2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
48 * RPC tasks sit here while waiting for conditions to improve.
50 static RPC_WAITQ(delay_queue, "delayq");
53 * All RPC tasks are linked into this list
55 static LIST_HEAD(all_tasks);
58 * rpciod-related stuff
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
65 * Spinlock for other critical sections of code.
67 static DEFINE_SPINLOCK(rpc_sched_lock);
70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within
75 __rpc_disable_timer(struct rpc_task *task)
77 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78 task->tk_timeout_fn = NULL;
83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks...
89 static void rpc_run_timer(struct rpc_task *task)
91 void (*callback)(struct rpc_task *);
93 callback = task->tk_timeout_fn;
94 task->tk_timeout_fn = NULL;
95 if (callback && RPC_IS_QUEUED(task)) {
96 dprintk("RPC: %5u running timer\n", task->tk_pid);
99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 smp_mb__after_clear_bit();
105 * Set up a timer for the current task.
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 if (!task->tk_timeout)
113 dprintk("RPC: %5u setting alarm for %lu ms\n",
114 task->tk_pid, task->tk_timeout * 1000 / HZ);
117 task->tk_timeout_fn = timer;
119 task->tk_timeout_fn = __rpc_default_timer;
120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock.
129 rpc_delete_timer(struct rpc_task *task)
131 if (RPC_IS_QUEUED(task))
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 del_singleshot_timer_sync(&task->tk_timer);
135 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
140 * Add new request to a priority queue.
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
147 INIT_LIST_HEAD(&task->u.tk_wait.links);
148 q = &queue->tasks[task->tk_priority];
149 if (unlikely(task->tk_priority > queue->maxpriority))
150 q = &queue->tasks[queue->maxpriority];
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_cookie == task->tk_cookie) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
157 list_add_tail(&task->u.tk_wait.list, q);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 BUG_ON (RPC_IS_QUEUED(task));
172 if (RPC_IS_PRIORITY(queue))
173 __rpc_add_wait_queue_priority(queue, task);
174 else if (RPC_IS_SWAPPER(task))
175 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 task->u.tk_wait.rpc_waitq = queue;
180 rpc_set_queued(task);
182 dprintk("RPC: %5u added to queue %p \"%s\"\n",
183 task->tk_pid, queue, rpc_qname(queue));
187 * Remove request from a priority queue.
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
193 if (!list_empty(&task->u.tk_wait.links)) {
194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198 list_del(&task->u.tk_wait.list);
202 * Remove request from queue.
203 * Note: must be called with spin lock held.
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 struct rpc_wait_queue *queue;
208 queue = task->u.tk_wait.rpc_waitq;
210 if (RPC_IS_PRIORITY(queue))
211 __rpc_remove_wait_queue_priority(task);
213 list_del(&task->u.tk_wait.list);
215 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue));
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 queue->priority = priority;
222 queue->count = 1 << (priority * 2);
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 queue->cookie = cookie;
228 queue->nr = RPC_BATCH_COUNT;
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 rpc_set_waitqueue_cookie(queue, 0);
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
241 spin_lock_init(&queue->lock);
242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 INIT_LIST_HEAD(&queue->tasks[i]);
244 queue->maxpriority = maxprio;
245 rpc_reset_waitqueue_priority(queue);
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 __rpc_init_priority_wait_queue(queue, qname, 0);
260 EXPORT_SYMBOL(rpc_init_wait_queue);
262 static int rpc_wait_bit_interruptible(void *word)
264 if (signal_pending(current))
270 static void rpc_set_active(struct rpc_task *task)
272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
274 spin_lock(&rpc_sched_lock);
276 task->tk_magic = RPC_TASK_MAGIC_ID;
277 task->tk_pid = rpc_task_id++;
279 /* Add to global list of all tasks */
280 list_add_tail(&task->tk_task, &all_tasks);
281 spin_unlock(&rpc_sched_lock);
285 * Mark an RPC call as having completed by clearing the 'active' bit
287 static void rpc_mark_complete_task(struct rpc_task *task)
289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 smp_mb__after_clear_bit();
292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
296 * Allow callers to wait for completion of an RPC call
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
301 action = rpc_wait_bit_interruptible;
302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 action, TASK_INTERRUPTIBLE);
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
308 * Make an RPC task runnable.
310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation.
313 static void rpc_make_runnable(struct rpc_task *task)
315 BUG_ON(task->tk_timeout_fn);
316 rpc_clear_queued(task);
317 if (rpc_test_and_set_running(task))
319 /* We might have raced */
320 if (RPC_IS_QUEUED(task)) {
321 rpc_clear_running(task);
324 if (RPC_IS_ASYNC(task)) {
327 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 status = queue_work(task->tk_workqueue, &task->u.tk_work);
330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 task->tk_status = status;
335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue.
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 rpc_action action, rpc_action timer)
347 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
348 task->tk_pid, rpc_qname(q), jiffies);
350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
355 __rpc_add_wait_queue(q, task);
357 BUG_ON(task->tk_callback != NULL);
358 task->tk_callback = action;
359 __rpc_add_timer(task, timer);
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 rpc_action action, rpc_action timer)
365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task);
369 * Protect the queue operations.
371 spin_lock_bh(&q->lock);
372 __rpc_sleep_on(q, task, action, timer);
373 spin_unlock_bh(&q->lock);
377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up
380 * Caller must hold queue->lock, and have cleared the task queued flag.
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
384 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
385 task->tk_pid, jiffies);
388 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
390 /* Has the task been executed yet? If not, we cannot wake it up! */
391 if (!RPC_IS_ACTIVATED(task)) {
392 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
396 __rpc_disable_timer(task);
397 __rpc_remove_wait_queue(task);
399 rpc_make_runnable(task);
401 dprintk("RPC: __rpc_wake_up_task done\n");
405 * Wake up the specified task
407 static void __rpc_wake_up_task(struct rpc_task *task)
409 if (rpc_start_wakeup(task)) {
410 if (RPC_IS_QUEUED(task))
411 __rpc_do_wake_up_task(task);
412 rpc_finish_wakeup(task);
417 * Default timeout handler if none specified by user
420 __rpc_default_timer(struct rpc_task *task)
422 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
423 task->tk_status = -ETIMEDOUT;
424 rpc_wake_up_task(task);
428 * Wake up the specified task
430 void rpc_wake_up_task(struct rpc_task *task)
433 if (rpc_start_wakeup(task)) {
434 if (RPC_IS_QUEUED(task)) {
435 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
437 /* Note: we're already in a bh-safe context */
438 spin_lock(&queue->lock);
439 __rpc_do_wake_up_task(task);
440 spin_unlock(&queue->lock);
442 rpc_finish_wakeup(task);
444 rcu_read_unlock_bh();
448 * Wake up the next task on a priority queue.
450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
453 struct rpc_task *task;
456 * Service a batch of tasks from a single cookie.
458 q = &queue->tasks[queue->priority];
459 if (!list_empty(q)) {
460 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461 if (queue->cookie == task->tk_cookie) {
464 list_move_tail(&task->u.tk_wait.list, q);
467 * Check if we need to switch queues.
474 * Service the next queue.
477 if (q == &queue->tasks[0])
478 q = &queue->tasks[queue->maxpriority];
481 if (!list_empty(q)) {
482 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
485 } while (q != &queue->tasks[queue->priority]);
487 rpc_reset_waitqueue_priority(queue);
491 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
493 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
495 __rpc_wake_up_task(task);
500 * Wake up the next task on the wait queue.
502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
504 struct rpc_task *task = NULL;
506 dprintk("RPC: wake_up_next(%p \"%s\")\n",
507 queue, rpc_qname(queue));
509 spin_lock(&queue->lock);
510 if (RPC_IS_PRIORITY(queue))
511 task = __rpc_wake_up_next_priority(queue);
513 task_for_first(task, &queue->tasks[0])
514 __rpc_wake_up_task(task);
516 spin_unlock(&queue->lock);
517 rcu_read_unlock_bh();
523 * rpc_wake_up - wake up all rpc_tasks
524 * @queue: rpc_wait_queue on which the tasks are sleeping
528 void rpc_wake_up(struct rpc_wait_queue *queue)
530 struct rpc_task *task, *next;
531 struct list_head *head;
534 spin_lock(&queue->lock);
535 head = &queue->tasks[queue->maxpriority];
537 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
538 __rpc_wake_up_task(task);
539 if (head == &queue->tasks[0])
543 spin_unlock(&queue->lock);
544 rcu_read_unlock_bh();
548 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
549 * @queue: rpc_wait_queue on which the tasks are sleeping
550 * @status: status value to set
554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
556 struct rpc_task *task, *next;
557 struct list_head *head;
560 spin_lock(&queue->lock);
561 head = &queue->tasks[queue->maxpriority];
563 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
564 task->tk_status = status;
565 __rpc_wake_up_task(task);
567 if (head == &queue->tasks[0])
571 spin_unlock(&queue->lock);
572 rcu_read_unlock_bh();
575 static void __rpc_atrun(struct rpc_task *task)
577 rpc_wake_up_task(task);
581 * Run a task at a later time
583 void rpc_delay(struct rpc_task *task, unsigned long delay)
585 task->tk_timeout = delay;
586 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
590 * Helper to call task->tk_ops->rpc_call_prepare
592 static void rpc_prepare_task(struct rpc_task *task)
595 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
600 * Helper that calls task->tk_ops->rpc_call_done if it exists
602 void rpc_exit_task(struct rpc_task *task)
604 task->tk_action = NULL;
605 if (task->tk_ops->rpc_call_done != NULL) {
607 task->tk_ops->rpc_call_done(task, task->tk_calldata);
609 if (task->tk_action != NULL) {
610 WARN_ON(RPC_ASSASSINATED(task));
611 /* Always release the RPC slot and buffer memory */
616 EXPORT_SYMBOL(rpc_exit_task);
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
620 if (ops->rpc_release != NULL) {
622 ops->rpc_release(calldata);
628 * This is the RPC `scheduler' (or rather, the finite state machine).
630 static void __rpc_execute(struct rpc_task *task)
634 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
635 task->tk_pid, task->tk_flags);
637 BUG_ON(RPC_IS_QUEUED(task));
641 * Garbage collection of pending timers...
643 rpc_delete_timer(task);
646 * Execute any pending callback.
648 if (RPC_DO_CALLBACK(task)) {
649 /* Define a callback save pointer */
650 void (*save_callback)(struct rpc_task *);
653 * If a callback exists, save it, reset it,
655 * The save is needed to stop from resetting
656 * another callback set within the callback handler
659 save_callback=task->tk_callback;
660 task->tk_callback=NULL;
665 * Perform the next FSM step.
666 * tk_action may be NULL when the task has been killed
669 if (!RPC_IS_QUEUED(task)) {
670 if (task->tk_action == NULL)
672 task->tk_action(task);
676 * Lockless check for whether task is sleeping or not.
678 if (!RPC_IS_QUEUED(task))
680 rpc_clear_running(task);
681 if (RPC_IS_ASYNC(task)) {
682 /* Careful! we may have raced... */
683 if (RPC_IS_QUEUED(task))
685 if (rpc_test_and_set_running(task))
690 /* sync task: sleep here */
691 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
692 /* Note: Caller should be using rpc_clnt_sigmask() */
693 status = out_of_line_wait_on_bit(&task->tk_runstate,
694 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
696 if (status == -ERESTARTSYS) {
698 * When a sync task receives a signal, it exits with
699 * -ERESTARTSYS. In order to catch any callbacks that
700 * clean up after sleeping on some queue, we don't
701 * break the loop here, but go around once more.
703 dprintk("RPC: %5u got signal\n", task->tk_pid);
704 task->tk_flags |= RPC_TASK_KILLED;
705 rpc_exit(task, -ERESTARTSYS);
706 rpc_wake_up_task(task);
708 rpc_set_running(task);
709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
714 /* Release all resources associated with the task */
715 rpc_release_task(task);
719 * User-visible entry point to the scheduler.
721 * This may be called recursively if e.g. an async NFS task updates
722 * the attributes and finds that dirty pages must be flushed.
723 * NOTE: Upon exit of this function the task is guaranteed to be
724 * released. In particular note that tk_release() will have
725 * been called, so your task memory may have been freed.
727 void rpc_execute(struct rpc_task *task)
729 rpc_set_active(task);
730 rpc_set_running(task);
734 static void rpc_async_schedule(struct work_struct *work)
736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
745 * rpc_malloc - allocate an RPC buffer
746 * @task: RPC task that will use this buffer
747 * @size: requested byte size
749 * To prevent rpciod from hanging, this allocator never sleeps,
750 * returning NULL if the request cannot be serviced immediately.
751 * The caller can arrange to sleep in a way that is safe for rpciod.
753 * Most requests are 'small' (under 2KiB) and can be serviced from a
754 * mempool, ensuring that NFS reads and writes can always proceed,
755 * and that there is good locality of reference for these buffers.
757 * In order to avoid memory starvation triggering more writebacks of
758 * NFS requests, we avoid using GFP_KERNEL.
760 void *rpc_malloc(struct rpc_task *task, size_t size)
762 struct rpc_buffer *buf;
763 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
765 size += sizeof(struct rpc_buffer);
766 if (size <= RPC_BUFFER_MAXSIZE)
767 buf = mempool_alloc(rpc_buffer_mempool, gfp);
769 buf = kmalloc(size, gfp);
775 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
776 task->tk_pid, size, buf);
781 * rpc_free - free buffer allocated via rpc_malloc
782 * @buffer: buffer to free
785 void rpc_free(void *buffer)
788 struct rpc_buffer *buf;
793 buf = container_of(buffer, struct rpc_buffer, data);
796 dprintk("RPC: freeing buffer of size %zu at %p\n",
799 if (size <= RPC_BUFFER_MAXSIZE)
800 mempool_free(buf, rpc_buffer_mempool);
806 * Creation and deletion of RPC task structures
808 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
810 memset(task, 0, sizeof(*task));
811 init_timer(&task->tk_timer);
812 task->tk_timer.data = (unsigned long) task;
813 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
814 atomic_set(&task->tk_count, 1);
815 task->tk_client = clnt;
816 task->tk_flags = flags;
817 task->tk_ops = tk_ops;
818 if (tk_ops->rpc_call_prepare != NULL)
819 task->tk_action = rpc_prepare_task;
820 task->tk_calldata = calldata;
822 /* Initialize retry counters */
823 task->tk_garb_retry = 2;
824 task->tk_cred_retry = 2;
826 task->tk_priority = RPC_PRIORITY_NORMAL;
827 task->tk_cookie = (unsigned long)current;
829 /* Initialize workqueue for async tasks */
830 task->tk_workqueue = rpciod_workqueue;
833 atomic_inc(&clnt->cl_users);
834 if (clnt->cl_softrtry)
835 task->tk_flags |= RPC_TASK_SOFT;
837 task->tk_flags |= RPC_TASK_NOINTR;
840 BUG_ON(task->tk_ops == NULL);
842 /* starting timestamp */
843 task->tk_start = jiffies;
845 dprintk("RPC: new task initialized, procpid %u\n",
849 static struct rpc_task *
852 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
855 static void rpc_free_task(struct rcu_head *rcu)
857 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
858 dprintk("RPC: %5u freeing task\n", task->tk_pid);
859 mempool_free(task, rpc_task_mempool);
863 * Create a new task for the specified client. We have to
864 * clean up after an allocation failure, as the client may
865 * have specified "oneshot".
867 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
869 struct rpc_task *task;
871 task = rpc_alloc_task();
875 rpc_init_task(task, clnt, flags, tk_ops, calldata);
877 dprintk("RPC: allocated task %p\n", task);
878 task->tk_flags |= RPC_TASK_DYNAMIC;
883 /* Check whether to release the client */
885 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
886 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
887 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
888 rpc_release_client(clnt);
894 void rpc_put_task(struct rpc_task *task)
896 const struct rpc_call_ops *tk_ops = task->tk_ops;
897 void *calldata = task->tk_calldata;
899 if (!atomic_dec_and_test(&task->tk_count))
901 /* Release resources */
904 if (task->tk_msg.rpc_cred)
905 rpcauth_unbindcred(task);
906 if (task->tk_client) {
907 rpc_release_client(task->tk_client);
908 task->tk_client = NULL;
910 if (task->tk_flags & RPC_TASK_DYNAMIC)
911 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
912 rpc_release_calldata(tk_ops, calldata);
914 EXPORT_SYMBOL(rpc_put_task);
916 static void rpc_release_task(struct rpc_task *task)
919 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
921 dprintk("RPC: %5u release task\n", task->tk_pid);
923 /* Remove from global task list */
924 spin_lock(&rpc_sched_lock);
925 list_del(&task->tk_task);
926 spin_unlock(&rpc_sched_lock);
928 BUG_ON (RPC_IS_QUEUED(task));
930 /* Synchronously delete any running timer */
931 rpc_delete_timer(task);
936 /* Wake up anyone who is waiting for task completion */
937 rpc_mark_complete_task(task);
943 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
944 * @clnt: pointer to RPC client
947 * @data: user call data
949 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
950 const struct rpc_call_ops *ops,
953 struct rpc_task *task;
954 task = rpc_new_task(clnt, flags, ops, data);
956 rpc_release_calldata(ops, data);
957 return ERR_PTR(-ENOMEM);
959 atomic_inc(&task->tk_count);
963 EXPORT_SYMBOL(rpc_run_task);
966 * Kill all tasks for the given client.
967 * XXX: kill their descendants as well?
969 void rpc_killall_tasks(struct rpc_clnt *clnt)
971 struct rpc_task *rovr;
972 struct list_head *le;
974 dprintk("RPC: killing all tasks for client %p\n", clnt);
977 * Spin lock all_tasks to prevent changes...
979 spin_lock(&rpc_sched_lock);
980 alltask_for_each(rovr, le, &all_tasks) {
981 if (! RPC_IS_ACTIVATED(rovr))
983 if (!clnt || rovr->tk_client == clnt) {
984 rovr->tk_flags |= RPC_TASK_KILLED;
985 rpc_exit(rovr, -EIO);
986 rpc_wake_up_task(rovr);
989 spin_unlock(&rpc_sched_lock);
992 static void rpciod_killall(void)
996 while (!list_empty(&all_tasks)) {
997 clear_thread_flag(TIF_SIGPENDING);
998 rpc_killall_tasks(NULL);
999 flush_workqueue(rpciod_workqueue);
1000 if (!list_empty(&all_tasks)) {
1001 dprintk("RPC: rpciod_killall: waiting for tasks "
1007 spin_lock_irqsave(¤t->sighand->siglock, flags);
1008 recalc_sigpending();
1009 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
1013 * Start up the rpciod process if it's not already running.
1018 struct workqueue_struct *wq;
1021 mutex_lock(&rpciod_mutex);
1022 dprintk("RPC: rpciod_up: users %u\n", rpciod_users);
1024 if (rpciod_workqueue)
1027 * If there's no pid, we should be the first user.
1029 if (rpciod_users > 1)
1030 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1032 * Create the rpciod thread and wait for it to start.
1035 wq = create_workqueue("rpciod");
1037 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1041 rpciod_workqueue = wq;
1044 mutex_unlock(&rpciod_mutex);
1051 mutex_lock(&rpciod_mutex);
1052 dprintk("RPC: rpciod_down sema %u\n", rpciod_users);
1057 printk(KERN_WARNING "rpciod_down: no users??\n");
1059 if (!rpciod_workqueue) {
1060 dprintk("RPC: rpciod_down: Nothing to do!\n");
1065 destroy_workqueue(rpciod_workqueue);
1066 rpciod_workqueue = NULL;
1068 mutex_unlock(&rpciod_mutex);
1072 void rpc_show_tasks(void)
1074 struct list_head *le;
1077 spin_lock(&rpc_sched_lock);
1078 if (list_empty(&all_tasks)) {
1079 spin_unlock(&rpc_sched_lock);
1082 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1083 "-rpcwait -action- ---ops--\n");
1084 alltask_for_each(t, le, &all_tasks) {
1085 const char *rpc_waitq = "none";
1087 if (RPC_IS_QUEUED(t))
1088 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1090 printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1092 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1093 t->tk_flags, t->tk_status,
1095 (t->tk_client ? t->tk_client->cl_prog : 0),
1096 t->tk_rqstp, t->tk_timeout,
1098 t->tk_action, t->tk_ops);
1100 spin_unlock(&rpc_sched_lock);
1105 rpc_destroy_mempool(void)
1107 if (rpc_buffer_mempool)
1108 mempool_destroy(rpc_buffer_mempool);
1109 if (rpc_task_mempool)
1110 mempool_destroy(rpc_task_mempool);
1112 kmem_cache_destroy(rpc_task_slabp);
1113 if (rpc_buffer_slabp)
1114 kmem_cache_destroy(rpc_buffer_slabp);
1118 rpc_init_mempool(void)
1120 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1121 sizeof(struct rpc_task),
1122 0, SLAB_HWCACHE_ALIGN,
1124 if (!rpc_task_slabp)
1126 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1128 0, SLAB_HWCACHE_ALIGN,
1130 if (!rpc_buffer_slabp)
1132 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1134 if (!rpc_task_mempool)
1136 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1138 if (!rpc_buffer_mempool)
1142 rpc_destroy_mempool();