3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
49 /* ------------------------------------------------------------------ */
51 static unsigned int core_debug;
52 module_param(core_debug,int,0644);
53 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
55 static unsigned int nicam;
56 module_param(nicam,int,0644);
57 MODULE_PARM_DESC(nicam,"tv audio is nicam");
59 static unsigned int nocomb;
60 module_param(nocomb,int,0644);
61 MODULE_PARM_DESC(nocomb,"disable comb filter");
63 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
64 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
66 static unsigned int cx88_devcount;
67 static LIST_HEAD(cx88_devlist);
68 static DEFINE_MUTEX(devlist);
70 #define NO_SYNC_LINE (-1U)
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73 generated _after_ lpi lines are transferred. */
74 static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
75 unsigned int offset, u32 sync_line,
76 unsigned int bpl, unsigned int padding,
77 unsigned int lines, unsigned int lpi)
79 struct scatterlist *sg;
80 unsigned int line,todo,sol;
82 /* sync instruction */
83 if (sync_line != NO_SYNC_LINE)
84 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
88 for (line = 0; line < lines; line++) {
89 while (offset && offset >= sg_dma_len(sg)) {
90 offset -= sg_dma_len(sg);
93 if (lpi && line>0 && !(line % lpi))
94 sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
97 if (bpl <= sg_dma_len(sg)-offset) {
98 /* fits into current chunk */
99 *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
100 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
103 /* scanline needs to be split */
105 *(rp++)=cpu_to_le32(RISC_WRITE|sol|
106 (sg_dma_len(sg)-offset));
107 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
108 todo -= (sg_dma_len(sg)-offset);
111 while (todo > sg_dma_len(sg)) {
112 *(rp++)=cpu_to_le32(RISC_WRITE|
114 *(rp++)=cpu_to_le32(sg_dma_address(sg));
115 todo -= sg_dma_len(sg);
118 *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
119 *(rp++)=cpu_to_le32(sg_dma_address(sg));
128 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
129 struct scatterlist *sglist,
130 unsigned int top_offset, unsigned int bottom_offset,
131 unsigned int bpl, unsigned int padding, unsigned int lines)
133 u32 instructions,fields;
138 if (UNSET != top_offset)
140 if (UNSET != bottom_offset)
143 /* estimate risc mem: worst case is one write per page border +
144 one write per scan line + syncs + jump (all 2 dwords). Padding
145 can cause next bpl to start close to a page border. First DMA
146 region may be smaller than PAGE_SIZE */
147 instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
149 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
152 /* write risc instructions */
154 if (UNSET != top_offset)
155 rp = cx88_risc_field(rp, sglist, top_offset, 0,
156 bpl, padding, lines, 0);
157 if (UNSET != bottom_offset)
158 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
159 bpl, padding, lines, 0);
161 /* save pointer to jmp instruction address */
163 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
167 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
168 struct scatterlist *sglist, unsigned int bpl,
169 unsigned int lines, unsigned int lpi)
175 /* estimate risc mem: worst case is one write per page border +
176 one write per scan line + syncs + jump (all 2 dwords). Here
177 there is no padding and no sync. First DMA region may be smaller
179 instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
181 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
184 /* write risc instructions */
186 rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
188 /* save pointer to jmp instruction address */
190 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
194 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
195 u32 reg, u32 mask, u32 value)
200 if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
203 /* write risc instructions */
205 *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
206 *(rp++) = cpu_to_le32(reg);
207 *(rp++) = cpu_to_le32(value);
208 *(rp++) = cpu_to_le32(mask);
209 *(rp++) = cpu_to_le32(RISC_JUMP);
210 *(rp++) = cpu_to_le32(risc->dma);
215 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
217 struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
219 BUG_ON(in_interrupt());
220 videobuf_waiton(&buf->vb,0,0);
221 videobuf_dma_unmap(q, dma);
222 videobuf_dma_free(dma);
223 btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
224 buf->vb.state = VIDEOBUF_NEEDS_INIT;
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout */
230 /* we are going to put all thr risc programs into host memory, so we
231 * can use the whole SDRAM for the DMA fifos. To simplify things, we
232 * use a static memory layout. That surely will waste memory in case
233 * we don't use all DMA channels at the same time (which will be the
234 * case most of the time). But that still gives us enougth FIFO space
235 * to be able to deal with insane long pci latencies ...
237 * FIFO space allocations:
238 * channel 21 (y video) - 10.0k
239 * channel 22 (u video) - 2.0k
240 * channel 23 (v video) - 2.0k
241 * channel 24 (vbi) - 4.0k
242 * channels 25+26 (audio) - 4.0k
243 * channel 28 (mpeg) - 4.0k
246 * Every channel has 160 bytes control data (64 bytes instruction
247 * queue and 6 CDT entries), which is close to 2k total.
250 * 0x0000 - 0x03ff CMDs / reserved
251 * 0x0400 - 0x0bff instruction queues + CDs
255 struct sram_channel cx88_sram_channels[] = {
257 .name = "video y / packed",
258 .cmds_start = 0x180040,
259 .ctrl_start = 0x180400,
260 .cdt = 0x180400 + 64,
261 .fifo_start = 0x180c00,
262 .fifo_size = 0x002800,
263 .ptr1_reg = MO_DMA21_PTR1,
264 .ptr2_reg = MO_DMA21_PTR2,
265 .cnt1_reg = MO_DMA21_CNT1,
266 .cnt2_reg = MO_DMA21_CNT2,
270 .cmds_start = 0x180080,
271 .ctrl_start = 0x1804a0,
272 .cdt = 0x1804a0 + 64,
273 .fifo_start = 0x183400,
274 .fifo_size = 0x000800,
275 .ptr1_reg = MO_DMA22_PTR1,
276 .ptr2_reg = MO_DMA22_PTR2,
277 .cnt1_reg = MO_DMA22_CNT1,
278 .cnt2_reg = MO_DMA22_CNT2,
282 .cmds_start = 0x1800c0,
283 .ctrl_start = 0x180540,
284 .cdt = 0x180540 + 64,
285 .fifo_start = 0x183c00,
286 .fifo_size = 0x000800,
287 .ptr1_reg = MO_DMA23_PTR1,
288 .ptr2_reg = MO_DMA23_PTR2,
289 .cnt1_reg = MO_DMA23_CNT1,
290 .cnt2_reg = MO_DMA23_CNT2,
294 .cmds_start = 0x180100,
295 .ctrl_start = 0x1805e0,
296 .cdt = 0x1805e0 + 64,
297 .fifo_start = 0x184400,
298 .fifo_size = 0x001000,
299 .ptr1_reg = MO_DMA24_PTR1,
300 .ptr2_reg = MO_DMA24_PTR2,
301 .cnt1_reg = MO_DMA24_CNT1,
302 .cnt2_reg = MO_DMA24_CNT2,
305 .name = "audio from",
306 .cmds_start = 0x180140,
307 .ctrl_start = 0x180680,
308 .cdt = 0x180680 + 64,
309 .fifo_start = 0x185400,
310 .fifo_size = 0x001000,
311 .ptr1_reg = MO_DMA25_PTR1,
312 .ptr2_reg = MO_DMA25_PTR2,
313 .cnt1_reg = MO_DMA25_CNT1,
314 .cnt2_reg = MO_DMA25_CNT2,
318 .cmds_start = 0x180180,
319 .ctrl_start = 0x180720,
320 .cdt = 0x180680 + 64, /* same as audio IN */
321 .fifo_start = 0x185400, /* same as audio IN */
322 .fifo_size = 0x001000, /* same as audio IN */
323 .ptr1_reg = MO_DMA26_PTR1,
324 .ptr2_reg = MO_DMA26_PTR2,
325 .cnt1_reg = MO_DMA26_CNT1,
326 .cnt2_reg = MO_DMA26_CNT2,
330 .cmds_start = 0x180200,
331 .ctrl_start = 0x1807C0,
332 .cdt = 0x1807C0 + 64,
333 .fifo_start = 0x186400,
334 .fifo_size = 0x001000,
335 .ptr1_reg = MO_DMA28_PTR1,
336 .ptr2_reg = MO_DMA28_PTR2,
337 .cnt1_reg = MO_DMA28_CNT1,
338 .cnt2_reg = MO_DMA28_CNT2,
342 int cx88_sram_channel_setup(struct cx88_core *core,
343 struct sram_channel *ch,
344 unsigned int bpl, u32 risc)
346 unsigned int i,lines;
349 bpl = (bpl + 7) & ~7; /* alignment */
351 lines = ch->fifo_size / bpl;
357 for (i = 0; i < lines; i++)
358 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
361 cx_write(ch->cmds_start + 0, risc);
362 cx_write(ch->cmds_start + 4, cdt);
363 cx_write(ch->cmds_start + 8, (lines*16) >> 3);
364 cx_write(ch->cmds_start + 12, ch->ctrl_start);
365 cx_write(ch->cmds_start + 16, 64 >> 2);
366 for (i = 20; i < 64; i += 4)
367 cx_write(ch->cmds_start + i, 0);
370 cx_write(ch->ptr1_reg, ch->fifo_start);
371 cx_write(ch->ptr2_reg, cdt);
372 cx_write(ch->cnt1_reg, (bpl >> 3) -1);
373 cx_write(ch->cnt2_reg, (lines*16) >> 3);
375 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
379 /* ------------------------------------------------------------------ */
380 /* debug helper code */
382 static int cx88_risc_decode(u32 risc)
384 static char *instr[16] = {
385 [ RISC_SYNC >> 28 ] = "sync",
386 [ RISC_WRITE >> 28 ] = "write",
387 [ RISC_WRITEC >> 28 ] = "writec",
388 [ RISC_READ >> 28 ] = "read",
389 [ RISC_READC >> 28 ] = "readc",
390 [ RISC_JUMP >> 28 ] = "jump",
391 [ RISC_SKIP >> 28 ] = "skip",
392 [ RISC_WRITERM >> 28 ] = "writerm",
393 [ RISC_WRITECM >> 28 ] = "writecm",
394 [ RISC_WRITECR >> 28 ] = "writecr",
396 static int incr[16] = {
397 [ RISC_WRITE >> 28 ] = 2,
398 [ RISC_JUMP >> 28 ] = 2,
399 [ RISC_WRITERM >> 28 ] = 3,
400 [ RISC_WRITECM >> 28 ] = 3,
401 [ RISC_WRITECR >> 28 ] = 4,
403 static char *bits[] = {
404 "12", "13", "14", "resync",
405 "cnt0", "cnt1", "18", "19",
406 "20", "21", "22", "23",
407 "irq1", "irq2", "eol", "sol",
411 printk("0x%08x [ %s", risc,
412 instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
413 for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
414 if (risc & (1 << (i + 12)))
415 printk(" %s",bits[i]);
416 printk(" count=%d ]\n", risc & 0xfff);
417 return incr[risc >> 28] ? incr[risc >> 28] : 1;
421 void cx88_sram_channel_dump(struct cx88_core *core,
422 struct sram_channel *ch)
424 static char *name[] = {
440 printk("%s: %s - dma channel status dump\n",
441 core->name,ch->name);
442 for (i = 0; i < ARRAY_SIZE(name); i++)
443 printk("%s: cmds: %-12s: 0x%08x\n",
445 cx_read(ch->cmds_start + 4*i));
446 for (n = 1, i = 0; i < 4; i++) {
447 risc = cx_read(ch->cmds_start + 4 * (i+11));
448 printk("%s: risc%d: ", core->name, i);
450 printk("0x%08x [ arg #%d ]\n", risc, n);
452 n = cx88_risc_decode(risc);
454 for (i = 0; i < 16; i += n) {
455 risc = cx_read(ch->ctrl_start + 4 * i);
456 printk("%s: iq %x: ", core->name, i);
457 n = cx88_risc_decode(risc);
458 for (j = 1; j < n; j++) {
459 risc = cx_read(ch->ctrl_start + 4 * (i+j));
460 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
461 core->name, i+j, risc, j);
465 printk("%s: fifo: 0x%08x -> 0x%x\n",
466 core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
467 printk("%s: ctrl: 0x%08x -> 0x%x\n",
468 core->name, ch->ctrl_start, ch->ctrl_start+6*16);
469 printk("%s: ptr1_reg: 0x%08x\n",
470 core->name,cx_read(ch->ptr1_reg));
471 printk("%s: ptr2_reg: 0x%08x\n",
472 core->name,cx_read(ch->ptr2_reg));
473 printk("%s: cnt1_reg: 0x%08x\n",
474 core->name,cx_read(ch->cnt1_reg));
475 printk("%s: cnt2_reg: 0x%08x\n",
476 core->name,cx_read(ch->cnt2_reg));
479 static char *cx88_pci_irqs[32] = {
480 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
481 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
482 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
483 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
486 void cx88_print_irqbits(char *name, char *tag, char **strings,
487 int len, u32 bits, u32 mask)
491 printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
492 for (i = 0; i < len; i++) {
493 if (!(bits & (1 << i)))
496 printk(" %s", strings[i]);
499 if (!(mask & (1 << i)))
506 /* ------------------------------------------------------------------ */
508 int cx88_core_irq(struct cx88_core *core, u32 status)
512 if (status & PCI_INT_IR_SMPINT) {
517 cx88_print_irqbits(core->name, "irq pci",
518 cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
519 status, core->pci_irqmask);
523 void cx88_wakeup(struct cx88_core *core,
524 struct cx88_dmaqueue *q, u32 count)
526 struct cx88_buffer *buf;
529 for (bc = 0;; bc++) {
530 if (list_empty(&q->active))
532 buf = list_entry(q->active.next,
533 struct cx88_buffer, vb.queue);
534 /* count comes from the hw and is is 16bit wide --
535 * this trick handles wrap-arounds correctly for
536 * up to 32767 buffers in flight... */
537 if ((s16) (count - buf->count) < 0)
539 do_gettimeofday(&buf->vb.ts);
540 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
542 buf->vb.state = VIDEOBUF_DONE;
543 list_del(&buf->vb.queue);
544 wake_up(&buf->vb.done);
546 if (list_empty(&q->active)) {
547 del_timer(&q->timeout);
549 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
552 dprintk(2, "%s: %d buffers handled (should be 1)\n",
556 void cx88_shutdown(struct cx88_core *core)
558 /* disable RISC controller + IRQs */
559 cx_write(MO_DEV_CNTRL2, 0);
561 /* stop dma transfers */
562 cx_write(MO_VID_DMACNTRL, 0x0);
563 cx_write(MO_AUD_DMACNTRL, 0x0);
564 cx_write(MO_TS_DMACNTRL, 0x0);
565 cx_write(MO_VIP_DMACNTRL, 0x0);
566 cx_write(MO_GPHST_DMACNTRL, 0x0);
568 /* stop interrupts */
569 cx_write(MO_PCI_INTMSK, 0x0);
570 cx_write(MO_VID_INTMSK, 0x0);
571 cx_write(MO_AUD_INTMSK, 0x0);
572 cx_write(MO_TS_INTMSK, 0x0);
573 cx_write(MO_VIP_INTMSK, 0x0);
574 cx_write(MO_GPHST_INTMSK, 0x0);
577 cx_write(VID_CAPTURE_CONTROL, 0);
580 int cx88_reset(struct cx88_core *core)
582 dprintk(1,"%s\n",__func__);
585 /* clear irq status */
586 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
587 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
588 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
594 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
595 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
596 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
597 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
598 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
599 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
600 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
603 cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
604 (1 << 12) | // agc gain
605 (1 << 11) | // adaptibe agc
606 (0 << 10) | // chroma agc
607 (0 << 9) | // ckillen
610 /* setup image format */
611 cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
613 /* setup FIFO Threshholds */
614 cx_write(MO_PDMA_STHRSH, 0x0807);
615 cx_write(MO_PDMA_DTHRSH, 0x0807);
617 /* fixes flashing of image */
618 cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
619 cx_write(MO_AGC_BACK_VBI, 0x00E00555);
621 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
622 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
623 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
625 /* Reset on-board parts */
626 cx_write(MO_SRST_IO, 0);
628 cx_write(MO_SRST_IO, 1);
633 /* ------------------------------------------------------------------ */
635 static unsigned int inline norm_swidth(v4l2_std_id norm)
637 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
640 static unsigned int inline norm_hdelay(v4l2_std_id norm)
642 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
645 static unsigned int inline norm_vdelay(v4l2_std_id norm)
647 return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
650 static unsigned int inline norm_fsc8(v4l2_std_id norm)
652 if (norm & V4L2_STD_PAL_M)
653 return 28604892; // 3.575611 MHz
655 if (norm & (V4L2_STD_PAL_Nc))
656 return 28656448; // 3.582056 MHz
658 if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
659 return 28636360; // 3.57954545 MHz +/- 10 Hz
661 /* SECAM have also different sub carrier for chroma,
662 but step_db and step_dr, at cx88_set_tvnorm already handles that.
664 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
667 return 35468950; // 4.43361875 MHz +/- 5 Hz
670 static unsigned int inline norm_htotal(v4l2_std_id norm)
673 unsigned int fsc4=norm_fsc8(norm)/2;
675 /* returns 4*FSC / vtotal / frames per seconds */
676 return (norm & V4L2_STD_625_50) ?
677 ((fsc4+312)/625+12)/25 :
678 ((fsc4+262)/525*1001+15000)/30000;
681 static unsigned int inline norm_vbipack(v4l2_std_id norm)
683 return (norm & V4L2_STD_625_50) ? 511 : 400;
686 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
687 enum v4l2_field field)
689 unsigned int swidth = norm_swidth(core->tvnorm);
690 unsigned int sheight = norm_maxh(core->tvnorm);
693 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
694 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
695 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
696 v4l2_norm_to_name(core->tvnorm));
697 if (!V4L2_FIELD_HAS_BOTH(field))
700 // recalc H delay and scale registers
701 value = (width * norm_hdelay(core->tvnorm)) / swidth;
703 cx_write(MO_HDELAY_EVEN, value);
704 cx_write(MO_HDELAY_ODD, value);
705 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
707 value = (swidth * 4096 / width) - 4096;
708 cx_write(MO_HSCALE_EVEN, value);
709 cx_write(MO_HSCALE_ODD, value);
710 dprintk(1,"set_scale: hscale 0x%04x\n", value);
712 cx_write(MO_HACTIVE_EVEN, width);
713 cx_write(MO_HACTIVE_ODD, width);
714 dprintk(1,"set_scale: hactive 0x%04x\n", width);
716 // recalc V scale Register (delay is constant)
717 cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
718 cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
719 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
721 value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
722 cx_write(MO_VSCALE_EVEN, value);
723 cx_write(MO_VSCALE_ODD, value);
724 dprintk(1,"set_scale: vscale 0x%04x\n", value);
726 cx_write(MO_VACTIVE_EVEN, sheight);
727 cx_write(MO_VACTIVE_ODD, sheight);
728 dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
732 value |= (1 << 19); // CFILT (default)
733 if (core->tvnorm & V4L2_STD_SECAM) {
737 if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
738 value |= (1 << 13) | (1 << 5);
739 if (V4L2_FIELD_INTERLACED == field)
740 value |= (1 << 3); // VINT (interlaced vertical scaling)
742 value |= (1 << 0); // 3-tap interpolation
744 value |= (1 << 1); // 5-tap interpolation
746 value |= (3 << 5); // disable comb filter
748 cx_write(MO_FILTER_EVEN, value);
749 cx_write(MO_FILTER_ODD, value);
750 dprintk(1,"set_scale: filter 0x%04x\n", value);
755 static const u32 xtal = 28636363;
757 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
759 static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
769 pll = ofreq * 8 * prescale * (u64)(1 << 20);
771 reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
772 if (((reg >> 20) & 0x3f) < 14) {
773 printk("%s/0: pll out of range\n",core->name);
777 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
778 reg, cx_read(MO_PLL_REG), ofreq);
779 cx_write(MO_PLL_REG, reg);
780 for (i = 0; i < 100; i++) {
781 reg = cx_read(MO_DEVICE_STATUS);
783 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
787 dprintk(1,"pll not locked yet, waiting ...\n");
790 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
794 int cx88_start_audio_dma(struct cx88_core *core)
796 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
797 int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
799 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
800 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
803 /* setup fifo + format */
804 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
805 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
807 cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
808 cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
811 cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
816 int cx88_stop_audio_dma(struct cx88_core *core)
818 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
819 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
823 cx_write(MO_AUD_DMACNTRL, 0x0000);
828 static int set_tvaudio(struct cx88_core *core)
830 v4l2_std_id norm = core->tvnorm;
832 if (CX88_VMUX_TELEVISION != INPUT(core->input).type)
835 if (V4L2_STD_PAL_BG & norm) {
836 core->tvaudio = WW_BG;
838 } else if (V4L2_STD_PAL_DK & norm) {
839 core->tvaudio = WW_DK;
841 } else if (V4L2_STD_PAL_I & norm) {
842 core->tvaudio = WW_I;
844 } else if (V4L2_STD_SECAM_L & norm) {
845 core->tvaudio = WW_L;
847 } else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) {
848 core->tvaudio = WW_BG;
850 } else if (V4L2_STD_SECAM_DK & norm) {
851 core->tvaudio = WW_DK;
853 } else if ((V4L2_STD_NTSC_M & norm) ||
854 (V4L2_STD_PAL_M & norm)) {
855 core->tvaudio = WW_BTSC;
857 } else if (V4L2_STD_NTSC_M_JP & norm) {
858 core->tvaudio = WW_EIAJ;
861 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
862 core->name, v4l2_norm_to_name(core->tvnorm));
867 cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
868 cx88_set_tvaudio(core);
869 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
872 This should be needed only on cx88-alsa. It seems that some cx88 chips have
873 bugs and does require DMA enabled for it to work.
875 cx88_start_audio_dma(core);
881 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
888 u32 bdelay,agcdelay,htotal;
889 u32 cxiformat, cxoformat;
892 fsc8 = norm_fsc8(norm);
898 if (norm & V4L2_STD_NTSC_M_JP) {
899 cxiformat = VideoFormatNTSCJapan;
900 cxoformat = 0x181f0008;
901 } else if (norm & V4L2_STD_NTSC_443) {
902 cxiformat = VideoFormatNTSC443;
903 cxoformat = 0x181f0008;
904 } else if (norm & V4L2_STD_PAL_M) {
905 cxiformat = VideoFormatPALM;
906 cxoformat = 0x1c1f0008;
907 } else if (norm & V4L2_STD_PAL_N) {
908 cxiformat = VideoFormatPALN;
909 cxoformat = 0x1c1f0008;
910 } else if (norm & V4L2_STD_PAL_Nc) {
911 cxiformat = VideoFormatPALNC;
912 cxoformat = 0x1c1f0008;
913 } else if (norm & V4L2_STD_PAL_60) {
914 cxiformat = VideoFormatPAL60;
915 cxoformat = 0x181f0008;
916 } else if (norm & V4L2_STD_NTSC) {
917 cxiformat = VideoFormatNTSC;
918 cxoformat = 0x181f0008;
919 } else if (norm & V4L2_STD_SECAM) {
920 step_db = 4250000 * 8;
921 step_dr = 4406250 * 8;
923 cxiformat = VideoFormatSECAM;
924 cxoformat = 0x181f0008;
926 cxiformat = VideoFormatPAL;
927 cxoformat = 0x181f0008;
930 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
931 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
933 set_pll(core,2,vdec_clock);
935 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
936 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
937 /* Chroma AGC must be disabled if SECAM is used, we enable it
938 by default on PAL and NTSC */
939 cx_andor(MO_INPUT_FORMAT, 0x40f,
940 norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
942 // FIXME: as-is from DScaler
943 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
944 cxoformat, cx_read(MO_OUTPUT_FORMAT));
945 cx_write(MO_OUTPUT_FORMAT, cxoformat);
947 // MO_SCONV_REG = adc clock / video dec clock * 2^17
948 tmp64 = adc_clock * (u64)(1 << 17);
949 do_div(tmp64, vdec_clock);
950 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
951 (u32)tmp64, cx_read(MO_SCONV_REG));
952 cx_write(MO_SCONV_REG, (u32)tmp64);
954 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
955 tmp64 = step_db * (u64)(1 << 22);
956 do_div(tmp64, vdec_clock);
957 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
958 (u32)tmp64, cx_read(MO_SUB_STEP));
959 cx_write(MO_SUB_STEP, (u32)tmp64);
961 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
962 tmp64 = step_dr * (u64)(1 << 22);
963 do_div(tmp64, vdec_clock);
964 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
965 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
966 cx_write(MO_SUB_STEP_DR, (u32)tmp64);
969 bdelay = vdec_clock * 65 / 20000000 + 21;
970 agcdelay = vdec_clock * 68 / 20000000 + 15;
971 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
972 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
973 cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
976 tmp64 = norm_htotal(norm) * (u64)vdec_clock;
978 htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
979 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
980 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
981 cx_write(MO_HTOTAL, htotal);
983 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
984 // the effective vbi offset ~244 samples, the same as the Bt8x8
985 cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
987 // this is needed as well to set all tvnorm parameter
988 cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
994 cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm);
1000 /* ------------------------------------------------------------------ */
1002 struct video_device *cx88_vdev_init(struct cx88_core *core,
1003 struct pci_dev *pci,
1004 struct video_device *template,
1007 struct video_device *vfd;
1009 vfd = video_device_alloc();
1014 vfd->parent = &pci->dev;
1015 vfd->release = video_device_release;
1016 snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1017 core->name, type, core->board.name);
1021 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1023 struct cx88_core *core;
1025 mutex_lock(&devlist);
1026 list_for_each_entry(core, &cx88_devlist, devlist) {
1027 if (pci->bus->number != core->pci_bus)
1029 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1032 if (0 != cx88_get_resources(core, pci)) {
1033 mutex_unlock(&devlist);
1036 atomic_inc(&core->refcount);
1037 mutex_unlock(&devlist);
1041 core = cx88_core_create(pci, cx88_devcount);
1044 list_add_tail(&core->devlist, &cx88_devlist);
1047 mutex_unlock(&devlist);
1051 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1053 release_mem_region(pci_resource_start(pci,0),
1054 pci_resource_len(pci,0));
1056 if (!atomic_dec_and_test(&core->refcount))
1059 mutex_lock(&devlist);
1061 if (0 == core->i2c_rc)
1062 i2c_del_adapter(&core->i2c_adap);
1063 list_del(&core->devlist);
1064 iounmap(core->lmmio);
1066 mutex_unlock(&devlist);
1070 /* ------------------------------------------------------------------ */
1072 EXPORT_SYMBOL(cx88_print_irqbits);
1074 EXPORT_SYMBOL(cx88_core_irq);
1075 EXPORT_SYMBOL(cx88_wakeup);
1076 EXPORT_SYMBOL(cx88_reset);
1077 EXPORT_SYMBOL(cx88_shutdown);
1079 EXPORT_SYMBOL(cx88_risc_buffer);
1080 EXPORT_SYMBOL(cx88_risc_databuffer);
1081 EXPORT_SYMBOL(cx88_risc_stopper);
1082 EXPORT_SYMBOL(cx88_free_buffer);
1084 EXPORT_SYMBOL(cx88_sram_channels);
1085 EXPORT_SYMBOL(cx88_sram_channel_setup);
1086 EXPORT_SYMBOL(cx88_sram_channel_dump);
1088 EXPORT_SYMBOL(cx88_set_tvnorm);
1089 EXPORT_SYMBOL(cx88_set_scale);
1091 EXPORT_SYMBOL(cx88_vdev_init);
1092 EXPORT_SYMBOL(cx88_core_get);
1093 EXPORT_SYMBOL(cx88_core_put);
1095 EXPORT_SYMBOL(cx88_ir_start);
1096 EXPORT_SYMBOL(cx88_ir_stop);
1102 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off