Merge branch 'master' of ../mmc
[linux-2.6] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35
36 #ifdef CONFIG_UBIFS_FS_DEBUG
37
38 DEFINE_SPINLOCK(dbg_lock);
39
40 static char dbg_key_buf0[128];
41 static char dbg_key_buf1[128];
42
43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
45 unsigned int ubifs_tst_flags;
46
47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50
51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
52 MODULE_PARM_DESC(debug_chks, "Debug check flags");
53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
54
55 static const char *get_key_fmt(int fmt)
56 {
57         switch (fmt) {
58         case UBIFS_SIMPLE_KEY_FMT:
59                 return "simple";
60         default:
61                 return "unknown/invalid format";
62         }
63 }
64
65 static const char *get_key_hash(int hash)
66 {
67         switch (hash) {
68         case UBIFS_KEY_HASH_R5:
69                 return "R5";
70         case UBIFS_KEY_HASH_TEST:
71                 return "test";
72         default:
73                 return "unknown/invalid name hash";
74         }
75 }
76
77 static const char *get_key_type(int type)
78 {
79         switch (type) {
80         case UBIFS_INO_KEY:
81                 return "inode";
82         case UBIFS_DENT_KEY:
83                 return "direntry";
84         case UBIFS_XENT_KEY:
85                 return "xentry";
86         case UBIFS_DATA_KEY:
87                 return "data";
88         case UBIFS_TRUN_KEY:
89                 return "truncate";
90         default:
91                 return "unknown/invalid key";
92         }
93 }
94
95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
96                         char *buffer)
97 {
98         char *p = buffer;
99         int type = key_type(c, key);
100
101         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
102                 switch (type) {
103                 case UBIFS_INO_KEY:
104                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
105                                get_key_type(type));
106                         break;
107                 case UBIFS_DENT_KEY:
108                 case UBIFS_XENT_KEY:
109                         sprintf(p, "(%lu, %s, %#08x)",
110                                 (unsigned long)key_inum(c, key),
111                                 get_key_type(type), key_hash(c, key));
112                         break;
113                 case UBIFS_DATA_KEY:
114                         sprintf(p, "(%lu, %s, %u)",
115                                 (unsigned long)key_inum(c, key),
116                                 get_key_type(type), key_block(c, key));
117                         break;
118                 case UBIFS_TRUN_KEY:
119                         sprintf(p, "(%lu, %s)",
120                                 (unsigned long)key_inum(c, key),
121                                 get_key_type(type));
122                         break;
123                 default:
124                         sprintf(p, "(bad key type: %#08x, %#08x)",
125                                 key->u32[0], key->u32[1]);
126                 }
127         } else
128                 sprintf(p, "bad key format %d", c->key_fmt);
129 }
130
131 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
132 {
133         /* dbg_lock must be held */
134         sprintf_key(c, key, dbg_key_buf0);
135         return dbg_key_buf0;
136 }
137
138 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
139 {
140         /* dbg_lock must be held */
141         sprintf_key(c, key, dbg_key_buf1);
142         return dbg_key_buf1;
143 }
144
145 const char *dbg_ntype(int type)
146 {
147         switch (type) {
148         case UBIFS_PAD_NODE:
149                 return "padding node";
150         case UBIFS_SB_NODE:
151                 return "superblock node";
152         case UBIFS_MST_NODE:
153                 return "master node";
154         case UBIFS_REF_NODE:
155                 return "reference node";
156         case UBIFS_INO_NODE:
157                 return "inode node";
158         case UBIFS_DENT_NODE:
159                 return "direntry node";
160         case UBIFS_XENT_NODE:
161                 return "xentry node";
162         case UBIFS_DATA_NODE:
163                 return "data node";
164         case UBIFS_TRUN_NODE:
165                 return "truncate node";
166         case UBIFS_IDX_NODE:
167                 return "indexing node";
168         case UBIFS_CS_NODE:
169                 return "commit start node";
170         case UBIFS_ORPH_NODE:
171                 return "orphan node";
172         default:
173                 return "unknown node";
174         }
175 }
176
177 static const char *dbg_gtype(int type)
178 {
179         switch (type) {
180         case UBIFS_NO_NODE_GROUP:
181                 return "no node group";
182         case UBIFS_IN_NODE_GROUP:
183                 return "in node group";
184         case UBIFS_LAST_OF_NODE_GROUP:
185                 return "last of node group";
186         default:
187                 return "unknown";
188         }
189 }
190
191 const char *dbg_cstate(int cmt_state)
192 {
193         switch (cmt_state) {
194         case COMMIT_RESTING:
195                 return "commit resting";
196         case COMMIT_BACKGROUND:
197                 return "background commit requested";
198         case COMMIT_REQUIRED:
199                 return "commit required";
200         case COMMIT_RUNNING_BACKGROUND:
201                 return "BACKGROUND commit running";
202         case COMMIT_RUNNING_REQUIRED:
203                 return "commit running and required";
204         case COMMIT_BROKEN:
205                 return "broken commit";
206         default:
207                 return "unknown commit state";
208         }
209 }
210
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
214         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
215         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
216                dbg_ntype(ch->node_type));
217         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
218                dbg_gtype(ch->group_type));
219         printk(KERN_DEBUG "\tsqnum          %llu\n",
220                (unsigned long long)le64_to_cpu(ch->sqnum));
221         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223
224 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
225 {
226         const struct ubifs_inode *ui = ubifs_inode(inode);
227
228         printk(KERN_DEBUG "Dump in-memory inode:");
229         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
230         printk(KERN_DEBUG "\tsize           %llu\n",
231                (unsigned long long)i_size_read(inode));
232         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
233         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
234         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
235         printk(KERN_DEBUG "\tatime          %u.%u\n",
236                (unsigned int)inode->i_atime.tv_sec,
237                (unsigned int)inode->i_atime.tv_nsec);
238         printk(KERN_DEBUG "\tmtime          %u.%u\n",
239                (unsigned int)inode->i_mtime.tv_sec,
240                (unsigned int)inode->i_mtime.tv_nsec);
241         printk(KERN_DEBUG "\tctime          %u.%u\n",
242                (unsigned int)inode->i_ctime.tv_sec,
243                (unsigned int)inode->i_ctime.tv_nsec);
244         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
245         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
246         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
247         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
248         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
249         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
250         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
251         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
252                (unsigned long long)ui->synced_i_size);
253         printk(KERN_DEBUG "\tui_size        %llu\n",
254                (unsigned long long)ui->ui_size);
255         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
256         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
257         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
258         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
259         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
260 }
261
262 void dbg_dump_node(const struct ubifs_info *c, const void *node)
263 {
264         int i, n;
265         union ubifs_key key;
266         const struct ubifs_ch *ch = node;
267
268         if (dbg_failure_mode)
269                 return;
270
271         /* If the magic is incorrect, just hexdump the first bytes */
272         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
273                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
274                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
275                                (void *)node, UBIFS_CH_SZ, 1);
276                 return;
277         }
278
279         spin_lock(&dbg_lock);
280         dump_ch(node);
281
282         switch (ch->node_type) {
283         case UBIFS_PAD_NODE:
284         {
285                 const struct ubifs_pad_node *pad = node;
286
287                 printk(KERN_DEBUG "\tpad_len        %u\n",
288                        le32_to_cpu(pad->pad_len));
289                 break;
290         }
291         case UBIFS_SB_NODE:
292         {
293                 const struct ubifs_sb_node *sup = node;
294                 unsigned int sup_flags = le32_to_cpu(sup->flags);
295
296                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
297                        (int)sup->key_hash, get_key_hash(sup->key_hash));
298                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
299                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
300                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
301                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
302                        !!(sup_flags & UBIFS_FLG_BIGLPT));
303                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
304                        le32_to_cpu(sup->min_io_size));
305                 printk(KERN_DEBUG "\tleb_size       %u\n",
306                        le32_to_cpu(sup->leb_size));
307                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
308                        le32_to_cpu(sup->leb_cnt));
309                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
310                        le32_to_cpu(sup->max_leb_cnt));
311                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
312                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
313                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
314                        le32_to_cpu(sup->log_lebs));
315                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
316                        le32_to_cpu(sup->lpt_lebs));
317                 printk(KERN_DEBUG "\torph_lebs      %u\n",
318                        le32_to_cpu(sup->orph_lebs));
319                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
320                        le32_to_cpu(sup->jhead_cnt));
321                 printk(KERN_DEBUG "\tfanout         %u\n",
322                        le32_to_cpu(sup->fanout));
323                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
324                        le32_to_cpu(sup->lsave_cnt));
325                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
326                        (int)le16_to_cpu(sup->default_compr));
327                 printk(KERN_DEBUG "\trp_size        %llu\n",
328                        (unsigned long long)le64_to_cpu(sup->rp_size));
329                 printk(KERN_DEBUG "\trp_uid         %u\n",
330                        le32_to_cpu(sup->rp_uid));
331                 printk(KERN_DEBUG "\trp_gid         %u\n",
332                        le32_to_cpu(sup->rp_gid));
333                 printk(KERN_DEBUG "\tfmt_version    %u\n",
334                        le32_to_cpu(sup->fmt_version));
335                 printk(KERN_DEBUG "\ttime_gran      %u\n",
336                        le32_to_cpu(sup->time_gran));
337                 printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
338                        "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
339                        sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
340                        sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
341                        sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
342                        sup->uuid[12], sup->uuid[13], sup->uuid[14],
343                        sup->uuid[15]);
344                 break;
345         }
346         case UBIFS_MST_NODE:
347         {
348                 const struct ubifs_mst_node *mst = node;
349
350                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
351                        (unsigned long long)le64_to_cpu(mst->highest_inum));
352                 printk(KERN_DEBUG "\tcommit number  %llu\n",
353                        (unsigned long long)le64_to_cpu(mst->cmt_no));
354                 printk(KERN_DEBUG "\tflags          %#x\n",
355                        le32_to_cpu(mst->flags));
356                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
357                        le32_to_cpu(mst->log_lnum));
358                 printk(KERN_DEBUG "\troot_lnum      %u\n",
359                        le32_to_cpu(mst->root_lnum));
360                 printk(KERN_DEBUG "\troot_offs      %u\n",
361                        le32_to_cpu(mst->root_offs));
362                 printk(KERN_DEBUG "\troot_len       %u\n",
363                        le32_to_cpu(mst->root_len));
364                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
365                        le32_to_cpu(mst->gc_lnum));
366                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
367                        le32_to_cpu(mst->ihead_lnum));
368                 printk(KERN_DEBUG "\tihead_offs     %u\n",
369                        le32_to_cpu(mst->ihead_offs));
370                 printk(KERN_DEBUG "\tindex_size     %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->index_size));
372                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
373                        le32_to_cpu(mst->lpt_lnum));
374                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
375                        le32_to_cpu(mst->lpt_offs));
376                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
377                        le32_to_cpu(mst->nhead_lnum));
378                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
379                        le32_to_cpu(mst->nhead_offs));
380                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
381                        le32_to_cpu(mst->ltab_lnum));
382                 printk(KERN_DEBUG "\tltab_offs      %u\n",
383                        le32_to_cpu(mst->ltab_offs));
384                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
385                        le32_to_cpu(mst->lsave_lnum));
386                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
387                        le32_to_cpu(mst->lsave_offs));
388                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
389                        le32_to_cpu(mst->lscan_lnum));
390                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
391                        le32_to_cpu(mst->leb_cnt));
392                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
393                        le32_to_cpu(mst->empty_lebs));
394                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
395                        le32_to_cpu(mst->idx_lebs));
396                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_free));
398                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_dirty));
400                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_used));
402                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dead));
404                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
405                        (unsigned long long)le64_to_cpu(mst->total_dark));
406                 break;
407         }
408         case UBIFS_REF_NODE:
409         {
410                 const struct ubifs_ref_node *ref = node;
411
412                 printk(KERN_DEBUG "\tlnum           %u\n",
413                        le32_to_cpu(ref->lnum));
414                 printk(KERN_DEBUG "\toffs           %u\n",
415                        le32_to_cpu(ref->offs));
416                 printk(KERN_DEBUG "\tjhead          %u\n",
417                        le32_to_cpu(ref->jhead));
418                 break;
419         }
420         case UBIFS_INO_NODE:
421         {
422                 const struct ubifs_ino_node *ino = node;
423
424                 key_read(c, &ino->key, &key);
425                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
426                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
427                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
428                 printk(KERN_DEBUG "\tsize           %llu\n",
429                        (unsigned long long)le64_to_cpu(ino->size));
430                 printk(KERN_DEBUG "\tnlink          %u\n",
431                        le32_to_cpu(ino->nlink));
432                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
433                        (long long)le64_to_cpu(ino->atime_sec),
434                        le32_to_cpu(ino->atime_nsec));
435                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
436                        (long long)le64_to_cpu(ino->mtime_sec),
437                        le32_to_cpu(ino->mtime_nsec));
438                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
439                        (long long)le64_to_cpu(ino->ctime_sec),
440                        le32_to_cpu(ino->ctime_nsec));
441                 printk(KERN_DEBUG "\tuid            %u\n",
442                        le32_to_cpu(ino->uid));
443                 printk(KERN_DEBUG "\tgid            %u\n",
444                        le32_to_cpu(ino->gid));
445                 printk(KERN_DEBUG "\tmode           %u\n",
446                        le32_to_cpu(ino->mode));
447                 printk(KERN_DEBUG "\tflags          %#x\n",
448                        le32_to_cpu(ino->flags));
449                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
450                        le32_to_cpu(ino->xattr_cnt));
451                 printk(KERN_DEBUG "\txattr_size     %u\n",
452                        le32_to_cpu(ino->xattr_size));
453                 printk(KERN_DEBUG "\txattr_names    %u\n",
454                        le32_to_cpu(ino->xattr_names));
455                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
456                        (int)le16_to_cpu(ino->compr_type));
457                 printk(KERN_DEBUG "\tdata len       %u\n",
458                        le32_to_cpu(ino->data_len));
459                 break;
460         }
461         case UBIFS_DENT_NODE:
462         case UBIFS_XENT_NODE:
463         {
464                 const struct ubifs_dent_node *dent = node;
465                 int nlen = le16_to_cpu(dent->nlen);
466
467                 key_read(c, &dent->key, &key);
468                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
469                 printk(KERN_DEBUG "\tinum           %llu\n",
470                        (unsigned long long)le64_to_cpu(dent->inum));
471                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
472                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
473                 printk(KERN_DEBUG "\tname           ");
474
475                 if (nlen > UBIFS_MAX_NLEN)
476                         printk(KERN_DEBUG "(bad name length, not printing, "
477                                           "bad or corrupted node)");
478                 else {
479                         for (i = 0; i < nlen && dent->name[i]; i++)
480                                 printk("%c", dent->name[i]);
481                 }
482                 printk("\n");
483
484                 break;
485         }
486         case UBIFS_DATA_NODE:
487         {
488                 const struct ubifs_data_node *dn = node;
489                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
490
491                 key_read(c, &dn->key, &key);
492                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
493                 printk(KERN_DEBUG "\tsize           %u\n",
494                        le32_to_cpu(dn->size));
495                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
496                        (int)le16_to_cpu(dn->compr_type));
497                 printk(KERN_DEBUG "\tdata size      %d\n",
498                        dlen);
499                 printk(KERN_DEBUG "\tdata:\n");
500                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
501                                (void *)&dn->data, dlen, 0);
502                 break;
503         }
504         case UBIFS_TRUN_NODE:
505         {
506                 const struct ubifs_trun_node *trun = node;
507
508                 printk(KERN_DEBUG "\tinum           %u\n",
509                        le32_to_cpu(trun->inum));
510                 printk(KERN_DEBUG "\told_size       %llu\n",
511                        (unsigned long long)le64_to_cpu(trun->old_size));
512                 printk(KERN_DEBUG "\tnew_size       %llu\n",
513                        (unsigned long long)le64_to_cpu(trun->new_size));
514                 break;
515         }
516         case UBIFS_IDX_NODE:
517         {
518                 const struct ubifs_idx_node *idx = node;
519
520                 n = le16_to_cpu(idx->child_cnt);
521                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
522                 printk(KERN_DEBUG "\tlevel          %d\n",
523                        (int)le16_to_cpu(idx->level));
524                 printk(KERN_DEBUG "\tBranches:\n");
525
526                 for (i = 0; i < n && i < c->fanout - 1; i++) {
527                         const struct ubifs_branch *br;
528
529                         br = ubifs_idx_branch(c, idx, i);
530                         key_read(c, &br->key, &key);
531                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
532                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
533                                le32_to_cpu(br->len), DBGKEY(&key));
534                 }
535                 break;
536         }
537         case UBIFS_CS_NODE:
538                 break;
539         case UBIFS_ORPH_NODE:
540         {
541                 const struct ubifs_orph_node *orph = node;
542
543                 printk(KERN_DEBUG "\tcommit number  %llu\n",
544                        (unsigned long long)
545                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
546                 printk(KERN_DEBUG "\tlast node flag %llu\n",
547                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
548                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
549                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
550                 for (i = 0; i < n; i++)
551                         printk(KERN_DEBUG "\t  ino %llu\n",
552                                (unsigned long long)le64_to_cpu(orph->inos[i]));
553                 break;
554         }
555         default:
556                 printk(KERN_DEBUG "node type %d was not recognized\n",
557                        (int)ch->node_type);
558         }
559         spin_unlock(&dbg_lock);
560 }
561
562 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
563 {
564         spin_lock(&dbg_lock);
565         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
566                req->new_ino, req->dirtied_ino);
567         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
568                req->new_ino_d, req->dirtied_ino_d);
569         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
570                req->new_page, req->dirtied_page);
571         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
572                req->new_dent, req->mod_dent);
573         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
574         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
575                req->data_growth, req->dd_growth);
576         spin_unlock(&dbg_lock);
577 }
578
579 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
580 {
581         spin_lock(&dbg_lock);
582         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
583                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
584         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
585                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
586                lst->total_dirty);
587         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
588                "total_dead %lld\n", lst->total_used, lst->total_dark,
589                lst->total_dead);
590         spin_unlock(&dbg_lock);
591 }
592
593 void dbg_dump_budg(struct ubifs_info *c)
594 {
595         int i;
596         struct rb_node *rb;
597         struct ubifs_bud *bud;
598         struct ubifs_gced_idx_leb *idx_gc;
599
600         spin_lock(&dbg_lock);
601         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
602                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
603                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
604         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
605                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
606                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
607                c->freeable_cnt);
608         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
609                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
610                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
611         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
612                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
613                atomic_long_read(&c->dirty_zn_cnt),
614                atomic_long_read(&c->clean_zn_cnt));
615         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
616                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
617         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
618                c->gc_lnum, c->ihead_lnum);
619         for (i = 0; i < c->jhead_cnt; i++)
620                 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
621                        c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
622         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623                 bud = rb_entry(rb, struct ubifs_bud, rb);
624                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
625         }
626         list_for_each_entry(bud, &c->old_buds, list)
627                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
628         list_for_each_entry(idx_gc, &c->idx_gc, list)
629                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
630                        idx_gc->lnum, idx_gc->unmap);
631         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
632         spin_unlock(&dbg_lock);
633 }
634
635 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
636 {
637         printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
638                "flags %#x\n", lp->lnum, lp->free, lp->dirty,
639                c->leb_size - lp->free - lp->dirty, lp->flags);
640 }
641
642 void dbg_dump_lprops(struct ubifs_info *c)
643 {
644         int lnum, err;
645         struct ubifs_lprops lp;
646         struct ubifs_lp_stats lst;
647
648         printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid);
649         ubifs_get_lp_stats(c, &lst);
650         dbg_dump_lstats(&lst);
651
652         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
653                 err = ubifs_read_one_lp(c, lnum, &lp);
654                 if (err)
655                         ubifs_err("cannot read lprops for LEB %d", lnum);
656
657                 dbg_dump_lprop(c, &lp);
658         }
659 }
660
661 void dbg_dump_lpt_info(struct ubifs_info *c)
662 {
663         int i;
664
665         spin_lock(&dbg_lock);
666         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
667         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
668         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
669         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
670         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
671         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
672         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
673         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
674         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
675         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
676         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
677         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
678         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
679         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
680         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
681         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
682         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
683         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
684         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
685         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
686                c->nhead_lnum, c->nhead_offs);
687         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
688         if (c->big_lpt)
689                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
690                        c->lsave_lnum, c->lsave_offs);
691         for (i = 0; i < c->lpt_lebs; i++)
692                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
693                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
694                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
695         spin_unlock(&dbg_lock);
696 }
697
698 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
699 {
700         struct ubifs_scan_leb *sleb;
701         struct ubifs_scan_node *snod;
702
703         if (dbg_failure_mode)
704                 return;
705
706         printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum);
707
708         sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
709         if (IS_ERR(sleb)) {
710                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
711                 return;
712         }
713
714         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
715                sleb->nodes_cnt, sleb->endpt);
716
717         list_for_each_entry(snod, &sleb->nodes, list) {
718                 cond_resched();
719                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
720                        snod->offs, snod->len);
721                 dbg_dump_node(c, snod->node);
722         }
723
724         ubifs_scan_destroy(sleb);
725         return;
726 }
727
728 void dbg_dump_znode(const struct ubifs_info *c,
729                     const struct ubifs_znode *znode)
730 {
731         int n;
732         const struct ubifs_zbranch *zbr;
733
734         spin_lock(&dbg_lock);
735         if (znode->parent)
736                 zbr = &znode->parent->zbranch[znode->iip];
737         else
738                 zbr = &c->zroot;
739
740         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
741                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
742                zbr->len, znode->parent, znode->iip, znode->level,
743                znode->child_cnt, znode->flags);
744
745         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
746                 spin_unlock(&dbg_lock);
747                 return;
748         }
749
750         printk(KERN_DEBUG "zbranches:\n");
751         for (n = 0; n < znode->child_cnt; n++) {
752                 zbr = &znode->zbranch[n];
753                 if (znode->level > 0)
754                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
755                                           "%s\n", n, zbr->znode, zbr->lnum,
756                                           zbr->offs, zbr->len,
757                                           DBGKEY(&zbr->key));
758                 else
759                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
760                                           "%s\n", n, zbr->znode, zbr->lnum,
761                                           zbr->offs, zbr->len,
762                                           DBGKEY(&zbr->key));
763         }
764         spin_unlock(&dbg_lock);
765 }
766
767 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
768 {
769         int i;
770
771         printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n",
772                current->pid, cat, heap->cnt);
773         for (i = 0; i < heap->cnt; i++) {
774                 struct ubifs_lprops *lprops = heap->arr[i];
775
776                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
777                        "flags %d\n", i, lprops->lnum, lprops->hpos,
778                        lprops->free, lprops->dirty, lprops->flags);
779         }
780 }
781
782 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
783                     struct ubifs_nnode *parent, int iip)
784 {
785         int i;
786
787         printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid);
788         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
789                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
790         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
791                pnode->flags, iip, pnode->level, pnode->num);
792         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
793                 struct ubifs_lprops *lp = &pnode->lprops[i];
794
795                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
796                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
797         }
798 }
799
800 void dbg_dump_tnc(struct ubifs_info *c)
801 {
802         struct ubifs_znode *znode;
803         int level;
804
805         printk(KERN_DEBUG "\n");
806         printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid);
807         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
808         level = znode->level;
809         printk(KERN_DEBUG "== Level %d ==\n", level);
810         while (znode) {
811                 if (level != znode->level) {
812                         level = znode->level;
813                         printk(KERN_DEBUG "== Level %d ==\n", level);
814                 }
815                 dbg_dump_znode(c, znode);
816                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
817         }
818
819         printk(KERN_DEBUG "\n");
820 }
821
822 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
823                       void *priv)
824 {
825         dbg_dump_znode(c, znode);
826         return 0;
827 }
828
829 /**
830  * dbg_dump_index - dump the on-flash index.
831  * @c: UBIFS file-system description object
832  *
833  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
834  * which dumps only in-memory znodes and does not read znodes which from flash.
835  */
836 void dbg_dump_index(struct ubifs_info *c)
837 {
838         dbg_walk_index(c, NULL, dump_znode, NULL);
839 }
840
841 /**
842  * dbg_check_synced_i_size - check synchronized inode size.
843  * @inode: inode to check
844  *
845  * If inode is clean, synchronized inode size has to be equivalent to current
846  * inode size. This function has to be called only for locked inodes (@i_mutex
847  * has to be locked). Returns %0 if synchronized inode size if correct, and
848  * %-EINVAL if not.
849  */
850 int dbg_check_synced_i_size(struct inode *inode)
851 {
852         int err = 0;
853         struct ubifs_inode *ui = ubifs_inode(inode);
854
855         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
856                 return 0;
857         if (!S_ISREG(inode->i_mode))
858                 return 0;
859
860         mutex_lock(&ui->ui_mutex);
861         spin_lock(&ui->ui_lock);
862         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
863                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
864                           "is clean", ui->ui_size, ui->synced_i_size);
865                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
866                           inode->i_mode, i_size_read(inode));
867                 dbg_dump_stack();
868                 err = -EINVAL;
869         }
870         spin_unlock(&ui->ui_lock);
871         mutex_unlock(&ui->ui_mutex);
872         return err;
873 }
874
875 /*
876  * dbg_check_dir - check directory inode size and link count.
877  * @c: UBIFS file-system description object
878  * @dir: the directory to calculate size for
879  * @size: the result is returned here
880  *
881  * This function makes sure that directory size and link count are correct.
882  * Returns zero in case of success and a negative error code in case of
883  * failure.
884  *
885  * Note, it is good idea to make sure the @dir->i_mutex is locked before
886  * calling this function.
887  */
888 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
889 {
890         unsigned int nlink = 2;
891         union ubifs_key key;
892         struct ubifs_dent_node *dent, *pdent = NULL;
893         struct qstr nm = { .name = NULL };
894         loff_t size = UBIFS_INO_NODE_SZ;
895
896         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
897                 return 0;
898
899         if (!S_ISDIR(dir->i_mode))
900                 return 0;
901
902         lowest_dent_key(c, &key, dir->i_ino);
903         while (1) {
904                 int err;
905
906                 dent = ubifs_tnc_next_ent(c, &key, &nm);
907                 if (IS_ERR(dent)) {
908                         err = PTR_ERR(dent);
909                         if (err == -ENOENT)
910                                 break;
911                         return err;
912                 }
913
914                 nm.name = dent->name;
915                 nm.len = le16_to_cpu(dent->nlen);
916                 size += CALC_DENT_SIZE(nm.len);
917                 if (dent->type == UBIFS_ITYPE_DIR)
918                         nlink += 1;
919                 kfree(pdent);
920                 pdent = dent;
921                 key_read(c, &dent->key, &key);
922         }
923         kfree(pdent);
924
925         if (i_size_read(dir) != size) {
926                 ubifs_err("directory inode %lu has size %llu, "
927                           "but calculated size is %llu", dir->i_ino,
928                           (unsigned long long)i_size_read(dir),
929                           (unsigned long long)size);
930                 dump_stack();
931                 return -EINVAL;
932         }
933         if (dir->i_nlink != nlink) {
934                 ubifs_err("directory inode %lu has nlink %u, but calculated "
935                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
936                 dump_stack();
937                 return -EINVAL;
938         }
939
940         return 0;
941 }
942
943 /**
944  * dbg_check_key_order - make sure that colliding keys are properly ordered.
945  * @c: UBIFS file-system description object
946  * @zbr1: first zbranch
947  * @zbr2: following zbranch
948  *
949  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
950  * names of the direntries/xentries which are referred by the keys. This
951  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
952  * sure the name of direntry/xentry referred by @zbr1 is less than
953  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
954  * and a negative error code in case of failure.
955  */
956 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
957                                struct ubifs_zbranch *zbr2)
958 {
959         int err, nlen1, nlen2, cmp;
960         struct ubifs_dent_node *dent1, *dent2;
961         union ubifs_key key;
962
963         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
964         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
965         if (!dent1)
966                 return -ENOMEM;
967         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
968         if (!dent2) {
969                 err = -ENOMEM;
970                 goto out_free;
971         }
972
973         err = ubifs_tnc_read_node(c, zbr1, dent1);
974         if (err)
975                 goto out_free;
976         err = ubifs_validate_entry(c, dent1);
977         if (err)
978                 goto out_free;
979
980         err = ubifs_tnc_read_node(c, zbr2, dent2);
981         if (err)
982                 goto out_free;
983         err = ubifs_validate_entry(c, dent2);
984         if (err)
985                 goto out_free;
986
987         /* Make sure node keys are the same as in zbranch */
988         err = 1;
989         key_read(c, &dent1->key, &key);
990         if (keys_cmp(c, &zbr1->key, &key)) {
991                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
992                         zbr1->offs, DBGKEY(&key));
993                 dbg_err("but it should have key %s according to tnc",
994                         DBGKEY(&zbr1->key));
995                         dbg_dump_node(c, dent1);
996                         goto out_free;
997         }
998
999         key_read(c, &dent2->key, &key);
1000         if (keys_cmp(c, &zbr2->key, &key)) {
1001                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1002                         zbr1->offs, DBGKEY(&key));
1003                 dbg_err("but it should have key %s according to tnc",
1004                         DBGKEY(&zbr2->key));
1005                         dbg_dump_node(c, dent2);
1006                         goto out_free;
1007         }
1008
1009         nlen1 = le16_to_cpu(dent1->nlen);
1010         nlen2 = le16_to_cpu(dent2->nlen);
1011
1012         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1013         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1014                 err = 0;
1015                 goto out_free;
1016         }
1017         if (cmp == 0 && nlen1 == nlen2)
1018                 dbg_err("2 xent/dent nodes with the same name");
1019         else
1020                 dbg_err("bad order of colliding key %s",
1021                         DBGKEY(&key));
1022
1023         dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1024         dbg_dump_node(c, dent1);
1025         dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1026         dbg_dump_node(c, dent2);
1027
1028 out_free:
1029         kfree(dent2);
1030         kfree(dent1);
1031         return err;
1032 }
1033
1034 /**
1035  * dbg_check_znode - check if znode is all right.
1036  * @c: UBIFS file-system description object
1037  * @zbr: zbranch which points to this znode
1038  *
1039  * This function makes sure that znode referred to by @zbr is all right.
1040  * Returns zero if it is, and %-EINVAL if it is not.
1041  */
1042 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1043 {
1044         struct ubifs_znode *znode = zbr->znode;
1045         struct ubifs_znode *zp = znode->parent;
1046         int n, err, cmp;
1047
1048         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1049                 err = 1;
1050                 goto out;
1051         }
1052         if (znode->level < 0) {
1053                 err = 2;
1054                 goto out;
1055         }
1056         if (znode->iip < 0 || znode->iip >= c->fanout) {
1057                 err = 3;
1058                 goto out;
1059         }
1060
1061         if (zbr->len == 0)
1062                 /* Only dirty zbranch may have no on-flash nodes */
1063                 if (!ubifs_zn_dirty(znode)) {
1064                         err = 4;
1065                         goto out;
1066                 }
1067
1068         if (ubifs_zn_dirty(znode)) {
1069                 /*
1070                  * If znode is dirty, its parent has to be dirty as well. The
1071                  * order of the operation is important, so we have to have
1072                  * memory barriers.
1073                  */
1074                 smp_mb();
1075                 if (zp && !ubifs_zn_dirty(zp)) {
1076                         /*
1077                          * The dirty flag is atomic and is cleared outside the
1078                          * TNC mutex, so znode's dirty flag may now have
1079                          * been cleared. The child is always cleared before the
1080                          * parent, so we just need to check again.
1081                          */
1082                         smp_mb();
1083                         if (ubifs_zn_dirty(znode)) {
1084                                 err = 5;
1085                                 goto out;
1086                         }
1087                 }
1088         }
1089
1090         if (zp) {
1091                 const union ubifs_key *min, *max;
1092
1093                 if (znode->level != zp->level - 1) {
1094                         err = 6;
1095                         goto out;
1096                 }
1097
1098                 /* Make sure the 'parent' pointer in our znode is correct */
1099                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1100                 if (!err) {
1101                         /* This zbranch does not exist in the parent */
1102                         err = 7;
1103                         goto out;
1104                 }
1105
1106                 if (znode->iip >= zp->child_cnt) {
1107                         err = 8;
1108                         goto out;
1109                 }
1110
1111                 if (znode->iip != n) {
1112                         /* This may happen only in case of collisions */
1113                         if (keys_cmp(c, &zp->zbranch[n].key,
1114                                      &zp->zbranch[znode->iip].key)) {
1115                                 err = 9;
1116                                 goto out;
1117                         }
1118                         n = znode->iip;
1119                 }
1120
1121                 /*
1122                  * Make sure that the first key in our znode is greater than or
1123                  * equal to the key in the pointing zbranch.
1124                  */
1125                 min = &zbr->key;
1126                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1127                 if (cmp == 1) {
1128                         err = 10;
1129                         goto out;
1130                 }
1131
1132                 if (n + 1 < zp->child_cnt) {
1133                         max = &zp->zbranch[n + 1].key;
1134
1135                         /*
1136                          * Make sure the last key in our znode is less or
1137                          * equivalent than the the key in zbranch which goes
1138                          * after our pointing zbranch.
1139                          */
1140                         cmp = keys_cmp(c, max,
1141                                 &znode->zbranch[znode->child_cnt - 1].key);
1142                         if (cmp == -1) {
1143                                 err = 11;
1144                                 goto out;
1145                         }
1146                 }
1147         } else {
1148                 /* This may only be root znode */
1149                 if (zbr != &c->zroot) {
1150                         err = 12;
1151                         goto out;
1152                 }
1153         }
1154
1155         /*
1156          * Make sure that next key is greater or equivalent then the previous
1157          * one.
1158          */
1159         for (n = 1; n < znode->child_cnt; n++) {
1160                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1161                                &znode->zbranch[n].key);
1162                 if (cmp > 0) {
1163                         err = 13;
1164                         goto out;
1165                 }
1166                 if (cmp == 0) {
1167                         /* This can only be keys with colliding hash */
1168                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1169                                 err = 14;
1170                                 goto out;
1171                         }
1172
1173                         if (znode->level != 0 || c->replaying)
1174                                 continue;
1175
1176                         /*
1177                          * Colliding keys should follow binary order of
1178                          * corresponding xentry/dentry names.
1179                          */
1180                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1181                                                   &znode->zbranch[n]);
1182                         if (err < 0)
1183                                 return err;
1184                         if (err) {
1185                                 err = 15;
1186                                 goto out;
1187                         }
1188                 }
1189         }
1190
1191         for (n = 0; n < znode->child_cnt; n++) {
1192                 if (!znode->zbranch[n].znode &&
1193                     (znode->zbranch[n].lnum == 0 ||
1194                      znode->zbranch[n].len == 0)) {
1195                         err = 16;
1196                         goto out;
1197                 }
1198
1199                 if (znode->zbranch[n].lnum != 0 &&
1200                     znode->zbranch[n].len == 0) {
1201                         err = 17;
1202                         goto out;
1203                 }
1204
1205                 if (znode->zbranch[n].lnum == 0 &&
1206                     znode->zbranch[n].len != 0) {
1207                         err = 18;
1208                         goto out;
1209                 }
1210
1211                 if (znode->zbranch[n].lnum == 0 &&
1212                     znode->zbranch[n].offs != 0) {
1213                         err = 19;
1214                         goto out;
1215                 }
1216
1217                 if (znode->level != 0 && znode->zbranch[n].znode)
1218                         if (znode->zbranch[n].znode->parent != znode) {
1219                                 err = 20;
1220                                 goto out;
1221                         }
1222         }
1223
1224         return 0;
1225
1226 out:
1227         ubifs_err("failed, error %d", err);
1228         ubifs_msg("dump of the znode");
1229         dbg_dump_znode(c, znode);
1230         if (zp) {
1231                 ubifs_msg("dump of the parent znode");
1232                 dbg_dump_znode(c, zp);
1233         }
1234         dump_stack();
1235         return -EINVAL;
1236 }
1237
1238 /**
1239  * dbg_check_tnc - check TNC tree.
1240  * @c: UBIFS file-system description object
1241  * @extra: do extra checks that are possible at start commit
1242  *
1243  * This function traverses whole TNC tree and checks every znode. Returns zero
1244  * if everything is all right and %-EINVAL if something is wrong with TNC.
1245  */
1246 int dbg_check_tnc(struct ubifs_info *c, int extra)
1247 {
1248         struct ubifs_znode *znode;
1249         long clean_cnt = 0, dirty_cnt = 0;
1250         int err, last;
1251
1252         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1253                 return 0;
1254
1255         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1256         if (!c->zroot.znode)
1257                 return 0;
1258
1259         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1260         while (1) {
1261                 struct ubifs_znode *prev;
1262                 struct ubifs_zbranch *zbr;
1263
1264                 if (!znode->parent)
1265                         zbr = &c->zroot;
1266                 else
1267                         zbr = &znode->parent->zbranch[znode->iip];
1268
1269                 err = dbg_check_znode(c, zbr);
1270                 if (err)
1271                         return err;
1272
1273                 if (extra) {
1274                         if (ubifs_zn_dirty(znode))
1275                                 dirty_cnt += 1;
1276                         else
1277                                 clean_cnt += 1;
1278                 }
1279
1280                 prev = znode;
1281                 znode = ubifs_tnc_postorder_next(znode);
1282                 if (!znode)
1283                         break;
1284
1285                 /*
1286                  * If the last key of this znode is equivalent to the first key
1287                  * of the next znode (collision), then check order of the keys.
1288                  */
1289                 last = prev->child_cnt - 1;
1290                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1291                     !keys_cmp(c, &prev->zbranch[last].key,
1292                               &znode->zbranch[0].key)) {
1293                         err = dbg_check_key_order(c, &prev->zbranch[last],
1294                                                   &znode->zbranch[0]);
1295                         if (err < 0)
1296                                 return err;
1297                         if (err) {
1298                                 ubifs_msg("first znode");
1299                                 dbg_dump_znode(c, prev);
1300                                 ubifs_msg("second znode");
1301                                 dbg_dump_znode(c, znode);
1302                                 return -EINVAL;
1303                         }
1304                 }
1305         }
1306
1307         if (extra) {
1308                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1309                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1310                                   atomic_long_read(&c->clean_zn_cnt),
1311                                   clean_cnt);
1312                         return -EINVAL;
1313                 }
1314                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1315                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1316                                   atomic_long_read(&c->dirty_zn_cnt),
1317                                   dirty_cnt);
1318                         return -EINVAL;
1319                 }
1320         }
1321
1322         return 0;
1323 }
1324
1325 /**
1326  * dbg_walk_index - walk the on-flash index.
1327  * @c: UBIFS file-system description object
1328  * @leaf_cb: called for each leaf node
1329  * @znode_cb: called for each indexing node
1330  * @priv: private date which is passed to callbacks
1331  *
1332  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1333  * node and @znode_cb for each indexing node. Returns zero in case of success
1334  * and a negative error code in case of failure.
1335  *
1336  * It would be better if this function removed every znode it pulled to into
1337  * the TNC, so that the behavior more closely matched the non-debugging
1338  * behavior.
1339  */
1340 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1341                    dbg_znode_callback znode_cb, void *priv)
1342 {
1343         int err;
1344         struct ubifs_zbranch *zbr;
1345         struct ubifs_znode *znode, *child;
1346
1347         mutex_lock(&c->tnc_mutex);
1348         /* If the root indexing node is not in TNC - pull it */
1349         if (!c->zroot.znode) {
1350                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1351                 if (IS_ERR(c->zroot.znode)) {
1352                         err = PTR_ERR(c->zroot.znode);
1353                         c->zroot.znode = NULL;
1354                         goto out_unlock;
1355                 }
1356         }
1357
1358         /*
1359          * We are going to traverse the indexing tree in the postorder manner.
1360          * Go down and find the leftmost indexing node where we are going to
1361          * start from.
1362          */
1363         znode = c->zroot.znode;
1364         while (znode->level > 0) {
1365                 zbr = &znode->zbranch[0];
1366                 child = zbr->znode;
1367                 if (!child) {
1368                         child = ubifs_load_znode(c, zbr, znode, 0);
1369                         if (IS_ERR(child)) {
1370                                 err = PTR_ERR(child);
1371                                 goto out_unlock;
1372                         }
1373                         zbr->znode = child;
1374                 }
1375
1376                 znode = child;
1377         }
1378
1379         /* Iterate over all indexing nodes */
1380         while (1) {
1381                 int idx;
1382
1383                 cond_resched();
1384
1385                 if (znode_cb) {
1386                         err = znode_cb(c, znode, priv);
1387                         if (err) {
1388                                 ubifs_err("znode checking function returned "
1389                                           "error %d", err);
1390                                 dbg_dump_znode(c, znode);
1391                                 goto out_dump;
1392                         }
1393                 }
1394                 if (leaf_cb && znode->level == 0) {
1395                         for (idx = 0; idx < znode->child_cnt; idx++) {
1396                                 zbr = &znode->zbranch[idx];
1397                                 err = leaf_cb(c, zbr, priv);
1398                                 if (err) {
1399                                         ubifs_err("leaf checking function "
1400                                                   "returned error %d, for leaf "
1401                                                   "at LEB %d:%d",
1402                                                   err, zbr->lnum, zbr->offs);
1403                                         goto out_dump;
1404                                 }
1405                         }
1406                 }
1407
1408                 if (!znode->parent)
1409                         break;
1410
1411                 idx = znode->iip + 1;
1412                 znode = znode->parent;
1413                 if (idx < znode->child_cnt) {
1414                         /* Switch to the next index in the parent */
1415                         zbr = &znode->zbranch[idx];
1416                         child = zbr->znode;
1417                         if (!child) {
1418                                 child = ubifs_load_znode(c, zbr, znode, idx);
1419                                 if (IS_ERR(child)) {
1420                                         err = PTR_ERR(child);
1421                                         goto out_unlock;
1422                                 }
1423                                 zbr->znode = child;
1424                         }
1425                         znode = child;
1426                 } else
1427                         /*
1428                          * This is the last child, switch to the parent and
1429                          * continue.
1430                          */
1431                         continue;
1432
1433                 /* Go to the lowest leftmost znode in the new sub-tree */
1434                 while (znode->level > 0) {
1435                         zbr = &znode->zbranch[0];
1436                         child = zbr->znode;
1437                         if (!child) {
1438                                 child = ubifs_load_znode(c, zbr, znode, 0);
1439                                 if (IS_ERR(child)) {
1440                                         err = PTR_ERR(child);
1441                                         goto out_unlock;
1442                                 }
1443                                 zbr->znode = child;
1444                         }
1445                         znode = child;
1446                 }
1447         }
1448
1449         mutex_unlock(&c->tnc_mutex);
1450         return 0;
1451
1452 out_dump:
1453         if (znode->parent)
1454                 zbr = &znode->parent->zbranch[znode->iip];
1455         else
1456                 zbr = &c->zroot;
1457         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1458         dbg_dump_znode(c, znode);
1459 out_unlock:
1460         mutex_unlock(&c->tnc_mutex);
1461         return err;
1462 }
1463
1464 /**
1465  * add_size - add znode size to partially calculated index size.
1466  * @c: UBIFS file-system description object
1467  * @znode: znode to add size for
1468  * @priv: partially calculated index size
1469  *
1470  * This is a helper function for 'dbg_check_idx_size()' which is called for
1471  * every indexing node and adds its size to the 'long long' variable pointed to
1472  * by @priv.
1473  */
1474 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1475 {
1476         long long *idx_size = priv;
1477         int add;
1478
1479         add = ubifs_idx_node_sz(c, znode->child_cnt);
1480         add = ALIGN(add, 8);
1481         *idx_size += add;
1482         return 0;
1483 }
1484
1485 /**
1486  * dbg_check_idx_size - check index size.
1487  * @c: UBIFS file-system description object
1488  * @idx_size: size to check
1489  *
1490  * This function walks the UBIFS index, calculates its size and checks that the
1491  * size is equivalent to @idx_size. Returns zero in case of success and a
1492  * negative error code in case of failure.
1493  */
1494 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1495 {
1496         int err;
1497         long long calc = 0;
1498
1499         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1500                 return 0;
1501
1502         err = dbg_walk_index(c, NULL, add_size, &calc);
1503         if (err) {
1504                 ubifs_err("error %d while walking the index", err);
1505                 return err;
1506         }
1507
1508         if (calc != idx_size) {
1509                 ubifs_err("index size check failed: calculated size is %lld, "
1510                           "should be %lld", calc, idx_size);
1511                 dump_stack();
1512                 return -EINVAL;
1513         }
1514
1515         return 0;
1516 }
1517
1518 /**
1519  * struct fsck_inode - information about an inode used when checking the file-system.
1520  * @rb: link in the RB-tree of inodes
1521  * @inum: inode number
1522  * @mode: inode type, permissions, etc
1523  * @nlink: inode link count
1524  * @xattr_cnt: count of extended attributes
1525  * @references: how many directory/xattr entries refer this inode (calculated
1526  *              while walking the index)
1527  * @calc_cnt: for directory inode count of child directories
1528  * @size: inode size (read from on-flash inode)
1529  * @xattr_sz: summary size of all extended attributes (read from on-flash
1530  *            inode)
1531  * @calc_sz: for directories calculated directory size
1532  * @calc_xcnt: count of extended attributes
1533  * @calc_xsz: calculated summary size of all extended attributes
1534  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1535  *             inode (read from on-flash inode)
1536  * @calc_xnms: calculated sum of lengths of all extended attribute names
1537  */
1538 struct fsck_inode {
1539         struct rb_node rb;
1540         ino_t inum;
1541         umode_t mode;
1542         unsigned int nlink;
1543         unsigned int xattr_cnt;
1544         int references;
1545         int calc_cnt;
1546         long long size;
1547         unsigned int xattr_sz;
1548         long long calc_sz;
1549         long long calc_xcnt;
1550         long long calc_xsz;
1551         unsigned int xattr_nms;
1552         long long calc_xnms;
1553 };
1554
1555 /**
1556  * struct fsck_data - private FS checking information.
1557  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1558  */
1559 struct fsck_data {
1560         struct rb_root inodes;
1561 };
1562
1563 /**
1564  * add_inode - add inode information to RB-tree of inodes.
1565  * @c: UBIFS file-system description object
1566  * @fsckd: FS checking information
1567  * @ino: raw UBIFS inode to add
1568  *
1569  * This is a helper function for 'check_leaf()' which adds information about
1570  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1571  * case of success and a negative error code in case of failure.
1572  */
1573 static struct fsck_inode *add_inode(struct ubifs_info *c,
1574                                     struct fsck_data *fsckd,
1575                                     struct ubifs_ino_node *ino)
1576 {
1577         struct rb_node **p, *parent = NULL;
1578         struct fsck_inode *fscki;
1579         ino_t inum = key_inum_flash(c, &ino->key);
1580
1581         p = &fsckd->inodes.rb_node;
1582         while (*p) {
1583                 parent = *p;
1584                 fscki = rb_entry(parent, struct fsck_inode, rb);
1585                 if (inum < fscki->inum)
1586                         p = &(*p)->rb_left;
1587                 else if (inum > fscki->inum)
1588                         p = &(*p)->rb_right;
1589                 else
1590                         return fscki;
1591         }
1592
1593         if (inum > c->highest_inum) {
1594                 ubifs_err("too high inode number, max. is %lu",
1595                           (unsigned long)c->highest_inum);
1596                 return ERR_PTR(-EINVAL);
1597         }
1598
1599         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1600         if (!fscki)
1601                 return ERR_PTR(-ENOMEM);
1602
1603         fscki->inum = inum;
1604         fscki->nlink = le32_to_cpu(ino->nlink);
1605         fscki->size = le64_to_cpu(ino->size);
1606         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1607         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1608         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1609         fscki->mode = le32_to_cpu(ino->mode);
1610         if (S_ISDIR(fscki->mode)) {
1611                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1612                 fscki->calc_cnt = 2;
1613         }
1614         rb_link_node(&fscki->rb, parent, p);
1615         rb_insert_color(&fscki->rb, &fsckd->inodes);
1616         return fscki;
1617 }
1618
1619 /**
1620  * search_inode - search inode in the RB-tree of inodes.
1621  * @fsckd: FS checking information
1622  * @inum: inode number to search
1623  *
1624  * This is a helper function for 'check_leaf()' which searches inode @inum in
1625  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1626  * the inode was not found.
1627  */
1628 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1629 {
1630         struct rb_node *p;
1631         struct fsck_inode *fscki;
1632
1633         p = fsckd->inodes.rb_node;
1634         while (p) {
1635                 fscki = rb_entry(p, struct fsck_inode, rb);
1636                 if (inum < fscki->inum)
1637                         p = p->rb_left;
1638                 else if (inum > fscki->inum)
1639                         p = p->rb_right;
1640                 else
1641                         return fscki;
1642         }
1643         return NULL;
1644 }
1645
1646 /**
1647  * read_add_inode - read inode node and add it to RB-tree of inodes.
1648  * @c: UBIFS file-system description object
1649  * @fsckd: FS checking information
1650  * @inum: inode number to read
1651  *
1652  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1653  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1654  * information pointer in case of success and a negative error code in case of
1655  * failure.
1656  */
1657 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1658                                          struct fsck_data *fsckd, ino_t inum)
1659 {
1660         int n, err;
1661         union ubifs_key key;
1662         struct ubifs_znode *znode;
1663         struct ubifs_zbranch *zbr;
1664         struct ubifs_ino_node *ino;
1665         struct fsck_inode *fscki;
1666
1667         fscki = search_inode(fsckd, inum);
1668         if (fscki)
1669                 return fscki;
1670
1671         ino_key_init(c, &key, inum);
1672         err = ubifs_lookup_level0(c, &key, &znode, &n);
1673         if (!err) {
1674                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1675                 return ERR_PTR(-ENOENT);
1676         } else if (err < 0) {
1677                 ubifs_err("error %d while looking up inode %lu",
1678                           err, (unsigned long)inum);
1679                 return ERR_PTR(err);
1680         }
1681
1682         zbr = &znode->zbranch[n];
1683         if (zbr->len < UBIFS_INO_NODE_SZ) {
1684                 ubifs_err("bad node %lu node length %d",
1685                           (unsigned long)inum, zbr->len);
1686                 return ERR_PTR(-EINVAL);
1687         }
1688
1689         ino = kmalloc(zbr->len, GFP_NOFS);
1690         if (!ino)
1691                 return ERR_PTR(-ENOMEM);
1692
1693         err = ubifs_tnc_read_node(c, zbr, ino);
1694         if (err) {
1695                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1696                           zbr->lnum, zbr->offs, err);
1697                 kfree(ino);
1698                 return ERR_PTR(err);
1699         }
1700
1701         fscki = add_inode(c, fsckd, ino);
1702         kfree(ino);
1703         if (IS_ERR(fscki)) {
1704                 ubifs_err("error %ld while adding inode %lu node",
1705                           PTR_ERR(fscki), (unsigned long)inum);
1706                 return fscki;
1707         }
1708
1709         return fscki;
1710 }
1711
1712 /**
1713  * check_leaf - check leaf node.
1714  * @c: UBIFS file-system description object
1715  * @zbr: zbranch of the leaf node to check
1716  * @priv: FS checking information
1717  *
1718  * This is a helper function for 'dbg_check_filesystem()' which is called for
1719  * every single leaf node while walking the indexing tree. It checks that the
1720  * leaf node referred from the indexing tree exists, has correct CRC, and does
1721  * some other basic validation. This function is also responsible for building
1722  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1723  * calculates reference count, size, etc for each inode in order to later
1724  * compare them to the information stored inside the inodes and detect possible
1725  * inconsistencies. Returns zero in case of success and a negative error code
1726  * in case of failure.
1727  */
1728 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1729                       void *priv)
1730 {
1731         ino_t inum;
1732         void *node;
1733         struct ubifs_ch *ch;
1734         int err, type = key_type(c, &zbr->key);
1735         struct fsck_inode *fscki;
1736
1737         if (zbr->len < UBIFS_CH_SZ) {
1738                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1739                           zbr->len, zbr->lnum, zbr->offs);
1740                 return -EINVAL;
1741         }
1742
1743         node = kmalloc(zbr->len, GFP_NOFS);
1744         if (!node)
1745                 return -ENOMEM;
1746
1747         err = ubifs_tnc_read_node(c, zbr, node);
1748         if (err) {
1749                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1750                           zbr->lnum, zbr->offs, err);
1751                 goto out_free;
1752         }
1753
1754         /* If this is an inode node, add it to RB-tree of inodes */
1755         if (type == UBIFS_INO_KEY) {
1756                 fscki = add_inode(c, priv, node);
1757                 if (IS_ERR(fscki)) {
1758                         err = PTR_ERR(fscki);
1759                         ubifs_err("error %d while adding inode node", err);
1760                         goto out_dump;
1761                 }
1762                 goto out;
1763         }
1764
1765         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1766             type != UBIFS_DATA_KEY) {
1767                 ubifs_err("unexpected node type %d at LEB %d:%d",
1768                           type, zbr->lnum, zbr->offs);
1769                 err = -EINVAL;
1770                 goto out_free;
1771         }
1772
1773         ch = node;
1774         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1775                 ubifs_err("too high sequence number, max. is %llu",
1776                           c->max_sqnum);
1777                 err = -EINVAL;
1778                 goto out_dump;
1779         }
1780
1781         if (type == UBIFS_DATA_KEY) {
1782                 long long blk_offs;
1783                 struct ubifs_data_node *dn = node;
1784
1785                 /*
1786                  * Search the inode node this data node belongs to and insert
1787                  * it to the RB-tree of inodes.
1788                  */
1789                 inum = key_inum_flash(c, &dn->key);
1790                 fscki = read_add_inode(c, priv, inum);
1791                 if (IS_ERR(fscki)) {
1792                         err = PTR_ERR(fscki);
1793                         ubifs_err("error %d while processing data node and "
1794                                   "trying to find inode node %lu",
1795                                   err, (unsigned long)inum);
1796                         goto out_dump;
1797                 }
1798
1799                 /* Make sure the data node is within inode size */
1800                 blk_offs = key_block_flash(c, &dn->key);
1801                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1802                 blk_offs += le32_to_cpu(dn->size);
1803                 if (blk_offs > fscki->size) {
1804                         ubifs_err("data node at LEB %d:%d is not within inode "
1805                                   "size %lld", zbr->lnum, zbr->offs,
1806                                   fscki->size);
1807                         err = -EINVAL;
1808                         goto out_dump;
1809                 }
1810         } else {
1811                 int nlen;
1812                 struct ubifs_dent_node *dent = node;
1813                 struct fsck_inode *fscki1;
1814
1815                 err = ubifs_validate_entry(c, dent);
1816                 if (err)
1817                         goto out_dump;
1818
1819                 /*
1820                  * Search the inode node this entry refers to and the parent
1821                  * inode node and insert them to the RB-tree of inodes.
1822                  */
1823                 inum = le64_to_cpu(dent->inum);
1824                 fscki = read_add_inode(c, priv, inum);
1825                 if (IS_ERR(fscki)) {
1826                         err = PTR_ERR(fscki);
1827                         ubifs_err("error %d while processing entry node and "
1828                                   "trying to find inode node %lu",
1829                                   err, (unsigned long)inum);
1830                         goto out_dump;
1831                 }
1832
1833                 /* Count how many direntries or xentries refers this inode */
1834                 fscki->references += 1;
1835
1836                 inum = key_inum_flash(c, &dent->key);
1837                 fscki1 = read_add_inode(c, priv, inum);
1838                 if (IS_ERR(fscki1)) {
1839                         err = PTR_ERR(fscki);
1840                         ubifs_err("error %d while processing entry node and "
1841                                   "trying to find parent inode node %lu",
1842                                   err, (unsigned long)inum);
1843                         goto out_dump;
1844                 }
1845
1846                 nlen = le16_to_cpu(dent->nlen);
1847                 if (type == UBIFS_XENT_KEY) {
1848                         fscki1->calc_xcnt += 1;
1849                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1850                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1851                         fscki1->calc_xnms += nlen;
1852                 } else {
1853                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1854                         if (dent->type == UBIFS_ITYPE_DIR)
1855                                 fscki1->calc_cnt += 1;
1856                 }
1857         }
1858
1859 out:
1860         kfree(node);
1861         return 0;
1862
1863 out_dump:
1864         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1865         dbg_dump_node(c, node);
1866 out_free:
1867         kfree(node);
1868         return err;
1869 }
1870
1871 /**
1872  * free_inodes - free RB-tree of inodes.
1873  * @fsckd: FS checking information
1874  */
1875 static void free_inodes(struct fsck_data *fsckd)
1876 {
1877         struct rb_node *this = fsckd->inodes.rb_node;
1878         struct fsck_inode *fscki;
1879
1880         while (this) {
1881                 if (this->rb_left)
1882                         this = this->rb_left;
1883                 else if (this->rb_right)
1884                         this = this->rb_right;
1885                 else {
1886                         fscki = rb_entry(this, struct fsck_inode, rb);
1887                         this = rb_parent(this);
1888                         if (this) {
1889                                 if (this->rb_left == &fscki->rb)
1890                                         this->rb_left = NULL;
1891                                 else
1892                                         this->rb_right = NULL;
1893                         }
1894                         kfree(fscki);
1895                 }
1896         }
1897 }
1898
1899 /**
1900  * check_inodes - checks all inodes.
1901  * @c: UBIFS file-system description object
1902  * @fsckd: FS checking information
1903  *
1904  * This is a helper function for 'dbg_check_filesystem()' which walks the
1905  * RB-tree of inodes after the index scan has been finished, and checks that
1906  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1907  * %-EINVAL if not, and a negative error code in case of failure.
1908  */
1909 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1910 {
1911         int n, err;
1912         union ubifs_key key;
1913         struct ubifs_znode *znode;
1914         struct ubifs_zbranch *zbr;
1915         struct ubifs_ino_node *ino;
1916         struct fsck_inode *fscki;
1917         struct rb_node *this = rb_first(&fsckd->inodes);
1918
1919         while (this) {
1920                 fscki = rb_entry(this, struct fsck_inode, rb);
1921                 this = rb_next(this);
1922
1923                 if (S_ISDIR(fscki->mode)) {
1924                         /*
1925                          * Directories have to have exactly one reference (they
1926                          * cannot have hardlinks), although root inode is an
1927                          * exception.
1928                          */
1929                         if (fscki->inum != UBIFS_ROOT_INO &&
1930                             fscki->references != 1) {
1931                                 ubifs_err("directory inode %lu has %d "
1932                                           "direntries which refer it, but "
1933                                           "should be 1",
1934                                           (unsigned long)fscki->inum,
1935                                           fscki->references);
1936                                 goto out_dump;
1937                         }
1938                         if (fscki->inum == UBIFS_ROOT_INO &&
1939                             fscki->references != 0) {
1940                                 ubifs_err("root inode %lu has non-zero (%d) "
1941                                           "direntries which refer it",
1942                                           (unsigned long)fscki->inum,
1943                                           fscki->references);
1944                                 goto out_dump;
1945                         }
1946                         if (fscki->calc_sz != fscki->size) {
1947                                 ubifs_err("directory inode %lu size is %lld, "
1948                                           "but calculated size is %lld",
1949                                           (unsigned long)fscki->inum,
1950                                           fscki->size, fscki->calc_sz);
1951                                 goto out_dump;
1952                         }
1953                         if (fscki->calc_cnt != fscki->nlink) {
1954                                 ubifs_err("directory inode %lu nlink is %d, "
1955                                           "but calculated nlink is %d",
1956                                           (unsigned long)fscki->inum,
1957                                           fscki->nlink, fscki->calc_cnt);
1958                                 goto out_dump;
1959                         }
1960                 } else {
1961                         if (fscki->references != fscki->nlink) {
1962                                 ubifs_err("inode %lu nlink is %d, but "
1963                                           "calculated nlink is %d",
1964                                           (unsigned long)fscki->inum,
1965                                           fscki->nlink, fscki->references);
1966                                 goto out_dump;
1967                         }
1968                 }
1969                 if (fscki->xattr_sz != fscki->calc_xsz) {
1970                         ubifs_err("inode %lu has xattr size %u, but "
1971                                   "calculated size is %lld",
1972                                   (unsigned long)fscki->inum, fscki->xattr_sz,
1973                                   fscki->calc_xsz);
1974                         goto out_dump;
1975                 }
1976                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1977                         ubifs_err("inode %lu has %u xattrs, but "
1978                                   "calculated count is %lld",
1979                                   (unsigned long)fscki->inum,
1980                                   fscki->xattr_cnt, fscki->calc_xcnt);
1981                         goto out_dump;
1982                 }
1983                 if (fscki->xattr_nms != fscki->calc_xnms) {
1984                         ubifs_err("inode %lu has xattr names' size %u, but "
1985                                   "calculated names' size is %lld",
1986                                   (unsigned long)fscki->inum, fscki->xattr_nms,
1987                                   fscki->calc_xnms);
1988                         goto out_dump;
1989                 }
1990         }
1991
1992         return 0;
1993
1994 out_dump:
1995         /* Read the bad inode and dump it */
1996         ino_key_init(c, &key, fscki->inum);
1997         err = ubifs_lookup_level0(c, &key, &znode, &n);
1998         if (!err) {
1999                 ubifs_err("inode %lu not found in index",
2000                           (unsigned long)fscki->inum);
2001                 return -ENOENT;
2002         } else if (err < 0) {
2003                 ubifs_err("error %d while looking up inode %lu",
2004                           err, (unsigned long)fscki->inum);
2005                 return err;
2006         }
2007
2008         zbr = &znode->zbranch[n];
2009         ino = kmalloc(zbr->len, GFP_NOFS);
2010         if (!ino)
2011                 return -ENOMEM;
2012
2013         err = ubifs_tnc_read_node(c, zbr, ino);
2014         if (err) {
2015                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2016                           zbr->lnum, zbr->offs, err);
2017                 kfree(ino);
2018                 return err;
2019         }
2020
2021         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2022                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2023         dbg_dump_node(c, ino);
2024         kfree(ino);
2025         return -EINVAL;
2026 }
2027
2028 /**
2029  * dbg_check_filesystem - check the file-system.
2030  * @c: UBIFS file-system description object
2031  *
2032  * This function checks the file system, namely:
2033  * o makes sure that all leaf nodes exist and their CRCs are correct;
2034  * o makes sure inode nlink, size, xattr size/count are correct (for all
2035  *   inodes).
2036  *
2037  * The function reads whole indexing tree and all nodes, so it is pretty
2038  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2039  * not, and a negative error code in case of failure.
2040  */
2041 int dbg_check_filesystem(struct ubifs_info *c)
2042 {
2043         int err;
2044         struct fsck_data fsckd;
2045
2046         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2047                 return 0;
2048
2049         fsckd.inodes = RB_ROOT;
2050         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2051         if (err)
2052                 goto out_free;
2053
2054         err = check_inodes(c, &fsckd);
2055         if (err)
2056                 goto out_free;
2057
2058         free_inodes(&fsckd);
2059         return 0;
2060
2061 out_free:
2062         ubifs_err("file-system check failed with error %d", err);
2063         dump_stack();
2064         free_inodes(&fsckd);
2065         return err;
2066 }
2067
2068 static int invocation_cnt;
2069
2070 int dbg_force_in_the_gaps(void)
2071 {
2072         if (!dbg_force_in_the_gaps_enabled)
2073                 return 0;
2074         /* Force in-the-gaps every 8th commit */
2075         return !((invocation_cnt++) & 0x7);
2076 }
2077
2078 /* Failure mode for recovery testing */
2079
2080 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2081
2082 struct failure_mode_info {
2083         struct list_head list;
2084         struct ubifs_info *c;
2085 };
2086
2087 static LIST_HEAD(fmi_list);
2088 static DEFINE_SPINLOCK(fmi_lock);
2089
2090 static unsigned int next;
2091
2092 static int simple_rand(void)
2093 {
2094         if (next == 0)
2095                 next = current->pid;
2096         next = next * 1103515245 + 12345;
2097         return (next >> 16) & 32767;
2098 }
2099
2100 void dbg_failure_mode_registration(struct ubifs_info *c)
2101 {
2102         struct failure_mode_info *fmi;
2103
2104         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2105         if (!fmi) {
2106                 dbg_err("Failed to register failure mode - no memory");
2107                 return;
2108         }
2109         fmi->c = c;
2110         spin_lock(&fmi_lock);
2111         list_add_tail(&fmi->list, &fmi_list);
2112         spin_unlock(&fmi_lock);
2113 }
2114
2115 void dbg_failure_mode_deregistration(struct ubifs_info *c)
2116 {
2117         struct failure_mode_info *fmi, *tmp;
2118
2119         spin_lock(&fmi_lock);
2120         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2121                 if (fmi->c == c) {
2122                         list_del(&fmi->list);
2123                         kfree(fmi);
2124                 }
2125         spin_unlock(&fmi_lock);
2126 }
2127
2128 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2129 {
2130         struct failure_mode_info *fmi;
2131
2132         spin_lock(&fmi_lock);
2133         list_for_each_entry(fmi, &fmi_list, list)
2134                 if (fmi->c->ubi == desc) {
2135                         struct ubifs_info *c = fmi->c;
2136
2137                         spin_unlock(&fmi_lock);
2138                         return c;
2139                 }
2140         spin_unlock(&fmi_lock);
2141         return NULL;
2142 }
2143
2144 static int in_failure_mode(struct ubi_volume_desc *desc)
2145 {
2146         struct ubifs_info *c = dbg_find_info(desc);
2147
2148         if (c && dbg_failure_mode)
2149                 return c->failure_mode;
2150         return 0;
2151 }
2152
2153 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2154 {
2155         struct ubifs_info *c = dbg_find_info(desc);
2156
2157         if (!c || !dbg_failure_mode)
2158                 return 0;
2159         if (c->failure_mode)
2160                 return 1;
2161         if (!c->fail_cnt) {
2162                 /* First call - decide delay to failure */
2163                 if (chance(1, 2)) {
2164                         unsigned int delay = 1 << (simple_rand() >> 11);
2165
2166                         if (chance(1, 2)) {
2167                                 c->fail_delay = 1;
2168                                 c->fail_timeout = jiffies +
2169                                                   msecs_to_jiffies(delay);
2170                                 dbg_rcvry("failing after %ums", delay);
2171                         } else {
2172                                 c->fail_delay = 2;
2173                                 c->fail_cnt_max = delay;
2174                                 dbg_rcvry("failing after %u calls", delay);
2175                         }
2176                 }
2177                 c->fail_cnt += 1;
2178         }
2179         /* Determine if failure delay has expired */
2180         if (c->fail_delay == 1) {
2181                 if (time_before(jiffies, c->fail_timeout))
2182                         return 0;
2183         } else if (c->fail_delay == 2)
2184                 if (c->fail_cnt++ < c->fail_cnt_max)
2185                         return 0;
2186         if (lnum == UBIFS_SB_LNUM) {
2187                 if (write) {
2188                         if (chance(1, 2))
2189                                 return 0;
2190                 } else if (chance(19, 20))
2191                         return 0;
2192                 dbg_rcvry("failing in super block LEB %d", lnum);
2193         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2194                 if (chance(19, 20))
2195                         return 0;
2196                 dbg_rcvry("failing in master LEB %d", lnum);
2197         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2198                 if (write) {
2199                         if (chance(99, 100))
2200                                 return 0;
2201                 } else if (chance(399, 400))
2202                         return 0;
2203                 dbg_rcvry("failing in log LEB %d", lnum);
2204         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2205                 if (write) {
2206                         if (chance(7, 8))
2207                                 return 0;
2208                 } else if (chance(19, 20))
2209                         return 0;
2210                 dbg_rcvry("failing in LPT LEB %d", lnum);
2211         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2212                 if (write) {
2213                         if (chance(1, 2))
2214                                 return 0;
2215                 } else if (chance(9, 10))
2216                         return 0;
2217                 dbg_rcvry("failing in orphan LEB %d", lnum);
2218         } else if (lnum == c->ihead_lnum) {
2219                 if (chance(99, 100))
2220                         return 0;
2221                 dbg_rcvry("failing in index head LEB %d", lnum);
2222         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2223                 if (chance(9, 10))
2224                         return 0;
2225                 dbg_rcvry("failing in GC head LEB %d", lnum);
2226         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2227                    !ubifs_search_bud(c, lnum)) {
2228                 if (chance(19, 20))
2229                         return 0;
2230                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2231         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2232                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2233                 if (chance(999, 1000))
2234                         return 0;
2235                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2236         } else {
2237                 if (chance(9999, 10000))
2238                         return 0;
2239                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2240         }
2241         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2242         c->failure_mode = 1;
2243         dump_stack();
2244         return 1;
2245 }
2246
2247 static void cut_data(const void *buf, int len)
2248 {
2249         int flen, i;
2250         unsigned char *p = (void *)buf;
2251
2252         flen = (len * (long long)simple_rand()) >> 15;
2253         for (i = flen; i < len; i++)
2254                 p[i] = 0xff;
2255 }
2256
2257 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2258                  int len, int check)
2259 {
2260         if (in_failure_mode(desc))
2261                 return -EIO;
2262         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2263 }
2264
2265 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2266                   int offset, int len, int dtype)
2267 {
2268         int err, failing;
2269
2270         if (in_failure_mode(desc))
2271                 return -EIO;
2272         failing = do_fail(desc, lnum, 1);
2273         if (failing)
2274                 cut_data(buf, len);
2275         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2276         if (err)
2277                 return err;
2278         if (failing)
2279                 return -EIO;
2280         return 0;
2281 }
2282
2283 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2284                    int len, int dtype)
2285 {
2286         int err;
2287
2288         if (do_fail(desc, lnum, 1))
2289                 return -EIO;
2290         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2291         if (err)
2292                 return err;
2293         if (do_fail(desc, lnum, 1))
2294                 return -EIO;
2295         return 0;
2296 }
2297
2298 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2299 {
2300         int err;
2301
2302         if (do_fail(desc, lnum, 0))
2303                 return -EIO;
2304         err = ubi_leb_erase(desc, lnum);
2305         if (err)
2306                 return err;
2307         if (do_fail(desc, lnum, 0))
2308                 return -EIO;
2309         return 0;
2310 }
2311
2312 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2313 {
2314         int err;
2315
2316         if (do_fail(desc, lnum, 0))
2317                 return -EIO;
2318         err = ubi_leb_unmap(desc, lnum);
2319         if (err)
2320                 return err;
2321         if (do_fail(desc, lnum, 0))
2322                 return -EIO;
2323         return 0;
2324 }
2325
2326 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2327 {
2328         if (in_failure_mode(desc))
2329                 return -EIO;
2330         return ubi_is_mapped(desc, lnum);
2331 }
2332
2333 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2334 {
2335         int err;
2336
2337         if (do_fail(desc, lnum, 0))
2338                 return -EIO;
2339         err = ubi_leb_map(desc, lnum, dtype);
2340         if (err)
2341                 return err;
2342         if (do_fail(desc, lnum, 0))
2343                 return -EIO;
2344         return 0;
2345 }
2346
2347 #endif /* CONFIG_UBIFS_FS_DEBUG */