753
4754                 if (vlan_tag_strip != 1) {
4755                         val64 = readq(&bar0->rx_pa_cfg);
4756                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4757                         writeq(val64, &bar0->rx_pa_cfg);
4758                         vlan_strip_flag = 0;
4759                 }
4760
4761                 val64 = readq(&bar0->mac_cfg);
4762                 sp->promisc_flg = 1;
4763                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4764                           dev->name);
4765         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4766                 /*  Remove the NIC from promiscuous mode */
4767                 add = &bar0->mac_cfg;
4768                 val64 = readq(&bar0->mac_cfg);
4769                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4770
4771                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4772                 writel((u32) val64, add);
4773                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4774                 writel((u32) (val64 >> 32), (add + 4));
4775
4776                 if (vlan_tag_strip != 0) {
4777                         val64 = readq(&bar0->rx_pa_cfg);
4778                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4779                         writeq(val64, &bar0->rx_pa_cfg);
4780                         vlan_strip_flag = 1;
4781                 }
4782
4783                 val64 = readq(&bar0->mac_cfg);
4784                 sp->promisc_flg = 0;
4785                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4786                           dev->name);
4787         }
4788
4789         /*  Update individual M_CAST address list */
4790         if ((!sp->m_cast_flg) && dev->mc_count) {
4791                 if (dev->mc_count >
4792                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4793                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4794                                   dev->name);
4795                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4796                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4797                         return;
4798                 }
4799
4800                 prev_cnt = sp->mc_addr_count;
4801                 sp->mc_addr_count = dev->mc_count;
4802
4803                 /* Clear out the previous list of Mc in the H/W. */
4804                 for (i = 0; i < prev_cnt; i++) {
4805                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4806                                &bar0->rmac_addr_data0_mem);
4807                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4808                                 &bar0->rmac_addr_data1_mem);
4809                         val64 = RMAC_ADDR_CMD_MEM_WE |
4810                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4811                             RMAC_ADDR_CMD_MEM_OFFSET
4812                             (MAC_MC_ADDR_START_OFFSET + i);
4813                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4814
4815                         /* Wait for command completes */
4816                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4817                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4818                                         S2IO_BIT_RESET)) {
4819                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4820                                           dev->name);
4821                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4822                                 return;
4823                         }
4824                 }
4825
4826                 /* Create the new Rx filter list and update the same in H/W. */
4827                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4828                      i++, mclist = mclist->next) {
4829                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4830                                ETH_ALEN);
4831                         mac_addr = 0;
4832                         for (j = 0; j < ETH_ALEN; j++) {
4833                                 mac_addr |= mclist->dmi_addr[j];
4834                                 mac_addr <<= 8;
4835                         }
4836                         mac_addr >>= 8;
4837                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4838                                &bar0->rmac_addr_data0_mem);
4839                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4840                                 &bar0->rmac_addr_data1_mem);
4841                         val64 = RMAC_ADDR_CMD_MEM_WE |
4842                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4843                             RMAC_ADDR_CMD_MEM_OFFSET
4844                             (i + MAC_MC_ADDR_START_OFFSET);
4845                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4846
4847                         /* Wait for command completes */
4848                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4849                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4850                                         S2IO_BIT_RESET)) {
4851                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4852                                           dev->name);
4853                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4854                                 return;
4855                         }
4856                 }
4857         }
4858 }
4859
4860 /* add unicast MAC address to CAM */
4861 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4862 {
4863         u64 val64;
4864         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4865
4866         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4867                 &bar0->rmac_addr_data0_mem);
4868
4869         val64 =
4870                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4871                 RMAC_ADDR_CMD_MEM_OFFSET(off);
4872         writeq(val64, &bar0->rmac_addr_cmd_mem);
4873
4874         /* Wait till command completes */
4875         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4876                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4877                 S2IO_BIT_RESET)) {
4878                 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4879                 return FAILURE;
4880         }
4881         return SUCCESS;
4882 }
4883
4884 /**
4885  * s2io_set_mac_addr driver entry point
4886  */
4887 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4888 {
4889         struct sockaddr *addr = p;
4890
4891         if (!is_valid_ether_addr(addr->sa_data))
4892                 return -EINVAL;
4893
4894         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4895
4896         /* store the MAC address in CAM */
4897         return (do_s2io_prog_unicast(dev, dev->dev_addr));
4898 }
4899
4900 /**
4901  *  do_s2io_prog_unicast - Programs the Xframe mac address
4902  *  @dev : pointer to the device structure.
4903  *  @addr: a uchar pointer to the new mac address which is to be set.
4904  *  Description : This procedure will program the Xframe to receive
4905  *  frames with new Mac Address
4906  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4907  *  as defined in errno.h file on failure.
4908  */
4909 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4910 {
4911         struct s2io_nic *sp = dev->priv;
4912         register u64 mac_addr = 0, perm_addr = 0;
4913         int i;
4914
4915         /*
4916         * Set the new MAC address as the new unicast filter and reflect this
4917         * change on the device address registered with the OS. It will be
4918         * at offset 0.
4919         */
4920         for (i = 0; i < ETH_ALEN; i++) {
4921                 mac_addr <<= 8;
4922                 mac_addr |= addr[i];
4923                 perm_addr <<= 8;
4924                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4925         }
4926
4927         /* check if the dev_addr is different than perm_addr */
4928         if (mac_addr == perm_addr)
4929                 return SUCCESS;
4930
4931         /* Update the internal structure with this new mac address */
4932         do_s2io_copy_mac_addr(sp, 0, mac_addr);
4933         return (do_s2io_add_unicast(sp, mac_addr, 0));
4934 }
4935
4936 /**
4937  * s2io_ethtool_sset - Sets different link parameters.
4938  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4939  * @info: pointer to the structure with parameters given by ethtool to set
4940  * link information.
4941  * Description:
4942  * The function sets different link parameters provided by the user onto
4943  * the NIC.
4944  * Return value:
4945  * 0 on success.
4946 */
4947
4948 static int s2io_ethtool_sset(struct net_device *dev,
4949                              struct ethtool_cmd *info)
4950 {
4951         struct s2io_nic *sp = dev->priv;
4952         if ((info->autoneg == AUTONEG_ENABLE) ||
4953             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4954                 return -EINVAL;
4955         else {
4956                 s2io_close(sp->dev);
4957                 s2io_open(sp->dev);
4958         }
4959
4960         return 0;
4961 }
4962
4963 /**
4964  * s2io_ethtol_gset - Return link specific information.
4965  * @sp : private member of the device structure, pointer to the
4966  *      s2io_nic structure.
4967  * @info : pointer to the structure with parameters given by ethtool
4968  * to return link information.
4969  * Description:
4970  * Returns link specific information like speed, duplex etc.. to ethtool.
4971  * Return value :
4972  * return 0 on success.
4973  */
4974
4975 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4976 {
4977         struct s2io_nic *sp = dev->priv;
4978         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4979         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4980         info->port = PORT_FIBRE;
4981
4982         /* info->transceiver */
4983         info->transceiver = XCVR_EXTERNAL;
4984
4985         if (netif_carrier_ok(sp->dev)) {
4986                 info->speed = 10000;
4987                 info->duplex = DUPLEX_FULL;
4988         } else {
4989                 info->speed = -1;
4990                 info->duplex = -1;
4991         }
4992
4993         info->autoneg = AUTONEG_DISABLE;
4994         return 0;
4995 }
4996
4997 /**
4998  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4999  * @sp : private member of the device structure, which is a pointer to the
5000  * s2io_nic structure.
5001  * @info : pointer to the structure with parameters given by ethtool to
5002  * return driver information.
5003  * Description:
5004  * Returns driver specefic information like name, version etc.. to ethtool.
5005  * Return value:
5006  *  void
5007  */
5008
5009 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5010                                   struct ethtool_drvinfo *info)
5011 {
5012         struct s2io_nic *sp = dev->priv;
5013
5014         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5015         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5016         strncpy(info->fw_version, "", sizeof(info->fw_version));
5017         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5018         info->regdump_len = XENA_REG_SPACE;
5019         info->eedump_len = XENA_EEPROM_SPACE;
5020 }
5021
5022 /**
5023  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5024  *  @sp: private member of the device structure, which is a pointer to the
5025  *  s2io_nic structure.
5026  *  @regs : pointer to the structure with parameters given by ethtool for
5027  *  dumping the registers.
5028  *  @reg_space: The input argumnet into which all the registers are dumped.
5029  *  Description:
5030  *  Dumps the entire register space of xFrame NIC into the user given
5031  *  buffer area.
5032  * Return value :
5033  * void .
5034 */
5035
5036 static void s2io_ethtool_gregs(struct net_device *dev,
5037                                struct ethtool_regs *regs, void *space)
5038 {
5039         int i;
5040         u64 reg;
5041         u8 *reg_space = (u8 *) space;
5042         struct s2io_nic *sp = dev->priv;
5043
5044         regs->len = XENA_REG_SPACE;
5045         regs->version = sp->pdev->subsystem_device;
5046
5047         for (i = 0; i < regs->len; i += 8) {
5048                 reg = readq(sp->bar0 + i);
5049                 memcpy((reg_space + i), &reg, 8);
5050         }
5051 }
5052
5053 /**
5054  *  s2io_phy_id  - timer function that alternates adapter LED.
5055  *  @data : address of the private member of the device structure, which
5056  *  is a pointer to the s2io_nic structure, provided as an u32.
5057  * Description: This is actually the timer function that alternates the
5058  * adapter LED bit of the adapter control bit to set/reset every time on
5059  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5060  *  once every second.
5061 */
5062 static void s2io_phy_id(unsigned long data)
5063 {
5064         struct s2io_nic *sp = (struct s2io_nic *) data;
5065         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5066         u64 val64 = 0;
5067         u16 subid;
5068
5069         subid = sp->pdev->subsystem_device;
5070         if ((sp->device_type == XFRAME_II_DEVICE) ||
5071                    ((subid & 0xFF) >= 0x07)) {
5072                 val64 = readq(&bar0->gpio_control);
5073                 val64 ^= GPIO_CTRL_GPIO_0;
5074                 writeq(val64, &bar0->gpio_control);
5075         } else {
5076                 val64 = readq(&bar0->adapter_control);
5077                 val64 ^= ADAPTER_LED_ON;
5078                 writeq(val64, &bar0->adapter_control);
5079         }
5080
5081         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5082 }
5083
5084 /**
5085  * s2io_ethtool_idnic - To physically identify the nic on the system.
5086  * @sp : private member of the device structure, which is a pointer to the
5087  * s2io_nic structure.
5088  * @id : pointer to the structure with identification parameters given by
5089  * ethtool.
5090  * Description: Used to physically identify the NIC on the system.
5091  * The Link LED will blink for a time specified by the user for
5092  * identification.
5093  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5094  * identification is possible only if it's link is up.
5095  * Return value:
5096  * int , returns 0 on success
5097  */
5098
5099 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5100 {
5101         u64 val64 = 0, last_gpio_ctrl_val;
5102         struct s2io_nic *sp = dev->priv;
5103         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5104         u16 subid;
5105
5106         subid = sp->pdev->subsystem_device;
5107         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5108         if ((sp->device_type == XFRAME_I_DEVICE) &&
5109                 ((subid & 0xFF) < 0x07)) {
5110                 val64 = readq(&bar0->adapter_control);
5111                 if (!(val64 & ADAPTER_CNTL_EN)) {
5112                         printk(KERN_ERR
5113                                "Adapter Link down, cannot blink LED\n");
5114                         return -EFAULT;
5115                 }
5116         }
5117         if (sp->id_timer.function == NULL) {
5118                 init_timer(&sp->id_timer);
5119                 sp->id_timer.function = s2io_phy_id;
5120                 sp->id_timer.data = (unsigned long) sp;
5121         }
5122         mod_timer(&sp->id_timer, jiffies);
5123         if (data)
5124                 msleep_interruptible(data * HZ);
5125         else
5126                 msleep_interruptible(MAX_FLICKER_TIME);
5127         del_timer_sync(&sp->id_timer);
5128
5129         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5130                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5131                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5132         }
5133
5134         return 0;
5135 }
5136
5137 static void s2io_ethtool_gringparam(struct net_device *dev,
5138                                     struct ethtool_ringparam *ering)
5139 {
5140         struct s2io_nic *sp = dev->priv;
5141         int i,tx_desc_count=0,rx_desc_count=0;
5142
5143         if (sp->rxd_mode == RXD_MODE_1)
5144                 ering->rx_max_pending = MAX_RX_DESC_1;
5145         else if (sp->rxd_mode == RXD_MODE_3B)
5146                 ering->rx_max_pending = MAX_RX_DESC_2;
5147
5148         ering->tx_max_pending = MAX_TX_DESC;
5149         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5150                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5151
5152         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5153         ering->tx_pending = tx_desc_count;
5154         rx_desc_count = 0;
5155         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5156                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5157
5158         ering->rx_pending = rx_desc_count;
5159
5160         ering->rx_mini_max_pending = 0;
5161         ering->rx_mini_pending = 0;
5162         if(sp->rxd_mode == RXD_MODE_1)
5163                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5164         else if (sp->rxd_mode == RXD_MODE_3B)
5165                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5166         ering->rx_jumbo_pending = rx_desc_count;
5167 }
5168
5169 /**
5170  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5171  * @sp : private member of the device structure, which is a pointer to the
5172  *      s2io_nic structure.
5173  * @ep : pointer to the structure with pause parameters given by ethtool.
5174  * Description:
5175  * Returns the Pause frame generation and reception capability of the NIC.
5176  * Return value:
5177  *  void
5178  */
5179 static void s2io_ethtool_getpause_data(struct net_device *dev,
5180                                        struct ethtool_pauseparam *ep)
5181 {
5182         u64 val64;
5183         struct s2io_nic *sp = dev->priv;
5184         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5185
5186         val64 = readq(&bar0->rmac_pause_cfg);
5187         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5188                 ep->tx_pause = TRUE;
5189         if (val64 & RMAC_PAUSE_RX_ENABLE)
5190                 ep->rx_pause = TRUE;
5191         ep->autoneg = FALSE;
5192 }
5193
5194 /**
5195  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5196  * @sp : private member of the device structure, which is a pointer to the
5197  *      s2io_nic structure.
5198  * @ep : pointer to the structure with pause parameters given by ethtool.
5199  * Description:
5200  * It can be used to set or reset Pause frame generation or reception
5201  * support of the NIC.
5202  * Return value:
5203  * int, returns 0 on Success
5204  */
5205
5206 static int s2io_ethtool_setpause_data(struct net_device *dev,
5207                                struct ethtool_pauseparam *ep)
5208 {
5209         u64 val64;
5210         struct s2io_nic *sp = dev->priv;
5211         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5212
5213         val64 = readq(&bar0->rmac_pause_cfg);
5214         if (ep->tx_pause)
5215                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5216         else
5217                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5218         if (ep->rx_pause)
5219                 val64 |= RMAC_PAUSE_RX_ENABLE;
5220         else
5221                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5222         writeq(val64, &bar0->rmac_pause_cfg);
5223         return 0;
5224 }
5225
5226 /**
5227  * read_eeprom - reads 4 bytes of data from user given offset.
5228  * @sp : private member of the device structure, which is a pointer to the
5229  *      s2io_nic structure.
5230  * @off : offset at which the data must be written
5231  * @data : Its an output parameter where the data read at the given
5232  *      offset is stored.
5233  * Description:
5234  * Will read 4 bytes of data from the user given offset and return the
5235  * read data.
5236  * NOTE: Will allow to read only part of the EEPROM visible through the
5237  *   I2C bus.
5238  * Return value:
5239  *  -1 on failure and 0 on success.
5240  */
5241
5242 #define S2IO_DEV_ID             5
5243 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5244 {
5245         int ret = -1;
5246         u32 exit_cnt = 0;
5247         u64 val64;
5248         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5249
5250         if (sp->device_type == XFRAME_I_DEVICE) {
5251                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5252                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5253                     I2C_CONTROL_CNTL_START;
5254                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5255
5256                 while (exit_cnt < 5) {
5257                         val64 = readq(&bar0->i2c_control);
5258                         if (I2C_CONTROL_CNTL_END(val64)) {
5259                                 *data = I2C_CONTROL_GET_DATA(val64);
5260                                 ret = 0;
5261                                 break;
5262                         }
5263                         msleep(50);
5264                         exit_cnt++;
5265                 }
5266         }
5267
5268         if (sp->device_type == XFRAME_II_DEVICE) {
5269                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5270                         SPI_CONTROL_BYTECNT(0x3) |
5271                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5272                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5273                 val64 |= SPI_CONTROL_REQ;
5274                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5275                 while (exit_cnt < 5) {
5276                         val64 = readq(&bar0->spi_control);
5277                         if (val64 & SPI_CONTROL_NACK) {
5278                                 ret = 1;
5279                                 break;
5280                         } else if (val64 & SPI_CONTROL_DONE) {
5281                                 *data = readq(&bar0->spi_data);
5282                                 *data &= 0xffffff;
5283                                 ret = 0;
5284                                 break;
5285                         }
5286                         msleep(50);
5287                         exit_cnt++;
5288                 }
5289         }
5290         return ret;
5291 }
5292
5293 /**
5294  *  write_eeprom - actually writes the relevant part of the data value.
5295  *  @sp : private member of the device structure, which is a pointer to the
5296  *       s2io_nic structure.
5297  *  @off : offset at which the data must be written
5298  *  @data : The data that is to be written
5299  *  @cnt : Number of bytes of the data that are actually to be written into
5300  *  the Eeprom. (max of 3)
5301  * Description:
5302  *  Actually writes the relevant part of the data value into the Eeprom
5303  *  through the I2C bus.
5304  * Return value:
5305  *  0 on success, -1 on failure.
5306  */
5307
5308 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5309 {
5310         int exit_cnt = 0, ret = -1;
5311         u64 val64;
5312         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5313
5314         if (sp->device_type == XFRAME_I_DEVICE) {
5315                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5316                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5317                     I2C_CONTROL_CNTL_START;
5318                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5319
5320                 while (exit_cnt < 5) {
5321                         val64 = readq(&bar0->i2c_control);
5322                         if (I2C_CONTROL_CNTL_END(val64)) {
5323                                 if (!(val64 & I2C_CONTROL_NACK))
5324                                         ret = 0;
5325                                 break;
5326                         }
5327                         msleep(50);
5328                         exit_cnt++;
5329                 }
5330         }
5331
5332         if (sp->device_type == XFRAME_II_DEVICE) {
5333                 int write_cnt = (cnt == 8) ? 0 : cnt;
5334                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5335
5336                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5337                         SPI_CONTROL_BYTECNT(write_cnt) |
5338                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5339                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5340                 val64 |= SPI_CONTROL_REQ;
5341                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5342                 while (exit_cnt < 5) {
5343                         val64 = readq(&bar0->spi_control);
5344                         if (val64 & SPI_CONTROL_NACK) {
5345                                 ret = 1;
5346                                 break;
5347                         } else if (val64 & SPI_CONTROL_DONE) {
5348                                 ret = 0;
5349                                 break;
5350                         }
5351                         msleep(50);
5352                         exit_cnt++;
5353                 }
5354         }
5355         return ret;
5356 }
5357 static void s2io_vpd_read(struct s2io_nic *nic)
5358 {
5359         u8 *vpd_data;
5360         u8 data;
5361         int i=0, cnt, fail = 0;
5362         int vpd_addr = 0x80;
5363
5364         if (nic->device_type == XFRAME_II_DEVICE) {
5365                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5366                 vpd_addr = 0x80;
5367         }
5368         else {
5369                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5370                 vpd_addr = 0x50;
5371         }
5372         strcpy(nic->serial_num, "NOT AVAILABLE");
5373
5374         vpd_data = kmalloc(256, GFP_KERNEL);
5375         if (!vpd_data) {
5376                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5377                 return;
5378         }
5379         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5380
5381         for (i = 0; i < 256; i +=4 ) {
5382                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5383                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5384                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5385                 for (cnt = 0; cnt <5; cnt++) {
5386                         msleep(2);
5387                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5388                         if (data == 0x80)
5389                                 break;
5390                 }
5391                 if (cnt >= 5) {
5392                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5393                         fail = 1;
5394                         break;
5395                 }
5396                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5397                                       (u32 *)&vpd_data[i]);
5398         }
5399
5400         if(!fail) {
5401                 /* read serial number of adapter */
5402                 for (cnt = 0; cnt < 256; cnt++) {
5403                 if ((vpd_data[cnt] == 'S') &&
5404                         (vpd_data[cnt+1] == 'N') &&
5405                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5406                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5407                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5408                                         vpd_data[cnt+2]);
5409                                 break;
5410                         }
5411                 }
5412         }
5413
5414         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5415                 memset(nic->product_name, 0, vpd_data[1]);
5416                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5417         }
5418         kfree(vpd_data);
5419         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5420 }
5421
5422 /**
5423  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5424  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5425  *  @eeprom : pointer to the user level structure provided by ethtool,
5426  *  containing all relevant information.
5427  *  @data_buf : user defined value to be written into Eeprom.
5428  *  Description: Reads the values stored in the Eeprom at given offset
5429  *  for a given length. Stores these values int the input argument data
5430  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5431  *  Return value:
5432  *  int  0 on success
5433  */
5434
5435 static int s2io_ethtool_geeprom(struct net_device *dev,
5436                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5437 {
5438         u32 i, valid;
5439         u64 data;
5440         struct s2io_nic *sp = dev->priv;
5441
5442         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5443
5444         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5445                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5446
5447         for (i = 0; i < eeprom->len; i += 4) {
5448                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5449                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5450                         return -EFAULT;
5451                 }
5452                 valid = INV(data);
5453                 memcpy((data_buf + i), &valid, 4);
5454         }
5455         return 0;
5456 }
5457
5458 /**
5459  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5460  *  @sp : private member of the device structure, which is a pointer to the
5461  *  s2io_nic structure.
5462  *  @eeprom : pointer to the user level structure provided by ethtool,
5463  *  containing all relevant information.
5464  *  @data_buf ; user defined value to be written into Eeprom.
5465  *  Description:
5466  *  Tries to write the user provided value in the Eeprom, at the offset
5467  *  given by the user.
5468  *  Return value:
5469  *  0 on success, -EFAULT on failure.
5470  */
5471
5472 static int s2io_ethtool_seeprom(struct net_device *dev,
5473                                 struct ethtool_eeprom *eeprom,
5474                                 u8 * data_buf)
5475 {
5476         int len = eeprom->len, cnt = 0;
5477         u64 valid = 0, data;
5478         struct s2io_nic *sp = dev->priv;
5479
5480         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5481                 DBG_PRINT(ERR_DBG,
5482                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5483                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5484                           eeprom->magic);
5485                 return -EFAULT;
5486         }
5487
5488         while (len) {
5489                 data = (u32) data_buf[cnt] & 0x000000FF;
5490                 if (data) {
5491                         valid = (u32) (data << 24);
5492                 } else
5493                         valid = data;
5494
5495                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5496                         DBG_PRINT(ERR_DBG,
5497                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5498                         DBG_PRINT(ERR_DBG,
5499                                   "write into the specified offset\n");
5500                         return -EFAULT;
5501                 }
5502                 cnt++;
5503                 len--;
5504         }
5505
5506         return 0;
5507 }
5508
5509 /**
5510  * s2io_register_test - reads and writes into all clock domains.
5511  * @sp : private member of the device structure, which is a pointer to the
5512  * s2io_nic structure.
5513  * @data : variable that returns the result of each of the test conducted b
5514  * by the driver.
5515  * Description:
5516  * Read and write into all clock domains. The NIC has 3 clock domains,
5517  * see that registers in all the three regions are accessible.
5518  * Return value:
5519  * 0 on success.
5520  */
5521
5522 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5523 {
5524         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5525         u64 val64 = 0, exp_val;
5526         int fail = 0;
5527
5528         val64 = readq(&bar0->pif_rd_swapper_fb);
5529         if (val64 != 0x123456789abcdefULL) {
5530                 fail = 1;
5531                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5532         }
5533
5534         val64 = readq(&bar0->rmac_pause_cfg);
5535         if (val64 != 0xc000ffff00000000ULL) {
5536                 fail = 1;
5537                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5538         }
5539
5540         val64 = readq(&bar0->rx_queue_cfg);
5541         if (sp->device_type == XFRAME_II_DEVICE)
5542                 exp_val = 0x0404040404040404ULL;
5543         else
5544                 exp_val = 0x0808080808080808ULL;
5545         if (val64 != exp_val) {
5546                 fail = 1;
5547                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5548         }
5549
5550         val64 = readq(&bar0->xgxs_efifo_cfg);
5551         if (val64 != 0x000000001923141EULL) {
5552                 fail = 1;
5553                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5554         }
5555
5556         val64 = 0x5A5A5A5A5A5A5A5AULL;
5557         writeq(val64, &bar0->xmsi_data);
5558         val64 = readq(&bar0->xmsi_data);
5559         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5560                 fail = 1;
5561                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5562         }
5563
5564         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5565         writeq(val64, &bar0->xmsi_data);
5566         val64 = readq(&bar0->xmsi_data);
5567         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5568                 fail = 1;
5569                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5570         }
5571
5572         *data = fail;
5573         return fail;
5574 }
5575
5576 /**
5577  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5578  * @sp : private member of the device structure, which is a pointer to the
5579  * s2io_nic structure.
5580  * @data:variable that returns the result of each of the test conducted by
5581  * the driver.
5582  * Description:
5583  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5584  * register.
5585  * Return value:
5586  * 0 on success.
5587  */
5588
5589 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5590 {
5591         int fail = 0;
5592         u64 ret_data, org_4F0, org_7F0;
5593         u8 saved_4F0 = 0, saved_7F0 = 0;
5594         struct net_device *dev = sp->dev;
5595
5596         /* Test Write Error at offset 0 */
5597         /* Note that SPI interface allows write access to all areas
5598          * of EEPROM. Hence doing all negative testing only for Xframe I.
5599          */
5600         if (sp->device_type == XFRAME_I_DEVICE)
5601                 if (!write_eeprom(sp, 0, 0, 3))
5602                         fail = 1;
5603
5604         /* Save current values at offsets 0x4F0 and 0x7F0 */
5605         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5606                 saved_4F0 = 1;
5607         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5608                 saved_7F0 = 1;
5609
5610         /* Test Write at offset 4f0 */
5611         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5612                 fail = 1;
5613         if (read_eeprom(sp, 0x4F0, &ret_data))
5614                 fail = 1;
5615
5616         if (ret_data != 0x012345) {
5617                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5618                         "Data written %llx Data read %llx\n",
5619                         dev->name, (unsigned long long)0x12345,
5620                         (unsigned long long)ret_data);
5621                 fail = 1;
5622         }
5623
5624         /* Reset the EEPROM data go FFFF */
5625         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5626
5627         /* Test Write Request Error at offset 0x7c */
5628         if (sp->device_type == XFRAME_I_DEVICE)
5629                 if (!write_eeprom(sp, 0x07C, 0, 3))
5630                         fail = 1;
5631
5632         /* Test Write Request at offset 0x7f0 */
5633         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5634                 fail = 1;
5635         if (read_eeprom(sp, 0x7F0, &ret_data))
5636                 fail = 1;
5637
5638         if (ret_data != 0x012345) {
5639                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5640                         "Data written %llx Data read %llx\n",
5641                         dev->name, (unsigned long long)0x12345,
5642                         (unsigned long long)ret_data);
5643                 fail = 1;
5644         }
5645
5646         /* Reset the EEPROM data go FFFF */
5647         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5648
5649         if (sp->device_type == XFRAME_I_DEVICE) {
5650                 /* Test Write Error at offset 0x80 */
5651                 if (!write_eeprom(sp, 0x080, 0, 3))
5652                         fail = 1;
5653
5654                 /* Test Write Error at offset 0xfc */
5655                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5656                         fail = 1;
5657
5658                 /* Test Write Error at offset 0x100 */
5659                 if (!write_eeprom(sp, 0x100, 0, 3))
5660                         fail = 1;
5661
5662                 /* Test Write Error at offset 4ec */
5663                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5664                         fail = 1;
5665         }
5666
5667         /* Restore values at offsets 0x4F0 and 0x7F0 */
5668         if (saved_4F0)
5669                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5670         if (saved_7F0)
5671                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5672
5673         *data = fail;
5674         return fail;
5675 }
5676
5677 /**
5678  * s2io_bist_test - invokes the MemBist test of the card .
5679  * @sp : private member of the device structure, which is a pointer to the
5680  * s2io_nic structure.
5681  * @data:variable that returns the result of each of the test conducted by
5682  * the driver.
5683  * Description:
5684  * This invokes the MemBist test of the card. We give around
5685  * 2 secs time for the Test to complete. If it's still not complete
5686  * within this peiod, we consider that the test failed.
5687  * Return value:
5688  * 0 on success and -1 on failure.
5689  */
5690
5691 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5692 {
5693         u8 bist = 0;
5694         int cnt = 0, ret = -1;
5695
5696         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5697         bist |= PCI_BIST_START;
5698         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5699
5700         while (cnt < 20) {
5701                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5702                 if (!(bist & PCI_BIST_START)) {
5703                         *data = (bist & PCI_BIST_CODE_MASK);
5704                         ret = 0;
5705                         break;
5706                 }
5707                 msleep(100);
5708                 cnt++;
5709         }
5710
5711         return ret;
5712 }
5713
5714 /**
5715  * s2io-link_test - verifies the link state of the nic
5716  * @sp ; private member of the device structure, which is a pointer to the
5717  * s2io_nic structure.
5718  * @data: variable that returns the result of each of the test conducted by
5719  * the driver.
5720  * Description:
5721  * The function verifies the link state of the NIC and updates the input
5722  * argument 'data' appropriately.
5723  * Return value:
5724  * 0 on success.
5725  */
5726
5727 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5728 {
5729         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5730         u64 val64;
5731
5732         val64 = readq(&bar0->adapter_status);
5733         if(!(LINK_IS_UP(val64)))
5734                 *data = 1;
5735         else
5736                 *data = 0;
5737
5738         return *data;
5739 }
5740
5741 /**
5742  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5743  * @sp - private member of the device structure, which is a pointer to the
5744  * s2io_nic structure.
5745  * @data - variable that returns the result of each of the test
5746  * conducted by the driver.
5747  * Description:
5748  *  This is one of the offline test that tests the read and write
5749  *  access to the RldRam chip on the NIC.
5750  * Return value:
5751  *  0 on success.
5752  */
5753
5754 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5755 {
5756         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5757         u64 val64;
5758         int cnt, iteration = 0, test_fail = 0;
5759
5760         val64 = readq(&bar0->adapter_control);
5761         val64 &= ~ADAPTER_ECC_EN;
5762         writeq(val64, &bar0->adapter_control);
5763
5764         val64 = readq(&bar0->mc_rldram_test_ctrl);
5765         val64 |= MC_RLDRAM_TEST_MODE;
5766         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5767
5768         val64 = readq(&bar0->mc_rldram_mrs);
5769         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5770         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5771
5772         val64 |= MC_RLDRAM_MRS_ENABLE;
5773         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5774
5775         while (iteration < 2) {
5776                 val64 = 0x55555555aaaa0000ULL;
5777                 if (iteration == 1) {
5778                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5779                 }
5780                 writeq(val64, &bar0->mc_rldram_test_d0);
5781
5782                 val64 = 0xaaaa5a5555550000ULL;
5783                 if (iteration == 1) {
5784                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5785                 }
5786                 writeq(val64, &bar0->mc_rldram_test_d1);
5787
5788                 val64 = 0x55aaaaaaaa5a0000ULL;
5789                 if (iteration == 1) {
5790                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5791                 }
5792                 writeq(val64, &bar0->mc_rldram_test_d2);
5793
5794                 val64 = (u64) (0x0000003ffffe0100ULL);
5795                 writeq(val64, &bar0->mc_rldram_test_add);
5796
5797                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5798                         MC_RLDRAM_TEST_GO;
5799                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5800
5801                 for (cnt = 0; cnt < 5; cnt++) {
5802                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5803                         if (val64 & MC_RLDRAM_TEST_DONE)
5804                                 break;
5805                         msleep(200);
5806                 }
5807
5808                 if (cnt == 5)
5809                         break;
5810
5811                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5812                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5813
5814                 for (cnt = 0; cnt < 5; cnt++) {
5815                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5816                         if (val64 & MC_RLDRAM_TEST_DONE)
5817                                 break;
5818                         msleep(500);
5819                 }
5820
5821                 if (cnt == 5)
5822                         break;
5823
5824                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5825                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5826                         test_fail = 1;
5827
5828                 iteration++;
5829         }
5830
5831         *data = test_fail;
5832
5833         /* Bring the adapter out of test mode */
5834         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5835
5836         return test_fail;
5837 }
5838
5839 /**
5840  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5841  *  @sp : private member of the device structure, which is a pointer to the
5842  *  s2io_nic structure.
5843  *  @ethtest : pointer to a ethtool command specific structure that will be
5844  *  returned to the user.
5845  *  @data : variable that returns the result of each of the test
5846  * conducted by the driver.
5847  * Description:
5848  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5849  *  the health of the card.
5850  * Return value:
5851  *  void
5852  */
5853
5854 static void s2io_ethtool_test(struct net_device *dev,
5855                               struct ethtool_test *ethtest,
5856                               uint64_t * data)
5857 {
5858         struct s2io_nic *sp = dev->priv;
5859         int orig_state = netif_running(sp->dev);
5860
5861         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5862                 /* Offline Tests. */
5863                 if (orig_state)
5864                         s2io_close(sp->dev);
5865
5866                 if (s2io_register_test(sp, &data[0]))
5867                         ethtest->flags |= ETH_TEST_FL_FAILED;
5868
5869                 s2io_reset(sp);
5870
5871                 if (s2io_rldram_test(sp, &data[3]))
5872                         ethtest->flags |= ETH_TEST_FL_FAILED;
5873
5874                 s2io_reset(sp);
5875
5876                 if (s2io_eeprom_test(sp, &data[1]))
5877                         ethtest->flags |= ETH_TEST_FL_FAILED;
5878
5879                 if (s2io_bist_test(sp, &data[4]))
5880                         ethtest->flags |= ETH_TEST_FL_FAILED;
5881
5882                 if (orig_state)
5883                         s2io_open(sp->dev);
5884
5885                 data[2] = 0;
5886         } else {
5887                 /* Online Tests. */
5888                 if (!orig_state) {
5889                         DBG_PRINT(ERR_DBG,
5890                                   "%s: is not up, cannot run test\n",
5891                                   dev->name);
5892                         data[0] = -1;
5893                         data[1] = -1;
5894                         data[2] = -1;
5895                         data[3] = -1;
5896                         data[4] = -1;
5897                 }
5898
5899                 if (s2io_link_test(sp, &data[2]))
5900                         ethtest->flags |= ETH_TEST_FL_FAILED;
5901
5902                 data[0] = 0;
5903                 data[1] = 0;
5904                 data[3] = 0;
5905                 data[4] = 0;
5906         }
5907 }
5908
5909 static void s2io_get_ethtool_stats(struct net_device *dev,
5910                                    struct ethtool_stats *estats,
5911                                    u64 * tmp_stats)
5912 {
5913         int i = 0, k;
5914         struct s2io_nic *sp = dev->priv;
5915         struct stat_block *stat_info = sp->mac_control.stats_info;
5916
5917         s2io_updt_stats(sp);
5918         tmp_stats[i++] =
5919                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5920                 le32_to_cpu(stat_info->tmac_frms);
5921         tmp_stats[i++] =
5922                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5923                 le32_to_cpu(stat_info->tmac_data_octets);
5924         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5925         tmp_stats[i++] =
5926                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5927                 le32_to_cpu(stat_info->tmac_mcst_frms);
5928         tmp_stats[i++] =
5929                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5930                 le32_to_cpu(stat_info->tmac_bcst_frms);
5931         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5932         tmp_stats[i++] =
5933                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5934                 le32_to_cpu(stat_info->tmac_ttl_octets);
5935         tmp_stats[i++] =
5936                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5937                 le32_to_cpu(stat_info->tmac_ucst_frms);
5938         tmp_stats[i++] =
5939                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5940                 le32_to_cpu(stat_info->tmac_nucst_frms);
5941         tmp_stats[i++] =
5942                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5943                 le32_to_cpu(stat_info->tmac_any_err_frms);
5944         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5945         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5946         tmp_stats[i++] =
5947                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5948                 le32_to_cpu(stat_info->tmac_vld_ip);
5949         tmp_stats[i++] =
5950                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5951                 le32_to_cpu(stat_info->tmac_drop_ip);
5952         tmp_stats[i++] =
5953                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5954                 le32_to_cpu(stat_info->tmac_icmp);
5955         tmp_stats[i++] =
5956                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5957                 le32_to_cpu(stat_info->tmac_rst_tcp);
5958         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5959         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5960                 le32_to_cpu(stat_info->tmac_udp);
5961         tmp_stats[i++] =
5962                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5963                 le32_to_cpu(stat_info->rmac_vld_frms);
5964         tmp_stats[i++] =
5965                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5966                 le32_to_cpu(stat_info->rmac_data_octets);
5967         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5968         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5969         tmp_stats[i++] =
5970                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5971                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5972         tmp_stats[i++] =
5973                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5974                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5975         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5976         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5977         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5978         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5979         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5980         tmp_stats[i++] =
5981                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5982                 le32_to_cpu(stat_info->rmac_ttl_octets);
5983         tmp_stats[i++] =
5984                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5985                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5986         tmp_stats[i++] =
5987                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5988                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5989         tmp_stats[i++] =
5990                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5991                 le32_to_cpu(stat_info->rmac_discarded_frms);
5992         tmp_stats[i++] =
5993                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5994                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5995         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5996         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5997         tmp_stats[i++] =
5998                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5999                 le32_to_cpu(stat_info->rmac_usized_frms);
6000         tmp_stats[i++] =
6001                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6002                 le32_to_cpu(stat_info->rmac_osized_frms);
6003         tmp_stats[i++] =
6004                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6005                 le32_to_cpu(stat_info->rmac_frag_frms);
6006         tmp_stats[i++] =
6007                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6008                 le32_to_cpu(stat_info->rmac_jabber_frms);
6009         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6010         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6011         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6012         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6013         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6014         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6015         tmp_stats[i++] =
6016                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6017                 le32_to_cpu(stat_info->rmac_ip);
6018         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6019         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6020         tmp_stats[i++] =
6021                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6022                 le32_to_cpu(stat_info->rmac_drop_ip);
6023         tmp_stats[i++] =
6024                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6025                 le32_to_cpu(stat_info->rmac_icmp);
6026         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6027         tmp_stats[i++] =
6028                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6029                 le32_to_cpu(stat_info->rmac_udp);
6030         tmp_stats[i++] =
6031                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6032                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6033         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6034         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6035         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6036         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6037         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6038         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6039         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6040         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6041         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6042         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6043         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6044         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6045         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6046         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6047         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6048         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6049         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6050         tmp_stats[i++] =
6051                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6052                 le32_to_cpu(stat_info->rmac_pause_cnt);
6053         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6054         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6055         tmp_stats[i++] =
6056                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6057                 le32_to_cpu(stat_info->rmac_accepted_ip);
6058         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6059         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6060         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6061         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6062         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6063         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6064         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6065         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6066         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6067         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6068         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6069         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6070         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6071         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6072         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6073         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6074         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6075         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6076         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6077
6078         /* Enhanced statistics exist only for Hercules */
6079         if(sp->device_type == XFRAME_II_DEVICE) {
6080                 tmp_stats[i++] =
6081                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6082                 tmp_stats[i++] =
6083                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6084                 tmp_stats[i++] =
6085                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6086                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6087                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6088                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6089                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6090                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6091                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6092                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6093                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6094                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6095                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6096                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6097                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6098                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6099         }
6100
6101         tmp_stats[i++] = 0;
6102         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6103         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6104         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6105         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6106         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6107         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6108         for (k = 0; k < MAX_RX_RINGS; k++)
6109                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6110         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6111         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6112         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6113         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6114         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6115         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6116         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6117         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6118         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6119         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6120         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6121         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6122         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6123         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6124         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6125         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6126         if (stat_info->sw_stat.num_aggregations) {
6127                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6128                 int count = 0;
6129                 /*
6130                  * Since 64-bit divide does not work on all platforms,
6131                  * do repeated subtraction.
6132                  */
6133                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6134                         tmp -= stat_info->sw_stat.num_aggregations;
6135                         count++;
6136                 }
6137                 tmp_stats[i++] = count;
6138         }
6139         else
6140                 tmp_stats[i++] = 0;
6141         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6142         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6143         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6144         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6145         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6146         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6147         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6148         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6149         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6150
6151         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6152         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6153         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6154         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6155         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6156
6157         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6158         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6159         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6160         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6161         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6162         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6163         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6164         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6165         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6166         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6167         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6168         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6169         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6170         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6171         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6172         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6173         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6174         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6175         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6176         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6177         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6178         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6179         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6180         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6181         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6182         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6183 }
6184
6185 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6186 {
6187         return (XENA_REG_SPACE);
6188 }
6189
6190
6191 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6192 {
6193         struct s2io_nic *sp = dev->priv;
6194
6195         return (sp->rx_csum);
6196 }
6197
6198 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6199 {
6200         struct s2io_nic *sp = dev->priv;
6201
6202         if (data)
6203                 sp->rx_csum = 1;
6204         else
6205                 sp->rx_csum = 0;
6206
6207         return 0;
6208 }
6209
6210 static int s2io_get_eeprom_len(struct net_device *dev)
6211 {
6212         return (XENA_EEPROM_SPACE);
6213 }
6214
6215 static int s2io_get_sset_count(struct net_device *dev, int sset)
6216 {
6217         struct s2io_nic *sp = dev->priv;
6218
6219         switch (sset) {
6220         case ETH_SS_TEST:
6221                 return S2IO_TEST_LEN;
6222         case ETH_SS_STATS:
6223                 switch(sp->device_type) {
6224                 case XFRAME_I_DEVICE:
6225                         return XFRAME_I_STAT_LEN;
6226                 case XFRAME_II_DEVICE:
6227                         return XFRAME_II_STAT_LEN;
6228                 default:
6229                         return 0;
6230                 }
6231         default:
6232                 return -EOPNOTSUPP;
6233         }
6234 }
6235
6236 static void s2io_ethtool_get_strings(struct net_device *dev,
6237                                      u32 stringset, u8 * data)
6238 {
6239         int stat_size = 0;
6240         struct s2io_nic *sp = dev->priv;
6241
6242         switch (stringset) {
6243         case ETH_SS_TEST:
6244                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6245                 break;
6246         case ETH_SS_STATS:
6247                 stat_size = sizeof(ethtool_xena_stats_keys);
6248                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6249                 if(sp->device_type == XFRAME_II_DEVICE) {
6250                         memcpy(data + stat_size,
6251                                 &ethtool_enhanced_stats_keys,
6252                                 sizeof(ethtool_enhanced_stats_keys));
6253                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6254                 }
6255
6256                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6257                         sizeof(ethtool_driver_stats_keys));
6258         }
6259 }
6260
6261 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6262 {
6263         if (data)
6264                 dev->features |= NETIF_F_IP_CSUM;
6265         else
6266                 dev->features &= ~NETIF_F_IP_CSUM;
6267
6268         return 0;
6269 }
6270
6271 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6272 {
6273         return (dev->features & NETIF_F_TSO) != 0;
6274 }
6275 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6276 {
6277         if (data)
6278                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6279         else
6280                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6281
6282         return 0;
6283 }
6284
6285 static const struct ethtool_ops netdev_ethtool_ops = {
6286         .get_settings = s2io_ethtool_gset,
6287         .set_settings = s2io_ethtool_sset,
6288         .get_drvinfo = s2io_ethtool_gdrvinfo,
6289         .get_regs_len = s2io_ethtool_get_regs_len,
6290         .get_regs = s2io_ethtool_gregs,
6291         .get_link = ethtool_op_get_link,
6292         .get_eeprom_len = s2io_get_eeprom_len,
6293         .get_eeprom = s2io_ethtool_geeprom,
6294         .set_eeprom = s2io_ethtool_seeprom,
6295         .get_ringparam = s2io_ethtool_gringparam,
6296         .get_pauseparam = s2io_ethtool_getpause_data,
6297         .set_pauseparam = s2io_ethtool_setpause_data,
6298         .get_rx_csum = s2io_ethtool_get_rx_csum,
6299         .set_rx_csum = s2io_ethtool_set_rx_csum,
6300         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6301         .set_sg = ethtool_op_set_sg,
6302         .get_tso = s2io_ethtool_op_get_tso,
6303         .set_tso = s2io_ethtool_op_set_tso,
6304         .set_ufo = ethtool_op_set_ufo,
6305         .self_test = s2io_ethtool_test,
6306         .get_strings = s2io_ethtool_get_strings,
6307         .phys_id = s2io_ethtool_idnic,
6308         .get_ethtool_stats = s2io_get_ethtool_stats,
6309         .get_sset_count = s2io_get_sset_count,
6310 };
6311
6312 /**
6313  *  s2io_ioctl - Entry point for the Ioctl
6314  *  @dev :  Device pointer.
6315  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6316  *  a proprietary structure used to pass information to the driver.
6317  *  @cmd :  This is used to distinguish between the different commands that
6318  *  can be passed to the IOCTL functions.
6319  *  Description:
6320  *  Currently there are no special functionality supported in IOCTL, hence
6321  *  function always return EOPNOTSUPPORTED
6322  */
6323
6324 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6325 {
6326         return -EOPNOTSUPP;
6327 }
6328
6329 /**
6330  *  s2io_change_mtu - entry point to change MTU size for the device.
6331  *   @dev : device pointer.
6332  *   @new_mtu : the new MTU size for the device.
6333  *   Description: A driver entry point to change MTU size for the device.
6334  *   Before changing the MTU the device must be stopped.
6335  *  Return value:
6336  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6337  *   file on failure.
6338  */
6339
6340 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6341 {
6342         struct s2io_nic *sp = dev->priv;
6343
6344         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6345                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6346                           dev->name);
6347                 return -EPERM;
6348         }
6349
6350         dev->mtu = new_mtu;
6351         if (netif_running(dev)) {
6352                 s2io_card_down(sp);
6353                 netif_stop_queue(dev);
6354                 if (s2io_card_up(sp)) {
6355                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6356                                   __FUNCTION__);
6357                 }
6358                 if (netif_queue_stopped(dev))
6359                         netif_wake_queue(dev);
6360         } else { /* Device is down */
6361                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6362                 u64 val64 = new_mtu;
6363
6364                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6365         }
6366
6367         return 0;
6368 }
6369
6370 /**
6371  *  s2io_tasklet - Bottom half of the ISR.
6372  *  @dev_adr : address of the device structure in dma_addr_t format.
6373  *  Description:
6374  *  This is the tasklet or the bottom half of the ISR. This is
6375  *  an extension of the ISR which is scheduled by the scheduler to be run
6376  *  when the load on the CPU is low. All low priority tasks of the ISR can
6377  *  be pushed into the tasklet. For now the tasklet is used only to
6378  *  replenish the Rx buffers in the Rx buffer descriptors.
6379  *  Return value:
6380  *  void.
6381  */
6382
6383 static void s2io_tasklet(unsigned long dev_addr)
6384 {
6385         struct net_device *dev = (struct net_device *) dev_addr;
6386         struct s2io_nic *sp = dev->priv;
6387         int i, ret;
6388         struct mac_info *mac_control;
6389         struct config_param *config;
6390
6391         mac_control = &sp->mac_control;
6392         config = &sp->config;
6393
6394         if (!TASKLET_IN_USE) {
6395                 for (i = 0; i < config->rx_ring_num; i++) {
6396                         ret = fill_rx_buffers(sp, i);
6397                         if (ret == -ENOMEM) {
6398                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6399                                           dev->name);
6400                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6401                                 break;
6402                         } else if (ret == -EFILL) {
6403                                 DBG_PRINT(INFO_DBG,
6404                                           "%s: Rx Ring %d is full\n",
6405                                           dev->name, i);
6406                                 break;
6407                         }
6408                 }
6409                 clear_bit(0, (&sp->tasklet_status));
6410         }
6411 }
6412
6413 /**
6414  * s2io_set_link - Set the LInk status
6415  * @data: long pointer to device private structue
6416  * Description: Sets the link status for the adapter
6417  */
6418
6419 static void s2io_set_link(struct work_struct *work)
6420 {
6421         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6422         struct net_device *dev = nic->dev;
6423         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6424         register u64 val64;
6425         u16 subid;
6426
6427         rtnl_lock();
6428
6429         if (!netif_running(dev))
6430                 goto out_unlock;
6431
6432         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6433                 /* The card is being reset, no point doing anything */
6434                 goto out_unlock;
6435         }
6436
6437         subid = nic->pdev->subsystem_device;
6438         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6439                 /*
6440                  * Allow a small delay for the NICs self initiated
6441                  * cleanup to complete.
6442                  */
6443                 msleep(100);
6444         }
6445
6446         val64 = readq(&bar0->adapter_status);
6447         if (LINK_IS_UP(val64)) {
6448                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6449                         if (verify_xena_quiescence(nic)) {
6450                                 val64 = readq(&bar0->adapter_control);
6451                                 val64 |= ADAPTER_CNTL_EN;
6452                                 writeq(val64, &bar0->adapter_control);
6453                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6454                                         nic->device_type, subid)) {
6455                                         val64 = readq(&bar0->gpio_control);
6456                                         val64 |= GPIO_CTRL_GPIO_0;
6457                                         writeq(val64, &bar0->gpio_control);
6458                                         val64 = readq(&bar0->gpio_control);
6459                                 } else {
6460                                         val64 |= ADAPTER_LED_ON;
6461                                         writeq(val64, &bar0->adapter_control);
6462                                 }
6463                                 nic->device_enabled_once = TRUE;
6464                         } else {
6465                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6466                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6467                                 netif_stop_queue(dev);
6468                         }
6469                 }
6470                 val64 = readq(&bar0->adapter_control);
6471                 val64 |= ADAPTER_LED_ON;
6472                 writeq(val64, &bar0->adapter_control);
6473                 s2io_link(nic, LINK_UP);
6474         } else {
6475                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6476                                                       subid)) {
6477                         val64 = readq(&bar0->gpio_control);
6478                         val64 &= ~GPIO_CTRL_GPIO_0;
6479                         writeq(val64, &bar0->gpio_control);
6480                         val64 = readq(&bar0->gpio_control);
6481                 }
6482                 /* turn off LED */
6483                 val64 = readq(&bar0->adapter_control);
6484                 val64 = val64 &(~ADAPTER_LED_ON);
6485                 writeq(val64, &bar0->adapter_control);
6486                 s2io_link(nic, LINK_DOWN);
6487         }
6488         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6489
6490 out_unlock:
6491         rtnl_unlock();
6492 }
6493
6494 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6495                                 struct buffAdd *ba,
6496                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6497                                 u64 *temp2, int size)
6498 {
6499         struct net_device *dev = sp->dev;
6500         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6501
6502         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6503                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6504                 /* allocate skb */
6505                 if (*skb) {
6506                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6507                         /*
6508                          * As Rx frame are not going to be processed,
6509                          * using same mapped address for the Rxd
6510                          * buffer pointer
6511                          */
6512                         rxdp1->Buffer0_ptr = *temp0;
6513                 } else {
6514                         *skb = dev_alloc_skb(size);
6515                         if (!(*skb)) {
6516                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6517                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6518                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6519                                 sp->mac_control.stats_info->sw_stat. \
6520                                         mem_alloc_fail_cnt++;
6521                                 return -ENOMEM ;
6522                         }
6523                         sp->mac_control.stats_info->sw_stat.mem_allocated
6524                                 += (*skb)->truesize;
6525                         /* storing the mapped addr in a temp variable
6526                          * such it will be used for next rxd whose
6527                          * Host Control is NULL
6528                          */
6529                         rxdp1->Buffer0_ptr = *temp0 =
6530                                 pci_map_single( sp->pdev, (*skb)->data,
6531                                         size - NET_IP_ALIGN,
6532                                         PCI_DMA_FROMDEVICE);
6533                         if( (rxdp1->Buffer0_ptr == 0) ||
6534                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6535                                 goto memalloc_failed;
6536                         }
6537                         rxdp->Host_Control = (unsigned long) (*skb);
6538                 }
6539         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6540                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6541                 /* Two buffer Mode */
6542                 if (*skb) {
6543                         rxdp3->Buffer2_ptr = *temp2;
6544                         rxdp3->Buffer0_ptr = *temp0;
6545                         rxdp3->Buffer1_ptr = *temp1;
6546                 } else {
6547                         *skb = dev_alloc_skb(size);
6548                         if (!(*skb)) {
6549                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6550                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6551                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6552                                 sp->mac_control.stats_info->sw_stat. \
6553                                         mem_alloc_fail_cnt++;
6554                                 return -ENOMEM;
6555                         }
6556                         sp->mac_control.stats_info->sw_stat.mem_allocated
6557                                 += (*skb)->truesize;
6558                         rxdp3->Buffer2_ptr = *temp2 =
6559                                 pci_map_single(sp->pdev, (*skb)->data,
6560                                                dev->mtu + 4,
6561                                                PCI_DMA_FROMDEVICE);
6562                         if( (rxdp3->Buffer2_ptr == 0) ||
6563                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6564                                 goto memalloc_failed;
6565                         }
6566                         rxdp3->Buffer0_ptr = *temp0 =
6567                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6568                                                 PCI_DMA_FROMDEVICE);
6569                         if( (rxdp3->Buffer0_ptr == 0) ||
6570                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6571                                 pci_unmap_single (sp->pdev,
6572                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6573                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6574                                 goto memalloc_failed;
6575                         }
6576                         rxdp->Host_Control = (unsigned long) (*skb);
6577
6578                         /* Buffer-1 will be dummy buffer not used */
6579                         rxdp3->Buffer1_ptr = *temp1 =
6580                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6581                                                 PCI_DMA_FROMDEVICE);
6582                         if( (rxdp3->Buffer1_ptr == 0) ||
6583                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6584                                 pci_unmap_single (sp->pdev,
6585                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6586                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6587                                 pci_unmap_single (sp->pdev,
6588                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6589                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6590                                 goto memalloc_failed;
6591                         }
6592                 }
6593         }
6594         return 0;
6595         memalloc_failed:
6596                 stats->pci_map_fail_cnt++;
6597                 stats->mem_freed += (*skb)->truesize;
6598                 dev_kfree_skb(*skb);
6599                 return -ENOMEM;
6600 }
6601
6602 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6603                                 int size)
6604 {
6605         struct net_device *dev = sp->dev;
6606         if (sp->rxd_mode == RXD_MODE_1) {
6607                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6608         } else if (sp->rxd_mode == RXD_MODE_3B) {
6609                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6610                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6611                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6612         }
6613 }
6614
6615 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6616 {
6617         int i, j, k, blk_cnt = 0, size;
6618         struct mac_info * mac_control = &sp->mac_control;
6619         struct config_param *config = &sp->config;
6620         struct net_device *dev = sp->dev;
6621         struct RxD_t *rxdp = NULL;
6622         struct sk_buff *skb = NULL;
6623         struct buffAdd *ba = NULL;
6624         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6625
6626         /* Calculate the size based on ring mode */
6627         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6628                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6629         if (sp->rxd_mode == RXD_MODE_1)
6630                 size += NET_IP_ALIGN;
6631         else if (sp->rxd_mode == RXD_MODE_3B)
6632                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6633
6634         for (i = 0; i < config->rx_ring_num; i++) {
6635                 blk_cnt = config->rx_cfg[i].num_rxd /
6636                         (rxd_count[sp->rxd_mode] +1);
6637
6638                 for (j = 0; j < blk_cnt; j++) {
6639                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6640                                 rxdp = mac_control->rings[i].
6641                                         rx_blocks[j].rxds[k].virt_addr;
6642                                 if(sp->rxd_mode == RXD_MODE_3B)
6643                                         ba = &mac_control->rings[i].ba[j][k];
6644                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6645                                                        &skb,(u64 *)&temp0_64,
6646                                                        (u64 *)&temp1_64,
6647                                                        (u64 *)&temp2_64,
6648                                                         size) == ENOMEM) {
6649                                         return 0;
6650                                 }
6651
6652                                 set_rxd_buffer_size(sp, rxdp, size);
6653                                 wmb();
6654                                 /* flip the Ownership bit to Hardware */
6655                                 rxdp->Control_1 |= RXD_OWN_XENA;
6656                         }
6657                 }
6658         }
6659         return 0;
6660
6661 }
6662
6663 static int s2io_add_isr(struct s2io_nic * sp)
6664 {
6665         int ret = 0;
6666         struct net_device *dev = sp->dev;
6667         int err = 0;
6668
6669         if (sp->config.intr_type == MSI_X)
6670                 ret = s2io_enable_msi_x(sp);
6671         if (ret) {
6672                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6673                 sp->config.intr_type = INTA;
6674         }
6675
6676         /* Store the values of the MSIX table in the struct s2io_nic structure */
6677         store_xmsi_data(sp);
6678
6679         /* After proper initialization of H/W, register ISR */
6680         if (sp->config.intr_type == MSI_X) {
6681                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6682
6683                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6684                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6685                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6686                                         dev->name, i);
6687                                 err = request_irq(sp->entries[i].vector,
6688                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6689                                                   sp->s2io_entries[i].arg);
6690                                 /* If either data or addr is zero print it */
6691                                 if(!(sp->msix_info[i].addr &&
6692                                         sp->msix_info[i].data)) {
6693                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6694                                                 "Data:0x%lx\n",sp->desc[i],
6695                                                 (unsigned long long)
6696                                                 sp->msix_info[i].addr,
6697                                                 (unsigned long)
6698                                                 ntohl(sp->msix_info[i].data));
6699                                 } else {
6700                                         msix_tx_cnt++;
6701                                 }
6702                         } else {
6703                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6704                                         dev->name, i);
6705                                 err = request_irq(sp->entries[i].vector,
6706                                           s2io_msix_ring_handle, 0, sp->desc[i],
6707                                                   sp->s2io_entries[i].arg);
6708                                 /* If either data or addr is zero print it */
6709                                 if(!(sp->msix_info[i].addr &&
6710                                         sp->msix_info[i].data)) {
6711                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6712                                                 "Data:0x%lx\n",sp->desc[i],
6713                                                 (unsigned long long)
6714                                                 sp->msix_info[i].addr,
6715                                                 (unsigned long)
6716                                                 ntohl(sp->msix_info[i].data));
6717                                 } else {
6718                                         msix_rx_cnt++;
6719                                 }
6720                         }
6721                         if (err) {
6722                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6723                                           "failed\n", dev->name, i);
6724                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6725                                 return -1;
6726                         }
6727                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6728                 }
6729                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6730                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6731         }
6732         if (sp->config.intr_type == INTA) {
6733                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6734                                 sp->name, dev);
6735                 if (err) {
6736                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6737                                   dev->name);
6738                         return -1;
6739                 }
6740         }
6741         return 0;
6742 }
6743 static void s2io_rem_isr(struct s2io_nic * sp)
6744 {
6745         struct net_device *dev = sp->dev;
6746         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6747
6748         if (sp->config.intr_type == MSI_X) {
6749                 int i;
6750                 u16 msi_control;
6751
6752                 for (i=1; (sp->s2io_entries[i].in_use ==
6753                         MSIX_REGISTERED_SUCCESS); i++) {
6754                         int vector = sp->entries[i].vector;
6755                         void *arg = sp->s2io_entries[i].arg;
6756
6757                         synchronize_irq(vector);
6758                         free_irq(vector, arg);
6759                 }
6760
6761                 kfree(sp->entries);
6762                 stats->mem_freed +=
6763                         (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6764                 kfree(sp->s2io_entries);
6765                 stats->mem_freed +=
6766                         (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6767                 sp->entries = NULL;
6768                 sp->s2io_entries = NULL;
6769
6770                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6771                 msi_control &= 0xFFFE; /* Disable MSI */
6772                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6773
6774                 pci_disable_msix(sp->pdev);
6775         } else {
6776                 synchronize_irq(sp->pdev->irq);
6777                 free_irq(sp->pdev->irq, dev);
6778         }
6779 }
6780
6781 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6782 {
6783         int cnt = 0;
6784         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6785         unsigned long flags;
6786         register u64 val64 = 0;
6787
6788         del_timer_sync(&sp->alarm_timer);
6789         /* If s2io_set_link task is executing, wait till it completes. */
6790         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6791                 msleep(50);
6792         }
6793         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6794
6795         /* disable Tx and Rx traffic on the NIC */
6796         if (do_io)
6797                 stop_nic(sp);
6798
6799         s2io_rem_isr(sp);
6800
6801         /* Kill tasklet. */
6802         tasklet_kill(&sp->task);
6803
6804         /* Check if the device is Quiescent and then Reset the NIC */
6805         while(do_io) {
6806                 /* As per the HW requirement we need to replenish the
6807                  * receive buffer to avoid the ring bump. Since there is
6808                  * no intention of processing the Rx frame at this pointwe are
6809                  * just settting the ownership bit of rxd in Each Rx
6810                  * ring to HW and set the appropriate buffer size
6811                  * based on the ring mode
6812                  */
6813                 rxd_owner_bit_reset(sp);
6814
6815                 val64 = readq(&bar0->adapter_status);
6816                 if (verify_xena_quiescence(sp)) {
6817                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6818                         break;
6819                 }
6820
6821                 msleep(50);
6822                 cnt++;
6823                 if (cnt == 10) {
6824                         DBG_PRINT(ERR_DBG,
6825                                   "s2io_close:Device not Quiescent ");
6826                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6827                                   (unsigned long long) val64);
6828                         break;
6829                 }
6830         }
6831         if (do_io)
6832                 s2io_reset(sp);
6833
6834         spin_lock_irqsave(&sp->tx_lock, flags);
6835         /* Free all Tx buffers */
6836         free_tx_buffers(sp);
6837         spin_unlock_irqrestore(&sp->tx_lock, flags);
6838
6839         /* Free all Rx buffers */
6840         spin_lock_irqsave(&sp->rx_lock, flags);
6841         free_rx_buffers(sp);
6842         spin_unlock_irqrestore(&sp->rx_lock, flags);
6843
6844         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6845 }
6846
6847 static void s2io_card_down(struct s2io_nic * sp)
6848 {
6849         do_s2io_card_down(sp, 1);
6850 }
6851
6852 static int s2io_card_up(struct s2io_nic * sp)
6853 {
6854         int i, ret = 0;
6855         struct mac_info *mac_control;
6856         struct config_param *config;
6857         struct net_device *dev = (struct net_device *) sp->dev;
6858         u16 interruptible;
6859
6860         /* Initialize the H/W I/O registers */
6861         if (init_nic(sp) != 0) {
6862                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6863                           dev->name);
6864                 s2io_reset(sp);
6865                 return -ENODEV;
6866         }
6867
6868         /*
6869          * Initializing the Rx buffers. For now we are considering only 1
6870          * Rx ring and initializing buffers into 30 Rx blocks
6871          */
6872         mac_control = &sp->mac_control;
6873         config = &sp->config;
6874
6875         for (i = 0; i < config->rx_ring_num; i++) {
6876                 if ((ret = fill_rx_buffers(sp, i))) {
6877                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6878                                   dev->name);
6879                         s2io_reset(sp);
6880                         free_rx_buffers(sp);
6881                         return -ENOMEM;
6882                 }
6883                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6884                           atomic_read(&sp->rx_bufs_left[i]));
6885         }
6886         /* Maintain the state prior to the open */
6887         if (sp->promisc_flg)
6888                 sp->promisc_flg = 0;
6889         if (sp->m_cast_flg) {
6890                 sp->m_cast_flg = 0;
6891                 sp->all_multi_pos= 0;
6892         }
6893
6894         /* Setting its receive mode */
6895         s2io_set_multicast(dev);
6896
6897         if (sp->lro) {
6898                 /* Initialize max aggregatable pkts per session based on MTU */
6899                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6900                 /* Check if we can use(if specified) user provided value */
6901                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6902                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6903         }
6904
6905         /* Enable Rx Traffic and interrupts on the NIC */
6906         if (start_nic(sp)) {
6907                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6908                 s2io_reset(sp);
6909                 free_rx_buffers(sp);
6910                 return -ENODEV;
6911         }
6912
6913         /* Add interrupt service routine */
6914         if (s2io_add_isr(sp) != 0) {
6915                 if (sp->config.intr_type == MSI_X)
6916                         s2io_rem_isr(sp);
6917                 s2io_reset(sp);
6918                 free_rx_buffers(sp);
6919                 return -ENODEV;
6920         }
6921
6922         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6923
6924         /* Enable tasklet for the device */
6925         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6926
6927         /*  Enable select interrupts */
6928         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6929         if (sp->config.intr_type != INTA)
6930                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6931         else {
6932                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6933                 interruptible |= TX_PIC_INTR;
6934                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6935         }
6936
6937         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6938         return 0;
6939 }
6940
6941 /**
6942  * s2io_restart_nic - Resets the NIC.
6943  * @data : long pointer to the device private structure
6944  * Description:
6945  * This function is scheduled to be run by the s2io_tx_watchdog
6946  * function after 0.5 secs to reset the NIC. The idea is to reduce
6947  * the run time of the watch dog routine which is run holding a
6948  * spin lock.
6949  */
6950
6951 static void s2io_restart_nic(struct work_struct *work)
6952 {
6953         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6954         struct net_device *dev = sp->dev;
6955
6956         rtnl_lock();
6957
6958         if (!netif_running(dev))
6959                 goto out_unlock;
6960
6961         s2io_card_down(sp);
6962         if (s2io_card_up(sp)) {
6963                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6964                           dev->name);
6965         }
6966         netif_wake_queue(dev);
6967         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6968                   dev->name);
6969 out_unlock:
6970         rtnl_unlock();
6971 }
6972
6973 /**
6974  *  s2io_tx_watchdog - Watchdog for transmit side.
6975  *  @dev : Pointer to net device structure
6976  *  Description:
6977  *  This function is triggered if the Tx Queue is stopped
6978  *  for a pre-defined amount of time when the Interface is still up.
6979  *  If the Interface is jammed in such a situation, the hardware is
6980  *  reset (by s2io_close) and restarted again (by s2io_open) to
6981  *  overcome any problem that might have been caused in the hardware.
6982  *  Return value:
6983  *  void
6984  */
6985
6986 static void s2io_tx_watchdog(struct net_device *dev)
6987 {
6988         struct s2io_nic *sp = dev->priv;
6989
6990         if (netif_carrier_ok(dev)) {
6991                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6992                 schedule_work(&sp->rst_timer_task);
6993                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6994         }
6995 }
6996
6997 /**
6998  *   rx_osm_handler - To perform some OS related operations on SKB.
6999  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7000  *   @skb : the socket buffer pointer.
7001  *   @len : length of the packet
7002  *   @cksum : FCS checksum of the frame.
7003  *   @ring_no : the ring from which this RxD was extracted.
7004  *   Description:
7005  *   This function is called by the Rx interrupt serivce routine to perform
7006  *   some OS related operations on the SKB before passing it to the upper
7007  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7008  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7009  *   to the upper layer. If the checksum is wrong, it increments the Rx
7010  *   packet error count, frees the SKB and returns error.
7011  *   Return value:
7012  *   SUCCESS on success and -1 on failure.
7013  */
7014 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7015 {
7016         struct s2io_nic *sp = ring_data->nic;
7017         struct net_device *dev = (struct net_device *) sp->dev;
7018         struct sk_buff *skb = (struct sk_buff *)
7019                 ((unsigned long) rxdp->Host_Control);
7020         int ring_no = ring_data->ring_no;
7021         u16 l3_csum, l4_csum;
7022         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7023         struct lro *lro;
7024         u8 err_mask;
7025
7026         skb->dev = dev;
7027
7028         if (err) {
7029                 /* Check for parity error */
7030                 if (err & 0x1) {
7031                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7032                 }
7033                 err_mask = err >> 48;
7034                 switch(err_mask) {
7035                         case 1:
7036                                 sp->mac_control.stats_info->sw_stat.
7037                                 rx_parity_err_cnt++;
7038                         break;
7039
7040                         case 2:
7041                                 sp->mac_control.stats_info->sw_stat.
7042                                 rx_abort_cnt++;
7043                         break;
7044
7045                         case 3:
7046                                 sp->mac_control.stats_info->sw_stat.
7047                                 rx_parity_abort_cnt++;
7048                         break;
7049
7050                         case 4:
7051                                 sp->mac_control.stats_info->sw_stat.
7052                                 rx_rda_fail_cnt++;
7053                         break;
7054
7055                         case 5:
7056                                 sp->mac_control.stats_info->sw_stat.
7057                                 rx_unkn_prot_cnt++;
7058                         break;
7059
7060                         case 6:
7061                                 sp->mac_control.stats_info->sw_stat.
7062                                 rx_fcs_err_cnt++;
7063                         break;
7064
7065                         case 7:
7066                                 sp->mac_control.stats_info->sw_stat.
7067                                 rx_buf_size_err_cnt++;
7068                         break;
7069
7070                         case 8:
7071                                 sp->mac_control.stats_info->sw_stat.
7072                                 rx_rxd_corrupt_cnt++;
7073                         break;
7074
7075                         case 15:
7076                                 sp->mac_control.stats_info->sw_stat.
7077                                 rx_unkn_err_cnt++;
7078                         break;
7079                 }
7080                 /*
7081                 * Drop the packet if bad transfer code. Exception being
7082                 * 0x5, which could be due to unsupported IPv6 extension header.
7083                 * In this case, we let stack handle the packet.
7084                 * Note that in this case, since checksum will be incorrect,
7085                 * stack will validate the same.
7086                 */
7087                 if (err_mask != 0x5) {
7088                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7089                                 dev->name, err_mask);
7090                         sp->stats.rx_crc_errors++;
7091                         sp->mac_control.stats_info->sw_stat.mem_freed
7092                                 += skb->truesize;
7093                         dev_kfree_skb(skb);
7094                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7095                         rxdp->Host_Control = 0;
7096                         return 0;
7097                 }
7098         }
7099
7100         /* Updating statistics */
7101         sp->stats.rx_packets++;
7102         rxdp->Host_Control = 0;
7103         if (sp->rxd_mode == RXD_MODE_1) {
7104                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7105
7106                 sp->stats.rx_bytes += len;
7107                 skb_put(skb, len);
7108
7109         } else if (sp->rxd_mode == RXD_MODE_3B) {
7110                 int get_block = ring_data->rx_curr_get_info.block_index;
7111                 int get_off = ring_data->rx_curr_get_info.offset;
7112                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7113                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7114                 unsigned char *buff = skb_push(skb, buf0_len);
7115
7116                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7117                 sp->stats.rx_bytes += buf0_len + buf2_len;
7118                 memcpy(buff, ba->ba_0, buf0_len);
7119                 skb_put(skb, buf2_len);
7120         }
7121
7122         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7123             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7124             (sp->rx_csum)) {
7125                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7126                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7127                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7128                         /*
7129                          * NIC verifies if the Checksum of the received
7130                          * frame is Ok or not and accordingly returns
7131                          * a flag in the RxD.
7132                          */
7133                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7134                         if (sp->lro) {
7135                                 u32 tcp_len;
7136                                 u8 *tcp;
7137                                 int ret = 0;
7138
7139                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7140                                                             &tcp_len, &lro,
7141                                                             rxdp, sp);
7142                                 switch (ret) {
7143                                         case 3: /* Begin anew */
7144                                                 lro->parent = skb;
7145                                                 goto aggregate;
7146                                         case 1: /* Aggregate */
7147                                         {
7148                                                 lro_append_pkt(sp, lro,
7149                                                         skb, tcp_len);
7150                                                 goto aggregate;
7151                                         }
7152                                         case 4: /* Flush session */
7153                                         {
7154                                                 lro_append_pkt(sp, lro,
7155                                                         skb, tcp_len);
7156                                                 queue_rx_frame(lro->parent);
7157                                                 clear_lro_session(lro);
7158                                                 sp->mac_control.stats_info->
7159                                                     sw_stat.flush_max_pkts++;
7160                                                 goto aggregate;
7161                                         }
7162                                         case 2: /* Flush both */
7163                                                 lro->parent->data_len =
7164                                                         lro->frags_len;
7165                                                 sp->mac_control.stats_info->
7166                                                      sw_stat.sending_both++;
7167                                                 queue_rx_frame(lro->parent);
7168                                                 clear_lro_session(lro);
7169                                                 goto send_up;
7170                                         case 0: /* sessions exceeded */
7171                                         case -1: /* non-TCP or not
7172                                                   * L2 aggregatable
7173                                                   */
7174                                         case 5: /*
7175                                                  * First pkt in session not
7176                                                  * L3/L4 aggregatable
7177                                                  */
7178                                                 break;
7179                                         default:
7180                                                 DBG_PRINT(ERR_DBG,
7181                                                         "%s: Samadhana!!\n",
7182                                                          __FUNCTION__);
7183                                                 BUG();
7184                                 }
7185                         }
7186                 } else {
7187                         /*
7188                          * Packet with erroneous checksum, let the
7189                          * upper layers deal with it.
7190                          */
7191                         skb->ip_summed = CHECKSUM_NONE;
7192                 }
7193         } else {
7194                 skb->ip_summed = CHECKSUM_NONE;
7195         }
7196         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7197         if (!sp->lro) {
7198                 skb->protocol = eth_type_trans(skb, dev);
7199                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7200                         vlan_strip_flag)) {
7201                         /* Queueing the vlan frame to the upper layer */
7202                         if (napi)
7203                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7204                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7205                         else
7206                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7207                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7208                 } else {
7209                         if (napi)
7210                                 netif_receive_skb(skb);
7211                         else
7212                                 netif_rx(skb);
7213                 }
7214         } else {
7215 send_up:
7216                 queue_rx_frame(skb);
7217         }
7218         dev->last_rx = jiffies;
7219 aggregate:
7220         atomic_dec(&sp->rx_bufs_left[ring_no]);
7221         return SUCCESS;
7222 }
7223
7224 /**
7225  *  s2io_link - stops/starts the Tx queue.
7226  *  @sp : private member of the device structure, which is a pointer to the
7227  *  s2io_nic structure.
7228  *  @link : inidicates whether link is UP/DOWN.
7229  *  Description:
7230  *  This function stops/starts the Tx queue depending on whether the link
7231  *  status of the NIC is is down or up. This is called by the Alarm
7232  *  interrupt handler whenever a link change interrupt comes up.
7233  *  Return value:
7234  *  void.
7235  */
7236
7237 static void s2io_link(struct s2io_nic * sp, int link)
7238 {
7239         struct net_device *dev = (struct net_device *) sp->dev;
7240
7241         if (link != sp->last_link_state) {
7242                 if (link == LINK_DOWN) {
7243                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7244                         netif_carrier_off(dev);
7245                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7246                         sp->mac_control.stats_info->sw_stat.link_up_time =
7247                                 jiffies - sp->start_time;
7248                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7249                 } else {
7250                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7251                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7252                         sp->mac_control.stats_info->sw_stat.link_down_time =
7253                                 jiffies - sp->start_time;
7254                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7255                         netif_carrier_on(dev);
7256                 }
7257         }
7258         sp->last_link_state = link;
7259         sp->start_time = jiffies;
7260 }
7261
7262 /**
7263  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7264  *  @sp : private member of the device structure, which is a pointer to the
7265  *  s2io_nic structure.
7266  *  Description:
7267  *  This function initializes a few of the PCI and PCI-X configuration registers
7268  *  with recommended values.
7269  *  Return value:
7270  *  void
7271  */
7272
7273 static void s2io_init_pci(struct s2io_nic * sp)
7274 {
7275         u16 pci_cmd = 0, pcix_cmd = 0;
7276
7277         /* Enable Data Parity Error Recovery in PCI-X command register. */
7278         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7279                              &(pcix_cmd));
7280         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7281                               (pcix_cmd | 1));
7282         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7283                              &(pcix_cmd));
7284
7285         /* Set the PErr Response bit in PCI command register. */
7286         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7287         pci_write_config_word(sp->pdev, PCI_COMMAND,
7288                               (pci_cmd | PCI_COMMAND_PARITY));
7289         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7290 }
7291
7292 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7293 {
7294         if ( tx_fifo_num > 8) {
7295                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7296                          "supported\n");
7297                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7298                 tx_fifo_num = 8;
7299         }
7300         if ( rx_ring_num > 8) {
7301                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7302                          "supported\n");
7303                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7304                 rx_ring_num = 8;
7305         }
7306         if (*dev_intr_type != INTA)
7307                 napi = 0;
7308
7309         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7310                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7311                           "Defaulting to INTA\n");
7312                 *dev_intr_type = INTA;
7313         }
7314
7315         if ((*dev_intr_type == MSI_X) &&
7316                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7317                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7318                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7319                                         "Defaulting to INTA\n");
7320                 *dev_intr_type = INTA;
7321         }
7322
7323         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7324                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7325                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7326                 rx_ring_mode = 1;
7327         }
7328         return SUCCESS;
7329 }
7330
7331 /**
7332  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7333  * or Traffic class respectively.
7334  * @nic: device peivate variable
7335  * Description: The function configures the receive steering to
7336  * desired receive ring.
7337  * Return Value:  SUCCESS on success and
7338  * '-1' on failure (endian settings incorrect).
7339  */
7340 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7341 {
7342         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7343         register u64 val64 = 0;
7344
7345         if (ds_codepoint > 63)
7346                 return FAILURE;
7347
7348         val64 = RTS_DS_MEM_DATA(ring);
7349         writeq(val64, &bar0->rts_ds_mem_data);
7350
7351         val64 = RTS_DS_MEM_CTRL_WE |
7352                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7353                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7354
7355         writeq(val64, &bar0->rts_ds_mem_ctrl);
7356
7357         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7358                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7359                                 S2IO_BIT_RESET);
7360 }
7361
7362 /**
7363  *  s2io_init_nic - Initialization of the adapter .
7364  *  @pdev : structure containing the PCI related information of the device.
7365  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7366  *  Description:
7367  *  The function initializes an adapter identified by the pci_dec structure.
7368  *  All OS related initialization including memory and device structure and
7369  *  initlaization of the device private variable is done. Also the swapper
7370  *  control register is initialized to enable read and write into the I/O
7371  *  registers of the device.
7372  *  Return value:
7373  *  returns 0 on success and negative on failure.
7374  */
7375
7376 static int __devinit
7377 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7378 {
7379         struct s2io_nic *sp;
7380         struct net_device *dev;
7381         int i, j, ret;
7382         int dma_flag = FALSE;
7383         u32 mac_up, mac_down;
7384         u64 val64 = 0, tmp64 = 0;
7385         struct XENA_dev_config __iomem *bar0 = NULL;
7386         u16 subid;
7387         struct mac_info *mac_control;
7388         struct config_param *config;
7389         int mode;
7390         u8 dev_intr_type = intr_type;
7391         DECLARE_MAC_BUF(mac);
7392
7393         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7394                 return ret;
7395
7396         if ((ret = pci_enable_device(pdev))) {
7397                 DBG_PRINT(ERR_DBG,
7398                           "s2io_init_nic: pci_enable_device failed\n");
7399                 return ret;
7400         }
7401
7402         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7403                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7404                 dma_flag = TRUE;
7405                 if (pci_set_consistent_dma_mask
7406                     (pdev, DMA_64BIT_MASK)) {
7407                         DBG_PRINT(ERR_DBG,
7408                                   "Unable to obtain 64bit DMA for \
7409                                         consistent allocations\n");
7410                         pci_disable_device(pdev);
7411                         return -ENOMEM;
7412                 }
7413         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7414                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7415         } else {
7416                 pci_disable_device(pdev);
7417                 return -ENOMEM;
7418         }
7419         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7420                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7421                 pci_disable_device(pdev);
7422                 return -ENODEV;
7423         }
7424
7425         dev = alloc_etherdev(sizeof(struct s2io_nic));
7426         if (dev == NULL) {
7427                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7428                 pci_disable_device(pdev);
7429                 pci_release_regions(pdev);
7430                 return -ENODEV;
7431         }
7432
7433         pci_set_master(pdev);
7434         pci_set_drvdata(pdev, dev);
7435         SET_NETDEV_DEV(dev, &pdev->dev);
7436
7437         /*  Private member variable initialized to s2io NIC structure */
7438         sp = dev->priv;
7439         memset(sp, 0, sizeof(struct s2io_nic));
7440         sp->dev = dev;
7441         sp->pdev = pdev;
7442         sp->high_dma_flag = dma_flag;
7443         sp->device_enabled_once = FALSE;
7444         if (rx_ring_mode == 1)
7445                 sp->rxd_mode = RXD_MODE_1;
7446         if (rx_ring_mode == 2)
7447                 sp->rxd_mode = RXD_MODE_3B;
7448
7449         sp->config.intr_type = dev_intr_type;
7450
7451         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7452                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7453                 sp->device_type = XFRAME_II_DEVICE;
7454         else
7455                 sp->device_type = XFRAME_I_DEVICE;
7456
7457         sp->lro = lro_enable;
7458
7459         /* Initialize some PCI/PCI-X fields of the NIC. */
7460         s2io_init_pci(sp);
7461
7462         /*
7463          * Setting the device configuration parameters.
7464          * Most of these parameters can be specified by the user during
7465          * module insertion as they are module loadable parameters. If
7466          * these parameters are not not specified during load time, they
7467          * are initialized with default values.
7468          */
7469         mac_control = &sp->mac_control;
7470         config = &sp->config;
7471
7472         config->napi = napi;
7473
7474         /* Tx side parameters. */
7475         config->tx_fifo_num = tx_fifo_num;
7476         for (i = 0; i < MAX_TX_FIFOS; i++) {
7477                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7478                 config->tx_cfg[i].fifo_priority = i;
7479         }
7480
7481         /* mapping the QoS priority to the configured fifos */
7482         for (i = 0; i < MAX_TX_FIFOS; i++)
7483                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7484
7485         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7486         for (i = 0; i < config->tx_fifo_num; i++) {
7487                 config->tx_cfg[i].f_no_snoop =
7488                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7489                 if (config->tx_cfg[i].fifo_len < 65) {
7490                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7491                         break;
7492                 }
7493         }
7494         /* + 2 because one Txd for skb->data and one Txd for UFO */
7495         config->max_txds = MAX_SKB_FRAGS + 2;
7496
7497         /* Rx side parameters. */
7498         config->rx_ring_num = rx_ring_num;
7499         for (i = 0; i < MAX_RX_RINGS; i++) {
7500                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7501                     (rxd_count[sp->rxd_mode] + 1);
7502                 config->rx_cfg[i].ring_priority = i;
7503         }
7504
7505         for (i = 0; i < rx_ring_num; i++) {
7506                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7507                 config->rx_cfg[i].f_no_snoop =
7508                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7509         }
7510
7511         /*  Setting Mac Control parameters */
7512         mac_control->rmac_pause_time = rmac_pause_time;
7513         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7514         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7515
7516
7517         /* Initialize Ring buffer parameters. */
7518         for (i = 0; i < config->rx_ring_num; i++)
7519                 atomic_set(&sp->rx_bufs_left[i], 0);
7520
7521         /*  initialize the shared memory used by the NIC and the host */
7522         if (init_shared_mem(sp)) {
7523                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7524                           dev->name);
7525                 ret = -ENOMEM;
7526                 goto mem_alloc_failed;
7527         }
7528
7529         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7530                                      pci_resource_len(pdev, 0));
7531         if (!sp->bar0) {
7532                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7533                           dev->name);
7534                 ret = -ENOMEM;
7535                 goto bar0_remap_failed;
7536         }
7537
7538         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7539                                      pci_resource_len(pdev, 2));
7540         if (!sp->bar1) {
7541                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7542                           dev->name);
7543                 ret = -ENOMEM;
7544                 goto bar1_remap_failed;
7545         }
7546
7547         dev->irq = pdev->irq;
7548         dev->base_addr = (unsigned long) sp->bar0;
7549
7550         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7551         for (j = 0; j < MAX_TX_FIFOS; j++) {
7552                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7553                     (sp->bar1 + (j * 0x00020000));
7554         }
7555
7556         /*  Driver entry points */
7557         dev->open = &s2io_open;
7558         dev->stop = &s2io_close;
7559         dev->hard_start_xmit = &s2io_xmit;
7560         dev->get_stats = &s2io_get_stats;
7561         dev->set_multicast_list = &s2io_set_multicast;
7562         dev->do_ioctl = &s2io_ioctl;
7563         dev->set_mac_address = &s2io_set_mac_addr;
7564         dev->change_mtu = &s2io_change_mtu;
7565         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7566         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7567         dev->vlan_rx_register = s2io_vlan_rx_register;
7568
7569         /*
7570          * will use eth_mac_addr() for  dev->set_mac_address
7571          * mac address will be set every time dev->open() is called
7572          */
7573         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7574
7575 #ifdef CONFIG_NET_POLL_CONTROLLER
7576         dev->poll_controller = s2io_netpoll;
7577 #endif
7578
7579         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7580         if (sp->high_dma_flag == TRUE)
7581                 dev->features |= NETIF_F_HIGHDMA;
7582         dev->features |= NETIF_F_TSO;
7583         dev->features |= NETIF_F_TSO6;
7584         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7585                 dev->features |= NETIF_F_UFO;
7586                 dev->features |= NETIF_F_HW_CSUM;
7587         }
7588
7589         dev->tx_timeout = &s2io_tx_watchdog;
7590         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7591         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7592         INIT_WORK(&sp->set_link_task, s2io_set_link);
7593
7594         pci_save_state(sp->pdev);
7595
7596         /* Setting swapper control on the NIC, for proper reset operation */
7597         if (s2io_set_swapper(sp)) {
7598                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7599                           dev->name);
7600                 ret = -EAGAIN;
7601                 goto set_swap_failed;
7602         }
7603
7604         /* Verify if the Herc works on the slot its placed into */
7605         if (sp->device_type & XFRAME_II_DEVICE) {
7606                 mode = s2io_verify_pci_mode(sp);
7607                 if (mode < 0) {
7608                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7609                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7610                         ret = -EBADSLT;
7611                         goto set_swap_failed;
7612                 }
7613         }
7614
7615         /* Not needed for Herc */
7616         if (sp->device_type & XFRAME_I_DEVICE) {
7617                 /*
7618                  * Fix for all "FFs" MAC address problems observed on
7619                  * Alpha platforms
7620                  */
7621                 fix_mac_address(sp);
7622                 s2io_reset(sp);
7623         }
7624
7625         /*
7626          * MAC address initialization.
7627          * For now only one mac address will be read and used.
7628          */
7629         bar0 = sp->bar0;
7630         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7631             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7632         writeq(val64, &bar0->rmac_addr_cmd_mem);
7633         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7634                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7635         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7636         mac_down = (u32) tmp64;
7637         mac_up = (u32) (tmp64 >> 32);
7638
7639         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7640         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7641         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7642         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7643         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7644         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7645
7646         /*  Set the factory defined MAC address initially   */
7647         dev->addr_len = ETH_ALEN;
7648         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7649         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7650
7651          /* Store the values of the MSIX table in the s2io_nic structure */
7652         store_xmsi_data(sp);
7653         /* reset Nic and bring it to known state */
7654         s2io_reset(sp);
7655
7656         /*
7657          * Initialize the tasklet status and link state flags
7658          * and the card state parameter
7659          */
7660         sp->tasklet_status = 0;
7661         sp->state = 0;
7662
7663         /* Initialize spinlocks */
7664         spin_lock_init(&sp->tx_lock);
7665
7666         if (!napi)
7667                 spin_lock_init(&sp->put_lock);
7668         spin_lock_init(&sp->rx_lock);
7669
7670         /*
7671          * SXE-002: Configure link and activity LED to init state
7672          * on driver load.
7673          */
7674         subid = sp->pdev->subsystem_device;
7675         if ((subid & 0xFF) >= 0x07) {
7676                 val64 = readq(&bar0->gpio_control);
7677                 val64 |= 0x0000800000000000ULL;
7678                 writeq(val64, &bar0->gpio_control);
7679                 val64 = 0x0411040400000000ULL;
7680                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7681                 val64 = readq(&bar0->gpio_control);
7682         }
7683
7684         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7685
7686         if (register_netdev(dev)) {
7687                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7688                 ret = -ENODEV;
7689                 goto register_failed;
7690         }
7691         s2io_vpd_read(sp);
7692         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7693         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7694                   sp->product_name, pdev->revision);
7695         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7696                   s2io_driver_version);
7697         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7698                   dev->name, print_mac(mac, dev->dev_addr));
7699         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7700         if (sp->device_type & XFRAME_II_DEVICE) {
7701                 mode = s2io_print_pci_mode(sp);
7702                 if (mode < 0) {
7703                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7704                         ret = -EBADSLT;
7705                         unregister_netdev(dev);
7706                         goto set_swap_failed;
7707                 }
7708         }
7709         switch(sp->rxd_mode) {
7710                 case RXD_MODE_1:
7711                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7712                                                 dev->name);
7713                     break;
7714                 case RXD_MODE_3B:
7715                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7716                                                 dev->name);
7717                     break;
7718         }
7719
7720         if (napi)
7721                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7722         switch(sp->config.intr_type) {
7723                 case INTA:
7724                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7725                     break;
7726                 case MSI_X:
7727                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7728                     break;
7729         }
7730         if (sp->lro)
7731                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7732                           dev->name);
7733         if (ufo)
7734                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7735                                         " enabled\n", dev->name);
7736         /* Initialize device name */
7737         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7738
7739         /*
7740          * Make Link state as off at this point, when the Link change
7741          * interrupt comes the state will be automatically changed to
7742          * the right state.
7743          */
7744         netif_carrier_off(dev);
7745
7746         return 0;
7747
7748       register_failed:
7749       set_swap_failed:
7750         iounmap(sp->bar1);
7751       bar1_remap_failed:
7752         iounmap(sp->bar0);
7753       bar0_remap_failed:
7754       mem_alloc_failed:
7755         free_shared_mem(sp);
7756         pci_disable_device(pdev);
7757         pci_release_regions(pdev);
7758         pci_set_drvdata(pdev, NULL);
7759         free_netdev(dev);
7760
7761         return ret;
7762 }
7763
7764 /**
7765  * s2io_rem_nic - Free the PCI device
7766  * @pdev: structure containing the PCI related information of the device.
7767  * Description: This function is called by the Pci subsystem to release a
7768  * PCI device and free up all resource held up by the device. This could
7769  * be in response to a Hot plug event or when the driver is to be removed
7770  * from memory.
7771  */
7772
7773 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7774 {
7775         struct net_device *dev =
7776             (struct net_device *) pci_get_drvdata(pdev);
7777         struct s2io_nic *sp;
7778
7779         if (dev == NULL) {
7780                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7781                 return;
7782         }
7783
7784         flush_scheduled_work();
7785
7786         sp = dev->priv;
7787         unregister_netdev(dev);
7788
7789         free_shared_mem(sp);
7790         iounmap(sp->bar0);
7791         iounmap(sp->bar1);
7792         pci_release_regions(pdev);
7793         pci_set_drvdata(pdev, NULL);
7794         free_netdev(dev);
7795         pci_disable_device(pdev);
7796 }
7797
7798 /**
7799  * s2io_starter - Entry point for the driver
7800  * Description: This function is the entry point for the driver. It verifies
7801  * the module loadable parameters and initializes PCI configuration space.
7802  */
7803
7804 static int __init s2io_starter(void)
7805 {
7806         return pci_register_driver(&s2io_driver);
7807 }
7808
7809 /**
7810  * s2io_closer - Cleanup routine for the driver
7811  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7812  */
7813
7814 static __exit void s2io_closer(void)
7815 {
7816         pci_unregister_driver(&s2io_driver);
7817         DBG_PRINT(INIT_DBG, "cleanup done\n");
7818 }
7819
7820 module_init(s2io_starter);
7821 module_exit(s2io_closer);
7822
7823 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7824                 struct tcphdr **tcp, struct RxD_t *rxdp)
7825 {
7826         int ip_off;
7827         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7828
7829         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7830                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7831                           __FUNCTION__);
7832                 return -1;
7833         }
7834
7835         /* TODO:
7836          * By default the VLAN field in the MAC is stripped by the card, if this
7837          * feature is turned off in rx_pa_cfg register, then the ip_off field
7838          * has to be shifted by a further 2 bytes
7839          */
7840         switch (l2_type) {
7841                 case 0: /* DIX type */
7842                 case 4: /* DIX type with VLAN */
7843                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7844                         break;
7845                 /* LLC, SNAP etc are considered non-mergeable */
7846                 default:
7847                         return -1;
7848         }
7849
7850         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7851         ip_len = (u8)((*ip)->ihl);
7852         ip_len <<= 2;
7853         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7854
7855         return 0;
7856 }
7857
7858 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7859                                   struct tcphdr *tcp)
7860 {
7861         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7862         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7863            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7864                 return -1;
7865         return 0;
7866 }
7867
7868 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7869 {
7870         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7871 }
7872
7873 static void initiate_new_session(struct lro *lro, u8 *l2h,
7874                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7875 {
7876         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7877         lro->l2h = l2h;
7878         lro->iph = ip;
7879         lro->tcph = tcp;
7880         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7881         lro->tcp_ack = ntohl(tcp->ack_seq);
7882         lro->sg_num = 1;
7883         lro->total_len = ntohs(ip->tot_len);
7884         lro->frags_len = 0;
7885         /*
7886          * check if we saw TCP timestamp. Other consistency checks have
7887          * already been done.
7888          */
7889         if (tcp->doff == 8) {
7890                 u32 *ptr;
7891                 ptr = (u32 *)(tcp+1);
7892                 lro->saw_ts = 1;
7893                 lro->cur_tsval = *(ptr+1);
7894                 lro->cur_tsecr = *(ptr+2);
7895         }
7896         lro->in_use = 1;
7897 }
7898
7899 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7900 {
7901         struct iphdr *ip = lro->iph;
7902         struct tcphdr *tcp = lro->tcph;
7903         __sum16 nchk;
7904         struct stat_block *statinfo = sp->mac_control.stats_info;
7905         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7906
7907         /* Update L3 header */
7908         ip->tot_len = htons(lro->total_len);
7909         ip->check = 0;
7910         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7911         ip->check = nchk;
7912
7913         /* Update L4 header */
7914         tcp->ack_seq = lro->tcp_ack;
7915         tcp->window = lro->window;
7916
7917         /* Update tsecr field if this session has timestamps enabled */
7918         if (lro->saw_ts) {
7919                 u32 *ptr = (u32 *)(tcp + 1);
7920                 *(ptr+2) = lro->cur_tsecr;
7921         }
7922
7923         /* Update counters required for calculation of
7924          * average no. of packets aggregated.
7925          */
7926         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7927         statinfo->sw_stat.num_aggregations++;
7928 }
7929
7930 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7931                 struct tcphdr *tcp, u32 l4_pyld)
7932 {
7933         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7934         lro->total_len += l4_pyld;
7935         lro->frags_len += l4_pyld;
7936         lro->tcp_next_seq += l4_pyld;
7937         lro->sg_num++;
7938
7939         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7940         lro->tcp_ack = tcp->ack_seq;
7941         lro->window = tcp->window;
7942
7943         if (lro->saw_ts) {
7944                 u32 *ptr;
7945                 /* Update tsecr and tsval from this packet */
7946                 ptr = (u32 *) (tcp + 1);
7947                 lro->cur_tsval = *(ptr + 1);
7948                 lro->cur_tsecr = *(ptr + 2);
7949         }
7950 }
7951
7952 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7953                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7954 {
7955         u8 *ptr;
7956
7957         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7958
7959         if (!tcp_pyld_len) {
7960                 /* Runt frame or a pure ack */
7961                 return -1;
7962         }
7963
7964         if (ip->ihl != 5) /* IP has options */
7965                 return -1;
7966
7967         /* If we see CE codepoint in IP header, packet is not mergeable */
7968         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7969                 return -1;
7970
7971         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7972         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7973                                     tcp->ece || tcp->cwr || !tcp->ack) {
7974                 /*
7975                  * Currently recognize only the ack control word and
7976                  * any other control field being set would result in
7977                  * flushing the LRO session
7978                  */
7979                 return -1;
7980         }
7981
7982         /*
7983          * Allow only one TCP timestamp option. Don't aggregate if
7984          * any other options are detected.
7985          */
7986         if (tcp->doff != 5 && tcp->doff != 8)
7987                 return -1;
7988
7989         if (tcp->doff == 8) {
7990                 ptr = (u8 *)(tcp + 1);
7991                 while (*ptr == TCPOPT_NOP)
7992                         ptr++;
7993                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7994                         return -1;
7995
7996                 /* Ensure timestamp value increases monotonically */
7997                 if (l_lro)
7998                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7999                                 return -1;
8000
8001                 /* timestamp echo reply should be non-zero */
8002                 if (*((u32 *)(ptr+6)) == 0)
8003                         return -1;
8004         }
8005
8006         return 0;
8007 }
8008
8009 static int
8010 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8011                       struct RxD_t *rxdp, struct s2io_nic *sp)
8012 {
8013         struct iphdr *ip;
8014         struct tcphdr *tcph;
8015         int ret = 0, i;
8016
8017         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8018                                          rxdp))) {
8019                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8020                           ip->saddr, ip->daddr);
8021         } else {
8022                 return ret;
8023         }
8024
8025         tcph = (struct tcphdr *)*tcp;
8026         *tcp_len = get_l4_pyld_length(ip, tcph);
8027         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8028                 struct lro *l_lro = &sp->lro0_n[i];
8029                 if (l_lro->in_use) {
8030                         if (check_for_socket_match(l_lro, ip, tcph))
8031                                 continue;
8032                         /* Sock pair matched */
8033                         *lro = l_lro;
8034
8035                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8036                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8037                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8038                                           (*lro)->tcp_next_seq,
8039                                           ntohl(tcph->seq));
8040
8041                                 sp->mac_control.stats_info->
8042                                    sw_stat.outof_sequence_pkts++;
8043                                 ret = 2;
8044                                 break;
8045                         }
8046
8047                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8048                                 ret = 1; /* Aggregate */
8049                         else
8050                                 ret = 2; /* Flush both */
8051                         break;
8052                 }
8053         }
8054
8055         if (ret == 0) {
8056                 /* Before searching for available LRO objects,
8057                  * check if the pkt is L3/L4 aggregatable. If not
8058                  * don't create new LRO session. Just send this
8059                  * packet up.
8060                  */
8061                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8062                         return 5;
8063                 }
8064
8065                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8066                         struct lro *l_lro = &sp->lro0_n[i];
8067                         if (!(l_lro->in_use)) {
8068                                 *lro = l_lro;
8069                                 ret = 3; /* Begin anew */
8070                                 break;
8071                         }
8072                 }
8073         }
8074
8075         if (ret == 0) { /* sessions exceeded */
8076                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8077                           __FUNCTION__);
8078                 *lro = NULL;
8079                 return ret;
8080         }
8081
8082         switch (ret) {
8083                 case 3:
8084                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8085                         break;
8086                 case 2:
8087                         update_L3L4_header(sp, *lro);
8088                         break;
8089                 case 1:
8090                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8091                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8092                                 update_L3L4_header(sp, *lro);
8093                                 ret = 4; /* Flush the LRO */
8094                         }
8095                         break;
8096                 default:
8097                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8098                                 __FUNCTION__);
8099                         break;
8100         }
8101
8102         return ret;
8103 }
8104
8105 static void clear_lro_session(struct lro *lro)
8106 {
8107         static u16 lro_struct_size = sizeof(struct lro);
8108
8109         memset(lro, 0, lro_struct_size);
8110 }
8111
8112 static void queue_rx_frame(struct sk_buff *skb)
8113 {
8114         struct net_device *dev = skb->dev;
8115
8116         skb->protocol = eth_type_trans(skb, dev);
8117         if (napi)
8118                 netif_receive_skb(skb);
8119         else
8120                 netif_rx(skb);
8121 }
8122
8123 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8124                            struct sk_buff *skb,
8125                            u32 tcp_len)
8126 {
8127         struct sk_buff *first = lro->parent;
8128
8129         first->len += tcp_len;
8130         first->data_len = lro->frags_len;
8131         skb_pull(skb, (skb->len - tcp_len));
8132         if (skb_shinfo(first)->frag_list)
8133                 lro->last_frag->next = skb;
8134         else
8135                 skb_shinfo(first)->frag_list = skb;
8136         first->truesize += skb->truesize;
8137         lro->last_frag = skb;
8138         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8139         return;
8140 }
8141
8142 /**
8143  * s2io_io_error_detected - called when PCI error is detected
8144  * @pdev: Pointer to PCI device
8145  * @state: The current pci connection state
8146  *
8147  * This function is called after a PCI bus error affecting
8148  * this device has been detected.
8149  */
8150 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8151                                                pci_channel_state_t state)
8152 {
8153         struct net_device *netdev = pci_get_drvdata(pdev);
8154         struct s2io_nic *sp = netdev->priv;
8155
8156         netif_device_detach(netdev);
8157
8158         if (netif_running(netdev)) {
8159                 /* Bring down the card, while avoiding PCI I/O */
8160                 do_s2io_card_down(sp, 0);
8161         }
8162         pci_disable_device(pdev);
8163
8164         return PCI_ERS_RESULT_NEED_RESET;
8165 }
8166
8167 /**
8168  * s2io_io_slot_reset - called after the pci bus has been reset.
8169  * @pdev: Pointer to PCI device
8170  *
8171  * Restart the card from scratch, as if from a cold-boot.
8172  * At this point, the card has exprienced a hard reset,
8173  * followed by fixups by BIOS, and has its config space
8174  * set up identically to what it was at cold boot.
8175  */
8176 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8177 {
8178         struct net_device *netdev = pci_get_drvdata(pdev);
8179         struct s2io_nic *sp = netdev->priv;
8180
8181         if (pci_enable_device(pdev)) {
8182                 printk(KERN_ERR "s2io: "
8183                        "Cannot re-enable PCI device after reset.\n");
8184                 return PCI_ERS_RESULT_DISCONNECT;
8185         }
8186
8187         pci_set_master(pdev);
8188         s2io_reset(sp);
8189
8190         return PCI_ERS_RESULT_RECOVERED;
8191 }
8192
8193 /**
8194  * s2io_io_resume - called when traffic can start flowing again.
8195  * @pdev: Pointer to PCI device
8196  *
8197  * This callback is called when the error recovery driver tells
8198  * us that its OK to resume normal operation.
8199  */
8200 static void s2io_io_resume(struct pci_dev *pdev)
8201 {
8202         struct net_device *netdev = pci_get_drvdata(pdev);
8203         struct s2io_nic *sp = netdev->priv;
8204
8205         if (netif_running(netdev)) {
8206                 if (s2io_card_up(sp)) {
8207                         printk(KERN_ERR "s2io: "
8208                                "Can't bring device back up after reset.\n");
8209                         return;
8210                 }
8211
8212                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8213                         s2io_card_down(sp);
8214                         printk(KERN_ERR "s2io: "
8215                                "Can't resetore mac addr after reset.\n");
8216                         return;
8217                 }
8218         }
8219
8220         netif_device_attach(netdev);
8221         netif_wake_queue(netdev);
8222 }