2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/smp_lock.h>
108 #include <linux/workqueue.h>
109 #include <linux/init.h>
110 #include <linux/ip.h> /* for iph */
111 #include <linux/in.h> /* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
128 static int reset_phy = 0;
129 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
133 #define Dprintk dprintk
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
415 struct sk_buff *skbs[NR_RX_DESC];
418 u16 next_rx, next_empty;
421 dma_addr_t phy_descs;
426 struct net_device_stats stats;
429 struct pci_dev *pci_dev;
431 #ifdef NS83820_VLAN_ACCEL_SUPPORT
432 struct vlan_group *vlgrp;
435 struct rx_info rx_info;
436 struct tasklet_struct rx_tasklet;
439 struct work_struct tq_refill;
441 /* protects everything below. irqsave when using. */
442 spinlock_t misc_lock;
455 volatile u16 tx_free_idx; /* idx of free desc chain */
459 struct sk_buff *tx_skbs[NR_TX_DESC];
461 char pad[16] __attribute__((aligned(16)));
463 dma_addr_t tx_phy_descs;
465 struct timer_list tx_watchdog;
468 static inline struct ns83820 *PRIV(struct net_device *dev)
470 return netdev_priv(dev);
473 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
475 static inline void kick_rx(struct net_device *ndev)
477 struct ns83820 *dev = PRIV(ndev);
478 dprintk("kick_rx: maybe kicking\n");
479 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
480 dprintk("actually kicking\n");
481 writel(dev->rx_info.phy_descs +
482 (4 * DESC_SIZE * dev->rx_info.next_rx),
484 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
485 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
491 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
492 #define start_tx_okay(dev) \
493 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
496 #ifdef NS83820_VLAN_ACCEL_SUPPORT
497 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
499 struct ns83820 *dev = PRIV(ndev);
501 spin_lock_irq(&dev->misc_lock);
502 spin_lock(&dev->tx_lock);
506 spin_unlock(&dev->tx_lock);
507 spin_unlock_irq(&dev->misc_lock);
510 static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
512 struct ns83820 *dev = PRIV(ndev);
514 spin_lock_irq(&dev->misc_lock);
515 spin_lock(&dev->tx_lock);
517 dev->vlgrp->vlan_devices[vid] = NULL;
518 spin_unlock(&dev->tx_lock);
519 spin_unlock_irq(&dev->misc_lock);
525 * The hardware supports linked lists of receive descriptors for
526 * which ownership is transfered back and forth by means of an
527 * ownership bit. While the hardware does support the use of a
528 * ring for receive descriptors, we only make use of a chain in
529 * an attempt to reduce bus traffic under heavy load scenarios.
530 * This will also make bugs a bit more obvious. The current code
531 * only makes use of a single rx chain; I hope to implement
532 * priority based rx for version 1.0. Goal: even under overload
533 * conditions, still route realtime traffic with as low jitter as
536 static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
538 desc_addr_set(desc + DESC_LINK, link);
539 desc_addr_set(desc + DESC_BUFPTR, buf);
540 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
542 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
545 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
546 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
553 next_empty = dev->rx_info.next_empty;
555 /* don't overrun last rx marker */
556 if (unlikely(nr_rx_empty(dev) <= 2)) {
562 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
563 dev->rx_info.next_empty,
564 dev->rx_info.nr_used,
569 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
570 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
571 dev->rx_info.skbs[next_empty] = skb;
573 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
574 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
575 buf = pci_map_single(dev->pci_dev, skb->data,
576 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
577 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
578 /* update link of previous rx */
579 if (likely(next_empty != dev->rx_info.next_rx))
580 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
585 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
587 struct ns83820 *dev = PRIV(ndev);
589 unsigned long flags = 0;
591 if (unlikely(nr_rx_empty(dev) <= 2))
594 dprintk("rx_refill(%p)\n", ndev);
595 if (gfp == GFP_ATOMIC)
596 spin_lock_irqsave(&dev->rx_info.lock, flags);
597 for (i=0; i<NR_RX_DESC; i++) {
600 /* extra 16 bytes for alignment */
601 skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
605 res = (long)skb->data & 0xf;
608 skb_reserve(skb, res);
611 if (gfp != GFP_ATOMIC)
612 spin_lock_irqsave(&dev->rx_info.lock, flags);
613 res = ns83820_add_rx_skb(dev, skb);
614 if (gfp != GFP_ATOMIC)
615 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
621 if (gfp == GFP_ATOMIC)
622 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
624 return i ? 0 : -ENOMEM;
627 static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
628 static void fastcall rx_refill_atomic(struct net_device *ndev)
630 rx_refill(ndev, GFP_ATOMIC);
634 static inline void queue_refill(void *_dev)
636 struct net_device *ndev = _dev;
637 struct ns83820 *dev = PRIV(ndev);
639 rx_refill(ndev, GFP_KERNEL);
644 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
646 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
649 static void FASTCALL(phy_intr(struct net_device *ndev));
650 static void fastcall phy_intr(struct net_device *ndev)
652 struct ns83820 *dev = PRIV(ndev);
653 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
655 u32 tbisr, tanar, tanlpar;
656 int speed, fullduplex, newlinkstate;
658 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
660 if (dev->CFG_cache & CFG_TBI_EN) {
661 /* we have an optical transceiver */
662 tbisr = readl(dev->base + TBISR);
663 tanar = readl(dev->base + TANAR);
664 tanlpar = readl(dev->base + TANLPAR);
665 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
666 tbisr, tanar, tanlpar);
668 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
669 && (tanar & TANAR_FULL_DUP)) ) {
671 /* both of us are full duplex */
672 writel(readl(dev->base + TXCFG)
673 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
675 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
677 /* Light up full duplex LED */
678 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
681 } else if(((tanlpar & TANAR_HALF_DUP)
682 && (tanar & TANAR_HALF_DUP))
683 || ((tanlpar & TANAR_FULL_DUP)
684 && (tanar & TANAR_HALF_DUP))
685 || ((tanlpar & TANAR_HALF_DUP)
686 && (tanar & TANAR_FULL_DUP))) {
688 /* one or both of us are half duplex */
689 writel((readl(dev->base + TXCFG)
690 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
692 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
694 /* Turn off full duplex LED */
695 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
699 speed = 4; /* 1000F */
702 /* we have a copper transceiver */
703 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
705 if (cfg & CFG_SPDSTS1)
706 new_cfg |= CFG_MODE_1000;
708 new_cfg &= ~CFG_MODE_1000;
710 speed = ((cfg / CFG_SPDSTS0) & 3);
711 fullduplex = (cfg & CFG_DUPSTS);
715 writel(readl(dev->base + TXCFG)
716 | TXCFG_CSI | TXCFG_HBI,
718 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
721 writel(readl(dev->base + TXCFG)
722 & ~(TXCFG_CSI | TXCFG_HBI),
724 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
728 if ((cfg & CFG_LNKSTS) &&
729 ((new_cfg ^ dev->CFG_cache) != 0)) {
730 writel(new_cfg, dev->base + CFG);
731 dev->CFG_cache = new_cfg;
734 dev->CFG_cache &= ~CFG_SPDSTS;
735 dev->CFG_cache |= cfg & CFG_SPDSTS;
738 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
740 if (newlinkstate & LINK_UP
741 && dev->linkstate != newlinkstate) {
742 netif_start_queue(ndev);
743 netif_wake_queue(ndev);
744 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
747 fullduplex ? "full" : "half");
748 } else if (newlinkstate & LINK_DOWN
749 && dev->linkstate != newlinkstate) {
750 netif_stop_queue(ndev);
751 printk(KERN_INFO "%s: link now down.\n", ndev->name);
754 dev->linkstate = newlinkstate;
757 static int ns83820_setup_rx(struct net_device *ndev)
759 struct ns83820 *dev = PRIV(ndev);
763 dprintk("ns83820_setup_rx(%p)\n", ndev);
765 dev->rx_info.idle = 1;
766 dev->rx_info.next_rx = 0;
767 dev->rx_info.next_rx_desc = dev->rx_info.descs;
768 dev->rx_info.next_empty = 0;
770 for (i=0; i<NR_RX_DESC; i++)
771 clear_rx_desc(dev, i);
773 writel(0, dev->base + RXDP_HI);
774 writel(dev->rx_info.phy_descs, dev->base + RXDP);
776 ret = rx_refill(ndev, GFP_KERNEL);
778 dprintk("starting receiver\n");
779 /* prevent the interrupt handler from stomping on us */
780 spin_lock_irq(&dev->rx_info.lock);
782 writel(0x0001, dev->base + CCSR);
783 writel(0, dev->base + RFCR);
784 writel(0x7fc00000, dev->base + RFCR);
785 writel(0xffc00000, dev->base + RFCR);
791 /* Okay, let it rip */
792 spin_lock_irq(&dev->misc_lock);
793 dev->IMR_cache |= ISR_PHY;
794 dev->IMR_cache |= ISR_RXRCMP;
795 //dev->IMR_cache |= ISR_RXERR;
796 //dev->IMR_cache |= ISR_RXOK;
797 dev->IMR_cache |= ISR_RXORN;
798 dev->IMR_cache |= ISR_RXSOVR;
799 dev->IMR_cache |= ISR_RXDESC;
800 dev->IMR_cache |= ISR_RXIDLE;
801 dev->IMR_cache |= ISR_TXDESC;
802 dev->IMR_cache |= ISR_TXIDLE;
804 writel(dev->IMR_cache, dev->base + IMR);
805 writel(1, dev->base + IER);
806 spin_unlock(&dev->misc_lock);
810 spin_unlock_irq(&dev->rx_info.lock);
815 static void ns83820_cleanup_rx(struct ns83820 *dev)
820 dprintk("ns83820_cleanup_rx(%p)\n", dev);
822 /* disable receive interrupts */
823 spin_lock_irqsave(&dev->misc_lock, flags);
824 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
825 writel(dev->IMR_cache, dev->base + IMR);
826 spin_unlock_irqrestore(&dev->misc_lock, flags);
828 /* synchronize with the interrupt handler and kill it */
830 synchronize_irq(dev->pci_dev->irq);
832 /* touch the pci bus... */
833 readl(dev->base + IMR);
835 /* assumes the transmitter is already disabled and reset */
836 writel(0, dev->base + RXDP_HI);
837 writel(0, dev->base + RXDP);
839 for (i=0; i<NR_RX_DESC; i++) {
840 struct sk_buff *skb = dev->rx_info.skbs[i];
841 dev->rx_info.skbs[i] = NULL;
842 clear_rx_desc(dev, i);
848 static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
849 static void fastcall ns83820_rx_kick(struct net_device *ndev)
851 struct ns83820 *dev = PRIV(ndev);
852 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
853 if (dev->rx_info.up) {
854 rx_refill_atomic(ndev);
859 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
860 schedule_work(&dev->tq_refill);
863 if (dev->rx_info.idle)
864 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
870 static void FASTCALL(rx_irq(struct net_device *ndev));
871 static void fastcall rx_irq(struct net_device *ndev)
873 struct ns83820 *dev = PRIV(ndev);
874 struct rx_info *info = &dev->rx_info;
881 dprintk("rx_irq(%p)\n", ndev);
882 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
883 readl(dev->base + RXDP),
884 (long)(dev->rx_info.phy_descs),
885 (int)dev->rx_info.next_rx,
886 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
887 (int)dev->rx_info.next_empty,
888 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
891 spin_lock_irqsave(&info->lock, flags);
895 dprintk("walking descs\n");
896 next_rx = info->next_rx;
897 desc = info->next_rx_desc;
898 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
899 (cmdsts != CMDSTS_OWN)) {
901 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
902 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
904 dprintk("cmdsts: %08x\n", cmdsts);
905 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
906 dprintk("extsts: %08x\n", extsts);
908 skb = info->skbs[next_rx];
909 info->skbs[next_rx] = NULL;
910 info->next_rx = (next_rx + 1) % NR_RX_DESC;
913 clear_rx_desc(dev, next_rx);
915 pci_unmap_single(dev->pci_dev, bufptr,
916 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
917 len = cmdsts & CMDSTS_LEN_MASK;
918 #ifdef NS83820_VLAN_ACCEL_SUPPORT
919 /* NH: As was mentioned below, this chip is kinda
920 * brain dead about vlan tag stripping. Frames
921 * that are 64 bytes with a vlan header appended
922 * like arp frames, or pings, are flagged as Runts
923 * when the tag is stripped and hardware. This
924 * also means that the OK bit in the descriptor
925 * is cleared when the frame comes in so we have
926 * to do a specific length check here to make sure
927 * the frame would have been ok, had we not stripped
930 if (likely((CMDSTS_OK & cmdsts) ||
931 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
933 if (likely(CMDSTS_OK & cmdsts)) {
937 goto netdev_mangle_me_harder_failed;
938 if (cmdsts & CMDSTS_DEST_MULTI)
939 dev->stats.multicast ++;
940 dev->stats.rx_packets ++;
941 dev->stats.rx_bytes += len;
942 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
943 skb->ip_summed = CHECKSUM_UNNECESSARY;
945 skb->ip_summed = CHECKSUM_NONE;
947 skb->protocol = eth_type_trans(skb, ndev);
948 #ifdef NS83820_VLAN_ACCEL_SUPPORT
949 if(extsts & EXTSTS_VPKT) {
951 tag = ntohs(extsts & EXTSTS_VTG_MASK);
952 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
954 rx_rc = netif_rx(skb);
957 rx_rc = netif_rx(skb);
959 if (NET_RX_DROP == rx_rc) {
960 netdev_mangle_me_harder_failed:
961 dev->stats.rx_dropped ++;
968 next_rx = info->next_rx;
969 desc = info->descs + (DESC_SIZE * next_rx);
971 info->next_rx = next_rx;
972 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
976 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
979 spin_unlock_irqrestore(&info->lock, flags);
982 static void rx_action(unsigned long _dev)
984 struct net_device *ndev = (void *)_dev;
985 struct ns83820 *dev = PRIV(ndev);
987 writel(ihr, dev->base + IHR);
989 spin_lock_irq(&dev->misc_lock);
990 dev->IMR_cache |= ISR_RXDESC;
991 writel(dev->IMR_cache, dev->base + IMR);
992 spin_unlock_irq(&dev->misc_lock);
995 ns83820_rx_kick(ndev);
998 /* Packet Transmit code
1000 static inline void kick_tx(struct ns83820 *dev)
1002 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1003 dev, dev->tx_idx, dev->tx_free_idx);
1004 writel(CR_TXE, dev->base + CR);
1007 /* No spinlock needed on the transmit irq path as the interrupt handler is
1010 static void do_tx_done(struct net_device *ndev)
1012 struct ns83820 *dev = PRIV(ndev);
1013 u32 cmdsts, tx_done_idx, *desc;
1015 dprintk("do_tx_done(%p)\n", ndev);
1016 tx_done_idx = dev->tx_done_idx;
1017 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1019 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1020 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1021 while ((tx_done_idx != dev->tx_free_idx) &&
1022 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1023 struct sk_buff *skb;
1027 if (cmdsts & CMDSTS_ERR)
1028 dev->stats.tx_errors ++;
1029 if (cmdsts & CMDSTS_OK)
1030 dev->stats.tx_packets ++;
1031 if (cmdsts & CMDSTS_OK)
1032 dev->stats.tx_bytes += cmdsts & 0xffff;
1034 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1035 tx_done_idx, dev->tx_free_idx, cmdsts);
1036 skb = dev->tx_skbs[tx_done_idx];
1037 dev->tx_skbs[tx_done_idx] = NULL;
1038 dprintk("done(%p)\n", skb);
1040 len = cmdsts & CMDSTS_LEN_MASK;
1041 addr = desc_addr_get(desc + DESC_BUFPTR);
1043 pci_unmap_single(dev->pci_dev,
1047 dev_kfree_skb_irq(skb);
1048 atomic_dec(&dev->nr_tx_skbs);
1050 pci_unmap_page(dev->pci_dev,
1055 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1056 dev->tx_done_idx = tx_done_idx;
1057 desc[DESC_CMDSTS] = cpu_to_le32(0);
1059 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1062 /* Allow network stack to resume queueing packets after we've
1063 * finished transmitting at least 1/4 of the packets in the queue.
1065 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1066 dprintk("start_queue(%p)\n", ndev);
1067 netif_start_queue(ndev);
1068 netif_wake_queue(ndev);
1072 static void ns83820_cleanup_tx(struct ns83820 *dev)
1076 for (i=0; i<NR_TX_DESC; i++) {
1077 struct sk_buff *skb = dev->tx_skbs[i];
1078 dev->tx_skbs[i] = NULL;
1080 u32 *desc = dev->tx_descs + (i * DESC_SIZE);
1081 pci_unmap_single(dev->pci_dev,
1082 desc_addr_get(desc + DESC_BUFPTR),
1083 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1085 dev_kfree_skb_irq(skb);
1086 atomic_dec(&dev->nr_tx_skbs);
1090 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1093 /* transmit routine. This code relies on the network layer serializing
1094 * its calls in, but will run happily in parallel with the interrupt
1095 * handler. This code currently has provisions for fragmenting tx buffers
1096 * while trying to track down a bug in either the zero copy code or
1097 * the tx fifo (hence the MAX_FRAG_LEN).
1099 static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1101 struct ns83820 *dev = PRIV(ndev);
1102 u32 free_idx, cmdsts, extsts;
1103 int nr_free, nr_frags;
1104 unsigned tx_done_idx, last_idx;
1110 volatile u32 *first_desc;
1112 dprintk("ns83820_hard_start_xmit\n");
1114 nr_frags = skb_shinfo(skb)->nr_frags;
1116 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1117 netif_stop_queue(ndev);
1118 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1120 netif_start_queue(ndev);
1123 last_idx = free_idx = dev->tx_free_idx;
1124 tx_done_idx = dev->tx_done_idx;
1125 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1127 if (nr_free <= nr_frags) {
1128 dprintk("stop_queue - not enough(%p)\n", ndev);
1129 netif_stop_queue(ndev);
1131 /* Check again: we may have raced with a tx done irq */
1132 if (dev->tx_done_idx != tx_done_idx) {
1133 dprintk("restart queue(%p)\n", ndev);
1134 netif_start_queue(ndev);
1140 if (free_idx == dev->tx_intr_idx) {
1142 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1145 nr_free -= nr_frags;
1146 if (nr_free < MIN_TX_DESC_FREE) {
1147 dprintk("stop_queue - last entry(%p)\n", ndev);
1148 netif_stop_queue(ndev);
1152 frag = skb_shinfo(skb)->frags;
1156 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1157 extsts |= EXTSTS_IPPKT;
1158 if (IPPROTO_TCP == skb->nh.iph->protocol)
1159 extsts |= EXTSTS_TCPPKT;
1160 else if (IPPROTO_UDP == skb->nh.iph->protocol)
1161 extsts |= EXTSTS_UDPPKT;
1164 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1165 if(vlan_tx_tag_present(skb)) {
1166 /* fetch the vlan tag info out of the
1167 * ancilliary data if the vlan code
1168 * is using hw vlan acceleration
1170 short tag = vlan_tx_tag_get(skb);
1171 extsts |= (EXTSTS_VPKT | htons(tag));
1177 len -= skb->data_len;
1178 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1180 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1183 volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1185 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1186 (unsigned long long)buf);
1187 last_idx = free_idx;
1188 free_idx = (free_idx + 1) % NR_TX_DESC;
1189 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1190 desc_addr_set(desc + DESC_BUFPTR, buf);
1191 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1193 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1194 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1196 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1201 buf = pci_map_page(dev->pci_dev, frag->page,
1203 frag->size, PCI_DMA_TODEVICE);
1204 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1205 (long long)buf, (long) page_to_pfn(frag->page),
1211 dprintk("done pkt\n");
1213 spin_lock_irq(&dev->tx_lock);
1214 dev->tx_skbs[last_idx] = skb;
1215 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1216 dev->tx_free_idx = free_idx;
1217 atomic_inc(&dev->nr_tx_skbs);
1218 spin_unlock_irq(&dev->tx_lock);
1222 /* Check again: we may have raced with a tx done irq */
1223 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1224 netif_start_queue(ndev);
1226 /* set the transmit start time to catch transmit timeouts */
1227 ndev->trans_start = jiffies;
1231 static void ns83820_update_stats(struct ns83820 *dev)
1233 u8 __iomem *base = dev->base;
1235 /* the DP83820 will freeze counters, so we need to read all of them */
1236 dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1237 dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1238 dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1239 dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1240 /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1241 dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1242 dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1243 /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1244 /*dev->stats.rx_pause_count += */ readl(base + 0x80);
1245 /*dev->stats.tx_pause_count += */ readl(base + 0x84);
1246 dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1249 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1251 struct ns83820 *dev = PRIV(ndev);
1253 /* somewhat overkill */
1254 spin_lock_irq(&dev->misc_lock);
1255 ns83820_update_stats(dev);
1256 spin_unlock_irq(&dev->misc_lock);
1261 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1263 struct ns83820 *dev = PRIV(ndev);
1264 strcpy(info->driver, "ns83820");
1265 strcpy(info->version, VERSION);
1266 strcpy(info->bus_info, pci_name(dev->pci_dev));
1269 static u32 ns83820_get_link(struct net_device *ndev)
1271 struct ns83820 *dev = PRIV(ndev);
1272 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1273 return cfg & CFG_LNKSTS ? 1 : 0;
1276 static const struct ethtool_ops ops = {
1277 .get_drvinfo = ns83820_get_drvinfo,
1278 .get_link = ns83820_get_link
1281 /* this function is called in irq context from the ISR */
1282 static void ns83820_mib_isr(struct ns83820 *dev)
1284 unsigned long flags;
1285 spin_lock_irqsave(&dev->misc_lock, flags);
1286 ns83820_update_stats(dev);
1287 spin_unlock_irqrestore(&dev->misc_lock, flags);
1290 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1291 static irqreturn_t ns83820_irq(int foo, void *data)
1293 struct net_device *ndev = data;
1294 struct ns83820 *dev = PRIV(ndev);
1296 dprintk("ns83820_irq(%p)\n", ndev);
1300 isr = readl(dev->base + ISR);
1301 dprintk("irq: %08x\n", isr);
1302 ns83820_do_isr(ndev, isr);
1306 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1308 struct ns83820 *dev = PRIV(ndev);
1309 unsigned long flags;
1312 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1313 Dprintk("odd isr? 0x%08x\n", isr);
1316 if (ISR_RXIDLE & isr) {
1317 dev->rx_info.idle = 1;
1318 Dprintk("oh dear, we are idle\n");
1319 ns83820_rx_kick(ndev);
1322 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1323 prefetch(dev->rx_info.next_rx_desc);
1325 spin_lock_irqsave(&dev->misc_lock, flags);
1326 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1327 writel(dev->IMR_cache, dev->base + IMR);
1328 spin_unlock_irqrestore(&dev->misc_lock, flags);
1330 tasklet_schedule(&dev->rx_tasklet);
1332 //writel(4, dev->base + IHR);
1335 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1336 ns83820_rx_kick(ndev);
1338 if (unlikely(ISR_RXSOVR & isr)) {
1339 //printk("overrun: rxsovr\n");
1340 dev->stats.rx_fifo_errors ++;
1343 if (unlikely(ISR_RXORN & isr)) {
1344 //printk("overrun: rxorn\n");
1345 dev->stats.rx_fifo_errors ++;
1348 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1349 writel(CR_RXE, dev->base + CR);
1351 if (ISR_TXIDLE & isr) {
1353 txdp = readl(dev->base + TXDP);
1354 dprintk("txdp: %08x\n", txdp);
1355 txdp -= dev->tx_phy_descs;
1356 dev->tx_idx = txdp / (DESC_SIZE * 4);
1357 if (dev->tx_idx >= NR_TX_DESC) {
1358 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1361 /* The may have been a race between a pci originated read
1362 * and the descriptor update from the cpu. Just in case,
1363 * kick the transmitter if the hardware thinks it is on a
1364 * different descriptor than we are.
1366 if (dev->tx_idx != dev->tx_free_idx)
1370 /* Defer tx ring processing until more than a minimum amount of
1371 * work has accumulated
1373 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1374 spin_lock_irqsave(&dev->tx_lock, flags);
1376 spin_unlock_irqrestore(&dev->tx_lock, flags);
1378 /* Disable TxOk if there are no outstanding tx packets.
1380 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1381 (dev->IMR_cache & ISR_TXOK)) {
1382 spin_lock_irqsave(&dev->misc_lock, flags);
1383 dev->IMR_cache &= ~ISR_TXOK;
1384 writel(dev->IMR_cache, dev->base + IMR);
1385 spin_unlock_irqrestore(&dev->misc_lock, flags);
1389 /* The TxIdle interrupt can come in before the transmit has
1390 * completed. Normally we reap packets off of the combination
1391 * of TxDesc and TxIdle and leave TxOk disabled (since it
1392 * occurs on every packet), but when no further irqs of this
1393 * nature are expected, we must enable TxOk.
1395 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1396 spin_lock_irqsave(&dev->misc_lock, flags);
1397 dev->IMR_cache |= ISR_TXOK;
1398 writel(dev->IMR_cache, dev->base + IMR);
1399 spin_unlock_irqrestore(&dev->misc_lock, flags);
1402 /* MIB interrupt: one of the statistics counters is about to overflow */
1403 if (unlikely(ISR_MIB & isr))
1404 ns83820_mib_isr(dev);
1406 /* PHY: Link up/down/negotiation state change */
1407 if (unlikely(ISR_PHY & isr))
1410 #if 0 /* Still working on the interrupt mitigation strategy */
1412 writel(dev->ihr, dev->base + IHR);
1416 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1418 Dprintk("resetting chip...\n");
1419 writel(which, dev->base + CR);
1422 } while (readl(dev->base + CR) & which);
1426 static int ns83820_stop(struct net_device *ndev)
1428 struct ns83820 *dev = PRIV(ndev);
1430 /* FIXME: protect against interrupt handler? */
1431 del_timer_sync(&dev->tx_watchdog);
1433 /* disable interrupts */
1434 writel(0, dev->base + IMR);
1435 writel(0, dev->base + IER);
1436 readl(dev->base + IER);
1438 dev->rx_info.up = 0;
1439 synchronize_irq(dev->pci_dev->irq);
1441 ns83820_do_reset(dev, CR_RST);
1443 synchronize_irq(dev->pci_dev->irq);
1445 spin_lock_irq(&dev->misc_lock);
1446 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1447 spin_unlock_irq(&dev->misc_lock);
1449 ns83820_cleanup_rx(dev);
1450 ns83820_cleanup_tx(dev);
1455 static void ns83820_tx_timeout(struct net_device *ndev)
1457 struct ns83820 *dev = PRIV(ndev);
1458 u32 tx_done_idx, *desc;
1459 unsigned long flags;
1461 spin_lock_irqsave(&dev->tx_lock, flags);
1463 tx_done_idx = dev->tx_done_idx;
1464 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1466 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1468 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1473 isr = readl(dev->base + ISR);
1474 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1475 ns83820_do_isr(ndev, isr);
1481 tx_done_idx = dev->tx_done_idx;
1482 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1484 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1486 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1488 spin_unlock_irqrestore(&dev->tx_lock, flags);
1491 static void ns83820_tx_watch(unsigned long data)
1493 struct net_device *ndev = (void *)data;
1494 struct ns83820 *dev = PRIV(ndev);
1497 printk("ns83820_tx_watch: %u %u %d\n",
1498 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1502 if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1503 dev->tx_done_idx != dev->tx_free_idx) {
1504 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1506 dev->tx_done_idx, dev->tx_free_idx,
1507 atomic_read(&dev->nr_tx_skbs));
1508 ns83820_tx_timeout(ndev);
1511 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1514 static int ns83820_open(struct net_device *ndev)
1516 struct ns83820 *dev = PRIV(ndev);
1521 dprintk("ns83820_open\n");
1523 writel(0, dev->base + PQCR);
1525 ret = ns83820_setup_rx(ndev);
1529 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1530 for (i=0; i<NR_TX_DESC; i++) {
1531 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1534 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1538 dev->tx_done_idx = 0;
1539 desc = dev->tx_phy_descs;
1540 writel(0, dev->base + TXDP_HI);
1541 writel(desc, dev->base + TXDP);
1543 init_timer(&dev->tx_watchdog);
1544 dev->tx_watchdog.data = (unsigned long)ndev;
1545 dev->tx_watchdog.function = ns83820_tx_watch;
1546 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1548 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1557 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1560 for (i=0; i<3; i++) {
1563 /* Read from the perfect match memory: this is loaded by
1564 * the chip from the EEPROM via the EELOAD self test.
1566 writel(i*2, dev->base + RFCR);
1567 data = readl(dev->base + RFDR);
1574 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1576 if (new_mtu > RX_BUF_SIZE)
1578 ndev->mtu = new_mtu;
1582 static void ns83820_set_multicast(struct net_device *ndev)
1584 struct ns83820 *dev = PRIV(ndev);
1585 u8 __iomem *rfcr = dev->base + RFCR;
1586 u32 and_mask = 0xffffffff;
1590 if (ndev->flags & IFF_PROMISC)
1591 or_mask |= RFCR_AAU | RFCR_AAM;
1593 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1595 if (ndev->flags & IFF_ALLMULTI)
1596 or_mask |= RFCR_AAM;
1598 and_mask &= ~RFCR_AAM;
1600 spin_lock_irq(&dev->misc_lock);
1601 val = (readl(rfcr) & and_mask) | or_mask;
1602 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1603 writel(val & ~RFCR_RFEN, rfcr);
1605 spin_unlock_irq(&dev->misc_lock);
1608 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1610 struct ns83820 *dev = PRIV(ndev);
1612 unsigned long start;
1616 dprintk("%s: start %s\n", ndev->name, name);
1620 writel(enable, dev->base + PTSCR);
1623 status = readl(dev->base + PTSCR);
1624 if (!(status & enable))
1630 if (time_after_eq(jiffies, start + HZ)) {
1634 schedule_timeout_uninterruptible(1);
1638 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1639 ndev->name, name, status, fail);
1641 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1642 ndev->name, name, status);
1644 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1647 #ifdef PHY_CODE_IS_FINISHED
1648 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1651 dev->MEAR_cache &= ~MEAR_MDC;
1652 writel(dev->MEAR_cache, dev->base + MEAR);
1653 readl(dev->base + MEAR);
1655 /* enable output, set bit */
1656 dev->MEAR_cache |= MEAR_MDDIR;
1658 dev->MEAR_cache |= MEAR_MDIO;
1660 dev->MEAR_cache &= ~MEAR_MDIO;
1662 /* set the output bit */
1663 writel(dev->MEAR_cache, dev->base + MEAR);
1664 readl(dev->base + MEAR);
1666 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1669 /* drive MDC high causing the data bit to be latched */
1670 dev->MEAR_cache |= MEAR_MDC;
1671 writel(dev->MEAR_cache, dev->base + MEAR);
1672 readl(dev->base + MEAR);
1678 static int ns83820_mii_read_bit(struct ns83820 *dev)
1682 /* drive MDC low, disable output */
1683 dev->MEAR_cache &= ~MEAR_MDC;
1684 dev->MEAR_cache &= ~MEAR_MDDIR;
1685 writel(dev->MEAR_cache, dev->base + MEAR);
1686 readl(dev->base + MEAR);
1688 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1691 /* drive MDC high causing the data bit to be latched */
1692 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1693 dev->MEAR_cache |= MEAR_MDC;
1694 writel(dev->MEAR_cache, dev->base + MEAR);
1702 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1707 /* read some garbage so that we eventually sync up */
1708 for (i=0; i<64; i++)
1709 ns83820_mii_read_bit(dev);
1711 ns83820_mii_write_bit(dev, 0); /* start */
1712 ns83820_mii_write_bit(dev, 1);
1713 ns83820_mii_write_bit(dev, 1); /* opcode read */
1714 ns83820_mii_write_bit(dev, 0);
1716 /* write out the phy address: 5 bits, msb first */
1718 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1720 /* write out the register address, 5 bits, msb first */
1722 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1724 ns83820_mii_read_bit(dev); /* turn around cycles */
1725 ns83820_mii_read_bit(dev);
1727 /* read in the register data, 16 bits msb first */
1728 for (i=0; i<16; i++) {
1730 data |= ns83820_mii_read_bit(dev);
1736 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1740 /* read some garbage so that we eventually sync up */
1741 for (i=0; i<64; i++)
1742 ns83820_mii_read_bit(dev);
1744 ns83820_mii_write_bit(dev, 0); /* start */
1745 ns83820_mii_write_bit(dev, 1);
1746 ns83820_mii_write_bit(dev, 0); /* opcode read */
1747 ns83820_mii_write_bit(dev, 1);
1749 /* write out the phy address: 5 bits, msb first */
1751 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1753 /* write out the register address, 5 bits, msb first */
1755 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1757 ns83820_mii_read_bit(dev); /* turn around cycles */
1758 ns83820_mii_read_bit(dev);
1760 /* read in the register data, 16 bits msb first */
1761 for (i=0; i<16; i++)
1762 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1767 static void ns83820_probe_phy(struct net_device *ndev)
1769 struct ns83820 *dev = PRIV(ndev);
1772 #define MII_PHYIDR1 0x02
1773 #define MII_PHYIDR2 0x03
1778 ns83820_mii_read_reg(dev, 1, 0x09);
1779 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1781 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1782 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1784 ns83820_mii_read_reg(dev, 1, 0x09);
1789 for (i=1; i<2; i++) {
1792 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1793 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1795 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1796 // ndev->name, i, a, b);
1798 for (j=0; j<0x16; j+=4) {
1799 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1801 ns83820_mii_read_reg(dev, i, 0 + j),
1802 ns83820_mii_read_reg(dev, i, 1 + j),
1803 ns83820_mii_read_reg(dev, i, 2 + j),
1804 ns83820_mii_read_reg(dev, i, 3 + j)
1810 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1811 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1812 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1813 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1815 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1816 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1817 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1818 dprintk("version: 0x%04x 0x%04x\n", a, b);
1823 static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1825 struct net_device *ndev;
1826 struct ns83820 *dev;
1831 /* See if we can set the dma mask early on; failure is fatal. */
1832 if (sizeof(dma_addr_t) == 8 &&
1833 !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
1835 } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
1838 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1842 ndev = alloc_etherdev(sizeof(struct ns83820));
1848 spin_lock_init(&dev->rx_info.lock);
1849 spin_lock_init(&dev->tx_lock);
1850 spin_lock_init(&dev->misc_lock);
1851 dev->pci_dev = pci_dev;
1853 SET_MODULE_OWNER(ndev);
1854 SET_NETDEV_DEV(ndev, &pci_dev->dev);
1856 INIT_WORK(&dev->tq_refill, queue_refill, ndev);
1857 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1859 err = pci_enable_device(pci_dev);
1861 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1865 pci_set_master(pci_dev);
1866 addr = pci_resource_start(pci_dev, 1);
1867 dev->base = ioremap_nocache(addr, PAGE_SIZE);
1868 dev->tx_descs = pci_alloc_consistent(pci_dev,
1869 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1870 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1871 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1873 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1876 dprintk("%p: %08lx %p: %08lx\n",
1877 dev->tx_descs, (long)dev->tx_phy_descs,
1878 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1880 /* disable interrupts */
1881 writel(0, dev->base + IMR);
1882 writel(0, dev->base + IER);
1883 readl(dev->base + IER);
1887 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1890 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1896 * FIXME: we are holding rtnl_lock() over obscenely long area only
1897 * because some of the setup code uses dev->name. It's Wrong(tm) -
1898 * we should be using driver-specific names for all that stuff.
1899 * For now that will do, but we really need to come back and kill
1900 * most of the dev_alloc_name() users later.
1903 err = dev_alloc_name(ndev, ndev->name);
1905 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1909 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1910 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1911 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1913 ndev->open = ns83820_open;
1914 ndev->stop = ns83820_stop;
1915 ndev->hard_start_xmit = ns83820_hard_start_xmit;
1916 ndev->get_stats = ns83820_get_stats;
1917 ndev->change_mtu = ns83820_change_mtu;
1918 ndev->set_multicast_list = ns83820_set_multicast;
1919 SET_ETHTOOL_OPS(ndev, &ops);
1920 ndev->tx_timeout = ns83820_tx_timeout;
1921 ndev->watchdog_timeo = 5 * HZ;
1922 pci_set_drvdata(pci_dev, ndev);
1924 ns83820_do_reset(dev, CR_RST);
1926 /* Must reset the ram bist before running it */
1927 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1928 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
1929 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1930 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1932 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1934 /* I love config registers */
1935 dev->CFG_cache = readl(dev->base + CFG);
1937 if ((dev->CFG_cache & CFG_PCI64_DET)) {
1938 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
1940 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1941 if (!(dev->CFG_cache & CFG_DATA64_EN))
1942 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
1945 dev->CFG_cache &= ~(CFG_DATA64_EN);
1947 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
1948 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
1950 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
1951 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
1952 dev->CFG_cache |= CFG_REQALG;
1953 dev->CFG_cache |= CFG_POW;
1954 dev->CFG_cache |= CFG_TMRTEST;
1956 /* When compiled with 64 bit addressing, we must always enable
1957 * the 64 bit descriptor format.
1959 if (sizeof(dma_addr_t) == 8)
1960 dev->CFG_cache |= CFG_M64ADDR;
1962 dev->CFG_cache |= CFG_T64ADDR;
1964 /* Big endian mode does not seem to do what the docs suggest */
1965 dev->CFG_cache &= ~CFG_BEM;
1967 /* setup optical transceiver if we have one */
1968 if (dev->CFG_cache & CFG_TBI_EN) {
1969 printk(KERN_INFO "%s: enabling optical transceiver\n",
1971 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
1973 /* setup auto negotiation feature advertisement */
1974 writel(readl(dev->base + TANAR)
1975 | TANAR_HALF_DUP | TANAR_FULL_DUP,
1978 /* start auto negotiation */
1979 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1981 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1982 dev->linkstate = LINK_AUTONEGOTIATE;
1984 dev->CFG_cache |= CFG_MODE_1000;
1987 writel(dev->CFG_cache, dev->base + CFG);
1988 dprintk("CFG: %08x\n", dev->CFG_cache);
1991 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
1992 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
1994 writel(dev->CFG_cache, dev->base + CFG);
1997 #if 0 /* Huh? This sets the PCI latency register. Should be done via
1998 * the PCI layer. FIXME.
2000 if (readl(dev->base + SRR))
2001 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2004 /* Note! The DMA burst size interacts with packet
2005 * transmission, such that the largest packet that
2006 * can be transmitted is 8192 - FLTH - burst size.
2007 * If only the transmit fifo was larger...
2009 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2010 * some DELL and COMPAQ SMP systems */
2011 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2012 | ((1600 / 32) * 0x100),
2015 /* Flush the interrupt holdoff timer */
2016 writel(0x000, dev->base + IHR);
2017 writel(0x100, dev->base + IHR);
2018 writel(0x000, dev->base + IHR);
2020 /* Set Rx to full duplex, don't accept runt, errored, long or length
2021 * range errored packets. Use 512 byte DMA.
2023 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2024 * some DELL and COMPAQ SMP systems
2025 * Turn on ALP, only we are accpeting Jumbo Packets */
2026 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2029 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2031 /* Disable priority queueing */
2032 writel(0, dev->base + PQCR);
2034 /* Enable IP checksum validation and detetion of VLAN headers.
2035 * Note: do not set the reject options as at least the 0x102
2036 * revision of the chip does not properly accept IP fragments
2039 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2040 * the MAC it calculates the packetsize AFTER stripping the VLAN
2041 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2042 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2043 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2044 * it discrards it!. These guys......
2045 * also turn on tag stripping if hardware acceleration is enabled
2047 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2048 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2050 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2052 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2054 /* Enable per-packet TCP/UDP/IP checksumming
2055 * and per packet vlan tag insertion if
2056 * vlan hardware acceleration is enabled
2058 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2059 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2061 #define VTCR_INIT_VALUE VTCR_PPCHK
2063 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2065 /* Ramit : Enable async and sync pause frames */
2066 /* writel(0, dev->base + PCR); */
2067 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2068 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2071 /* Disable Wake On Lan */
2072 writel(0, dev->base + WCSR);
2074 ns83820_getmac(dev, ndev->dev_addr);
2076 /* Yes, we support dumb IP checksum on transmit */
2077 ndev->features |= NETIF_F_SG;
2078 ndev->features |= NETIF_F_IP_CSUM;
2080 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2081 /* We also support hardware vlan acceleration */
2082 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2083 ndev->vlan_rx_register = ns83820_vlan_rx_register;
2084 ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
2088 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2090 ndev->features |= NETIF_F_HIGHDMA;
2093 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2095 (unsigned)readl(dev->base + SRR) >> 8,
2096 (unsigned)readl(dev->base + SRR) & 0xff,
2097 ndev->dev_addr[0], ndev->dev_addr[1],
2098 ndev->dev_addr[2], ndev->dev_addr[3],
2099 ndev->dev_addr[4], ndev->dev_addr[5],
2101 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2104 #ifdef PHY_CODE_IS_FINISHED
2105 ns83820_probe_phy(ndev);
2108 err = register_netdevice(ndev);
2110 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2118 writel(0, dev->base + IMR); /* paranoia */
2119 writel(0, dev->base + IER);
2120 readl(dev->base + IER);
2123 free_irq(pci_dev->irq, ndev);
2127 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2128 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2129 pci_disable_device(pci_dev);
2132 pci_set_drvdata(pci_dev, NULL);
2137 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2139 struct net_device *ndev = pci_get_drvdata(pci_dev);
2140 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2142 if (!ndev) /* paranoia */
2145 writel(0, dev->base + IMR); /* paranoia */
2146 writel(0, dev->base + IER);
2147 readl(dev->base + IER);
2149 unregister_netdev(ndev);
2150 free_irq(dev->pci_dev->irq, ndev);
2152 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2153 dev->tx_descs, dev->tx_phy_descs);
2154 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2155 dev->rx_info.descs, dev->rx_info.phy_descs);
2156 pci_disable_device(dev->pci_dev);
2158 pci_set_drvdata(pci_dev, NULL);
2161 static struct pci_device_id ns83820_pci_tbl[] = {
2162 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2166 static struct pci_driver driver = {
2168 .id_table = ns83820_pci_tbl,
2169 .probe = ns83820_init_one,
2170 .remove = __devexit_p(ns83820_remove_one),
2171 #if 0 /* FIXME: implement */
2178 static int __init ns83820_init(void)
2180 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2181 return pci_register_driver(&driver);
2184 static void __exit ns83820_exit(void)
2186 pci_unregister_driver(&driver);
2189 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2190 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2191 MODULE_LICENSE("GPL");
2193 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2195 module_param(lnksts, int, 0);
2196 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2198 module_param(ihr, int, 0);
2199 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2201 module_param(reset_phy, int, 0);
2202 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2204 module_init(ns83820_init);
2205 module_exit(ns83820_exit);