2 /* Common Flash Interface structures
3 * See http://support.intel.com/design/flash/technote/index.htm
9 #include <linux/delay.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/mtd/flashchip.h>
13 #include <linux/mtd/map.h>
14 #include <linux/mtd/cfi_endian.h>
15 #include <linux/mtd/xip.h>
17 #ifdef CONFIG_MTD_CFI_I1
18 #define cfi_interleave(cfi) 1
19 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
21 #define cfi_interleave_is_1(cfi) (0)
24 #ifdef CONFIG_MTD_CFI_I2
25 # ifdef cfi_interleave
26 # undef cfi_interleave
27 # define cfi_interleave(cfi) ((cfi)->interleave)
29 # define cfi_interleave(cfi) 2
31 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
33 #define cfi_interleave_is_2(cfi) (0)
36 #ifdef CONFIG_MTD_CFI_I4
37 # ifdef cfi_interleave
38 # undef cfi_interleave
39 # define cfi_interleave(cfi) ((cfi)->interleave)
41 # define cfi_interleave(cfi) 4
43 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
45 #define cfi_interleave_is_4(cfi) (0)
48 #ifdef CONFIG_MTD_CFI_I8
49 # ifdef cfi_interleave
50 # undef cfi_interleave
51 # define cfi_interleave(cfi) ((cfi)->interleave)
53 # define cfi_interleave(cfi) 8
55 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
57 #define cfi_interleave_is_8(cfi) (0)
60 #ifndef cfi_interleave
61 #warning No CONFIG_MTD_CFI_Ix selected. No NOR chip support can work.
62 static inline int cfi_interleave(void *cfi)
69 static inline int cfi_interleave_supported(int i)
72 #ifdef CONFIG_MTD_CFI_I1
75 #ifdef CONFIG_MTD_CFI_I2
78 #ifdef CONFIG_MTD_CFI_I4
81 #ifdef CONFIG_MTD_CFI_I8
92 /* NB: these values must represents the number of bytes needed to meet the
93 * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
94 * These numbers are used in calculations.
96 #define CFI_DEVICETYPE_X8 (8 / 8)
97 #define CFI_DEVICETYPE_X16 (16 / 8)
98 #define CFI_DEVICETYPE_X32 (32 / 8)
99 #define CFI_DEVICETYPE_X64 (64 / 8)
102 /* Device Interface Code Assignments from the "Common Flash Memory Interface
103 * Publication 100" dated December 1, 2001.
105 #define CFI_INTERFACE_X8_ASYNC 0x0000
106 #define CFI_INTERFACE_X16_ASYNC 0x0001
107 #define CFI_INTERFACE_X8_BY_X16_ASYNC 0x0002
108 #define CFI_INTERFACE_X32_ASYNC 0x0003
109 #define CFI_INTERFACE_X16_BY_X32_ASYNC 0x0005
110 #define CFI_INTERFACE_NOT_ALLOWED 0xffff
113 /* NB: We keep these structures in memory in HOST byteorder, except
114 * where individually noted.
117 /* Basic Query Structure */
128 uint8_t WordWriteTimeoutTyp;
129 uint8_t BufWriteTimeoutTyp;
130 uint8_t BlockEraseTimeoutTyp;
131 uint8_t ChipEraseTimeoutTyp;
132 uint8_t WordWriteTimeoutMax;
133 uint8_t BufWriteTimeoutMax;
134 uint8_t BlockEraseTimeoutMax;
135 uint8_t ChipEraseTimeoutMax;
137 uint16_t InterfaceDesc;
138 uint16_t MaxBufWriteSize;
139 uint8_t NumEraseRegions;
140 uint32_t EraseRegionInfo[0]; /* Not host ordered */
141 } __attribute__((packed));
143 /* Extended Query Structure for both PRI and ALT */
145 struct cfi_extquery {
147 uint8_t MajorVersion;
148 uint8_t MinorVersion;
149 } __attribute__((packed));
151 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
153 struct cfi_pri_intelext {
155 uint8_t MajorVersion;
156 uint8_t MinorVersion;
157 uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
158 block follows - FIXME - not currently supported */
159 uint8_t SuspendCmdSupport;
160 uint16_t BlkStatusRegMask;
163 uint8_t NumProtectionFields;
164 uint16_t ProtRegAddr;
165 uint8_t FactProtRegSize;
166 uint8_t UserProtRegSize;
168 } __attribute__((packed));
170 struct cfi_intelext_otpinfo {
171 uint32_t ProtRegAddr;
173 uint8_t FactProtRegSize;
175 uint8_t UserProtRegSize;
176 } __attribute__((packed));
178 struct cfi_intelext_blockinfo {
179 uint16_t NumIdentBlocks;
181 uint16_t MinBlockEraseCycles;
184 } __attribute__((packed));
186 struct cfi_intelext_regioninfo {
187 uint16_t NumIdentPartitions;
188 uint8_t NumOpAllowed;
189 uint8_t NumOpAllowedSimProgMode;
190 uint8_t NumOpAllowedSimEraMode;
191 uint8_t NumBlockTypes;
192 struct cfi_intelext_blockinfo BlockTypes[1];
193 } __attribute__((packed));
195 struct cfi_intelext_programming_regioninfo {
196 uint8_t ProgRegShift;
198 uint8_t ControlValid;
200 uint8_t ControlInvalid;
202 } __attribute__((packed));
204 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
206 struct cfi_pri_amdstd {
208 uint8_t MajorVersion;
209 uint8_t MinorVersion;
210 uint8_t SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
211 uint8_t EraseSuspend;
213 uint8_t TmpBlkUnprotect;
214 uint8_t BlkProtUnprot;
215 uint8_t SimultaneousOps;
221 } __attribute__((packed));
223 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
225 struct cfi_pri_atmel {
227 uint8_t MajorVersion;
228 uint8_t MinorVersion;
233 } __attribute__((packed));
235 struct cfi_pri_query {
237 uint32_t ProtField[1]; /* Not host ordered */
238 } __attribute__((packed));
240 struct cfi_bri_query {
241 uint8_t PageModeReadCap;
243 uint32_t ConfField[1]; /* Not host ordered */
244 } __attribute__((packed));
246 #define P_ID_NONE 0x0000
247 #define P_ID_INTEL_EXT 0x0001
248 #define P_ID_AMD_STD 0x0002
249 #define P_ID_INTEL_STD 0x0003
250 #define P_ID_AMD_EXT 0x0004
251 #define P_ID_WINBOND 0x0006
252 #define P_ID_ST_ADV 0x0020
253 #define P_ID_MITSUBISHI_STD 0x0100
254 #define P_ID_MITSUBISHI_EXT 0x0101
255 #define P_ID_SST_PAGE 0x0102
256 #define P_ID_INTEL_PERFORMANCE 0x0200
257 #define P_ID_INTEL_DATA 0x0210
258 #define P_ID_RESERVED 0xffff
261 #define CFI_MODE_CFI 1
262 #define CFI_MODE_JEDEC 0
269 int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */
272 struct mtd_info *(*cmdset_setup)(struct map_info *);
273 struct cfi_ident *cfiq; /* For now only one. We insist that all devs
274 must be of the same type. */
277 unsigned long chipshift; /* Because they're of the same type */
278 const char *im_name; /* inter_module name for cmdset_setup */
279 struct flchip chips[0]; /* per-chip data structure for each chip */
283 * Returns the command address according to the given geometry.
285 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
286 struct map_info *map, struct cfi_private *cfi)
288 unsigned bankwidth = map_bankwidth(map);
289 unsigned interleave = cfi_interleave(cfi);
290 unsigned type = cfi->device_type;
293 addr = (cmd_ofs * type) * interleave;
295 /* Modify the unlock address if we are in compatiblity mode.
296 * For 16bit devices on 8 bit busses
297 * and 32bit devices on 16 bit busses
298 * set the low bit of the alternating bit sequence of the address.
300 if (((type * interleave) > bankwidth) && ((uint8_t)cmd_ofs == 0xaa))
301 addr |= (type >> 1)*interleave;
307 * Transforms the CFI command for the given geometry (bus width & interleave).
308 * It looks too long to be inline, but in the common case it should almost all
309 * get optimised away.
311 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
313 map_word val = { {0} };
314 int wordwidth, words_per_bus, chip_mode, chips_per_word;
315 unsigned long onecmd;
318 /* We do it this way to give the compiler a fighting chance
319 of optimising away all the crap for 'bankwidth' larger than
320 an unsigned long, in the common case where that support is
322 if (map_bankwidth_is_large(map)) {
323 wordwidth = sizeof(unsigned long);
324 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
326 wordwidth = map_bankwidth(map);
330 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
331 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
333 /* First, determine what the bit-pattern should be for a single
334 device, according to chip mode and endianness... */
341 onecmd = cpu_to_cfi16(cmd);
344 onecmd = cpu_to_cfi32(cmd);
348 /* Now replicate it across the size of an unsigned long, or
349 just to the bus width as appropriate */
350 switch (chips_per_word) {
352 #if BITS_PER_LONG >= 64
354 onecmd |= (onecmd << (chip_mode * 32));
357 onecmd |= (onecmd << (chip_mode * 16));
359 onecmd |= (onecmd << (chip_mode * 8));
364 /* And finally, for the multi-word case, replicate it
365 in all words in the structure */
366 for (i=0; i < words_per_bus; i++) {
372 #define CMD(x) cfi_build_cmd((x), map, cfi)
375 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
376 struct cfi_private *cfi)
378 int wordwidth, words_per_bus, chip_mode, chips_per_word;
379 unsigned long onestat, res = 0;
382 /* We do it this way to give the compiler a fighting chance
383 of optimising away all the crap for 'bankwidth' larger than
384 an unsigned long, in the common case where that support is
386 if (map_bankwidth_is_large(map)) {
387 wordwidth = sizeof(unsigned long);
388 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
390 wordwidth = map_bankwidth(map);
394 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
395 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
398 /* Or all status words together */
399 for (i=1; i < words_per_bus; i++) {
404 switch(chips_per_word) {
406 #if BITS_PER_LONG >= 64
408 res |= (onestat >> (chip_mode * 32));
411 res |= (onestat >> (chip_mode * 16));
413 res |= (onestat >> (chip_mode * 8));
418 /* Last, determine what the bit-pattern should be for a single
419 device, according to chip mode and endianness... */
424 res = cfi16_to_cpu(res);
427 res = cfi32_to_cpu(res);
434 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
438 * Sends a CFI command to a bank of flash for the given geometry.
440 * Returns the offset in flash where the command was written.
441 * If prev_val is non-null, it will be set to the value at the command address,
442 * before the command was written.
444 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
445 struct map_info *map, struct cfi_private *cfi,
446 int type, map_word *prev_val)
449 uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
450 val = cfi_build_cmd(cmd, map, cfi);
453 *prev_val = map_read(map, addr);
455 map_write(map, val, addr);
460 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
462 map_word val = map_read(map, addr);
464 if (map_bankwidth_is_1(map)) {
466 } else if (map_bankwidth_is_2(map)) {
467 return cfi16_to_cpu(val.x[0]);
469 /* No point in a 64-bit byteswap since that would just be
470 swapping the responses from different chips, and we are
471 only interested in one chip (a representative sample) */
472 return cfi32_to_cpu(val.x[0]);
476 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
478 map_word val = map_read(map, addr);
480 if (map_bankwidth_is_1(map)) {
481 return val.x[0] & 0xff;
482 } else if (map_bankwidth_is_2(map)) {
483 return cfi16_to_cpu(val.x[0]);
485 /* No point in a 64-bit byteswap since that would just be
486 swapping the responses from different chips, and we are
487 only interested in one chip (a representative sample) */
488 return cfi32_to_cpu(val.x[0]);
492 static inline void cfi_udelay(int us)
495 msleep((us+999)/1000);
502 int __xipram cfi_qry_present(struct map_info *map, __u32 base,
503 struct cfi_private *cfi);
504 int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
505 struct cfi_private *cfi);
506 void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
507 struct cfi_private *cfi);
509 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
514 void (*fixup)(struct mtd_info *mtd, void* param);
518 #define CFI_MFR_ANY 0xffff
519 #define CFI_ID_ANY 0xffff
521 #define CFI_MFR_AMD 0x0001
522 #define CFI_MFR_ATMEL 0x001F
523 #define CFI_MFR_SAMSUNG 0x00EC
524 #define CFI_MFR_ST 0x0020 /* STMicroelectronics */
526 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
528 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
529 unsigned long adr, int len, void *thunk);
531 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
532 loff_t ofs, size_t len, void *thunk);
535 #endif /* __MTD_CFI_H__ */