2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
23 #include <asm/bitext.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
36 #include <asm/mmu_context.h>
37 #include <asm/io-unit.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
41 /* Now the cpu specific definitions. */
42 #include <asm/viking.h>
45 #include <asm/tsunami.h>
46 #include <asm/swift.h>
47 #include <asm/turbosparc.h>
49 #include <asm/btfixup.h>
51 enum mbus_module srmmu_modtype;
52 static unsigned int hwbug_bitmask;
56 extern struct resource sparc_iomap;
58 extern unsigned long last_valid_pfn;
60 extern unsigned long page_kernel;
62 static pgd_t *srmmu_swapper_pg_dir;
65 #define FLUSH_BEGIN(mm)
68 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
72 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
73 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75 int flush_page_for_dma_global = 1;
78 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
79 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90 static int is_hypersparc;
93 * In general all page table modifications should use the V8 atomic
94 * swap instruction. This insures the mmu and the cpu are in sync
95 * with respect to ref/mod bits in the page tables.
97 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
103 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108 /* The very generic SRMMU page table operations. */
109 static inline int srmmu_device_memory(unsigned long x)
111 return ((x & 0xF0000000) != 0);
114 static int srmmu_cache_pagetables;
116 /* these will be initialized in srmmu_nocache_calcsize() */
117 static unsigned long srmmu_nocache_size;
118 static unsigned long srmmu_nocache_end;
120 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
121 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123 /* The context table is a nocache user with the biggest alignment needs. */
124 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126 void *srmmu_nocache_pool;
127 void *srmmu_nocache_bitmap;
128 static struct bit_map srmmu_nocache_map;
130 static unsigned long srmmu_pte_pfn(pte_t pte)
132 if (srmmu_device_memory(pte_val(pte))) {
133 /* Just return something that will cause
134 * pfn_valid() to return false. This makes
135 * copy_one_pte() to just directly copy to
140 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 static struct page *srmmu_pmd_page(pmd_t pmd)
146 if (srmmu_device_memory(pmd_val(pmd)))
148 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
152 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155 static inline int srmmu_pte_none(pte_t pte)
156 { return !(pte_val(pte) & 0xFFFFFFF); }
158 static inline int srmmu_pte_present(pte_t pte)
159 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161 static inline void srmmu_pte_clear(pte_t *ptep)
162 { srmmu_set_pte(ptep, __pte(0)); }
164 static inline int srmmu_pmd_none(pmd_t pmd)
165 { return !(pmd_val(pmd) & 0xFFFFFFF); }
167 static inline int srmmu_pmd_bad(pmd_t pmd)
168 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170 static inline int srmmu_pmd_present(pmd_t pmd)
171 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
176 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179 static inline int srmmu_pgd_none(pgd_t pgd)
180 { return !(pgd_val(pgd) & 0xFFFFFFF); }
182 static inline int srmmu_pgd_bad(pgd_t pgd)
183 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185 static inline int srmmu_pgd_present(pgd_t pgd)
186 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188 static inline void srmmu_pgd_clear(pgd_t * pgdp)
189 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
192 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194 static inline pte_t srmmu_pte_mkclean(pte_t pte)
195 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197 static inline pte_t srmmu_pte_mkold(pte_t pte)
198 { return __pte(pte_val(pte) & ~SRMMU_REF);}
200 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
201 { return __pte(pte_val(pte) | SRMMU_WRITE);}
203 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
204 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
206 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
207 { return __pte(pte_val(pte) | SRMMU_REF);}
210 * Conversion functions: convert a page and protection to a page entry,
211 * and a page entry and page directory to the page they refer to.
213 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
214 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
217 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
220 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222 /* XXX should we hyper_flush_whole_icache here - Anton */
223 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
224 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
227 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231 unsigned long ptp; /* Physical address, shifted right by 4 */
234 ptp = __nocache_pa((unsigned long) ptep) >> 4;
235 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
236 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
237 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
241 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243 unsigned long ptp; /* Physical address, shifted right by 4 */
246 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
247 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
248 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
249 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
253 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
254 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256 /* to find an entry in a top-level page table... */
257 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
258 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260 /* Find an entry in the second-level page table.. */
261 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263 return (pmd_t *) srmmu_pgd_page(*dir) +
264 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267 /* Find an entry in the third-level page table.. */
268 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
272 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
273 return (pte_t *) pte +
274 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277 static unsigned long srmmu_swp_type(swp_entry_t entry)
279 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282 static unsigned long srmmu_swp_offset(swp_entry_t entry)
284 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289 return (swp_entry_t) {
290 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
291 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
295 * size: bytes to allocate in the nocache area.
296 * align: bytes, number to align at.
297 * Returns the virtual address of the allocated area.
299 static unsigned long __srmmu_get_nocache(int size, int align)
303 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
304 printk("Size 0x%x too small for nocache request\n", size);
305 size = SRMMU_NOCACHE_BITMAP_SHIFT;
307 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
308 printk("Size 0x%x unaligned int nocache request\n", size);
309 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313 offset = bit_map_string_get(&srmmu_nocache_map,
314 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
315 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 printk("srmmu: out of nocache %d: %d/%d\n",
318 size, (int) srmmu_nocache_size,
319 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
323 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326 static unsigned long srmmu_get_nocache(int size, int align)
330 tmp = __srmmu_get_nocache(size, align);
333 memset((void *)tmp, 0, size);
338 static void srmmu_free_nocache(unsigned long vaddr, int size)
342 if (vaddr < SRMMU_NOCACHE_VADDR) {
343 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
344 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 if (vaddr+size > srmmu_nocache_end) {
348 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
349 vaddr, srmmu_nocache_end);
352 if (size & (size-1)) {
353 printk("Size 0x%x is not a power of 2\n", size);
356 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
357 printk("Size 0x%x is too small\n", size);
360 if (vaddr & (size-1)) {
361 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
365 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
366 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 bit_map_clear(&srmmu_nocache_map, offset, size);
371 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
374 extern unsigned long probe_memory(void); /* in fault.c */
377 * Reserve nocache dynamically proportionally to the amount of
378 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380 static void srmmu_nocache_calcsize(void)
382 unsigned long sysmemavail = probe_memory() / 1024;
383 int srmmu_nocache_npages;
385 srmmu_nocache_npages =
386 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393 /* anything above 1280 blows up */
394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
401 static void __init srmmu_nocache_init(void)
403 unsigned int bitmap_bits;
407 unsigned long paddr, vaddr;
408 unsigned long pteval;
410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 init_mm.pgd = srmmu_swapper_pg_dir;
423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425 paddr = __pa((unsigned long)srmmu_nocache_pool);
426 vaddr = SRMMU_NOCACHE_VADDR;
428 while (vaddr < srmmu_nocache_end) {
429 pgd = pgd_offset_k(vaddr);
430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435 if (srmmu_cache_pagetables)
436 pteval |= SRMMU_CACHE;
438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
448 static inline pgd_t *srmmu_get_pgd_fast(void)
452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 pgd_t *init = pgd_offset_k(0);
455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
463 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
473 static void srmmu_pmd_free(pmd_t * pmd)
475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
479 * Hardware needs alignment to 256 only, but we align to whole page size
480 * to reduce fragmentation problems due to the buddy principle.
481 * XXX Provide actual fragmentation statistics in /proc.
483 * Alignments up to the page size are the same for physical and virtual
484 * addresses of the nocache area.
487 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
493 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
498 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
500 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 pgtable_page_ctor(page);
505 static void srmmu_free_pte_fast(pte_t *pte)
507 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510 static void srmmu_pte_free(pgtable_t pte)
514 pgtable_page_dtor(pte);
515 p = (unsigned long)page_address(pte); /* Cached address (for test) */
518 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
519 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
520 srmmu_free_nocache(p, PTE_SIZE);
525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527 struct ctx_list *ctxp;
529 ctxp = ctx_free.next;
530 if(ctxp != &ctx_free) {
531 remove_from_ctx_list(ctxp);
532 add_to_used_ctxlist(ctxp);
533 mm->context = ctxp->ctx_number;
537 ctxp = ctx_used.next;
538 if(ctxp->ctx_mm == old_mm)
540 if(ctxp == &ctx_used)
541 panic("out of mmu contexts");
542 flush_cache_mm(ctxp->ctx_mm);
543 flush_tlb_mm(ctxp->ctx_mm);
544 remove_from_ctx_list(ctxp);
545 add_to_used_ctxlist(ctxp);
546 ctxp->ctx_mm->context = NO_CONTEXT;
548 mm->context = ctxp->ctx_number;
551 static inline void free_context(int context)
553 struct ctx_list *ctx_old;
555 ctx_old = ctx_list_pool + context;
556 remove_from_ctx_list(ctx_old);
557 add_to_free_ctxlist(ctx_old);
561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562 struct task_struct *tsk, int cpu)
564 if(mm->context == NO_CONTEXT) {
565 spin_lock(&srmmu_context_spinlock);
566 alloc_context(old_mm, mm);
567 spin_unlock(&srmmu_context_spinlock);
568 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
572 hyper_flush_whole_icache();
574 srmmu_set_context(mm->context);
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579 unsigned long virt_addr, int bus_type)
586 physaddr &= PAGE_MASK;
587 pgdp = pgd_offset_k(virt_addr);
588 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 ptep = srmmu_pte_offset(pmdp, virt_addr);
590 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
593 * I need to test whether this is consistent over all
594 * sun4m's. The bus_type represents the upper 4 bits of
595 * 36-bit physical address on the I/O space lines...
597 tmp |= (bus_type << 28);
599 __flush_page_to_ram(virt_addr);
600 srmmu_set_pte(ptep, __pte(tmp));
603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604 unsigned long xva, unsigned int len)
608 srmmu_mapioaddr(xpa, xva, bus);
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
621 pgdp = pgd_offset_k(virt_addr);
622 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 ptep = srmmu_pte_offset(pmdp, virt_addr);
625 /* No need to flush uncacheable page. */
626 srmmu_pte_clear(ptep);
629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
633 srmmu_unmapioaddr(virt_addr);
634 virt_addr += PAGE_SIZE;
640 * On the SRMMU we do not have the problems with limited tlb entries
641 * for mapping kernel pages, so we just take things from the free page
642 * pool. As a side effect we are putting a little too much pressure
643 * on the gfp() subsystem. This setup also makes the logic of the
644 * iommu mapping code a lot easier as we can transparently handle
645 * mappings on the kernel stack without any special code as we did
648 static struct thread_info *srmmu_alloc_thread_info(void)
650 struct thread_info *ret;
652 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 #ifdef CONFIG_DEBUG_STACK_USAGE
656 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
662 static void srmmu_free_thread_info(struct thread_info *ti)
664 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
682 * Workaround, until we find what's going on with Swift. When low on memory,
683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684 * out it is already in page tables/ fault again on the same instruction.
685 * I really don't understand it, have checked it and contexts
686 * are right, flush_tlb_all is done as well, and it faults again...
689 * The following code is a deadwood that may be necessary when
690 * we start to make precise page flushes again. --zaitcev
692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
695 static unsigned long last;
697 /* unsigned int n; */
699 if (address == last) {
700 val = srmmu_hwprobe(address);
701 if (val != 0 && pte_val(pte) != val) {
702 printk("swift_update_mmu_cache: "
703 "addr %lx put %08x probed %08x from %p\n",
704 address, pte_val(pte), val,
705 __builtin_return_address(0));
706 srmmu_flush_whole_tlb();
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
734 if ((ctx1 = vma->vm_mm->context) != -1) {
735 cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
738 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 srmmu_set_context(ctx1);
740 swift_flush_page(page);
741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 "r" (page), "i" (ASI_M_FLUSH_PROBE));
743 srmmu_set_context(cctx);
745 /* Rm. prot. bits from virt. c. */
746 /* swift_flush_cache_all(); */
747 /* swift_flush_cache_page(vma, page); */
748 swift_flush_page(page);
750 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 "r" (page), "i" (ASI_M_FLUSH_PROBE));
752 /* same as above: srmmu_flush_tlb_page() */
759 * The following are all MBUS based SRMMU modules, and therefore could
760 * be found in a multiprocessor configuration. On the whole, these
761 * chips seems to be much more touchy about DVMA and page tables
762 * with respect to cache coherency.
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
768 volatile unsigned long cypress_sucks;
769 unsigned long faddr, tagval;
771 flush_user_windows();
772 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 "r" (faddr), "r" (0x40000),
776 "i" (ASI_M_DATAC_TAG));
778 /* If modified and valid, kick it. */
779 if((tagval & 0x60) == 0x60)
780 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
784 static void cypress_flush_cache_mm(struct mm_struct *mm)
786 register unsigned long a, b, c, d, e, f, g;
787 unsigned long flags, faddr;
791 flush_user_windows();
792 local_irq_save(flags);
793 octx = srmmu_get_context();
794 srmmu_set_context(mm->context);
795 a = 0x20; b = 0x40; c = 0x60;
796 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798 faddr = (0x10000 - 0x100);
803 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 "sta %%g0, [%0 + %2] %1\n\t"
805 "sta %%g0, [%0 + %3] %1\n\t"
806 "sta %%g0, [%0 + %4] %1\n\t"
807 "sta %%g0, [%0 + %5] %1\n\t"
808 "sta %%g0, [%0 + %6] %1\n\t"
809 "sta %%g0, [%0 + %7] %1\n\t"
810 "sta %%g0, [%0 + %8] %1\n\t" : :
811 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 "r" (a), "r" (b), "r" (c), "r" (d),
813 "r" (e), "r" (f), "r" (g));
815 srmmu_set_context(octx);
816 local_irq_restore(flags);
820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822 struct mm_struct *mm = vma->vm_mm;
823 register unsigned long a, b, c, d, e, f, g;
824 unsigned long flags, faddr;
828 flush_user_windows();
829 local_irq_save(flags);
830 octx = srmmu_get_context();
831 srmmu_set_context(mm->context);
832 a = 0x20; b = 0x40; c = 0x60;
833 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835 start &= SRMMU_REAL_PMD_MASK;
837 faddr = (start + (0x10000 - 0x100));
842 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 "sta %%g0, [%0 + %2] %1\n\t"
844 "sta %%g0, [%0 + %3] %1\n\t"
845 "sta %%g0, [%0 + %4] %1\n\t"
846 "sta %%g0, [%0 + %5] %1\n\t"
847 "sta %%g0, [%0 + %6] %1\n\t"
848 "sta %%g0, [%0 + %7] %1\n\t"
849 "sta %%g0, [%0 + %8] %1\n\t" : :
851 "i" (ASI_M_FLUSH_SEG),
852 "r" (a), "r" (b), "r" (c), "r" (d),
853 "r" (e), "r" (f), "r" (g));
854 } while (faddr != start);
855 start += SRMMU_REAL_PMD_SIZE;
857 srmmu_set_context(octx);
858 local_irq_restore(flags);
862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864 register unsigned long a, b, c, d, e, f, g;
865 struct mm_struct *mm = vma->vm_mm;
866 unsigned long flags, line;
870 flush_user_windows();
871 local_irq_save(flags);
872 octx = srmmu_get_context();
873 srmmu_set_context(mm->context);
874 a = 0x20; b = 0x40; c = 0x60;
875 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
878 line = (page + PAGE_SIZE) - 0x100;
883 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 "sta %%g0, [%0 + %2] %1\n\t"
885 "sta %%g0, [%0 + %3] %1\n\t"
886 "sta %%g0, [%0 + %4] %1\n\t"
887 "sta %%g0, [%0 + %5] %1\n\t"
888 "sta %%g0, [%0 + %6] %1\n\t"
889 "sta %%g0, [%0 + %7] %1\n\t"
890 "sta %%g0, [%0 + %8] %1\n\t" : :
892 "i" (ASI_M_FLUSH_PAGE),
893 "r" (a), "r" (b), "r" (c), "r" (d),
894 "r" (e), "r" (f), "r" (g));
895 } while(line != page);
896 srmmu_set_context(octx);
897 local_irq_restore(flags);
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page)
904 register unsigned long a, b, c, d, e, f, g;
907 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 line = (page + PAGE_SIZE) - 0x100;
914 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 "sta %%g0, [%0 + %2] %1\n\t"
916 "sta %%g0, [%0 + %3] %1\n\t"
917 "sta %%g0, [%0 + %4] %1\n\t"
918 "sta %%g0, [%0 + %5] %1\n\t"
919 "sta %%g0, [%0 + %6] %1\n\t"
920 "sta %%g0, [%0 + %7] %1\n\t"
921 "sta %%g0, [%0 + %8] %1\n\t" : :
923 "i" (ASI_M_FLUSH_PAGE),
924 "r" (a), "r" (b), "r" (c), "r" (d),
925 "r" (e), "r" (f), "r" (g));
926 } while(line != page);
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page)
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935 * are stored. It does not have an onboard icache of any sort, therefore
936 * no flush is necessary.
938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
942 static void cypress_flush_tlb_all(void)
944 srmmu_flush_whole_tlb();
947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
950 __asm__ __volatile__(
951 "lda [%0] %3, %%g5\n\t"
952 "sta %2, [%0] %3\n\t"
953 "sta %%g0, [%1] %4\n\t"
954 "sta %%g5, [%0] %3\n"
956 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964 struct mm_struct *mm = vma->vm_mm;
968 start &= SRMMU_PGDIR_MASK;
969 size = SRMMU_PGDIR_ALIGN(end) - start;
970 __asm__ __volatile__(
971 "lda [%0] %5, %%g5\n\t"
974 "subcc %3, %4, %3\n\t"
976 " sta %%g0, [%2 + %3] %6\n\t"
977 "sta %%g5, [%0] %5\n"
979 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 "i" (ASI_M_FLUSH_PROBE)
986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988 struct mm_struct *mm = vma->vm_mm;
991 __asm__ __volatile__(
992 "lda [%0] %3, %%g5\n\t"
993 "sta %1, [%0] %3\n\t"
994 "sta %%g0, [%2] %4\n\t"
995 "sta %%g5, [%0] %3\n"
997 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 unsigned long page);
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043 * kernel mappings are done with one single contiguous chunk of
1044 * ram. On small ram machines (classics mainly) we only get
1045 * around 8mb mapped for us.
1048 static void __init early_pgtable_allocfail(char *type)
1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1054 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1061 while(start < end) {
1062 pgdp = pgd_offset_k(start);
1063 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 pmdp = (pmd_t *) __srmmu_get_nocache(
1065 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1067 early_pgtable_allocfail("pmd");
1068 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1071 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1075 early_pgtable_allocfail("pte");
1076 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1079 if (start > (0xffffffffUL - PMD_SIZE))
1081 start = (start + PMD_SIZE) & PMD_MASK;
1085 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1092 while(start < end) {
1093 pgdp = pgd_offset_k(start);
1094 if(srmmu_pgd_none(*pgdp)) {
1095 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1097 early_pgtable_allocfail("pmd");
1098 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1099 srmmu_pgd_set(pgdp, pmdp);
1101 pmdp = srmmu_pmd_offset(pgdp, start);
1102 if(srmmu_pmd_none(*pmdp)) {
1103 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1106 early_pgtable_allocfail("pte");
1107 memset(ptep, 0, PTE_SIZE);
1108 srmmu_pmd_set(pmdp, ptep);
1110 if (start > (0xffffffffUL - PMD_SIZE))
1112 start = (start + PMD_SIZE) & PMD_MASK;
1117 * This is much cleaner than poking around physical address space
1118 * looking at the prom's page table directly which is what most
1119 * other OS's do. Yuck... this is much better.
1121 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1128 unsigned long prompte;
1130 while(start <= end) {
1132 break; /* probably wrap around */
1133 if(start == 0xfef00000)
1134 start = KADB_DEBUGGER_BEGVM;
1135 if(!(prompte = srmmu_hwprobe(start))) {
1140 /* A red snapper, see what it really is. */
1143 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1144 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1148 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1154 pgdp = pgd_offset_k(start);
1156 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1157 start += SRMMU_PGDIR_SIZE;
1160 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1161 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163 early_pgtable_allocfail("pmd");
1164 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1165 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1167 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1168 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1169 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1172 early_pgtable_allocfail("pte");
1173 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1174 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1178 * We bend the rule where all 16 PTPs in a pmd_t point
1179 * inside the same PTE page, and we leak a perfectly
1180 * good hardware PTE piece. Alternatives seem worse.
1182 unsigned int x; /* Index of HW PMD in soft cluster */
1183 x = (start >> PMD_SHIFT) & 15;
1184 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1185 start += SRMMU_REAL_PMD_SIZE;
1188 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1189 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1194 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1196 /* Create a third-level SRMMU 16MB page mapping. */
1197 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1199 pgd_t *pgdp = pgd_offset_k(vaddr);
1200 unsigned long big_pte;
1202 big_pte = KERNEL_PTE(phys_base >> 4);
1203 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1206 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1207 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1209 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1210 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1211 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1212 /* Map "low" memory only */
1213 const unsigned long min_vaddr = PAGE_OFFSET;
1214 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1216 if (vstart < min_vaddr || vstart >= max_vaddr)
1219 if (vend > max_vaddr || vend < min_vaddr)
1222 while(vstart < vend) {
1223 do_large_mapping(vstart, pstart);
1224 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1229 static inline void memprobe_error(char *msg)
1232 prom_printf("Halting now...\n");
1236 static inline void map_kernel(void)
1240 if (phys_base > 0) {
1241 do_large_mapping(PAGE_OFFSET, phys_base);
1244 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1245 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1248 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1251 /* Paging initialization on the Sparc Reference MMU. */
1252 extern void sparc_context_init(int);
1254 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1256 extern unsigned long bootmem_init(unsigned long *pages_avail);
1258 void __init srmmu_paging_init(void)
1265 unsigned long pages_avail;
1267 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1269 if (sparc_cpu_model == sun4d)
1270 num_contexts = 65536; /* We know it is Viking */
1272 /* Find the number of contexts on the srmmu. */
1273 cpunode = prom_getchild(prom_root_node);
1275 while(cpunode != 0) {
1276 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1277 if(!strcmp(node_str, "cpu")) {
1278 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1281 cpunode = prom_getsibling(cpunode);
1286 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1291 last_valid_pfn = bootmem_init(&pages_avail);
1293 srmmu_nocache_calcsize();
1294 srmmu_nocache_init();
1295 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1298 /* ctx table has to be physically aligned to its size */
1299 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1300 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1302 for(i = 0; i < num_contexts; i++)
1303 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1306 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1308 /* Stop from hanging here... */
1309 local_flush_tlb_all();
1315 #ifdef CONFIG_SUN_IO
1316 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1317 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1320 srmmu_allocate_ptable_skeleton(
1321 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1322 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1324 pgd = pgd_offset_k(PKMAP_BASE);
1325 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1326 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1327 pkmap_page_table = pte;
1332 sparc_context_init(num_contexts);
1337 unsigned long zones_size[MAX_NR_ZONES];
1338 unsigned long zholes_size[MAX_NR_ZONES];
1339 unsigned long npages;
1342 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1343 zones_size[znum] = zholes_size[znum] = 0;
1345 npages = max_low_pfn - pfn_base;
1347 zones_size[ZONE_DMA] = npages;
1348 zholes_size[ZONE_DMA] = npages - pages_avail;
1350 npages = highend_pfn - max_low_pfn;
1351 zones_size[ZONE_HIGHMEM] = npages;
1352 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1354 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1358 static void srmmu_mmu_info(struct seq_file *m)
1363 "nocache total\t: %ld\n"
1364 "nocache used\t: %d\n",
1368 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1371 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1375 static void srmmu_destroy_context(struct mm_struct *mm)
1378 if(mm->context != NO_CONTEXT) {
1380 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1382 spin_lock(&srmmu_context_spinlock);
1383 free_context(mm->context);
1384 spin_unlock(&srmmu_context_spinlock);
1385 mm->context = NO_CONTEXT;
1389 /* Init various srmmu chip types. */
1390 static void __init srmmu_is_bad(void)
1392 prom_printf("Could not determine SRMMU chip type.\n");
1396 static void __init init_vac_layout(void)
1398 int nd, cache_lines;
1402 unsigned long max_size = 0;
1403 unsigned long min_line_size = 0x10000000;
1406 nd = prom_getchild(prom_root_node);
1407 while((nd = prom_getsibling(nd)) != 0) {
1408 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1409 if(!strcmp(node_str, "cpu")) {
1410 vac_line_size = prom_getint(nd, "cache-line-size");
1411 if (vac_line_size == -1) {
1412 prom_printf("can't determine cache-line-size, "
1416 cache_lines = prom_getint(nd, "cache-nlines");
1417 if (cache_lines == -1) {
1418 prom_printf("can't determine cache-nlines, halting.\n");
1422 vac_cache_size = cache_lines * vac_line_size;
1424 if(vac_cache_size > max_size)
1425 max_size = vac_cache_size;
1426 if(vac_line_size < min_line_size)
1427 min_line_size = vac_line_size;
1428 //FIXME: cpus not contiguous!!
1430 if (cpu >= NR_CPUS || !cpu_online(cpu))
1438 prom_printf("No CPU nodes found, halting.\n");
1442 vac_cache_size = max_size;
1443 vac_line_size = min_line_size;
1445 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1446 (int)vac_cache_size, (int)vac_line_size);
1449 static void __cpuinit poke_hypersparc(void)
1451 volatile unsigned long clear;
1452 unsigned long mreg = srmmu_get_mmureg();
1454 hyper_flush_unconditional_combined();
1456 mreg &= ~(HYPERSPARC_CWENABLE);
1457 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1458 mreg |= (HYPERSPARC_CMODE);
1460 srmmu_set_mmureg(mreg);
1462 #if 0 /* XXX I think this is bad news... -DaveM */
1463 hyper_clear_all_tags();
1466 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1467 hyper_flush_whole_icache();
1468 clear = srmmu_get_faddr();
1469 clear = srmmu_get_fstatus();
1472 static void __init init_hypersparc(void)
1474 srmmu_name = "ROSS HyperSparc";
1475 srmmu_modtype = HyperSparc;
1481 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1499 poke_srmmu = poke_hypersparc;
1501 hypersparc_setup_blockops();
1504 static void __cpuinit poke_cypress(void)
1506 unsigned long mreg = srmmu_get_mmureg();
1507 unsigned long faddr, tagval;
1508 volatile unsigned long cypress_sucks;
1509 volatile unsigned long clear;
1511 clear = srmmu_get_faddr();
1512 clear = srmmu_get_fstatus();
1514 if (!(mreg & CYPRESS_CENABLE)) {
1515 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1516 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1517 "sta %%g0, [%0] %2\n\t" : :
1518 "r" (faddr), "r" (0x40000),
1519 "i" (ASI_M_DATAC_TAG));
1522 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1523 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1525 "r" (faddr), "r" (0x40000),
1526 "i" (ASI_M_DATAC_TAG));
1528 /* If modified and valid, kick it. */
1529 if((tagval & 0x60) == 0x60)
1530 cypress_sucks = *(unsigned long *)
1531 (0xf0020000 + faddr);
1535 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1536 clear = srmmu_get_faddr();
1537 clear = srmmu_get_fstatus();
1539 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1540 srmmu_set_mmureg(mreg);
1543 static void __init init_cypress_common(void)
1547 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1561 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1563 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1565 poke_srmmu = poke_cypress;
1568 static void __init init_cypress_604(void)
1570 srmmu_name = "ROSS Cypress-604(UP)";
1571 srmmu_modtype = Cypress;
1572 init_cypress_common();
1575 static void __init init_cypress_605(unsigned long mrev)
1577 srmmu_name = "ROSS Cypress-605(MP)";
1579 srmmu_modtype = Cypress_vE;
1580 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1583 srmmu_modtype = Cypress_vD;
1584 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1586 srmmu_modtype = Cypress;
1589 init_cypress_common();
1592 static void __cpuinit poke_swift(void)
1596 /* Clear any crap from the cache or else... */
1597 swift_flush_cache_all();
1599 /* Enable I & D caches */
1600 mreg = srmmu_get_mmureg();
1601 mreg |= (SWIFT_IE | SWIFT_DE);
1603 * The Swift branch folding logic is completely broken. At
1604 * trap time, if things are just right, if can mistakenly
1605 * think that a trap is coming from kernel mode when in fact
1606 * it is coming from user mode (it mis-executes the branch in
1607 * the trap code). So you see things like crashme completely
1608 * hosing your machine which is completely unacceptable. Turn
1609 * this shit off... nice job Fujitsu.
1611 mreg &= ~(SWIFT_BF);
1612 srmmu_set_mmureg(mreg);
1615 #define SWIFT_MASKID_ADDR 0x10003018
1616 static void __init init_swift(void)
1618 unsigned long swift_rev;
1620 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1621 "srl %0, 0x18, %0\n\t" :
1623 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1624 srmmu_name = "Fujitsu Swift";
1630 srmmu_modtype = Swift_lots_o_bugs;
1631 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1633 * Gee george, I wonder why Sun is so hush hush about
1634 * this hardware bug... really braindamage stuff going
1635 * on here. However I think we can find a way to avoid
1636 * all of the workaround overhead under Linux. Basically,
1637 * any page fault can cause kernel pages to become user
1638 * accessible (the mmu gets confused and clears some of
1639 * the ACC bits in kernel ptes). Aha, sounds pretty
1640 * horrible eh? But wait, after extensive testing it appears
1641 * that if you use pgd_t level large kernel pte's (like the
1642 * 4MB pages on the Pentium) the bug does not get tripped
1643 * at all. This avoids almost all of the major overhead.
1644 * Welcome to a world where your vendor tells you to,
1645 * "apply this kernel patch" instead of "sorry for the
1646 * broken hardware, send it back and we'll give you
1647 * properly functioning parts"
1652 srmmu_modtype = Swift_bad_c;
1653 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1655 * You see Sun allude to this hardware bug but never
1656 * admit things directly, they'll say things like,
1657 * "the Swift chip cache problems" or similar.
1661 srmmu_modtype = Swift_ok;
1665 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1680 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1682 flush_page_for_dma_global = 0;
1685 * Are you now convinced that the Swift is one of the
1686 * biggest VLSI abortions of all time? Bravo Fujitsu!
1687 * Fujitsu, the !#?!%$'d up processor people. I bet if
1688 * you examined the microcode of the Swift you'd find
1689 * XXX's all over the place.
1691 poke_srmmu = poke_swift;
1694 static void turbosparc_flush_cache_all(void)
1696 flush_user_windows();
1697 turbosparc_idflash_clear();
1700 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1703 flush_user_windows();
1704 turbosparc_idflash_clear();
1708 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1710 FLUSH_BEGIN(vma->vm_mm)
1711 flush_user_windows();
1712 turbosparc_idflash_clear();
1716 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718 FLUSH_BEGIN(vma->vm_mm)
1719 flush_user_windows();
1720 if (vma->vm_flags & VM_EXEC)
1721 turbosparc_flush_icache();
1722 turbosparc_flush_dcache();
1726 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1727 static void turbosparc_flush_page_to_ram(unsigned long page)
1729 #ifdef TURBOSPARC_WRITEBACK
1730 volatile unsigned long clear;
1732 if (srmmu_hwprobe(page))
1733 turbosparc_flush_page_cache(page);
1734 clear = srmmu_get_fstatus();
1738 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1742 static void turbosparc_flush_page_for_dma(unsigned long page)
1744 turbosparc_flush_dcache();
1747 static void turbosparc_flush_tlb_all(void)
1749 srmmu_flush_whole_tlb();
1752 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1755 srmmu_flush_whole_tlb();
1759 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1761 FLUSH_BEGIN(vma->vm_mm)
1762 srmmu_flush_whole_tlb();
1766 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1768 FLUSH_BEGIN(vma->vm_mm)
1769 srmmu_flush_whole_tlb();
1774 static void __cpuinit poke_turbosparc(void)
1776 unsigned long mreg = srmmu_get_mmureg();
1777 unsigned long ccreg;
1779 /* Clear any crap from the cache or else... */
1780 turbosparc_flush_cache_all();
1781 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1782 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1783 srmmu_set_mmureg(mreg);
1785 ccreg = turbosparc_get_ccreg();
1787 #ifdef TURBOSPARC_WRITEBACK
1788 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1789 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1790 /* Write-back D-cache, emulate VLSI
1791 * abortion number three, not number one */
1793 /* For now let's play safe, optimize later */
1794 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1795 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1796 ccreg &= ~(TURBOSPARC_uS2);
1797 /* Emulate VLSI abortion number three, not number one */
1800 switch (ccreg & 7) {
1801 case 0: /* No SE cache */
1802 case 7: /* Test mode */
1805 ccreg |= (TURBOSPARC_SCENABLE);
1807 turbosparc_set_ccreg (ccreg);
1809 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1810 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1811 srmmu_set_mmureg(mreg);
1814 static void __init init_turbosparc(void)
1816 srmmu_name = "Fujitsu TurboSparc";
1817 srmmu_modtype = TurboSparc;
1819 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1824 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1829 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1831 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1832 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1834 poke_srmmu = poke_turbosparc;
1837 static void __cpuinit poke_tsunami(void)
1839 unsigned long mreg = srmmu_get_mmureg();
1841 tsunami_flush_icache();
1842 tsunami_flush_dcache();
1843 mreg &= ~TSUNAMI_ITD;
1844 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1845 srmmu_set_mmureg(mreg);
1848 static void __init init_tsunami(void)
1851 * Tsunami's pretty sane, Sun and TI actually got it
1852 * somewhat right this time. Fujitsu should have
1853 * taken some lessons from them.
1856 srmmu_name = "TI Tsunami";
1857 srmmu_modtype = Tsunami;
1859 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1870 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1871 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1872 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1874 poke_srmmu = poke_tsunami;
1876 tsunami_setup_blockops();
1879 static void __cpuinit poke_viking(void)
1881 unsigned long mreg = srmmu_get_mmureg();
1882 static int smp_catch;
1884 if(viking_mxcc_present) {
1885 unsigned long mxcc_control = mxcc_get_creg();
1887 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1888 mxcc_control &= ~(MXCC_CTL_RRC);
1889 mxcc_set_creg(mxcc_control);
1892 * We don't need memory parity checks.
1893 * XXX This is a mess, have to dig out later. ecd.
1894 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1897 /* We do cache ptables on MXCC. */
1898 mreg |= VIKING_TCENABLE;
1900 unsigned long bpreg;
1902 mreg &= ~(VIKING_TCENABLE);
1904 /* Must disable mixed-cmd mode here for other cpu's. */
1905 bpreg = viking_get_bpreg();
1906 bpreg &= ~(VIKING_ACTION_MIX);
1907 viking_set_bpreg(bpreg);
1909 /* Just in case PROM does something funny. */
1914 mreg |= VIKING_SPENABLE;
1915 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1916 mreg |= VIKING_SBENABLE;
1917 mreg &= ~(VIKING_ACENABLE);
1918 srmmu_set_mmureg(mreg);
1921 /* Avoid unnecessary cross calls. */
1922 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1923 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1924 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1925 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1926 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1927 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1928 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1933 static void __init init_viking(void)
1935 unsigned long mreg = srmmu_get_mmureg();
1937 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1938 if(mreg & VIKING_MMODE) {
1939 srmmu_name = "TI Viking";
1940 viking_mxcc_present = 0;
1943 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1944 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1945 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1948 * We need this to make sure old viking takes no hits
1949 * on it's cache for dma snoops to workaround the
1950 * "load from non-cacheable memory" interrupt bug.
1951 * This is only necessary because of the new way in
1952 * which we use the IOMMU.
1954 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1956 flush_page_for_dma_global = 0;
1958 srmmu_name = "TI Viking/MXCC";
1959 viking_mxcc_present = 1;
1961 srmmu_cache_pagetables = 1;
1963 /* MXCC vikings lack the DMA snooping bug. */
1964 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1967 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1973 if (sparc_cpu_model == sun4d) {
1974 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1981 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1982 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1983 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1984 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1987 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1988 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1990 poke_srmmu = poke_viking;
1993 /* Probe for the srmmu chip version. */
1994 static void __init get_srmmu_type(void)
1996 unsigned long mreg, psr;
1997 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1999 srmmu_modtype = SRMMU_INVAL_MOD;
2002 mreg = srmmu_get_mmureg(); psr = get_psr();
2003 mod_typ = (mreg & 0xf0000000) >> 28;
2004 mod_rev = (mreg & 0x0f000000) >> 24;
2005 psr_typ = (psr >> 28) & 0xf;
2006 psr_vers = (psr >> 24) & 0xf;
2008 /* First, check for HyperSparc or Cypress. */
2012 /* UP or MP Hypersparc */
2017 /* Uniprocessor Cypress */
2023 /* _REALLY OLD_ Cypress MP chips... */
2027 /* MP Cypress mmu/cache-controller */
2028 init_cypress_605(mod_rev);
2031 /* Some other Cypress revision, assume a 605. */
2032 init_cypress_605(mod_rev);
2039 * Now Fujitsu TurboSparc. It might happen that it is
2040 * in Swift emulation mode, so we will check later...
2042 if (psr_typ == 0 && psr_vers == 5) {
2047 /* Next check for Fujitsu Swift. */
2048 if(psr_typ == 0 && psr_vers == 4) {
2052 /* Look if it is not a TurboSparc emulating Swift... */
2053 cpunode = prom_getchild(prom_root_node);
2054 while((cpunode = prom_getsibling(cpunode)) != 0) {
2055 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2056 if(!strcmp(node_str, "cpu")) {
2057 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2058 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2070 /* Now the Viking family of srmmu. */
2073 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2078 /* Finally the Tsunami. */
2079 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2088 /* don't laugh, static pagetables */
2089 static void srmmu_check_pgt_cache(int low, int high)
2093 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2094 tsetup_mmu_patchme, rtrap_mmu_patchme;
2096 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2097 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2099 extern unsigned long srmmu_fault;
2101 #define PATCH_BRANCH(insn, dest) do { \
2104 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2107 static void __init patch_window_trap_handlers(void)
2109 unsigned long *iaddr, *daddr;
2111 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2112 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2113 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2114 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2115 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2116 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2117 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2121 /* Local cross-calls. */
2122 static void smp_flush_page_for_dma(unsigned long page)
2124 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2125 local_flush_page_for_dma(page);
2130 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2132 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2135 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2137 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2140 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2142 prot &= ~__pgprot(SRMMU_CACHE);
2147 /* Load up routines and constants for sun4m and sun4d mmu */
2148 void __init ld_mmu_srmmu(void)
2150 extern void ld_mmu_iommu(void);
2151 extern void ld_mmu_iounit(void);
2152 extern void ___xchg32_sun4md(void);
2154 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2155 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2156 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2158 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2159 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2161 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2162 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2163 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2164 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2165 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2166 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2169 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2171 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2173 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2175 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2176 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2178 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2180 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2182 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2184 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2185 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2187 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2189 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2191 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2196 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2203 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2204 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2205 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2207 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2214 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2216 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2217 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2218 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2219 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2220 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2221 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2222 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2223 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2224 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2225 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2226 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2227 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2232 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2238 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2239 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2242 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2245 patch_window_trap_handlers();
2248 /* El switcheroo... */
2250 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2251 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2252 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2253 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2254 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2257 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2258 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2259 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2260 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2262 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2266 if (sparc_cpu_model != sun4d) {
2267 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2272 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2273 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2274 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2277 if (sparc_cpu_model == sun4d)
2282 if (sparc_cpu_model == sun4d)